# MPRA <br> Munich Personal RePEc Archive 

# Intra-industry trade in Latin America and the Caribbean 

Fullerton, Thomas M., Jr.; Sawyer, W. Charles and Sprinkle, Richard L.
University of Texas at El Paso

2010

Online at http://mpra.ub.uni-muenchen.de/34854/ MPRA Paper No. 34854, posted 18. November 2011 / 22:04

# International Trade Journal Volume 25, 2011, Pages 74-111 

Intra-Industry Trade in Latin America and the Caribbean<br>JEL Categories:

F14, Country Studies of International Trade
O54, Latin American and Caribbean Country Studies
Thomas M. Fullerton, Jr.
Department of Economics \& Finance
University of Texas at El Paso
El Paso, TX 79968-0543
Telephone 915-747-7747
Facsimile 915-747-6282
Email tomf@utep.edu
W. Charles Sawyer

Department of Economics
Texas Christian University
Email w.c.sawyer@tcu.edu
Richard L. Sprinkle
Department of Economics \& Finance
University of Texas at El Paso
Email rsprinkl@utep.edu

## Acknowledgements

Financial support for this research was provided by El Paso Electric Company, Hunt Communities, Hunt Building Corporation, and Wells Fargo Bank of El Paso. Helpful comments and suggestions were provided by Martha Patricia Barraza de Anda and Angel Molina. Econometric research assistance was provided by Karen Fierro and Emmanuel Villalobos.


#### Abstract

An increasingly important component of total world trade is intra-industry trade (IIT). The large volume of literature on IIT is reflective of this importance. However, this extensive literature has focused almost completely on explaining the causes of IIT. This focus has left a puzzling gap in the literature. Specifically, it is almost impossible to determine the level of IIT for a particular country or region. Further, there is almost no information on the level of IIT at the industry level either globally or for a region or country. In this paper we provide estimates of IIT for the world and for the countries of the Western Hemisphere. Further, we provide estimates of IIT for ten different SITC product categories on the same basis. The findings of the paper indicate that in most


industries, IIT in Latin America is substantially lower overall than the world average. There are, however, substantial variations observed both by country and by industry. Because the results are the first available for the region as a whole, they should allow researchers to get a better picture of the extent of IIT in Latin America and the Caribbean by country and by industry.

## Introduction

One of the more important features of modern international trade is intra-industry trade. Traditional trade theory focuses on differences in factor prices as the primary determinant of international trade. Beginning in the 1960s, the presence of trade among countries within individual product categories became noticed (Grubel, 1967). This intra-industry trade (IIT) has gone from being a curiosity to a major component of international trade. In reaction to this trend, economic research initially proposed explanations based primarily on stylized facts or empirical regularities, and subsequently moved to more formal models of IIT based on product differentiation coupled with economies of scale (Finger, 1975; Lancaster, 1980). More recent models have focused on explaining different types of IIT according to whether or not the product differentiation is horizontal or vertical. ${ }^{1}$ Given its prevalence on the global economic stage, it is not surprising that a fairly large number of papers also report empirical assessments of merchandise trade data along lines suggested by many of the theoretical models developed for this branch of the discipline. ${ }^{2}$

For Latin America, much of the research in this area has been conducted for Mexico in response to its accession to the General Agreement on Tariffs and Trade (GATT) and its subsequent inclusion in the North American Free Trade Agreement (NAFTA). Esquivel (1992) and Globerman (1992) document pronounced increases in IIT for Mexico as trade liberalization took hold during the 1980s. Those studies, as well as subsequent NAFTA-era research also show that numerous segments of Mexican industry successfully penetrated the higher-income market of its neighbor to the north. ${ }^{3}$ However, not all studies of merchandise trade in other regions of Latin America uncover similar evidence which implies that additional research would be useful. ${ }^{4}$ One of the main problems in this regard is that an overall picture of IIT in Latin America does not exist. For reasons outlined next, this is not surprising. The primary purpose of this paper is to provide a first overall assessment of IIT in the region.

Although this branch of the literature has expanded substantially, there is one curious gap with respect to specific kind of information in the existing inventory of studies to date. Virtually no papers present information on the amount of IIT that is actually occurring in the global economy. With respect to the theoretical literature, this is understandable. In the empirical realm, most articles focus on explaining IIT for a particular country for a recent year or period. This practice tends to generate sets of scattered IIT estimates for specific economies for certain years. As a result, getting a picture of the amount of IIT that occurs in the world economy in aggregate, or for a given region apart from the rest of the world, is virtually impossible. This

[^0]circumstance is even worse with regard to IIT by industry. IIT for specific industries is virtually unknown.

Given the state of the literature, the purpose of this paper is twofold. First, regional estimates of the amount of IIT for Latin America and the Caribbean are developed. Second, regional estimates of IIT by industry are developed for this portion of the Western Hemisphere. The next section of the paper presents estimates of IIT for the world economy and for Latin America and the Caribbean. The third section presents estimates of regional Latin American and Caribbean IIT by country and by industry. A final section summarizes the results and offers some tentative conclusions plus suggestions for future research.

## Total IIT by Country

IIT calculations are generally completed using a variant of the standard index formula shown in Equation 1. ${ }^{5}$
IIT Index $=1-\frac{|\mathrm{X}-\mathrm{M}|}{\mathrm{X}+\mathrm{M}}$
As with all IIT calculations, the estimates range from 0 to 1 . A calculation of zero indicates no IIT. If either exports or imports are zero, then trade is dominated by the more traditional interindustry trade. On the other hand, the closer the amount of exports and imports are to one another, then the closer trade in the industry approximates IIT. As we will see, calculated IIT numbers tend to vary considerably between 0 and 1 depending on the type of products examined. While this formulation is the common equation used to calculate IIT in the literature, it is not a perfect measure. The principal difficulty associated with it is aggregation bias. As has been documented by Gullstrand (2002), IIT calculations performed at higher levels of aggregation yield inflated estimates of IIT. It is virtually impossible to eliminate this bias completely, so the best procedure is to perform the calculations at as high a level of disaggregation as the data allow. Given that, all IIT calculations herein are performed at the 4-digit Standard International Trade Classification (SITC) level of disaggregation and then averaged up to the 1-digit level for reporting purposes. All of the major SITC categories are listed in Table 1. The averages are calculated using both a simple non-weighted approach as well as a trade-weighted approach. Data was used for the year 2003 as it is far enough past the 2001 collapse in world trade and not yet influenced by the boom and subsequent decline in world trade that characterizes some of the more recent data.

Table 1 contains the overall estimates of IIT for the countries of the Western Hemisphere. In addition, estimates are given for the Americas, Latin America \& the Caribbean as a region, and for the world. Estimates of simple and trade-weighted IIT are presented for every country in the Western Hemisphere for which usable data are available. Calculations for Canada and the United States are also included for comparison purposes. At the bottom of Table 1, the aggregate trade-weighted average for the Americas is 0.4883 . This figure includes estimates for Canada and the United States. Excluding the estimates for Canada and the United States causes the average for Latin America and the Caribbean to decline to 0.3603 . The latter is substantially lower than the world trade-weighted average of 0.5049 and probably reflects the institutional

[^1]inertial difficulties of merchandise trade in a region that previously implemented inward-looking import substitution policies during extended periods. ${ }^{6}$

## Table 1 about here

The estimates contained in Table 1 exhibit an enormous amount of regional diversity. As is typical for high-income countries, the estimates for Canada and the United States, 0.5883 and 0.5080 , respectively, are the highest in the Western Hemisphere. At the other extreme, there are a number of countries for which there is virtually no IIT. These countries include several smaller economies that are clustered around the Caribbean, such as Jamaica, the Bahamas, and Panama. Current account balances in most of those economies are generated in the tourism portion of their services accounts. Bolivia and Venezuela are somewhat larger economies that also exhibit relatively small degrees of export diversification. In spite of its history as a transshipment corridor, Paraguay also has a very low trade weighted average in Table 1. ${ }^{7}$

At the other end of the spectrum, the two countries with the most IIT are Brazil and Mexico. The IIT estimate for Brazil is somewhat high, 0.3243 . However, the true outlier in Latin America and the Caribbean is Mexico. Its overall IIT index is 0.4883 . The difference between Mexico and its NAFTA trading partners, especially the United States, is fairly small. Given the propensity of free-trade agreements to foster greater volumes of IIT, the high IIT index for Mexico is probably at least partially attributed to NAFTA. ${ }^{8}$ The lower index values, relative to Mexico, for Brazil and Argentina may be due to trade diversion and inefficiency effects associated with the participation of those countries in the MERCOSUR trading bloc (Yeats, 1998). The relative paucity of international trade in the southern portions of the hemisphere is easy to observe in Figure 1, where the majority of the histogram observations have trade weighted coefficients of less than 0.30.

## Figure 1 about here

## IIT by SITC Product Category

While the results above are informative, the data also permit looking at Latin America and the Caribbean, plus the Western Hemisphere, IIT on an industry basis. As noted above, the original calculations were performed at a 4-digit level of disaggregation. While such narrow estimates are interesting, such a large volume of results cannot be presented in the current format. As a compromise, this section presents estimates of IIT at the 1-digit level of disaggregation based on averaging the 4 -digit indexes. This level provides substantially more detail than that contained in Table 1 while still keeping the reported results to a reasonable length. The various 1-digit SITC industries are listed in Table 2 below. SITC categories 0 through 4 contain primary-product industries such as agricultural, forest, and mineral products. Such products have historically served as the traditional exports from countries in Latin America and the Caribbean. SITC 5 is chemicals and related products that do not fit neatly into either primary products or other types of manufactured products. SITC $6,7,8$, and 9 are the heart of world

[^2]trade in manufactured products. These industries include manufactured goods, machinery and transport equipment, and miscellaneous transactions not included elsewhere, respectively.

## Table 2 about here

To make the results more informative, it would be useful to have some idea of what the IIT trade index is "on average" for each of the nine SITC categories. These results are presented in Table 3. The indexes presented are trade-weighted indexes for each SITC category for all 165 countries in the world for which usable estimates are available. As one might expect, IIT tends to be low for SITC categories $0-4$. Since IIT is heavily associated with differentiated products, the index rises considerably for manufactured products. This should be kept in mind when analyzing the results below. Latin America and the Caribbean are traditionally heavy exporters of primary commodities (Leon and Soto, 1995).

## Table 3 about here

Latin America and the Caribbean results for SITC product categories $0-9$ are given in Tables 4 through 13 below. In SITC 0 (Food and Live Animals, Table 4), the average tradeweighted IIT index for the region of 0.1288 is well below the world average of 0.3765 . Only four countries in the region have indexes that are even close to the world average and are noticeably high in comparison to other countries. These are El Salvador, Guatemala, Mexico, and Trinidad \& Tobago. A low IIT index for food and live animals for the region is not surprising. Many of the countries of the region export a narrow group of commodities for which they exhibit large comparative advantages. Examples of this include meat, soybeans, and coffee exported from Argentina, Brazil, and Colombia, respectively. This pattern of trade leads to a low IIT index or, put another way, interindustry trade rather than IIT. For SITC 1 (Beverages and Tobacco, Table 5), the IIT indexes for the region are very similar to the "worlds" at 0.2110 and 0.3391 , respectively. There are a number of countries in the region where the IIT index for this product category are high even by global standards. These are Bahamas, Barbados, Colombia, El Salvador, Guatemala, St. Vincent, and Venezuela. For these economies, the amount of total trade is quite high. Putting this together with a high IIT index indicates substantial trade in similar, but differentiated products within this category. As shown in Figure 2, the distribution of the trade-weighted coefficients for SITC 1 is skewed to the right of the median value for the region.

## Table 4 about here

Table 5 and Figure 2 about here
For SITC 2 (Crude Materials) the overall IIT index for the region and the world as shown in Table 6 are very different. IIT in the region is very low by global standards. Only Guatemala and Mexico have IIT indexes that approach the levels prevalent in international trade in these products. The majority of the Caribbean Basin economies import finished products to support their tourism service exports (Mullings, 2004). Many of those economies do not produce or export any primary commodities in this category. On the other hand, countries that are heavy exporters of single commodities such as copper in Chile or bauxite in Jamaica also generate the
expected low values for the IIT index (for general discussion, see Feenstra and Taylor, 2008). Given those patterns, a very large number of the histogram observations in Figure 3 lie to the extreme left of the median at, or very near, 0.0.

## Table 6 and Figure 3 about here

SITC 3 includes mineral fuels such as oil and coal. As one would expect, the IIT indexes in Table 7 for both the region and the world are low. For most countries in the region, the indexes are exceptionally low. However, Brazil and Peru have surprisingly high IIT indexes in this product category even by global standards at 0.6420 and 0.6285 , respectively. The Brazilian case is interesting as it imports oil at this time but also exports another fuel, ethanol. Venezuela, as the region's largest oil exporter, shows the expected trade-weighted value for IIT in this category. As illustrated in Figure 4, those values represent clear departures from the rest of the sample. Table 8 presents estimates for SITC 4 (Animal and Vegetable Oils). Globally, the IIT index is low and it is noticeably lower for the region. Only four countries in the region have indexes at or above the global average. The indices for Barbados and Chile are virtually the same as the global average, while those for Guatemala and, especially, Trinidad \& Tobago are noticeably high by world standards. World trade in this product category is quite small. Many of these products can be produced domestically, especially in a situation where a large share of economic output is still agricultural in nature. Since this describes much of the region, trade volumes are low. The country for which IIT looks most like the rest of the world is the most developed country of the region, Chile.

## Table 7 and Figure 4 about here

## Table 8 and Figure 5 about here

The results for SITC product categories 5 through 9 are significantly different than the previous results. Given the prominence of exports from the region that are related to natural resources (Clark, 2007), this is not a surprising result. The results for this group of product categories are shown in Tables 9 through 13 below. In the main, IIT is more important to the extent that product differentiation exists. Since these product categories are dominated by manufactured goods, the calculated IIT indexes rise dramatically. For the world, IIT indexes in these products range from about 0.5 to slightly less than 0.7. In SITC 5 (Chemicals and Related Products), the indexes for the region and the world are 0.3803 and 0.5866 , respectively. However, the indexes are similarly high for only two countries, Argentina and Costa Rica. Brazil, Guatemala, and Mexico are the only other countries with index values above 0.4. For a large number of countries in the region the IIT index is extremely low by global standards and probably reflects the emphasis placed on import substitution industrialization policies (ISI) during much of the twentieth century (Auty, 1994). ISI served to reduce overall trade in the region both directly and indirectly. The fundamental objective was to replace imports with domestic production. From the 1950s until the early 1980s, ISI was vigorously pursued in the region. During that period, high tariffs, administrative practices, and the extensive use of quotas choked off a substantial volume of imports from gaining entry into the region. Although, the most extreme forms of ISI have been reduced over the last 20 years, lingering legacies still persist in the guises of relatively high tariffs and distorted industrial structures. Indirectly, ISI
hobbled the development of the sort of labor-intensive industries characteristic of middle-income countries. In both senses, ISI reduced the volume of trade occurring between the region and the rest of the world. This historical legacy reduces both interindustry and IIT.

Table 9 and Figure 6 about here
The pattern is even more pronounced for world trade in manufactured goods classified principally by material (Table 10). The regional simple average IIT index is significantly below the global average. However, only Mexico has a trade-weighted IIT index of 0.4460 which is even close to the trade-weighted average of 0.5157 for the world. Although the distribution shown in Figure 7 is somewhat bi-modal, the majority of the country IIT index values for the region are skewed toward 0.0. In a sense, this is an extension of the patter shown for SITC 2. Trade in both SITC 6 and 2 are based on the possession of some sort of commodity. Given this, it is not surprising that the trade patterns for the region more closely approximate interindustry trade than IIT.

## Table 10 and Figure 7 about here

The results are somewhat different for SITC 7 (Machinery \& Transport Equipment). Again, the world and regional indexes are very dissimilar. However, within the region, Argentina, Brazil, and Mexico have relatively high IIT indexes. In the cases of Argentina and Mexico, theses indexes are noticeably higher than the world averages. All three of those economies have fairly extensive export industries as well as large domestic markets that allowed achieving production economies of scale in prior decades (James, 1991; Truett and Truett, 1998). Increases in direct foreign investment in sectors such as automobiles, electrical, and nonelectrical machinery, plus trade liberalization policies, have also contributed to greater overall trade volumes for these countries in recent years (Dijkstra, 2000). In particular, Argentina and Brazil are members of MERCOSUR, while Mexico is a member of NAFTA and has trade agreements with other countries in Latin America as well as the EU. ${ }^{9}$ As can be seen in Table 11 and Figure 8, Argentina, Brazil, and Mexico are clearly distinct from what is observed elsewhere in the region and account for the trade weighted regional average approximate equality with the world average. This bimodality is clearly observed in Figure 8.

## Table 11 and Figure 8 about here

For SITC 8 (Miscellaneous Manufactured Articles), a much different pattern emerges for Latin America and the Caribbean. While 11 countries exhibit trade-weighted IIT indices of 0.1 or smaller, the regional index of 0.4681 is only slightly below the world index of 0.4922 (Table 12 and Figure 9). Four countries in the region have indexes that exceed 0.4. Those are Argentina, Brazil, El Salvador, and Mexico. The trade-weighted index for Mexico, 0.5684 , is substantially above the world average. The latter potentially reflects the presence of so many inbond (maquiladora) assembly products whose output levels, and input requirements, have expanded among those listed for SITC 8 in Table 2 (Truett and Truett, 2007). As was the case with SITC 7, many of the same factors may be increasing IIT for these countries relative to the rest of the region.

[^3]
## Table 12 and Figure 9 about here

Given the variety product categories covered by SITC 9 in Table 2, the IIT patterns shown in Table 13 and Figure 10 are not completely surprising. On average, there is little or no IIT in the region compared to the global trade-weighted average of 0.6760 (Table 13). Four of the smaller economies, Barbados, Belize, Costa Rica, and Honduras, all exhibit trade-weighted IIT coefficients of 0.5 or higher that greatly exceed the 0.044 median value shown in Figure 10. All of these economies have relatively large tourism sectors that occasionally lead to trade in non-monetary coin relics, gold jewelry, nonstandard postal packages, and other potential economic peculiarities that are not internationally widespread (Mullings, 2004; Seidl, Guiliano, and Pratt, 2007).

Table 13 and Figure 10 about here

## Conclusion

The objective of this paper is to fill a gap in the literature on IIT. Previous research includes virtually no IIT estimates for the Western Hemisphere or for Latin America and the Caribbean in particular. To partially address this empirical gap in the literature, IIT estimates are developed for each country in this region for which usable data are available. Also developed are more detailed IIT estimates for each of the ten SITC product categories. Trade-weighted coefficients for Latin America and the Caribbean tend to fall substantially below the global IIT average also reported in the tabular data. However, the results obtained are far from uniform. In most product categories, a fair degree of regional heterogeneity can be observed. Further, in a number of cases the trade-weighted IIT values approximate or even exceed their respective global averages. The countries that most frequently exhibit relatively high IIT indexes are Argentina, Brazil, and Mexico.

Information contained herein paints an interesting picture of the IIT regional landscape, but also raises a number of questions. A substantial amount of literature has been devoted to explaining IIT. In particular, the respective roles of policy stances and geo-physical characteristics peculiar to the region at-large have yet to be investigated in this regard. The question of whether natural resource exports, and/or natural resource tourism, may depress IIT relative to what occurs in more resource constrained countries merits some attention. Lingering effects of import-substitution policies and path dependency trends may also contribute to the coefficient distributions described above. Finally, the manners in which both multilateral and bilateral trade barriers have been reduced, or left in place, may influence regional trade and industrialization patterns as well. As those issues are examined, the results discussed in this paper may help clarify questions regarding IIT in this region of the global economy.

## References

R.M. Auty, 1994, "Industrial Policy Reform in 6 Large Newly Industrializing Countries - The Resource Curse Thesis," World Development 22, 11-26.
B. Balassa, 1986, "The Determinants of Intra-Industry Specialization in United States Trade," Oxford Economic Papers 38, 220-233.
D.M. Bernhofen, 1998, "Intra-Industry Trade and Strategic Interaction: Theory and Evidence," Journal of International Economics 45, 77-96.
R.M. Buitelaar and R. Padilla, 1996, "El Comercio Intraindustrial de México con sus Principales Socios Comerciales," Estudios Económicos 11, 77-116.
D. P. Clark, 2009. "Adjustment Problems in Developing Countries and the U.S.-Central America-Dominican Republic Free Trade Agreement," International Trade Journal 23, 31-53.
D.P. Clark, T.M. Fullerton, Jr., and D. Burdorf, 2001, "Intra-Industry Trade between the United States and Mexico: 1993-98," Estudios Económicos 16, 167-183.
D.P. Clark, 2007, "Intraindustry Specialization and the United States - Central American Dominican Republic Free Trade Agreement," Developing Economies 45, 491-506.
M. Connolly, J. Deveraux, and M. Cortes, 1995, "The Transhipment Problem - Smuggling and Welfare in Paraguay," World Development 23, 975-985.

Dijkstra, A. G., 2000, "Trade Liberalization and Industrialization in Latin America," World Development 28, 1567-1582.
G. Esquivel, 1992, "Una Nota sobre el Comercio Intraindustrial México-Estados Unidos," Estudios Económicos 7, 119-137.
L. B. Fabian, 2008. "Marginal Intra-industry Trade: The Case of Jamaica's Trade with CARICOM," International Trade Journal 22, 415-456.
D. Felix, 1989, "Import Substitution and Late Industrialization - Latin America and Asia Compared," World Development 17, 1455-1469.
R.C. Feenstra and A.M. Taylor, 2008, International Economics, New York, NY: Worth Publishers.
J.M. Finger, 1975, "Trade Overlap and Intra-Industry Trade," Economic Inquiry 13, 581-589.
L. Fontagne, M. Freudenberg, and G. Gaulier, 2006, "A Systematic Decomposition of World Trade into Horizontal and Vertical IIT," Weltwirtschaftliches Archiv-Review of World Economics 142, 459-475.
S. Globerman, 1992, "North American Trade Liberalization and Intra-Industry Trade," Weltwirtschaftliches Archiv-Review of World Economics 128, 487-497.
D. Greenaway and C. Milner, 1983, "On the Measurement of Intra-Industry Trade," Economic Journal 93, 900-908.
D. Greenaway, R. Hine, and C. Milner, 1994, "Country-Specific Factors and the Pattern of Horizontal and Vertical Intraindustry Trade in the UK," Weltwirtschaftliches Archiv-Review of World Economics 130, 77-100.
E. Grilli, 2006, "Political Economy and Economic Development in Latin America during the Second Half of the $20^{\text {th }}$ Century," Journal of Policy Modeling 27, 1-31.
H.G. Grubel, 1967, "Intra-Industry Specialization and the Pattern of Trade," Canadian Journal of Economics \& Political Science 37, 374-388.
H.G. Grubel and P. J. Lloyd, 1975, Intra-Industry Trade: The Theory and Measurement of International Trade in Differentiated Products, London, UK: Macmillan.
J. Gullstrand, 2002, "Does the Measurement of Intra-Industry Trade Matter?" Weltwirtschaftliches Archiv-Review of World Economics 138, 317-339.
D.D. James, 1991, "Capital Goods Production and Technological Learning - The Case of Mexico," Journal of Economic Issues 25, 977-991.
K. Lancaster, 1980, "Intra-Industry Trade under Perfect Monopolistic Competition," Journal of International Economics 10, 151-175.
J. Leon and R. Soto, 1995, "Terms of Trade in Latin America - Quantification of the PrebischSinger Hypothesis," El Trimestre Económico 62, 171-199.
B. Mullings, 2004, "Globalization and the Territorialization of the New Caribbean Service Economy," Journal of Economic Geography 4, 275-298.
D. Nowak-Lehmann and I. Martinez-Zarzoso, 2005. "MERCOSUR-European Union Trade: How Important Is EU Trade Liberalization for MERCOSUR's Exports?" International Trade Journal 19, 31-66.
P. Rodas-Martini, 1998, "Intra-Industry Trade and Revealed Comparative Advantage in the Central American Common Market," World Development 26, 337-344.
A. Seidl, F. Guiliano, and L. Pratt, 2007, "Cruising for Colones: Cruise Tourism Economics in Costa Rica," Tourism Economics 13, 67-85.
K. Taegi and K.Y. Oh, 2001, "Country Size, Income Level, and Intra-Industry Trade," Applied Economics 33, 401-406.

Taylor, T. G., 2008. "Export Diversification in Latin America and the Caribbean," International Trade Journal 22, 101-128.
H. Thompson and H. Toledo, 2001. "Bolivia and South American Free Trade," International Trade Journal 15, 113-126.
O. N. Toulan, 2002. "Measuring the Impact of Market Liberalization on Export Behavior: The Case of Argentina," International Trade Journal 16, 105-128.
D.B. Truett and L.J. Truett, 1998, "A Cost Function Analysis of the Mexican Nonelectrical Machinery Industry," Applied Economics 30, 1027-1035.
D.B. Truett and L.J. Truett, 2007, "NAFTA and the Maquiladoras: Boon or Bane?" Contemporary Economic Policy 25, 374-386.
A.J. Yeats, 1998, "Does Mercosur's Trade Performance raise Concerns about the Effects of Regional Trade Arrangements?" World Bank Economic Review 12, 1-28.

Table 1
Intra-Industry Trade by Country

## Total Trade

|  | Country | Simple <br> Average | Total Trade 2003 | Trade Weighted Average |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Argentina | 0.3741 | 33,197,512 | 0.2666 |
| 2 | Bahamas | 0.0129 | 2,153,123 | 0.0350 |
| 3 | Barbados | 0.0562 | 1,356,121 | 0.1029 |
| 4 | Belize | 0.0109 | 688,393 | 0.2873 |
| 5 | Bolivia | 0.1102 | 3,332,133 | 0.1069 |
| 6 | Brazil | 0.3814 | 123,907,947 | 0.3243 |
| 7 | Canada | 0.4969 | 511,743,250 | 0.5883 |
| 8 | Chile | 0.1960 | 37,451,185 | 0.1388 |
| 9 | Colombia | 0.2584 | 26,971,154 | 0.2059 |
| 10 | Costa Rica | 0.2093 | 13,186,268 | 0.2540 |
| 11 | Cuba | 0.0482 | 6,224,480 | 0.0313 |
| 12 | Dominica | 0.0201 | 161,278 | 0.0480 |
| 13 | Dominican Rep. | 0.0873 | 6,308,159 | 0.1046 |
| 14 | Ecuador | 0.1370 | 12,570,076 | 0.1301 |
| 15 | El Salvador | 0.1650 | 5,633,662 | 0.2638 |
| 16 | Grenada | 0.0145 | 274,323 | 0.0261 |
| 17 | Guatemala | 0.2229 | 9,350,483 | 0.2546 |
| 18 | Guyana | 0.0495 | 1,013,764 | 0.0434 |
| 19 | Honduras | 0.1051 | 4,369,847 | 0.1412 |
| 20 | Jamaica | 0.0560 | 4,624,278 | 0.0691 |
| 21 | Mexico | 0.4012 | 336,685,048 | 0.5128 |
| 22 | Nicaragua | 0.0679 | 2,416,908 | 0.0799 |
| 23 | Panama | 0.0444 | 3,921,264 | 0.0619 |
| 24 | Paraguay | 0.0682 | 2,379,460 | 0.0610 |
| 25 | Peru | 0.1728 | 17,161,311 | 0.1711 |
| 26 | St. Kitts - Nevis | 0.0158 | 213,330 | 0.0601 |
| 27 | St. Vincent | 0.0218 | 228,006 | 0.0482 |
| 28 | Suriname | 0.0275 | 1,003,709 | 0.0320 |
| 29 | Trinidad \& Tobago | 0.1500 | 7,510,471 | 0.2687 |
| 30 | U.S. | 0.5416 | 1,956,418,603 | 0.5080 |
| 31 | Uruguay | 0.1504 | 4,385,861 | 0.1834 |
| 32 | Venezuela | 0.1859 | 33,330,155 | 0.0781 |
| Americas Average |  | 0.1518 | 3,170,171,562 | 0.1715 |
|  |  |  | Americas Trade Weighted Average | 0.4883 |
| Latin American \& Caribbean Average |  | 0.1274 | 702,009,709 | 0.1464 |
|  |  | 0.1824 | Latin American \& Caribbean Weighted Average 14,333,451,863 | $0.3603$ |
| World Average |  | 0.1824 | 14,333,451,863 | 0.2187 |
|  |  |  | World Trade Weighted Average | 0.5049 |

Table 2
Detailed Structure of the
Standard Industrial Trade Classification System
SITC Code Product Description
$0-\quad$ Food and live animals
00 - Live animals other than animals of division 03
01 - Meat and meat preparations
02 - Dairy products and birds' eggs
03- Fish (not marine mammals), crustaceans, mollusks and aquatic invertebrates, and preparations thereof
04 - Cereals and cereal preparations
05- Vegetables and fruit
06 - Sugars, sugar preparations and honey
07- Coffee, tea, cocoa, spices, and manufactures thereof
08 - Feeding stuff for animals (not including unmilled cereals)
09 - Miscellaneous edible products and preparations
1 -
11
12

## Beverages and tobacco

Beverages
Tobacco and tobacco manufactures
Crude materials, inedible, except fuels
Hides, skins and furskins, raw
Oil-seeds and oleaginous fruits
Crude rubber (including synthetic and reclaimed)
Cork and wood
Pulp and waste paper
Textile fibres (other than wool tops and other combed wool) and their wastes (not manufactured into yarn or fabric)
Crude fertilizers, other than those of division 56, and crude minerals (excluding coal, petroleum and precious stones)
Metalliferous ores and metal scrap
Crude animal and vegetable materials, n.e.s.
Mineral fuels, lubricants and related materials
Coal, coke and briquettes
Petroleum, petroleum products and related materials
Gas, natural and manufactured
Electric current
Animal and vegetable oils, fats and waxes
Animal oils and fats
Fixed vegetable fats and oils, crude, refined or fractionated
Animal or vegetable fats and oils, processed; waxes of animal or vegetable origin; inedible mixtures or preparations of animal or vegetable fats or oils, n.e.s.

# Table 2 (Continued) 

Detailed Structure of the<br>Standard Industrial Trade Classification System

| SITC Code | Product Description |
| :---: | :---: |
| $\begin{array}{cc}5- & \\ 5 \\ 5 \\ & 53 \\ 5 \\ & 5 \\ & \\ 56 \\ 5 \\ 58 \\ & 59\end{array}$ | Chemicals and related products, n.e.s. |
|  | Organic chemicals |
|  | Inorganic chemicals |
|  | Dyeing, tanning and colouring materials |
|  | Medicinal and pharmaceutical products |
|  | Essential oils and resinoids and perfume materials; toilet, polishing and cleansing preparations |
|  | Fertilizers (other than those of group 272) |
|  | Plastics in primary forms |
|  | Plastics in non-primary forms |
|  | Chemical materials and products, n.e.s. |
| 6 - | Manufactured goods classified chiefly by material |
| 61 - | Leather, leather manufactures, n.e.s., and dressed furskins |
| 62 - | Rubber manufactures, n.e.s. |
| 63 - | Cork and wood manufactures (excluding furniture) |
| 64 - | Paper, paperboard and articles of paper pulp, of paper or of paperboard |
| 65 - | Textile yarn, fabrics, made-up articles, n.e.s., and related products |
| 66 - | Non-metallic mineral manufactures, n.e.s. |
| 67 - | Iron and steel |
| 68 - | Non-ferrous metals |
| 69 - | Manufactures of metals, n.e.s. |
| 7 - | Machinery and transport equipment |
| 71 - | Power-generating machinery and equipment |
| 72 - | Machinery specialized for particular industries |
| 73 - | Metalworking machinery |
| 74 - | General industrial machinery and equipment, n.e.s., and machine parts, n.e.s. |
| 75 - | Office machines and automatic data-processing machines |
| 76 - | Telecommunications and sound-recording and reproducing apparatus and equipment |
| 77 - | Electrical machinery, apparatus and appliances, n.e.s., and electrical parts thereof (including non-electrical counterparts, n.e.s., of electrical household-type equipment) |
| 78 - | Road vehicles (including air-cushion vehicles) |
| 79 - | Other transport equipment |

## Table 2 (Continued)

Detailed Structure of the
Standard Industrial Trade Classification System

| SITC Code | Product Description |
| :---: | :---: |
|  | Miscellaneous manufactured articles |
| 8 - | Prefabricated buildings; sanitary, plumbing, heating and lighting fixtures and fittings, n.e.s. |
|  | Furniture, and parts thereof; bedding, mattresses, mattress supports, cushions and similar stuffed furnishings |
|  | Travel goods, handbags and similar containers |
|  | Articles of apparel and clothing accessories |
|  | Footwear |
|  | Professional, scientific and controlling instruments and apparatus, n.e.s. |
|  | Photographic apparatus, equipment and supplies and optical goods, n.e.s.; watches and clocks |
| 89 - | Miscellaneous manufactured articles, n.e.s. |
| 9 - | Commodities and transactions not classified elsewhere in the SITC |
| 91 - | Postal packages not classified according to kind |
| 93 - | Special transactions and commodities not classified according to kind |
| 96 - | Coin (other than gold coin), not being legal tender |
| 97 - | Gold, non-monetary (excluding gold ores and concentrates) |

## Table 3

## Intra-Industry Trade by SITC Classification For All Countries

| All <br> Countries | SITC <br> Group | Simple <br> Average | Total Trade <br> 2003 | Trade <br> Weighted <br> Average |
| :--- | ---: | ---: | ---: | ---: |
|  | 0 | 0.1739 | $831,863,042$ | 0.3765 |
|  | 1 | 0.2130 | $134,837,033$ | 0.3391 |
|  | 2 | 0.1372 | $469,424,296$ | 0.2715 |
|  | 3 | 0.1101 | $1,384,453,072$ | 0.2203 |
|  | 4 | 0.1195 | $59,378,882$ | 0.2628 |
|  | 5 | 0.1794 | $1,583,640,543$ | 0.5866 |
|  | 6 | 0.1956 | $1,955,892,623$ | 0.5157 |
|  | 7 | 0.1840 | $5,646,457,259$ | 0.5817 |
|  | 8 | 0.2153 | $1,771,651,199$ | 0.4922 |
|  | 9 | 0.2760 | $494,811,142$ | 0.6760 |
|  |  |  |  |  |
|  | Total | 0.1824 | $14,333,451,863$ | 0.5049 |

Table 4

## Intra-Industry Trade by SITC Industry <br> Group 0, Food and Live Animals

$\left.\begin{array}{lrrr} & & & \text { Trade Weighted } \\ \text { Average }\end{array}\right]$

Table 5
Intra-Industry Trade by SITC Industry
Group 1, Beverages and Tobacco

Simple
Average

## Country

1 Argentina
2 Bahamas
3 Barbados
4 Belize
5 Bolivia
6 Brazil
7 Canada
8 Chile
9 Colombia
10 Costa Rica
11 Cuba
12 Dominica
13 Dominican Rep.
14 Ecuador
15 El Salvador
16 Grenada
17 Guatemala
18 Guyana
19 Honduras
20 Jamaica
21 Mexico
22 Nicaragua
23 Panama
24 Paraguay
25 Peru
26 St. Kitts - Nevis
27 St. Vincent
28 Suriname
29 Trinidad \& Tobago
30 U.S.
31 Uruguay
32 Venezuela

## Americas Average

Latin American \& Caribbean Average

World Average
0.378
T

Total Trade 2003
Trade Weighted
Total Trade 2003 Average

| 0.3780 | 339,881 | 0.1613 |
| :--- | ---: | ---: |
| 0.1531 | 100,809 | 0.5565 |
| 0.1114 | 58,510 | 0.3136 |
| 0.0000 | 4,588 | 0.0000 |
| 0.2287 | 10,856 | 0.2246 |
| 0.3132 | $1,291,364$ | 0.0823 |
| 0.4450 | $2,816,680$ | 0.6218 |
| 0.3439 | 733,484 | 0.0264 |
| 0.3153 | 182,962 | 0.4851 |
| 0.1763 | 47,023 | 0.2408 |
| 0.1755 | 300,279 | 0.0576 |
| 0.1306 | 4,143 | 0.3003 |
| 0.4307 | 106,927 | 0.5070 |
| 0.0426 | 54,821 | 0.0745 |
| 0.1878 | 84,333 | 0.6637 |
| 0.0282 | 5,465 | 0.0714 |
| 0.4422 | 106,855 | 0.7973 |
| 0.1861 | 20,876 | 0.0892 |
| 0.1755 | 67,729 | 0.1961 |
| 0.2587 | 94,873 | 0.2192 |
| 0.4552 | $2,422,257$ | 0.2351 |
| 0.0592 | 43,912 | 0.2362 |
| 0.1950 | 39,979 | 0.2944 |
| 0.1736 | 122,216 | 0.2613 |
| 0.2789 | 49,423 | 0.3047 |
| 0.0522 | 5,332 | 0.1819 |
| 0.1641 | 6,426 | 0.5039 |
| 0.0249 | 16,476 | 0.0306 |
| 0.1256 | 121,804 | 0.2238 |
| 0.3920 | $17,234,317$ | 0.3072 |
| 0.2685 | 49,606 | 0.2190 |
| 0.3414 | 201,691 | 0.5915 |
| 0.2204 |  |  |
|  | $26,745,897$ | 0.2837 |
|  | $T r a$ |  |


|  |  |  |  |
| :--- | :---: | :--- | :---: |
| Caribbean Average | Americas Trade <br> Weighted Average | 0.3162 |  |
| World Average | 0.2072 | 6,694,900 | 0.2716 |
|  | 0.2130 |  <br> Caribbean <br> Weighted Average <br> $134,837,033$ | 0.2110 |
| World Trade <br> Weighted Average | 0.2471 |  |  |

Table 6
Intra-Industry Trade by SITC Industry Group 2, Crude Materials, Inedible, except Fuels

Country

| 1 | Argentina |
| ---: | :--- |
| 2 | Bahamas |
| 3 | Barbados |
| 4 | Belize |
| 5 | Bolivia |
| 6 | Brazil |
| 7 | Canada |
| 8 | Chile |
| 9 | Colombia |
| 10 | Costa Rica |
| 11 | Cuba |
| 12 | Dominica |
| 13 | Dominican Rep. |
| 14 | Ecuador |
| 15 | El Salvador |
| 16 | Grenada |
| 17 | Guatemala |
| 18 | Guyana |
| 19 | Honduras |
| 20 | Jamaica |
| 21 | Mexico |
| 22 | Nicaragua |
| 23 | Panama |
| 24 | Paraguay |
| 25 | Peru |
| 26 | St. Kitts - Nevis |
| 27 | St. Vincent |
| 28 | Suriname |
| 29 | Trinidad \& Tobago |
| 30 | U.S. |
| 31 | Uruguay |
| 32 | Venezuela |
|  |  |


| Americas Average | 0.1237 | $118,267,009$ |
| :--- | :---: | :--- | :---: |
| Americas Trade |  |  |
| Weighted Average |  |  |$] 0.0918$

Table 7
Intra-Industry Trade by SITC Industry Group 3, Mineral Fuels, Lubricants and Related Materials


Simple
Average

11 Cuba

30 U.S.

Argentina
2 Bahamas
3 Barbados
4 Belize
5 Bolivia
6 Brazil
7 Canada
8 Chile
9 Colombia
10 Costa Rica

12 Dominica
13 Dominican Rep.
14 Ecuador
15 El Salvador
16 Grenada
17 Guatemala
18 Guyana
19 Honduras
20 Jamaica
21 Mexico
22 Nicaragua
23 Panama
4 Paraguay
5 Peru
26 St. Kitts - Nevis
27 St. Vincent
28 Suriname
29 Trinidad \& Tobago

31 Uruguay
32 Venezuela
Americas Average

Latin American \&
Caribbean Average
World Average
0.1544
0.0000
0.0000
0.0000
0.0243
0.2265
0.3561
0.1744
0.1057
0.0762
0.0000
0.0000
0.0826
0.1470
0.0739
0.0000
0.0989
0.0000
0.0395
0.0157
0.0796
0.0264
0.0036
0.0019
0.1852
0.0000
0.0000
0.0385
0.0876
0.4215
0.1185
0.1608
0.0843
Latin American \&
Caribbean Average

Total Trade 2003 Average
Trade Weighted

| $3,297,630$ | 0.0774 |
| ---: | :--- |
| 292,740 | 0.0000 |

$195,701 \quad 0.0000$
57,721 0.0000
$620,449 \quad 0.0566$

| $11,810,504$ | 0.6420 |
| :--- | :--- |
| $58,871,393$ | 0.5042 |

$3,751,478 \quad 0.2250$
$\begin{array}{rr}5,113,232 & 0.0900 \\ 596,464 & 0.0945\end{array}$
369,101 0.0000
0.0000
0.1875
0.1355
0.1832
0.0000
0.0737
0.0000
0.0100
0.0872
$\begin{array}{rl}24,202,000 & 0.1321 \\ 294,435 & 0.0435\end{array}$
371,551 0.0289
41,201 0.0083
$\begin{array}{rl}2,125,332 & 0.6285 \\ 14,137 & 0.0000\end{array}$
$\begin{array}{ll}14,137 & 0.0000 \\ 19,707 & 0.0845\end{array}$
60,170 0.0845
3,327,493 0.1641
$176,942,945 \quad 0.1347$
515,785 0.1332
20,697,471
0.0029

321,498,517
0.1165
$\begin{array}{rr}\begin{array}{l}\text { Americas Trade } \\ \text { Weighted Average }\end{array} & 0.2145 \\ & 0.1030\end{array}$
Latin American \&
Caribbean
Weighted Average
0.1803

1,384,453,072
0.1413

World Trade
Weighted Average 0.2203

Table 8
Intra-Industry Trade by SITC Industry Country Group 4, Animal and Vegetable Oils, Fats and Waxes

1 Argentina
2 Bahamas
3 Barbados
4 Belize
5 Bolivia
6 Brazil
7 Canada
8 Chile
9 Colombia
10 Costa Rica
11 Cuba
12 Dominica
13 Dominican Rep.
14 Ecuador
15 El Salvador
16 Grenada
17 Guatemala
18 Guyana
19 Honduras
20 Jamaica
21 Mexico
22 Nicaragua
23 Panama
4 Paraguay
25 Peru
26 St. Kitts - Nevis
27 St. Vincent
28 Suriname
29 Trinidad \& Tobago
30 U.S.
31 Uruguay
32 Venezuela
Americas Average
Latin American \&
Caribbean Average
Latin American \&
Caribbean Average
World Average

Simple Average

0.1669
0.0000
0.0818
0.0000
0.0850
0.2328
0.3566
0.1716
0.0812
0.1404
0.0003
0.0000
0.0893
0.0802
0.0803
0.0000
0.1564
0.0000
0.1020
0.0000
0.2114
0.0187
0.0391
0.1553
0.0605
0.0000
0.0000
0.0000
0.1437
0.3551
0.1241
0.0041
0.0918

Total Trade 2003 Average

Table 9
Intra-Industry Trade by SITC Industry Group 5, Chemicals and Related Products

|  | $\begin{array}{l}\text { Simple } \\ \text { Average }\end{array}$ |  | $\begin{array}{l}\text { Trade Weighted } \\ \text { Average }\end{array}$ |  |
| :--- | :--- | ---: | ---: | :---: |
|  | Country Trade 2003 |  |  |  |$]$


|  | Group 6, M | ra-Industry T nufactured Goo | able 10 <br> rade by SITC Ind <br> ods Classified chi | stry <br> fly by Material |
| :---: | :---: | :---: | :---: | :---: |
|  | Country | Simple <br> Average | Total Trade 2003 | Trade Weighted Average |
| 1 | Argentina | 0.3877 | 4,294,519 | 0.3334 |
| 2 | Bahamas | 0.0000 | 295,587 | 0.0002 |
| 3 | Barbados | 0.0493 | 203,842 | 0.1316 |
| 4 | Belize | 0.0034 | 64,011 | 0.0066 |
| 5 | Bolivia | 0.0695 | 447,189 | 0.0461 |
| 6 | Brazil | 0.4587 | 19,066,059 | 0.3101 |
| 7 | Canada | 0.5291 | 70,424,793 | 0.5758 |
| 8 | Chile | 0.2270 | 8,524,778 | 0.1196 |
| 9 | Colombia | 0.3338 | 3,924,339 | 0.3202 |
| 10 | Costa Rica | 0.2135 | 1,607,782 | 0.2823 |
| 11 | Cuba | 0.0473 | 833,798 | 0.0480 |
| 12 | Dominica | 0.0000 | 20,359 | 0.0000 |
| 13 | Dominican Rep. | 0.0704 | 1,028,653 | 0.0573 |
| 14 | Ecuador | 0.1762 | 1,190,519 | 0.2237 |
| 15 | El Salvador | 0.1909 | 1,011,892 | 0.3187 |
| 16 | Grenada | 0.0188 | 49,545 | 0.0658 |
| 17 | Guatemala | 0.2521 | 1,445,613 | 0.3066 |
| 18 | Guyana | 0.0430 | 141,322 | 0.0387 |
| 19 | Honduras | 0.1227 | 844,934 | 0.2541 |
| 20 | Jamaica | 0.0163 | 464,048 | 0.0180 |
| 21 | Mexico | 0.4227 | 39,721,037 | 0.4460 |
| 22 | Nicaragua | 0.0666 | 286,048 | 0.1036 |
| 23 | Panama | 0.0453 | 546,989 | 0.0942 |
| 24 | Paraguay | 0.0544 | 308,562 | 0.0618 |
| 25 | Peru | 0.2135 | 2,916,680 | 0.1327 |
| 26 | St. Kitts - Nevis | 0.0140 | 41,305 | 0.0333 |
| 27 | St. Vincent | 0.0225 | 40,658 | 0.0543 |
| 28 | Suriname | 0.0156 | 91,797 | 0.0233 |
| 29 | Trinidad \& Tobago | 0.1315 | 933,860 | 0.1503 |
| 30 | U.S. | 0.5637 | 199,137,617 | 0.5274 |
| 31 | Uruguay | 0.1385 | 709,138 | 0.2544 |
| 32 | Venezuela | 0.2257 | 3,286,992 | 0.1742 |
|  | Americas Average | 0.1601 | 363,904,265 | 0.1723 |
|  |  |  | Americas Trade Weighted Average | 0.4841 |
|  | Latin American \& Caribbean Average | 0.1344 | 94,341,855 | 0.1470 |
|  |  |  | Latin American \& Caribbean Weighted Average | 0.3242 |
|  | World Average | 0.1956 | 1,955,892,623 | 0.2241 |
|  |  |  | World Trade Weighted Average | 0.5157 |

Table 11
Intra-Industry Trade by SITC Industry Group 7, Machinery and Transportation Equipment

Country

| 1 | Argentina |
| ---: | :--- |
| 2 | Bahamas |
| 3 | Barbados |
| 4 | Belize |
| 5 | Bolivia |
| 6 | Brazil |
| 7 | Canada |
| 8 | Chile |
| 9 | Colombia |
| 10 | Costa Rica |
| 11 | Cuba |
| 12 | Dominica |
| 13 | Dominican Rep. |
| 14 | Ecuador |
| 15 | El Salvador |
| 16 | Grenada |
| 17 | Guatemala |
| 18 | Guyana |
| 19 | Honduras |
| 20 | Jamaica |
| 21 | Mexico |
| 22 | Nicaragua |
| 23 | Panama |
| 24 | Paraguay |
| 25 | Peru |
| 26 | St. Kitts - Nevis |
| 27 | St. Vincent |
| 28 | Suriname |
| 29 | Trinidad \& Tobago |
| 30 | U.S. |
| 31 | Uruguay |
| 32 | Venezuela |
|  |  |


| Americas Average | 0.1270 | $1,310,268,146$ <br> Americas Trade <br> Weighted Average | 0.1524 |
| :--- | :---: | :---: | :---: |
|  <br> Caribbean Average | 0.0945 | $258,573,121$ <br>  <br> Caribbean <br> Weighted Average <br> $5,646,457,259$ | 0.5907 |
| World Average | 0.1840 | World Trade <br> Weighted Average | 0.1199 |
|  |  | Wing | 0.5117 |


|  | ```Table 12 \\ Intra-Industry Trade by SITC Industry Group 8, Miscellaneous Manufactured Articles``` |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Country | Simple <br> Average | Total Trade 2003 | Trade Weighted Average |
| 1 | Argentina | 0.4818 | 1,216,471 | 0.4790 |
| 2 | Bahamas | 0.0007 | 261,567 | 0.0011 |
| 3 | Barbados | 0.0669 | 184,003 | 0.0968 |
| 4 | Belize | 0.0014 | 40,598 | 0.0024 |
| 5 | Bolivia | 0.2014 | 271,724 | 0.1959 |
| 6 | Brazil | 0.3972 | 6,546,114 | 0.2927 |
| 7 | Canada | 0.4981 | 48,326,180 | 0.5922 |
| 8 | Chile | 0.1808 | 1,980,376 | 0.2046 |
| 9 | Colombia | 0.3212 | 2,269,548 | 0.3191 |
| 10 | Costa Rica | 0.2311 | 1,834,772 | 0.4089 |
| 11 | Cuba | 0.0449 | 563,912 | 0.0274 |
| 12 | Dominica | 0.0175 | 15,723 | 0.0177 |
| 13 | Dominican Rep. | 0.1215 | 428,129 | 0.1823 |
| 14 | Ecuador | 0.1697 | 738,420 | 0.1821 |
| 15 | El Salvador | 0.2446 | 663,368 | 0.4037 |
| 16 | Grenada | 0.0234 | 41,119 | 0.0243 |
| 17 | Guatemala | 0.2873 | 881,919 | 0.4237 |
| 18 | Guyana | 0.0934 | 71,540 | 0.2284 |
| 19 | Honduras | 0.0877 | 111,158 | 0.2685 |
| 20 | Jamaica | 0.0645 | 425,002 | 0.0948 |
| 21 | Mexico | 0.5631 | 42,659,493 | 0.5684 |
| 22 | Nicaragua | 0.0400 | 223,905 | 0.0602 |
| 23 | Panama | 0.0681 | 445,090 | 0.1054 |
| 24 | Paraguay | 0.1391 | 196,561 | 0.1197 |
| 25 | Peru | 0.2301 | 1,522,879 | 0.2330 |
| 26 | St. Kitts - Nevis | 0.0184 | 27,739 | 0.0420 |
| 27 | St. Vincent | 0.0124 | 24,484 | 0.0458 |
| 28 | Suriname | 0.0245 | 49,376 | 0.0263 |
| 29 | Trinidad \& Tobago | 0.2484 | 267,046 | 0.4057 |
| 30 | U.S. | 0.4246 | 304,583,139 | 0.4124 |
| 31 | Uruguay | 0.2131 | 312,015 | 0.3259 |
| 32 | Venezuela | 0.1714 | 888,317 | 0.2150 |
| Americas Average |  | 0.1778 | 418,071,687 | 0.2189 |
|  |  |  | Americas Trade Weighted Average | 0.4419 |
| Latin American \& Caribbean Average |  | 0.1589 | 65,162,368 | 0.2000 |
|  |  |  | Latin American \& Caribbean Weighted Average | 0.4681 |
| World Average |  | 0.2153 | 1,771,651,199 | 0.2468 |
|  |  |  | World Trade Weighted Average | 0.4922 |

Table 13
Intra-Industry Trade by SITC Industry
Group 9, Commodities and Transactions Not Elsewhere Classified in the SITC Country Simple Avg. Total Trade 2003 Trade Weighted Avg.


Figure 1
Total Intra-Industry Trade
Trade-Weighted Averages


Figure 2
SITC 1, Beverages and Tobacco
Trade-Weighted Averages


Figure 3
SITC 2, Crude Materials
Trade-Weighted Averages


Figure 4
SITC 3, Mineral Fuels
Trade-Weighted Averages



Figure 6
SITC 5, Chemicals and Related Products
Trade-Weighted Averages


Figure 7
SITC 6, Manufactured Goods Classified chiefly by Material Trade-Weighted Averages



Figure 9
SITC 8, Miscellaneous Manufactured Articles
Trade-Weighted Averages




[^0]:    ${ }^{1}$ See Greenaway, Hine, and Milner (1994), and Fontagne, Freudenberg, and Gaulier (2006).
    ${ }^{2}$ Balassa (1986), Bernhofen (1998), and Taegi and Oh (2001).
    ${ }^{3}$ For examples see Buitelaar and Padilla (1996) and Clark, Fullerton, and Burdorf (2001).
    ${ }^{4}$ See Rodas-Martini (1998); Clark (2009); or Fabian (2008).

[^1]:    ${ }^{5}$ For more detail see either Grubel and Lloyd (1975) or Greenaway and Milner (1983).

[^2]:    ${ }_{7}^{6}$ For more on this see Felix (1989), Grilli (2006), Taylor (2008), or Toulan (2002).
    ${ }^{7}$ For more details on Paraguay, see Connolley, Deveraux, and Cortes (1995).
    ${ }^{8}$ See Clark, Fullerton, and Burdorf (2001).

[^3]:    ${ }^{9}$ For other examples, see Thompson and Toledo (2001) or Nowak-Hehman and Martinez-Zarzoso (2005).

