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Abstract   

We study a farmer’s decision to convert traditional crop land into growing dedicated energy crops, 
taking in account sunk conversion costs, uncertainties in traditional and energy crop returns, and 
learning. The optimal decision rules differ significantly from the expected net present value rule, 
which ignores learning, and from real option models that allow only one way conversions into 
energy crops. These models also predict drastically different patterns of land conversions into and 
out of energy crops over time. Using corn-soybean rotations and switchgrass as examples, we 
show that the model predictions are sensitive to assumptions about stochastic processes of the 
returns. Government policies might have unintended consequences: subsidizing conversion costs 
into switchgrass reduces proportions of land in switchgrass in the long run. 
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Switching to Perennial Energy Crops under Uncertainty and Costly Reversibility 

 

Introduction 

Replacing fossil fuel with renewable fuels, including biofuels such as ethanol, has been advocated 

for contributing to energy independence and mitigating climate change. Currently most of the 

ethanol produced in the United States comes from corn grain, raising concerns about the negative 

environmental impacts associated with corn production, upward pressure on food prices, and 

greenhouse gas emissions due to indirect land use changes as rising food prices induce cultivation 

of new lands (Searchinger et al. 2008).  A promising alternative is cellulosic ethanol, which relies 

on nonfood feedstocks. The U.S. Energy Independence and Security Act (EISA) of 2007 mandates 

blending into transportation fuels of 36 billion gallons of renewable liquid fuels annually by 2022, 

out of which at least 16 billion gallons must be cellulosic ethanol. Significant expansion of 

cellulosic ethanol production will require more land to grow dedicated energy crops. A recent 

simulation of potential US switchgrass production implies a need for 71 million acres of crop land 

to meet the 2007 EISA mandate (Thomson et al. 2008).  Yet idle land in the United States, 

including CRP land, is only about 40 million acres (Lubowski et al 2006).  This implies that 

current production land will need to be converedt to grow cellulosic energy crops.  

Although large scale production of cellulosic energy crops is not commercially viable at present, 

its advent could have dramatic effects on land use change and associated economic and 

environmental impacts.  Forecasting the conditions under which such change would occur is an 

important first step toward evaluating likely outcomes and relevant policy interventions.  

Forecasting land use change depends critically on farmers’ land use decisions, which in turn are 

driven by several salient features of dedicated energy crops.  
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First, all the major cellulosic energy crop contenders are perennial.  Grass crops, such as 

switchgrass and miscanthus, as well as short rotation woody crops, such as poplar and willow, all 

need several years to establish before achieving full yield potential (Powlson et al. 2005). Devoting 

land to energy crops represents a long term commitment by the farmer and incurs sunk costs. 

Moreover, converting land back to traditional annual crops also incurs (possibly substantial) costs 

(e.g., costs of killing persistent perennial rootstocks).  

Second, farmers growing cellulosic energy crops face two broad sources of revenue uncertainty 

compared with traditional crops. Unlike traditional crops, most energy crops are new to American 

farmers. A 2005 survey conducted in Tennessee found that most respondents had not heard of 

growing switchgrass for biofuel production (Jensen et al 2007). Hence, farmers will need to invest 

time in order to learn how best to grow these crops.   Not only are farmers unfamiliar with theses 

crops, but also the seed companies that have invested decades of research into current crops have 

only just started varietal improvement of energy crops.  As a result, there is great uncertainty about 

both how to manage variability in energy crop production and what might be genetically attainable 

yield levels. 

Quantity aside, energy crop prices are largely undetermined but likely to exhibit different 

volatility patterns from traditional crops.  Crops destined for conversion into ethanol will have 

prices determined in large part by the ethanol market, which is linked to the gasoline market 

(Tyner, 2008).  Energy crop price volatility is likely to be aggravated as ethanol shifts in and out of 

status as a cost-effective fuel substitute for gasoline, based on the relative prices of petroleum and 

corn grain, the leading current ethanol feedstock in the United States.  Although mandated growth 

in cellulosic ethanol demand under EISA may mitigate one policy related source of price 

uncertainty, there remain important uncertainties regarding federal climate-change policy and 
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state-level renewable energy policies.  In sum, energy crop revenue uncertainties are great due to 

both production and price uncertainties. 

Finally, although real options methods exist for modeling stochastic revenue streams and 

uncovering optimal decision rules, the real options literature typically relies upon mathematically 

convenient stochastic information processes that are not necessarily consistent with observed 

variability of energy returns. For instance, policy uncertainties and learning-by-doing in growing 

energy crops will unlikely be described by a geometric Brownian motion. There is a need for 

studies that go beyond mathematically convenient processes in modeling information and learning. 

In this paper, we study land conversions between traditional crops and energy crops, 

incorporating these three features of energy crops. We make several contributions to the literature. 

First, we extend studies based on the net present value (NPV) approaches to allow for uncertainty, 

sunk costs and learning. In the NPV approach (Walsh et al 2003; Fumasi 2008), a farmer will 

convert land to energy crops if the expected NPV of the returns from energy crops exceed those 

from current (traditional) crops. But under uncertainty and sunk costs, the farmer may be more 

reluctant to convert land into and out of the two uses, similar to the predictions of real option 

theory (Dixit and Pindyck, 1994).  

Second, we extend the real options studies and allow for land use conversion in two directions, 

so a farmer deciding on converting to energy crops is allowed to take into consideration of the 

future possibility of converting the land back to tradional crops under plausible market conditions. 

Real option theory has been widely applied in urban land use decisions since Titman (1985) (e.g., 

Capozza and Li  1994; Abebayehu, et al. 1999).  A common assumption in this literature is that 

land conversion is absolutely irreversible. This assumption might be reasonable for urban 

development, but for agricultural land, a farmer can switch between different uses with costs. 
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Allowing two-way land conversion is important to capture the flexibility of farmer’s land use 

decisions, and is particularly important for energy crops given the high degrees of uncertainties 

involved.  

Third, we contrast the effects of two alternative stochastic processes for returns from the two 

competing crop choices, geometric Brownian motion (GBM) and mean reverting (MR).  We use 

both historical market data and simulated agronomic yield data to parameterize and test the 

stochastic processes and show how optimizing farmer behavior responds to alternative 

assumptions about the stochastic processes. 

   Our paper is closely related to the broader real options literature (Dixit and Pindyck, 1994), 

especially those allowing for two way decisions. Dixit (1989) studies a firm’s entry and exit 

decisions assuming that the output price is the only state variable and evolves according to GBM. 

Mason (2001) extends this work to examine a mine’s decision to start and to shut down, for which 

not only the output price is uncertain but the resource reserve is limited. This results in the optimal 

decision rule depending on both the reserve stock level and the price. Dixit (1989) and Mason 

(2001) both assume that the decision maker only obtains a return in one state (entry or active) and 

thus only one stochastic state variable (price) governs the optimal action.  Our model allows two 

separate but possibly correlated returns, those from traditional crops and from energy crops. 

Kassar and Lasserre (2004) examine the optimal abandonment rule between two species, both of 

which have stochastic values. However, in their study, a species cannot be recovered once it is lost, 

which is equivalent to switching in one direction only.  

 

 

 

 



A General Land Conversion Model 

Consider a risk neutral farmer1 with a unit of land facing two land use alternatives, , 

who can convert from alternative i  to 

{1, 2}i S∈ =

j with a lump-sum sunk cost .  Specifically, i=1 denotes 

growing traditional crops while i=2 denotes growing energy crops. The return to alternative in 

period t is denoted by 

ijC

i

( )i tπ , which is assumed to evolve according to a known stochastic process 

of the general form:                       

 (1) ( ) ( (i i i id t d, )i t dt , )i t zπ α π σ π= +                                                                                    

where the drift term ( , )i i tα π  and the variance term ( , )i i tσ π  are known nonrandom functions, and 

 is the increment of a Wiener process. Thus, new information about future returns of the two 

crops comes in the form of newly observed return levels, which become starting points for the 

distributions of future returns. Note that we model the returns directly, instead of modeling the 

price and yield uncertainties separately. This approach simplifies our analysis, and in the empirical 

section we derive the return processes from the underlying price, yield and cost processes. The 

correlation coefficient of the two return processes is 

idz

ρ , i.e., 1 2( )E dz dz dtρ= .  Traditional crop 

and energy crop returns could be correlated for a variety of reasons, e.g. both are linked with 

energy prices and are subject to macro-economic shocks. Finally, let r be the farmer’s discount 

rate. 

A key insight of the real options approach is that when the land is in use i, say in traditional 

crops, the farmer has the option of converting it into energy crops when market conditions are 

“favorable.” Once converted, it is costly to revert it back to traditional crops if the market 

conditions turn out to be less favorable. Thus, sticking to the current land use (in traditional crops) 
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1 We assume risk neutrality for simplicity; similar results can be obtained when the farmer is risk averse. 



has an additional value, called option value, derived from the option of converting it into the 

alternative use (in energy crops). But since the land in energy crops can be further converted back 

to traditional crops (albeit at a cost), this option value of converting from traditional to energy 

crops further depends on the option value associated with converting from energy to traditional 

crops. The mutual dependence of the two option values significantly complicates the solution 

algorithm.  

  Let   be the farmer’s period t expected present-value payoff starting with land 

use i and following optimal land conversion rules. Due to the option of converting into use 

1( ( )iV tπ π 2, ( ))t

j i≠ , 

the payoff depends on the distribution of future returns of both land uses, the information for 

which is contained in the two current returns, 1( )tπ  and 2 ( )tπ . At time t, the farmer chooses 

between keeping the land in use i and converting it into alternative use j:  

 (2)  { }1 2 1 2 1 2( ( ), ( )) max ( ) ( ( ), ( )),  ( ( ), ( ))i rdt i j
i ijV t t t dt e EV t dt t dt V t t Cπ π π π π π π−= + + + −                                              

The first term on the right hand side describes the payoffs if the land is kept in use i: In the 

infinitesimal period [ , ]t t dt+ , the farmer receives profit from land use i at rate ( )i tπ , and at the 

end of the period, receives the new discounted expected payoff . The second term 

on the right hand side describes the payoff if the land is converted into use j: the farmer receives 

the expected payoff of use j, , but incurs the conversion cost .  

(rdt ie EV t d− +

ijC

)t

( )jV t

  As shown by Brekke and Oksendal (1994), the decision problem in (2) can be equivalently 

expressed by a set of complementary slackness conditions, as long as the value functions  

and  are stochastically .

1( )V i

2 ( )V i 2C 2 First, (2) implies that  
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2 This condition is trivially satisfied in our applications. 



(3)  1 2 1 2( ( ), ( )) ( ) ( ( ), ( ))i rdt i
iV t t t dt e EV t dt t dtπ π π π π−≥ + + +

which, after applying Ito’s lemma, can be expressed as  where  1 2( ( ), ( )) 0,iLV t tπ π ≥

 (4)  
1 2

2
1 2 1 2 1

2 2
1 21

( , ) ( , ) ( ) ( , )

                         1/ 2 ( , ) ( , ) ( , )
i

i i

i i i
i i ii

i i
i i i ii

LV rV t t V

t V t t V

π

π π π

π π π π π α π

σ π ρσ π σ π
=

=

≡ − −

− − π

∑
∑

                                         

and the subscripts of  denote partial derivatives. Equation (2) also implies that 

. Then we know the value functions  and 

iV

( ),tπ≥1 2 1 2( ( ), ( )) ( ( ))i j
ijV t t V t Cπ π π − iV jV  have to satisfy: 

                   (i)              1 2( , ) 0,                   1, 2iLV iπ π ≥ =

(5)              (ii)         1 2 1 2( , ) ( , )i j
ijV V Cπ π π π≥ − , {1, 2}i j∈ and i j≠                                 

                   (iii) either (i) or (ii) has to hold as a strict equality.                                                                                 

If (i) is an equality, the farmer should keep his land in current use i, and if (ii) is an equality, 

the farmer should switch the land use to j. If both are equalities (a nongeneric case), the farmer is 

indifferent between converting and not converting. The optimal conversion decisions (i.e., 

solutions to (5)) are represented by two conversion boundaries in the 1 2π π− space, one for each 

type of current land use, as shown in figure 1. If the current land use is in traditional crops (i=1), 

the conversion boundary, 12
2 ( )b 1π π=

2 b

, denotes the returns from traditional and energy crops that 

the farmer is indifferent between converting to energy crops and sticking to traditional crops. 

Above this boundary, i.e., when 12 ( )1π π> , the returns from energy crops are sufficiently high 

that it is optimal for the farmer to convert to energy crops. Conversely if 12
2 ( )b 1π π< , the farmer 

should stick to growing traditional crops. Intuitively, as shown in figure 1, boundary  lies above 12b
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the  line: given the sunk costs and uncertainties, the farmer is reluctant to convert to energy 

crops even when its return 

45o

2 ( )tπ  slightly exceeds 1( )tπ , the return from traditional crops. 

Similarly, if the current land use is in energy crops, the boundary for converting to traditional 

crops is given by 21
2 b 1( )π π

1

=

21
2 ( )b

. If the return from energy crops is too low compared with traditional 

crops so that π π<

45

, the farmer should convert to traditional crops. Otherwise, it is optimal 

for the farmer to stick to the current use (in energy crops). Again, due to uncertainty and sunk 

costs,  lies below the  line in figure 1: once the land is already in energy crops, the farmer is 

reluctant to convert it to traditional crops unless the return from traditional crops is sufficiently 

high. 

21b o

Thus, the two boundaries divide the  1 2π π−  space into three regions: above the boundary , 

it is optimal to convert from traditional crops to energy crops; below the boundary , it is optimal 

to convert from energy crops to traditional crops; and between the two boundaries, it is optimal to 

keep land in its current use.   

12b

21b

Since the two value functions  and V  are interdependent, there are no analytical 

solutions to (5).

1( )V i 2 (i)

( ,iV

3 We follow Miranda and Fackler (2002) and employ the collocation method, 

which approximates the unknown value functions 1 2 )π π using a linear combination of n 

known basis functions:  

1 2

1 2
1 1

j j 1 2

1 2

1 2 1 2
ˆ ( , ) ( , )

n n
i

j j
j j

V cπ π φ=∑∑
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(6)  π

                                                

π
= =

                                                            

where  represents the numerical approximation of . Compared to the shooting algorithm 

and finite difference method that are often used to numerically solve the value functions in 

V̂ ( )i i ( )iV i

 
3 If we allow land conversion in one direction only, then analytical solutions exist for special stochastic processes of 

1( )tπ  and 2 ( )tπ , e.g., geometric Brownian motions. Numerical methods must be employed for more general 
processes even for one way conversion models. For instance, Insley and Rollins (2005) and Conrad and Kotani (2005) 
formulate (4) as a linear complementarity problem and then use the finite difference approach to solve it numerically. 



stochastic dynamic optimization problems, the collocation method is a fast and robust alternative 

(Dangl and Wirl 2004). The coefficients are found by requiring the approximant to satisfy the 

optimality condition (5) at a set of interpolation nodal points. The threshold returns that induce the 

farmer to convert land will also be solved at the nodal points.   

1 2j jc

 

Data and Parameter Estimation 

The empirical analysis focuses on a representative farmer’s optimal land conversion decision in 

the North-central United States, 4 where corn and soybean are two major crops frequently grown in 

rotation. We assume that the farmer currently grows corn and soybean in a balanced rotation (with 

half of his land in each crop). The alternative land use is to grow switchgrass. The model can be 

easily adapted to other locations and crops.  

Construction of Returns to Land Uses 

We first estimate the drift and variance parameter functions ( , )i i tα π and ( , )i i tσ π  for the two land 

uses, and the correlation coefficient of the two stochastic processes ρ . Typically, these parameters 

are estimated using historical time series on returns.  We use USDA’s North-central regional data 

for 1982 to 2008 (USDA, 2008) to calculate the annual average return to the corn-soybean 

rotation, deflating the returns by the Producer Price Index (PPI, 1982=100).  The data series is 

plotted in figure 2.  

Since switchgrass has not been grown commercially as a biofuel feedstock, we do not have 

historical data for switchgrass returns. We instead construct a hypothetical series of returns for 

switchgrass grown as an energy crop. The return equals the farmgate price of switchgrass times 
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4 The North-central area includes Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin. 



yield minus the production costs. The farmgate price is determined by ethanol 

producers’swillingness to pay (WTP) as well as government subsidies.5 Ethanol producers’ WTP 

is equal to the ethanol price subtracted by the conversion costs from switchgrass to ethanol and the 

transportation costs from field to a processing facility. The ethanol price (in $ per gallon) is 

obtained from Nebraska Energy Office from 1982 to 2008.  The estimated conversion cost is 

assumed to be $ 0.91 per gallon (DiPardo 2004). Assuming that one ton of switchgrass yields 91 

gallons of ethanol (Schmer et al. 2008) and multiplying by this conversion rate, we convert the 

ethanol price and conversion cost from a per gallon basis into per ton basis. The transportation cost 

is assumed to be $8 per ton (Babcock et al. 2007). For government subsidies, we use the $45/ton 

matching payment currently provided by USDA to biofuel producers for their costs of collection, 

harvest, transport and storage of biomass. Switchgrass yield for 1982-2008 in the same North-

central states as the corn-soybean returns data is obtained from Thomson et al. (2008), who used 

the EPIC Model at the 8-digit watershed level that can be aggregated to the state level. The 

average switchgrass yield is 3.10 tons/acre and the standard deviation is 0.20 tons/acre. The 

production cost is assumed to be $194/acre (Duffy and Nanhou 2001). Finally, the nominal returns 

are deflated to a 1982 base using the PPI. These returns are plotted in figure 2.    

Parameter Estimation 

We consider two commonly used return processes, geometric Brownian motion (GBM) and 

geometric mean reversion (MR). The GBM process is widely used in real option studies for its 

analytical tractability, and is represented as  

(7)  ,          1,2i i i i i id dt dz iπ α π σ π= + =                                                                                  
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5 Governmental subsidies are important in the competitiveness of switchgrass. With our baseline parameters 
assumptions,  ethanol prices in some years were so low that the switchgrass revenue  was not able to cover the 
production costs if there had been no governmental subsidy.  



where iα and iσ are drift and variance parameters respectively. If a return follows a GBM process, 

the mean and variance of the return rise over time without boundary. Thus it is a nonstationary 

series.  The MR process, on the other hand, assumes that the random variable will revert to a long 

term average, is stationary and is described by 

(8)  ( ) ,             1,2i i i i i i id dt dz iπ η π π π σ π= − + =                                                                              

where iπ  is the long term average return of land use i , iη  is the speed of reversion and iσ is the 

variance rate. The returns revert to a long-run equilibrium iπ  at a speed of i iηπ . The further the 

returns divert from the iπ , the quicker the reversion will be.  

Theoretically, both processes can be justified in describing how agricultural returns evolve over 

time.  GBM can better reflect a trend which could be positive due to technological advances that 

boost productivity while a MR process can better reflect the long term equilibrium conditions 

when technology is unchanging. Statistical tests of the stationarity of corn-soybean and 

switchgrass returns generate mixed signals. For instance, for the logarithmic corn-soybean returns, 

the null hypothesis of unit root is rejected at 5% level based on the Dickey-Fuller test and at 1% 

level based on Phillip-Perron test, but the null hypothesis of stationarity is also rejected at 10% 

level based on KPSS test. Similar results are found for logarithmic switchgrass returns. Given the 

nascent state of biofuel crop technology and markets, the dynamic growth implicit in a GBM 

process seems the more justified of the two. Thus, we use GBM processes in our baseline model, 

and study how the results change if MR processes are used instead.  

To estimate the parameters of the two processes for corn-soybean and switchgrass returns, we 

first discretize the two continuous time processes. If iπ  follows a GBM, then ln iπ  follows a 

simple Brownian motion with drift, which is the limit of a random walk. In particular,  
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(9)                                                                   2
, 1 , ,ln ln ( 1 / 2 ) ,            1, 2i t i t i i i i t iπ π α σ σ ε+ − = − + =

where (0,1)i Nε ∼ . The maximum likelihood estimates of the drift iα  and the standard deviation 

iσ  are thus  and 20.5mˆ i iα = + is iˆi sσ =

, ,ln i t

, where  and  are respectively the mean and standard 

deviation of the series ln

im is

1i tπ π −− .  The estimate of the correlation coefficient ρ  is the 

correlation between series 1,ln 1,lnt 1tπ π −−  and 2, 2, 1ln lnt tπ π −− . The parameter estimates for the 

GBM representation of the corn-soybean and switchgrass returns are presented in Table 1.6   

The discrete time approximation to the MR process in (8) is as follows:   

 (10)  , , 1 , 1 , 1 , 1( ) ,        1, 2i t i t i i i t i t i i t te iπ π η π π π σ π− − − −− = − + =                                                                 

where again . Dividing both sides by (0,1)te N∼ , 1i tπ − , we obtain 

(11) , , 1
, 1 ,

, 1

,                   1,2i t i t
i i i t i i t

i t

a b e i
π π

π σ
π

−
−

−

−
= + + =

                                                                                  

Since the stochastic processes of the returns to corn-soybean and switchgrass have correlated 

residuals (i.e.,  and  are correlated), we use a seemingly unrelated regression model to 

estimate the parameters  , 

1te 2te

,ia ib iσ  and ρ . Consistent estimates of iη  and iπ  are then obtained as 

, and ˆˆi bη = − i

ˆˆ
ˆ
i

i
i

a
b

π = − . The results are reported in table 1. 

                                                 
6 The estimated growth rate of the switchgrass return is 0.17, which is higher than the assumed discount rate of 0.08. 
For the dynamic optimization problem to have a solution, the expected growth rate cannot exceed the discount rate 
(otherwise, the expected payoff from switchgrass is infinite). We thus assume that the switchgrass return grows at the 
same rate as corn-soybean.  
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  Consistent with the observation in figure 2, the return to switchgrass has higher volatility than 

that to corn-soybean, no matter which type of stochastic processes they follow. The shocks to the 

two returns have a correlation coefficient of -0.3.  

Historical returns to corn-soybean and switchgrass are negatively correlated as indicated by the 

estimation results. Part of the reason is that switchgrass revenue is simulated as a function of 

petroleum price and is thus positively correlated with petroleum, whereas until 2005, corn-soybean 

returns were negatively correlated with petroleum prices since petroleum was used as 

transportation and fertilizer inputs. However, this pattern of negative correlation could change as 

more corn and soybean are used to produce biofuels, and as agricultural and petroleum markets 

become more integrated. Then high petroleum prices may push up corn and soybean prices, 

increasing their returns. Furthermore, the positive correlation may become stronger as switchgrass 

or other energy crops expand production and compete with corn-soybean for limited land. In 

response to this possibility, we test the sensitivity of our results to the effects of positive 

correlations between the two returns.  

Land Conversion Costs 

As a perennial crop, switchgrass needs to become established and will not achieve full yield until 

the third or fourth year after seeding. It needs to be replanted every ten years. We use the NPV of 

the (infinite) sequence of first-year switchgrass establishment costs as an estimate of land 

conversion costs from corn-soybean to switchgrass, .12C 7 Switchgrass establishment costs include 

seed, chemicals, machinery and labor (e.g. Hallam et al. 2001; Duffy and Nanhou 2001; Khanna et 

al. 2008; Perrin et al. 2008). The estimated costs vary widely across studies because of different 
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7 The NPV of the decennial establishment cost for switchgrass ($136/acre) overestimates if the farmer does not 
permanently stay with switchgrass. In this case, we overestimate the farmer’s reluctance to convert to switchgrass but 
not to a large extent (one time establishment cost is $109/acre).  

12C



assumptions, methods employed, and production locations. We use $109/acre estimated by 

Khanna et al (2008) because they report the detailed costs categories year by year, which facilitates 

our calculations. The NPV of the cost sequence is $136/acre at a discount rate of 8%.  

Conversion of land from switchgrass to corn-soybean production requires clearing existing 

vegetation residue by tillage or herbicides.  We use the costs of converting land in Conservation 

Reserve Program back to crop production as an approximate of the conversion costs from 

switchgrass to corn-soybean. Higher than normal fertilizer rates may be required for two years 

after conversion (Blocksome et al. 2008). We assume $47/acre conversion cost from switchgrass 

to corn-soybean production, which includes $17/acre disking operation costs and $30/acre total 

additional fertilizer costs for the first two years (Williams et al. 2009).  

 

Results and Sensitivity Analysis 

Given the baseline parameter values, we solve the optimality condition in (5) using OSSOLVER 

(Fackler 2004), implemented with CompEcon Toolbox in Matlab (Miranda and Fackler 2002). The 

same solver was employed by Nøtbakken (2006) to solve her model of a fleet’s optimal decision to 

enter or to leave a fishery.  The family basis function we use is a piecewise linear spline. For each 

state variable (i.e., 1π  and 2π ), the nodal points are evenly spaced over the revenue interval [0, 5] 

(in hundred dollars) with an increment of 0.1.  

Figure 3a shows the two boundaries (the solid lines) for conversions from corn-soybean to 

switchgrass ( ) and from switchgrass to corn-soybean ( ) assuming that both returns follow 

GBM. The boundaries indicate significant hysteresis in land conversion decisions. For instance, 

the real average annual returns based on 2008 prices in 1982 dollars are 

12b 21b

1π = $119/acre for corn-

soybean and 2π =$175/acre for switchgrass. If the land is currently in corn-soybean, the minimum 
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switchgrass return for converting the land to switchgrass is 12 (119)b = $345/acre, which is 

significantly higher than $175. Thus, the land will be kept in corn-soybean rotation even though 

2 1π π> . Conversely, if the land is already in switchgrass, the required minimum corn-soybean 

return for converting into corn-soybean is about $340/acre. Thus, the land will not be converted 

either. 

Given the two boundaries, we calculate the expected probabilities that a piece of land in corn-

soybean will be in switchgrass for each year during a 30 year period, with the 2008 returns as the 

initial (time zero) returns: 1(0)π = $119/acre and 2(0)π =$175/acre. Given this starting point, we 

draw N (=1000) sample paths of the joint return processes for 30 years according to (7) and the 

parameter values in table 1.8  Each sample path of the two returns, 1 2( ), ( )), 1,...,30}t t t{(π π =

1 2( (1), (1))

, is 

then compared with the conversion boundaries, (b ) , to decide whether the land is kept 

in its current use or should be converted to the alternative use. For instance, in year 1, when the 

land is still in corn-soybean, the realized returns on a particular sample path, 

12 ( ),   i 21( )b i

π π , are 

compared with boundary . If the realized returns are in the “no action zone” (e.g., if 

 according to the optimal decision rule), the land is kept in corn-soybean, and 

similar comparisons are made in year 2. If, on the other hand, the realized returns are in the 

“conversion zone” (i.e., if ), the land is converted to switchgrass, and in year two, 

the realized returns 

12b

2 (1) bπ ≥

2), (2))

12 ( (1))b π2 (1)π < 1

1
12 ( (1))π

1 2( (π π will be compared with boundary  to decide whether the land 

should be converted into corn-soybean. Finally, for each period we count the number of sample 

paths on which the land is in switchgrass. Dividing this number by N, we obtain the proportion of 

land in switchgrass for each period.  

21b
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8 The two correlated stochastic processes 1 2{( ( ), ( )), [0,30]}t t tπ π ∈  are approximated by the Euler method and 
implemented using Matlab’s Econometric toolbox.  



Figure 3b illustrates the proportion of land in switchgrass for the 30 year period (solid line). 

Since the starting level of switchgrass return (at $175/acre) is much higher than that of corn-

soybean (at $119/acre), more land is gradually converted into switchgrass, peaking at 30% of the 

total land area. However, the switchgrass return also has a higher level of uncertainty, and 

eventually some land in switchgrass is converted back to corn-soybean, stabilizing at about 14% of 

the land area.  

Comparison with NPV and One Way Conversion Rules 

We next compare the two conversion boundaries found above with those based on the NPV rule. 

According to the NPV decision rule, the farmer will switch from corn-soybean to switchgrass 

when the expected NPV of switching is higher than staying in corn-soybean, i.e., when 

2 12 10 0
( ) ( )rt rtE t e dt C E t e dtπ

∞ ∞− − ≥∫ ∫

1 2( ) rt

π − . Similarly, the farmer will convert from switchgrass to corn-

soybean when 1 20 0
( ) rtE t e dt Cπ

∞ − − ≥∫ E t e dtπ
∞

∫ − . Given that both 1( )tπ  and 2 ( )tπ  follow 

GBM, we use (7) and obtain two NPV conversion boundaries: 12 2

1

(b r1 1( ) 2 12)NPV
r C
r

απ π α−
−

−α
= +  for 

conversion from corn-soybean to switchgrass, and 21 2

1

(1 1( )NPV
rb C
r 2 21)rαπ π α

α
−

= − −
−

for conversion 

from switchgrass to corn-soybean. The two NPV boundaries (in dash lines, based on GBM 

process) are shown in figure 3a. 

As illustrated in figure 3a, the NPV rule predicts that the farmer will convert between land uses 

far more readily than under the dynamically optimal real options rule. For instance, if the corn-

soybean return is $130/acre, the average historical return during 1975 - 2007, the farmer who 

grows corn-soybean will convert to switchgrass if the switchgrass return exceeds $135/acre, and 

the farmer who grows switchgrass will convert to corn-soybean if the switchgrass return is less 
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than $128/acre. But the real option rule, given by  and , indicates that the corn-soybean 

farmer will convert to switchgrass only if the switchgrass return exceeds $365/acre, which is 2.7 

times the NPV threshold. The switchgrass farmer will convert to corn-soybean only if the 

switchgrass return is lower than $55/acre, 57% lower than the corresponding NPV threshold.  

12 ( )b i 21( )b i
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The different conversion boundaries under these two decision rules, ( ) and 

( ), imply different amounts of land converted between the two uses. Figure 3b 

compares the proportions of land in switchgrass under the real option and NPV rules. The NPV 

rule predicts that land will be quickly converted into switchgrass (peaking at 73% of total land 

area), followed by a gradual decline, and eventually stabilizing at about 57%. The predicted 

proportion of land in switchgrass is consistently higher than the predictions of the dynamically 

optimal model. 

12 21( ),   ( )b bi

12 21( ),   ( )NPV NPVb bi

A real options model that only allows one way conversion will predict significantly greater 

farmer reluctance to convert than a two-way conversion model, as shown in figure 4a.9 For 

instance, the threshold return for converting from corn-soybean to switchgrass, , doubles , 

the threshold boundary when two way conversion is accounted for. Similarly, the corn-soybean 

return threshold for a farmer to convert from switchgrass to corn-soybean is twice as high under 

the one-way conversion model compared to the two way conversion model. Because of the 

increased hysteresis, the one way real options model predicts much lower proportions of land in 

swithgrass, as shown in Figure 4b. 

12
OWb 12b

Effects of Different Stochastic Processes 

 
9 The two corresponding conversion boundaries,  and , are obtained by imposing a prohibitively large cost 
of reverting back the earlier conversion. 

12
OWb 21

OWb



We next investigate the effects of assuming different stochastic processes by comparing the 

conversion boundaries and switchgrass proportion under GBM and MR processes. We first 

“anchor” the two processes so that they are comparable by estimating the parameter values of the 

two processes using the same time series data for 1π  and 2π . The parameter estimates for the two 

processes are presented in table 1. This anchoring approach implies that the parameter values may 

not be completely comparable. For instance, although the variance rate for the corn-soybean return 

under the GBM assumption (at 0.29) is roughly the same as that under the MR assumption (at 

0.30), the variance rate for switchgrass return under the GBM assumption (at 0.62) is estimated to 

be much smaller than that under the MR assumption (at 0.97).  

The two-way conversion boundaries for corn-soybean and switchgrass returns follow distinct 

patterns according to whether the underlying stochastic processes follow GBM or MR parameters, 

as illustrated in figure 5a.  The solid lines define the optimal land conversion boundaries assuming 

GBM.  Under a GBM process, the conversion pattern mainly depends on the relative volatility and 

conversion costs.   This yields a fairly symmetric boundary pair, albeit with a lower threshold for 

conversion from switchgrass to corn-soybean at low returns than vice-versa.  Under a MR process, 

the pattern is asymmetric, with a lower threshold for conversion to switchgrass and a much higher 

threshold to corn-soybean for low return rate than under GBM.  But this pattern at low return 

levels is reversed at higher returns, with declining tendency to convert to switchgrass and rising 

tendency to convert to corn-soybean.  The difference in conversion boundary patterns arises from 

three distinct effects of MR as compared to GBM processes: the relative effects of uncertainty, 

distant time horizon and mean reversion.  

The uncertainty effect follows from the higher relative volatility of the switchgrass return in MR 

process than in GBM case (3 vs. 2 times the corresponding corn-soybean uncertainty).  Hence, the 
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optimizing farmer is more reluctant to convert land into switchgrass as well as out of it.10 Due to 

the higher relative volatility for MR, the uncertainty effect raises the conversion boundary from 

corn-soybean to switchgrass and lowers the boundaries in both directions.  

The distant time horizon effect arises from the higher projected long term average return from 

switchgrass as compared to corn-soybean.  This effect lowers the conversion boundary from corn-

soybean to switchgrass and raises the conversion boundary from switchgrass to corn-soybean 

compared to GBM case.  

While the previous two effects hold true for low as well as high return levels, the mean reversion 

effect on the conversion boundaries is behaves differently at low return levels than at high ones. 

When both corn-soybean and switchgrass returns are high, mean reversion pulls them downward 

towards the long term average.  However, the switchgrass return reverts to its mean more slowly 

than the corn-soybean return because it has both a smaller reversion speed parameter and a smaller 

absolute difference between the current return and the long term average.  At high return levels, 

these effects lower the conversion boundary from corn-soybean to switchgrass and raises the 

boundary from switchgrass to corn-soybean. By contrast, when the corn-soybean and switchgrass 

returns are low, mean reversion causes them to rise.  If the switchgrass return reverts more slowly 

than the corn-soybean return, it raises the boundary from corn-soybean to switchgrass and lowers 

the boundary from switchgrass to corn-soybean. When the order of the reversion speed is reversed, 

the net effect is ambiguous because the switchgrass return has a lower reversion speed parameter 

but a higher difference between current return and long term average.  
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10 The reluctancy to convert out of switchgrass as the switchgrass return becomes more uncertain is a feature of the 

real option argument: as  2σ  increases, it is more likely that future return  2π  is high, which implies that the farmer 

should not convert out of switchgrass. In response, the farmer has more incentive to wait until  2π  is low relative to 

1π  beore converting out. This prediction is opposite to that of standard risk aversion arguments, and has been used 

by Schatzki (2003) to test real option versus risk aversion assumptions. 



The asymmetric pattern of the MR returns in figure 5a arises from the interaction of the three 

effects. For conversion boundary , when corn-soybean returns are low the distant time horizon 

effect dominates the other two effects, lowering the boundary. But when corn-soybean returns are 

high, the uncertainty effect dominates and the boundary is raised. For boundary , the three 

effects work together to lower the boundary when the corn-soybean returns are low, and the mean 

reversion effect dominates at high corn-soybean return levels.   

12b

21bH

Consistent with the conversion boundaries in figure 5a, figure 5b shows that the predicted 

proportion of land in switchgrass is higher under MR for the first 4 years, since the conversion 

boundary into switchgrass is low initially. As the returns grow over time, the proportion of land in 

switchgrass declines and becomes lower than under GBM processes. Eventually the switchgrass 

land proportion under both processes stabilizes around 13%.  

Effects of Conversion Costs 

     Figure 6a shows how halving the cost of conversion costs affects the optimal conversion rule 

under the GBM assumption. In the top panel, reducing the conversion costs from corn-soybean to 

switchgrass ( ) creates the desired incentive by making the corn-soybean grower less reluctant 

to make the conversion. However, it also has the indirect effect of making the switchgrass grower 

more prone to convert (back) to corn-soybean, because although the farmer currently growing 

switchgrass will not directly benefit from the subsidy for conversion to switchgrass, its existence 

reduces the expected cost of converting from corn-soybean back to switchgrass, thereby reducing 

the implied cost of switching back to corn-soybean. Thus it indirectly increases his incentive to 

convert land to corn-soybean. The direct effect of lowering is greater than the indirect effect. 

The reduction in  lowers the boundary from corn-soybean to switchgrass more than the 

12C

12C

12C
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boundary from switchgrass to corn-soy. Similarly, the reduction in  lowers both of the 

conversion boundaries but lowers the boundary from switchgrass to corn-soybean more than the 

boundary from corn-soybean to switchgrass. These results also hold under the MR assumption.   

21C

An important insight from this two-way model is that a policy to subsidize conversion to 

dedicated energy crops, such as the USDA Biomass Crop Assistance Program, can have the joint 

effect of encouraging conversion both into and away from the biomass crop.  Figure 6b illustrates 

how the two effects interact over time. Reducing the conversion cost from corn-soybean to 

switchgrass ( ) leads to higher proportions of land in switchgrass for the first 11 years. But after 

that, land in switchgrass is in fact lower, due to the higher incentive to switch back to corn-

soybean. Further, lowering conversion cost into corn-soybean, , in fact promotes conversion 

into switchgrass for the first seven years. Finally, in the long run, lowering  and lowering  

have almost the same effects on land in switchgrass. 

12C

21C

12C 21C

Effects of Uncertainties 

As discussed earlier, higher uncertainties in either corn-soybean or switchgrass returns will cause 

the farmer to be more reluctant to take any conversion action. Figure 7a shows that doubling the 

variance parameter of corn-soybean return 1σ  (or switchgrass return 2σ ) significantly raises the 

conversion boundary from switchgrass (or corn-soybean) to corn-soybean (or switchgrass), (or 

), and slightly raise the conversion boundary from corn-soybean to switchgrass (or ). 

As argued by Sarkar (2003), high uncertainties do not automatically translate into fewer 

conversions: although conversion is undertaken only with “more extreme” returns with the higher 

boundaries, higher uncertainty levels also mean that “extreme returns” occur more frequently. 

Figure 7b shows that doubling 

21b

21b12b 12b

1σ  and doubling 2σ  have strikingly different impacts: the 
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proportion of land in switchgrass increases significantly as 1σ  doubles, but decreases to nearly 

zero (at 0.05) in the long run as 2σ  doubles. 

 

Conclusion and discussion 

This study develops a real options framework to analyze the farmer’s land use decision between 

traditional annual crops and perennial energy crops.  The study innovates from existing models of 

optimal conversion under the assumption of irreversible decisions by introducing a model for two-

way conversion.  The possibility of costly reversibility in crop production is illustrated using an 

annual corn-soybean crop rotation and perennial switchgrass representative alternative crop 

systems.  Consistent with real options theory, the option value of sticking to the current land use 

delays converting land into switchgrass as well as converting out of it. By comparison with the real 

options results, an NPV model predicts that an optimizing farmer would be much more prone to 

convert land to switchgrass compared. A one-way real option model characterizing the land 

conversion decision as irreversible predicts much greater reluctance to convert land from annual 

corn-soybean to a perennial switchgrass energy crop, also implying lower accumulated land under 

energy crops over a 30-year time horizon. We further show how two alternative stochastic process 

assumptions affect the optimal conversion rule and the proportion of land devoted to the dedicated 

energy crop.  
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  From a policy perspective, this model offers two important insights.  First, compared to 

deterministic break-even analyses (e.g., Tyner, 2008; James et al., 2010), it highlights the 

significant option value of delaying land conversion even when a static net present value threshold 

is passed.  The illustrative case here suggests that returns from dedicated energy crops may have to 

exceed double the breakeven NPV level before becoming a dynamically optimizal choice.   
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   Second, compared with past real options models that assume complete irreversibility of 

decisions, this two-way model reveals that conversion subsidies to encourage biofuel crop planting 

have a two-edged impact.  The effect of reducing conversion costs from corn-soybean to an energy 

crop (switchgrass) is to lower the conversion threshold revenue levels in both directions, meaning 

that not only is it easier to convert from corn-soybean into switchgrass, but it also is easier to 

convert the other way. Compared to the case of no subsidy, the predicted proportion of land 

planted to the switchgrass energy crop is higher with the subsidy in the intermediate period but 

actually becomes lower toward the latter part of a 30-year time horizon. 
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Table 1.  Baseline Parameters for Numerically Solving the Dynamic Optimal Land 

Conversion Rule 

Parameters of the stochastic processes of the returns to corn-soy and switchgrass 

                                    Returns to corn-soy Returns to switchgrass 

GBM 
 Drift   parameter                  1α̂  0.04       2α̂  0.04 

 Variance parameter              1σ̂  0.29        2σ̂  0.62 

 Correlation parameter              ρ̂  -0.30   

    Long-run production profit  1̂π  133       2π̂  219 

  MR Reverting speed                     1̂η  0.009       2η̂  0.004 

 Variance  parameter              1σ̂  0.30       2σ̂  0.97 

 Correlation parameter             ρ̂          -0.31   

Land  conversion costs   

 Corn-soy to switchgrass :               136 $/acre       Switchgrass to corn-soy :   47$/acre 12C 21C

Discount factor                                           0.08 r
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Figure 1. Conversion Boundaries
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Figure 2.  Average returns to corn-soybean and switchgrass in North-central U.S. (1982 -

2008, in 1982 dollars). 
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Figure 3a. NPV vs. Dynamic optimal (under GBM): conversion boundaries 

 

Figure 3b. NPV vs. Dynamic optimal rule (under GBM): proportion of land in switchgrass. 
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Figure 4a. Two way vs. one way conversion (under GBM): conversion boundaries 

 

Figure 4b. Two way vs. one way conversion (under GBM): proportion of land in switchgrass 
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Figure 5a.   GBM vs. MR: conversion boundaries 

 

Figure 5b.   GBM vs. MR: proportion of land in switchgrass 
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Figure 6a. Reducing conversion costs (under GBM): conversion boundary 
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Figure 6b. Reducing conversion costs (under GBM): proportion of land in switchgrass 
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Figure 7a. Return volatality (under GBM): conversion boundary  

 

Figure 7b.  Return volatality (under GBM): proportion of land in switchgrass 
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