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Non-Technical Summary 
 

While most economists believe that public scientific research fuels industry innovation and 

economic growth, systematic evidence supporting this relationship is surprisingly limited.  In 

a recent study, Acemoglu and Linn (2004) identified market size as a significant driver of 

drug innovation in the pharmaceutical industry, but they did not find any evidence supporting 

science-driven innovation from publicly funded research.  Their results are troubling for at 

least two reasons.  First, a significant body of qualitative evidence suggests publicly funded 

biomedical research contributes to new drug innovation.  Second, it calls into question the 

rationale supporting the enormous public investments into biomedical research. 

 

This paper generalizes existing case study research by examining the evidence for a 

systematic relationship between the U.S. National Institutes of Health (NIH) investments into 

biomedical research performed in academic laboratories and pharmaceutical industry 

innovation.  Novel data on NIH biomedical research awards from 1955 through 1996 are 

combined with the pharmaceutical industry’s own R&D investment and a market size proxy 

to estimate a panel data model of pharmaceutical innovation by therapeutic market over time.   

 

The statistical analysis shows that NIH funded basic research, potential market size, and 

industry R&D all have economically and statistically significant effects on the entry of new 

drugs.  The elasticity estimate in the preferred model implies that a 1% increase in the stock 

of public basic research ultimately leads to a 1.8% increase in the number new molecular 

entities (NMEs), an important category of new drug therapies defined by the U.S. Food and 

Drug Administration (FDA).  For an average NME, the results also indicate the lag between 

public investment and NME applications to the FDA is seventeen to twenty-four years.  The 

primary contribution of public basic research to new technological opportunities seems to 

occur in the years preceding private drug discovery.     

 

The analysis also finds a positive return to public investment in basic biomedical research.  

Using market sales data for an average NME, the direct return for the six therapeutic markets 

analyzed is about forty-three percent.  One must interpret the magnitude of this estimate 

cautiously.  The estimate does not reflect the plurality or totality of channels through which 

basic biomedical research is likely to impact social outcomes.  It is limited to the contribution 

of basic research to NME innovation and represents only a fraction of the social return to 

public basic research. 

 

 

 

 

 



 

Das Wichtigste in Kürze 
 

Trotz der allgemeinen Auffassung von Ökonomen, dass öffentlich geförderte 

Forschungsprojekte zur Verbesserung von Innovationen und wirtschaftlichem Wachstum 

führen, gibt es hierfür kaum systematische Evidenz. In einer kürzlich durchgeführten Studie 

identifizieren Acemoglu und Linn (2004) Marktgröße als einen wesentlichen Faktor für die 

Entwicklung neuer Medikamente in der Pharmaindustrie, während sie keinen signifikanten 

Einfluss wissenschaftsbasierter Innovationen, die durch öffentliche Fördergelder unterstützt 

wurden, finden. Diese Ergebnisse geben aus zwei Gründen Anlass zur Sorge. Erstens weist 

ein wesentlicher Teil der qualitativen Evidenz darauf hin, dass öffentlich geförderte 

biomedizinische Forschung zur Herstellung neuer Medikamente beiträgt. Zweitens stellt es 

die hohen öffentlichen Investitionen in biomedizinische Forschung in Frage. 

 

Dieses Papier verallgemeinert existierende Forschung zu Fallstudien, indem ein 

systematischer Zusammenhang zwischen Investitionen des U.S. National Institutes of Health 

(NIH) in biomedizinische Forschung, die in wissenschaftlichen Laboren durchgeführt wurde, 

und Innovationen in der Pharmaindustrie untersucht wird. Neue Daten über die von NIH 

geförderte biomedizinische Forschung von 1955 bis 1996 werden mit Daten zu den FuE 

Investitionen der Industrie sowie einem Proxy für Marktgröße verknüpft. Dies ermöglicht die 

Schätzung eines Paneldatenmodels für pharmazeutische Innovationen in spezifischen 

therapeutischen Märkten über die Zeit.   

 

Die Auswertung zeigt, dass die durch das NIH geförderte Grundlagenforschung, die 

ungefähre Marktgröße, sowie die Forschungs- und Entwicklungsausgaben der Industrie einen 

ökonomischen und statistisch signifikanten Einfluss auf den Markteintritt neuer Medikamente 

haben. Die geschätzte Elastizität im bevorzugten Model impliziert, dass eine Erhöhung der 

öffentlichen Grundlagenförderung um 1% zu einem Anstieg von neuen Wirkstoffen (new 

molecular entities NMEs)  um 1,8% führt. NMEs sind laut der U.S. Food and Drug 

Administration (FDA) eine wichtige Kategorie neuer Medikamententherapien. Die 

Ergebnisse zeigen, dass zwischen öffentlicher Investition und der Beantragung eines NME 

bei der FDA für einen durchschnittlichen NME 17 bis 24 Jahre liegen. Der wichtigste Beitrag 

der öffentlichen Grundlagenförderung zur Erkundung neuer Technologien scheint damit der 

Entdeckung neuer Medikamente durch die Industrie zeitlich voranzugehen. 

 

Die Analyse zeigt auch einen positiven Ertrag öffentlicher Investitionen in die 

Grundlagenforschung im Bereich der Biomedizin. Auf Basis von Umsatzdaten für einen 

durchschnittlichen NME wird gezeigt, dass der direkte Ertrag für die sechs untersuchten 

therapeutischen Märkte ungefähr 43% beträgt. Die Höhe des geschätzten Ertrags muss jedoch 

mit Vorsicht interpretiert werden. Der geschätzte Betrag reflektiert weder die Vielfalt noch 

die Gesamtheit der Wege, durch welche Grundlagenforschung im Bereich der Biomedizin die 

Gesellschaft beeinflussen kann. Die Interpretation beschränkt sich auf den Beitrag der 

Grundlagenforschung für NME Innovationen und repräsentiert damit nur einen Bruchteil des 

gesellschaftlichen Ertrags öffentlicher Forschungsförderung. 
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Abstract 

While most economists believe that public scientific research fuels industry innovation and 

economic growth, systematic evidence supporting this relationship is surprisingly limited.  In 

a recent study, Acemoglu and Linn (2004) identified market size as a significant driver of 

drug innovation in the pharmaceutical industry, but they did not find any evidence supporting 

science-driven innovation from publicly funded research.  This paper uses new data on 

biomedical research investments by the U.S. National Institutes of Health (NIH) to examine 

the contribution of public research to pharmaceutical innovation.  The empirical analysis 

finds that both market size and NIH funded basic research have economically and statistically 

significant effects on the entry of new drugs with the contribution of  public basic research 

coming in the earliest stage of pharmaceutical drug discovery.  The analysis also finds a 

positive return to public investment in basic biomedical research. 
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 …successful management of industrial research is dependent on rapid 

 access to the latest discoveries in academic laboratories… 
 Edward M. Scolnick, M.D. 

 Former President of Merck Research Labs 

 1990 Industrial Research Institute Medalist Address 

 

 

1 Introduction 

In his 1990 Medalist Address to the Industrial Research Institute, Dr. Edward M. 

Scolnick, former President of Merck Research Laboratories, emphasized the importance of 

academic research as a source of new ideas fueling innovation in the pharmaceutical industry.  

In particular, he highlighted the contribution of university research funded by the U.S. 

National Institutes of Health (NIH) to the discovery of new drugs using a variety of specific 

examples such as the discovery of Captopril and Proscar.   

 The present paper generalizes existing case study research by examining the evidence 

for a systematic relationship between NIH investments into biomedical research performed in 

academic laboratories and pharmaceutical industry innovation.  The belief that academic 

research creates new knowledge fueling technological opportunities has a long history in 

economics (Griliches 1979, 1992; Klevorick et al. 1995).  Growth theorists use the 

nonrivalrous nature of new knowledge to explain growth in income per capita and to 

introduce the possibility of increasing returns to scale (Aghion and Howitt 2005; Jones 2005).  

In the empirical literature, Jaffe (1989) analyzed the production of corporate patents by 

region over time and found that academic research made a significant contribution.  Jaffe’s 

findings were reinforced when applied to a single year of data on innovations by Acs et al. 

(1991).  Adams (1990) found that academic knowledge made a significant contribution to 

manufacturing productivity growth with a lag of up to thirty years on spillovers.
2
  

Focusing on the pharmaceutical industry, Acemoglu and Linn (2004) built a 

theoretical model to explain the entry of new drugs into medical therapeutic markets.  The 

                                                 
2
 There are a number of other contributions to this literature including Mansfield (1991, 1998), Narin et al. 

(1997), Beise and Stahl (1999), and Arundel and Geuna (2004).  Salter and Martin (2001) provide a survey.  
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model highlighted the influence of market size on innovation, but it also included the 

possibility that changes in technological opportunities from the supply-side could augment 

innovation.  Their empirical tests found strong evidence that potential market size stimulates 

new drug entry, but found no evidence that NIH investments into biomedical research 

stimulate innovation.  Moreover, Acemoglu and Linn did not control for the pharmaceutical 

industry’s own investments in research and development (R&D). 

The finding that NIH investments have no systematic relationship with 

pharmaceutical innovation is troubling for at least two reasons.  First, it is inconsistent with 

existing qualitative and quantitative evidence.  Among the sectors analyzed by Jaffe (1989), 

drugs and medical technology showed the strongest influence of academic research on 

corporate patenting.  In two different surveys, Mansfield (1991, 1998) found the 

pharmaceutical industry had the highest percentage of new products based on recent 

academic research.  Cohen et al. (2002) reported that public research influenced new project 

ideas in the pharmaceutical industry more than in any other manufacturing industry.  Looking 

at science papers cited in U.S. drug and medical patents, Narin et al. (1997) found that 79% 

originated from public science institutions.  Cockburn and Henderson (1998), using co-

authorship data, showed that firm-level “connectedness” to public research was positively 

related to performance in drug discovery.  Second, it calls into question the contribution of 

public investments into biomedical research.
3
  The NIH is the largest public enterprise 

supporting biomedical research.  In 2010, the NIH invested over $20 billion in biomedical 

research performed at universities and other not-for-profit research institutions.  New drug 

innovation should be one of the important channels for reaping the benefits of these 

enormous public investments in biomedical research.
 
 

                                                 
3
 The contribution of public research to drug innovation is an important part of the debate on pharmaceutical 

profits and drug pricing.  Based mostly on case study evidence in reports such as NIH (2000), advocates on both 

sides of the debate acknowledge a positive NIH contribution, but they interpret the evidence differently.  For 

further background, refer to Sampat and Lichtenberg (2011) and Reichert and Milne (2002). 
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Using novel data on NIH biomedical research awards from 1955 through 1996, this 

analysis examines the possibility that changes in technological opportunities from public 

investments in basic biomedical research contribute to pharmaceutical industry innovation.  

The NIH data are combined with the pharmaceutical industry’s own R&D investment and a 

market size proxy to estimate a panel data model of pharmaceutical innovation by therapeutic 

market over time.  The statistical analysis shows that NIH funded basic research, potential 

market size, and industry R&D all have economically and statistically significant effects on 

the entry of new drugs.  The elasticity estimate in the preferred model implies that a 1% 

increase in the stock of public basic research ultimately leads to a 1.8% increase in the 

number new molecular entities (NMEs), an important category of new drug therapies defined 

by the U.S. Food and Drug Administration (FDA).  For an average NME, the results also 

indicate the lag between public investment and NME applications to the FDA is seventeen to 

twenty-four years.  The primary contribution of public basic research to new technological 

opportunities seems to occur in the years preceding private drug discovery.     

The analysis also finds a positive return to public investment in basic biomedical 

research.  Using market sales data for an average NME, the direct return for the six 

therapeutic markets analyzed is about forty-three percent.  One must interpret the magnitude 

of this estimate cautiously.  The estimate does not reflect the plurality or totality of channels 

through which basic biomedical research is likely to impact social outcomes.  It is limited to 

the contribution of basic research to NME innovation.
4
   Even for NME innovation, the rate 

of return calculation is based on estimates of sales revenue that do not capture consumer 

surplus, intergenerational improvements in health, or indirect returns acting through industry 

R&D.  So, while the return is positive, the calculations represent only a fraction of the social 

return to public basic research investment.  

                                                 
4
 Salter and Martin (2001) survey and classify the variety of ways that public investment in basic research can 

have economic benefits.  Also refer to McMillan and Hamilton (2003), Cockburn and Henderson (2001), and 

Malo (2009).  
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The rest of the paper is organized into the following sections.  Section 2 outlines the 

pharmaceutical innovative process and reviews the research relationships within this process.  

Section 3 presents the empirical model used in the analysis.  This is followed by a description 

of the data sources and measures in Section 4.  Section 5 presents the empirical results and 

discussion.  Concluding remarks are found in Section 6. 

2 Pharmaceutical Product Innovation and Public Basic Research 

 

Innovation in the pharmaceutical industry takes place when private firms introduce 

new drug therapies into the marketplace.  Before a new drug therapy can be marketed in the 

United States, it must receive approval from the U.S. Food and Drug Administration (FDA).  

As such, FDA policies and requirements fundamentally impact the nature and structure of the 

pharmaceutical innovative process.  The FDA also classifies new pharmaceutical products.  

The pharmaceutical innovations analyzed in this paper come from their group of new 

molecular entities (NMEs), which is the category of new products with the greatest 

therapeutic and economic potential.
5
  One should not confuse NMEs with other 

pharmaceutical products that are discovered through long-term experience or post-market 

clinical observation.  While these other products, such as Upjohn’s Rogaine cream for hair 

growth, may be therapeutically and economically important, new indications or uses of 

approved drugs do not qualify as new molecular entities.  For this reason, the analysis focuses 

on NIH investments into basic research, although public clinical research investments were 

included in some of the robustness checks. 

The nature and structure of the pharmaceutical innovative process determines how 

and when public basic research influences new drug innovation.  This process is typically 

                                                 
5
 Even within this group of potentially important innovations, there are significant differences in actual or 

realized therapeutic and economic impact.  See Scherer and Harhoff (2000) and Grabowski and Vernon (1994, 

1996) for an analysis of the distribution of sales revenue for NMEs.  Cockburn (2006) provides a good overview 

of the issues.   
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described as beginning with drug discovery, moving to pre-clinical studies, human clinical 

development, and eventually to application for approval from the FDA.  It is relatively 

structured and sequential compared to most other industries due to the regulatory 

requirements imposed by the FDA.  Case study evidence suggests that public basic research 

has its primary influence on industry drug discovery.  Public basic research provides a 

foundation of knowledge which creates both new opportunities for addressing therapeutic 

outcomes and new information for chemical screening.  The new opportunities stem mainly 

from advances in our understanding of metabolic processes in normal and disease states 

while, in the chemical screening step, more clearly defined therapeutic targets are combined 

with structural design methods that utilize computers and automated screening technologies.  

By monitoring the advances in public basic research, the pharmaceutical industry absorbs and 

extends public knowledge with an eye toward the ultimate commercial products that may be 

produced (see Cockburn and Henderson 2001, Gambardella 1995 for more background). 

While there are a number of fascinating examples from the case study literature, the 

story of Captopril is a classic example of how public basic research can contribute to 

pharmaceutical innovation.  Captopril prevents high blood pressure by inhibiting the 

conversion of angiotensin I to angiotensin II and it was the first compound in a new class of 

drugs called angiotensin-converting-enzyme inhibitors or “ACE inhibitors.”  Its discovery 

built on two lines of publicly funded research performed in academic settings.  The first line 

involved the identification and description of the renin-angiotensin system.  While this public 

research dates back to at least 1934, the key scientific papers that identified angiotensin I and 

angiotensin II were published in the mid 1950s.  The second line of public research originated 

in Brazil.  Here, research into the cause of death from snake venom identified a natural 

substance that acts on its victim by fatally lowering blood pressure.  In 1965, it was shown 

that this natural substance blocks the conversion of angiotensin I to angiotensin II.  Armed 
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with this public knowledge, the scientists at Squibb were able to synthesize the first ACE 

inhibitor in the early 1970s.  Captopril was subsequently approved for marketing by the FDA 

in 1981 (for additional cases and discussion see Cockburn and Henderson 1998, 2001; Dustan 

et al. 1996; Gambardella 1995; Henderson 1994; Maxwell and Eckhardt 1990; NIH 2000; 

OTA 1993; Scolnick 1990; Silverstein et al. 1995; Zycher et al. 2008).   

Captopril was one of twenty-one case histories of important drugs examined by 

Cockburn and Henderson (1998).  Based on their qualitative research, they noted that drug 

discovery is characterized by a high degree of public and private interaction in research.  The 

pharmaceutical innovative process is a learning process with multiple points of public-private 

interaction as well as information feedback taking place along the whole innovative chain 

from drug discovery to market and back to drug discovery (Gelijns and Rosenberg 1994).  

However, describing and documenting the number, frequency, and modes of interaction is 

quite difficult.  Aside from individual case histories, firm-level survey data provide the best 

insights into how pharmaceutical scientists access and use public research.  From a survey of 

U.S. R&D managers, Cohen et al. (2002) reported that public research is quite important as a 

source for new R&D projects and project completion.  In terms of how public knowledge is 

accessed, the top four mechanisms were publications and reports, meetings and conferences, 

informal interactions, and consulting.  Arundel and Geuna (2004) found the same ranking 

using survey data on large R&D performing firms located in Europe.
6
  Aside from 

publications and reports, these other mechanisms of accessing public research are interactive 

and almost certainly involve bi-directional flows of knowledge between public and private 

research scientists as described by Cockburn and Henderson (1998).   

Another important aspect of the pharmaceutical innovative process is the length of 

time from drug discovery to FDA application.  Since public basic research is expected to 

                                                 
6
 They used 1993 data from the policies, appropriation and competitiveness in Europe (PACE) survey, which 

excludes France. 
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make its contribution in the drug discovery stage of industry research, the empirical analysis 

will need to incorporate time lags.  DiMasi (2001) provides estimates of the average phase 

lengths between major milestones based on detailed data held by the Tufts Center for the 

Study of Drug Development.  The average “pre-human testing phase” is three to four years 

and covers the period from drug synthesis to first testing in humans.  The average clinical 

development period is eight to nine years and covers the period from first testing in humans 

to FDA application.  Based on these lags, investments into public basic research relevant to 

pharmaceutical innovation are expected to occur thirteen or more years before the date of 

FDA application.  The empirical analysis will examine the lag between public basic research 

investment and NME applications.   

3 Empirical Specification and Estimation 

 

The empirical analysis models the entry of new molecular entities into therapeutic 

markets over time.  Acemoglu and Linn (2004) used this approach to test the importance of 

market size in innovation.
7
  In addition to potential market size, the specification used here 

introduces new measures of NIH funded basic research and also controls for the 

pharmaceutical industry’s own research and development investment.  The main estimating 

equation for new drug entry has the following form:   

 

(1)  0 1 2 1 3[ | , ] exp ln( ) ln( ) ln( )ct c ct ct j ct ct c tE NME PubBasStock IndRDStock M            X  

 

where E is the expectations operator, NMEct is a count of pharmaceutical product innovations 

in medical therapeutic market c and FDA application year t (all applications were 

subsequently approved).   The c  are time-constant therapeutic market intercepts capturing 

                                                 
7
 Earlier studies examining pharmaceutical innovation used similar approaches such as Baily (1972), Wiggins 

(1981), Henderson and Cockburn (1996).  
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heterogeneity and Xct represents all explanatory variables dated at time t and earlier.  

PubBasStockct-j is the stock of NIH investment into public basic research for therapeutic 

market c, lagged j years prior to NME application.  The empirical analysis will examine 

alternative lag lengths j.  IndRDStockct-1 is the stock of R&D investment by private 

pharmaceutical firms into therapeutic market c dated one year before FDA application.  Mct is 

a measure of the potential market size in market c at time t based on demographic 

information.  The 
t  are annual time dummy variables capturing shocks common to all 

markets.  For those explanatory variables appearing in log form, the parameters estimates 

have a constant elasticity interpretation. 

Equation (1) is estimated using the Poisson quasi-maximum likelihood estimator 

(QMLE).  As a member of the linear exponential family of distributions, Poisson QMLE 

produces consistent estimates of the population parameters as long as the conditional mean is 

correctly specified (Gourieroux, Monfort, Trognon 1984; Wooldridge 1997).  Two alternative 

tests of the conditional mean specification in equation (1) were performed, White’s 

information matrix test and Ramsey’s RESET test, and neither test found any evidence of 

misspecification.
8
  For hypothesis testing, the analysis does not assume dynamic 

completeness.  The cross-sectional dimension of the panel dataset used to estimate equation 

(1) is small relative to the time series dimension.  While not affecting consistency, the 

asymptotic variance estimator should be adjusted for potential serial correlation in the score 

(see Wooldridge 1997 for details).  The Newey-West heteroscedasticity/serial-correlation 

[H/SC] robust standard errors are reported allowing for up to third-order serial correlation 

(Wooldridge 1991, 1994).   

As discussed in Section 2, interaction and feedback are intrinsic parts of the 

                                                 
8
 For the preferred model (Table 3, model 5), the robust Chi-squared statistic for White’s information matrix test 

under the generalized linear model assumption is: Chi(24)=24.37 with a p-value<.4407.  The robust Chi-squared 

statistic for Ramsey’s RESET test is: Chi(2)=0.547 with a p-value<.7607.  For details on the testing procedure 

see Wooldridge (1991, 1997). 
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pharmaceutical innovative process.  Feedback in equation (1) takes place when shocks to 

NME applications at time t influence industry and public basic research investment at future 

dates (t+1 and beyond).  For the typical lag structure characterizing pharmaceutical 

innovation, shocks to NME applications in 1980 could influence industry and public research 

investment in 1981, and affect subsequent innovation in 1992 and beyond.  When feedback is 

present, it invalidates the strict exogeneity assumption required for consistency of standard 

panel data estimators.  This means the usual fixed and random effects count data estimators 

are not appropriately applied to equation (1).
9
  An appropriate estimator will allow for 

feedback as well as address the time-constant unobserved heterogeneity across therapeutic 

markets represented by the c  in equation (1). 

The approach taken here allows for feedback by using the pooled Poisson QMLE and 

accounts for correlated heterogeneity using pre-sample information as suggested by Blundell, 

Griffith and Van Reenen (1995).
10

  This is called the “entry stock” Poisson estimator.  

Blundell, Griffith and Windmeijer (2002) present theoretical and Monte Carlo results 

showing this approach works well in count data models when the sample size is small and the 

explanatory variables are highly persistent.
11

   The sample available for this analysis is 

relatively small (108 observations) and both the industry and public basic research investment 

flows are very persistent.  This approach exploits the fact that there is a long pre-sample 

history of pharmaceutical NME innovation.  In the empirical analysis, the pre-sample 

averages of NMEs for each therapeutic market were calculated using data from 1964 to 1979.  

The central nervous system market had the highest pre-sample mean of 4.94 drugs per year 

                                                 
9
 Formal statistical tests show that industry R&D investment is not strictly exogeneous.  As reported in model 

(3) in Table 4, using the fixed effects Poisson QML estimator, the lead of industry R&D investment is positive 

and significant with a t-statistic of 2.35 and a p-value<.019. 
10

 Pooled Poisson QMLE does not require strict exogeneity for consistency, but allows for arbitrary feedback 

over time. 
11

 A quasi-differenced GMM approach is another alternative.  However, their Monte Carlo evidence shows this 

approach performs poorly in small samples with highly persistent regressors.  That result was confirmed with 

the data used in this paper.  See Blundell, Griffith, Van Reenen (1999) for another application of the “entry 

stock” estimator to account for correlated fixed effects. 
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while the respiratory market had the lowest with 0.625 drugs per year.   

Another source of heterogeneity across therapeutic markets is the burden of disease.  

The empirical specification uses pre-sample mortality and hospital discharge rates across 

therapeutic markets observed in 1979 to account for heterogeneity in the burden of disease.  

Cardiovascular had the highest mortality rate of 4.24 deaths per thousand people and 

respiratory had lowest rate of 0.312 deaths per thousand people.  Central nervous system 

diseases had the highest hospital discharge rate of 23.72 per thousand people and infectious 

disease had lowest rate of 7.72 per thousand people.  

The specification of equation (1) incorporates the characteristic lags in the 

pharmaceutical innovative process.  Real industry R&D investment flows over a twelve year 

period, which is the mean period from compound synthesis to FDA application, were 

aggregated into an industry stock dated one year prior to application (t-1).  Using a stock 

formulation preserves degrees of freedom, avoids collinearity problems, and models the 

cumulative nature of research investment.  It was constructed using the perpetual inventory 

method described by Hall et al. (1988) assuming a twenty percent depreciation rate 

(δ=0.20).
12

  The R&D industry stock for NMEs applications in therapeutic market c at time t 

is given by: 

11

1 1 1

1

(1 ) j

ct ct ct j

j

IndRDStock IndRDflow IndRDflow   



    

The annual time dummy variables capture shocks common to all the therapeutic 

markets in the pharmaceutical innovative process.  For instance, over the sample period from 

1980 to 1997, legislative changes such as the 1984 Patent Term Restoration and Competition 

Act and the Prescription Drug User Fee Act of 1992 may have influenced when new drug 

                                                 
12

 This is a geometric form of deprecation for industry investment that assumes it loses its “productive capacity” 

at a constant rate of 20% per year.  As in prior research, other depreciation assumptions lead to very similar 

coefficient estimates (see Hall et al. 1988).  Using an unrestricted twelve-year distributed lag gives a statistically 

significant long-run R&D elasticity that is about 8% smaller than reported using the stock formulation.  All 

results for public basic research are robust to different formulations of the industry lag.  
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applications were submitted to the FDA.  The annual dummy variables account for any 

common influence of these events across therapeutic markets on NME applications.  

4 Data Sources and Measurement 

 

The empirical analysis uses a panel database on new drug entry by therapeutic market 

observed from 1980 through 1997.  This database combines six major sources of information:  

industry data from the Pharmaceutical Research and Manufacturers Association (PhRMA), 

new drug entry data from the Food and Drug Administration (FDA), public biomedical 

science investment data from the National Institutes of Health (NIH), mortality and hospital 

discharge data from the National Center for Health Statistics, population data from the 

Census Bureau, and income data from the Current Population Survey.  The database is 

organized into six broad therapeutic markets:  endocrine/neoplasm (cancer), central nervous 

system, cardiovascular, gastro-intestinal/genito-urinary, anti-infectives, and respiratory. 

The first step in the data collection process was to obtain the most disaggregated and 

comprehensive publicly available information on pharmaceutical industry R&D investment.  

These data were collected from PhRMA covering the period 1965-1999.  PhRMA collected 

their data through an annual survey of their member firms, but the public release data are 

aggregated across drug discovery/clinical development phases and into therapeutic markets.  

The industry data determined the level of aggregation used in this analysis and all other 

sources of information discussed below were organized to match the six broad therapeutic 

markets available from the industry data series.  The annual R&D data include monies spent 

on successes, failures, new molecular entities (NMEs), line extensions, new dosage forms, 

and so forth. (roughly 80% of these funds went toward NMEs).
13

  The flows were adjusted 

for inflation using the Producer Price Index for pharmaceutical preparations with 2000 as the 

base year.  For the regression model, the real flows were cumulated into a twelve year stock 

                                                 
13

 More information on the PhRMA data can be obtained through their Website at http://www.phrma.org.  

http://www.phrma.org/
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as described in Section 3.   

Through a Freedom of Information Act request, the FDA supplied data on new 

molecular entities (NMEs) approved for marketing between 1964 and 2001.  Two steps were 

performed to prepare the raw NME data for analysis.  First, the NMEs had to be allocated 

into the six therapeutic markets.  This required eliminating some of the listed NMEs that did 

not match the markets analyzed or would double count innovations such as new dosage 

formulations, certain biologics, diagnostics, and materials.  It also required the use of medical 

references on pharmacology and treatment indications to allocate each NME to a therapeutic 

market.  This process is described in greater detail in Appendix A.  Second, for the regression 

analysis, each approved NME was dated by year of application to the FDA.  This was done to 

minimize any FDA regulatory or budgetary influences on the timing of pharmaceutical 

innovation.
14

 

For public investments into biomedical research, the NIH supplied a novel database 

containing all grant and contracts awards by the U.S. Department of Health and Human 

Services, the umbrella organization of the NIH, between 1955 and 1994.  These data were 

further updated using the NIH CRISP database (Computer Retrieval of Information on 

Scientific Projects) covering the years 1972-1996.  A multistage procedure was used to 

separate these data by character of research (basic, clinical, other) and further allocate grants 

and contracts to therapeutic markets.  (Refer to Appendix A for a detailed description of the 

procedure.)  The annual investment flows were deflated using the NIH Biomedical Research 

and Development Price Index (BRDPI) maintained by the Bureau of Labor Statistics (base 

year is 2000).  The real annual flows were cumulated into a stock assuming no obsolescence 

of knowledge capital.  As with industry R&D, the stock formulation preserves degrees of 

freedom, avoids collinearity problems, and models the cumulative nature of research.  In any 

                                                 
14

 The NMEs analyzed are (or were) protected by one or more patents.  In this regard, they are an indicator of 

important patents since they represent a subset of all patented pharmaceutical compounds that have met the 

FDA standards for safety and efficacy.  
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single year, only about 25-30% of the NIH extramural research budget is available for new 

competing awards with the other 70-75% already committed to ongoing projects.
15

 

The proxy variables for potential market size by therapeutic market and year were 

constructed based on the methodology used by Acemoglu and Linn (2004).  Their method is 

attractive because variation in market size comes from potentially exogenous demographic 

changes holding drug expenditure by therapeutic market and age group constant.  For this 

analysis, the proxy variables are also based on reasonably exogenous demographic changes in 

population and income.  Because drug expenditure shares as used by Acemoglu and Linn 

(2004) were not available, potential need is measured using pre-sample shares of “at risk” 

population in 1979.   

Construction of the potential market size proxy variables took place in three steps.  

First, the 1979 at risk population was determined using data supplied by the National Center 

for Health Statistics (NCHS) on mortality from the Multiple Cause of Death File and on 

hospital discharges from the National Hospital Discharge Survey.  Each record was coded 

with indicators identifying the medical therapeutic market, age group, and gender.
16

  Second, 

total population and average real annual income by age group and gender were collected from 

the Census Bureau and the Current Population Survey for each year (1979-1997).  The 

Census data along with the NCHS data were used to calculate the 1979 therapeutic market 

shares of at risk population by age group and gender.
17

  Further, total real income (purchasing 

power) by age group and gender was determined as the product of total population and 

average real income.  In the third step, total real income by age group and gender for every 

                                                 
15

 Data on NIH competing and non-competing research project grants can be obtained from the following 

Website:  http://officeofbudget.od.nih.gov/spending_hist.html.  
16

 The medical therapeutic market indicator was determined from the International Classification of Diseases, 9
th

 

Clinical Modification.  Age groups were defined to be consistent with age groupings used to report average 

income data in the Current Population Survey.   
17

 Annual deaths by therapeutic market were added back to the population figures in the sample period before 

apportioning using the at risk shares.  This eliminates any feedback from new drugs to population size acting 

through mortality (Cerda 2007). 

http://officeofbudget.od.nih.gov/spending_hist.html
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sample year was apportioned to the therapeutic markets using the 1979 shares of at risk 

population.  The final potential market size proxies were calculated by summing real income 

across age groups and gender within a therapeutic market.  The resulting potential market 

size variables are likely to be strictly exogenous since NME innovations cannot feedback to 

change the at risk population by affecting the burden of disease, at least as it is measured by 

mortality and hospital admissions.  One limitation of these data is that chronic illnesses by 

therapeutic market are probably under-represented.  Table 1 reports the descriptive statistics 

for NMEs, industry R&D, NIH investment, and potential market size by therapeutic market. 

5 Estimation Results 

 

Table 2 presents the initial Poisson results using a simple “build up” approach to 

estimate equation (1), but ignores the characteristic timing in the pharmaceutical innovative 

process.  The Newey-West standard errors, which account for heteroskedasticity and up to 

third order serial correlation, are reported.  The top row reports the coefficient estimates and 

standard errors for the stock of public basic research lagged one year before submission of 

NME applications.  Looking across the table from model (1) to model (4), this stock remains 

statistically significant as control variables are added to the models.  Model (2) adds the pre-

sample controls for heterogeneity in order to use the Blundell et al. (1995) entry stock 

Poisson estimator.  Controlling for heterogeneity between therapeutic markets increases the 

elasticity estimate for public basic research.  The negative coefficient estimate on pre-sample 

NMEs indicates that greater past innovation reduces future pharmaceutical innovation.  

Holding any “recharge” from public basic research constant, it suggests that positive effects 

of capacity building from prior innovation are offset by other factors.  This finding is 

consistent with prior research by Henderson and Cockburn (1996) who observed a 

pronounced downward trend in important patents after 1978.  For the other heterogeneity 

controls, higher levels of past mortality reduce future NME innovation while greater levels of 
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hospital discharges are not significantly related to NME innovation in model (2).  Hospital 

discharges are typically negative and significant in subsequent regression models.     

Model (3) adds the control for potential market size.  The market size control is 

positive and statistically significant, but larger in magnitude than previously found by 

Acemoglu and Linn (2004).  This may reflect the use of more aggregated therapeutic markets 

that will capture comorbidity or co-occurrence of disease conditions within therapeutic 

markets.  In model (4), the stock of pharmaceutical industry R&D is added to the 

specification.  As expected, the coefficient estimates for public basic research and market size 

are reduced.  Without industry R&D in the specification, effects of public basic research and 

potential market size are biased upward.  As reported at the bottom of the table, the value of 

the log likelihood and the R
2
, which is calculated as the squared correlation between the 

actual and fitted values, indicate that model (4) is preferred.  Overall, the results in Table 2 

show the effect of public basic research on pharmaceutical innovation is positive and 

significant even without introducing the complex timing that is characteristic of 

pharmaceutical innovation. 

The regression models reported in Table 3 explore the timing between investments 

into public basic research and pharmaceutical innovation.  Because the results use the 

“partialling out” property of multiple regression analysis, it is important to remember that a 

basic research stock dated at time t includes all past annual investment flows up to and 

including time t.  For instance, the public basic research stock dated at time t-1 includes eight 

additional years of NIH investment flows compared to the public basic research stock dated 

at t-9, and so forth. 

Model (1) in Table 3 includes four alternative stocks of public basic research each 
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separated by eight years.
18

  Of these four, only the basic research stock dated at t-17 is 

statistically significant with the largest magnitude.  Basic research investment flows captured 

by the other stocks do not significantly contribute to NME applications once the stock dated 

at t-17 is held constant.  The results indicate the lag between public investment and NME 

application to the FDA is seventeen to twenty-four years.  This lag period suggests that 

“enabling discoveries” in public basic research, a phrase coined by Cockburn and Henderson 

(1998), occur in the period leading into private industry drug discovery.  While the data are 

not rich enough to determine the timing precisely, the results are consistent with available 

evidence from individual drug histories.  Cockburn and Henderson (1998) found that the 

average lag between the initial public sector enabling discovery and FDA application was 

20.5 years for the fourteen drugs they studied.
19

  Models (2) through (4) in Table 3 

sequentially drop insignificant stocks to examine how the results change.  Looking across the 

table, the coefficient estimate on the basic research stock fluctuates somewhat, but is always 

statistically significant.  Model (5) is the preferred model.
20

  

Besides conforming to expectations based on qualitative evidence, model (5) is 

preferred on statistical criteria.  Relative to model (4) in Table 2, which did not incorporate 

the characteristic timing in the pharmaceutical innovative process, the value of the log 

likelihood function and the R
2
 favor model (5) in Table 3.  It is important to emphasize that 

the results identify a time period of basic research investment and do not pinpoint investment 

in a particular year.  The stock of public basic research dated at t-17 includes all past flows of 

                                                 
18

 The eight year interval reflects the characteristic lag in the pharmaceutical innovative process as described by 

DiMasi (2001) and discussed in Section 2.  The stock of public basic research dated at t-9 coincides with the 

beginning of clinical development and this determined the eight year interval size.  Collinearity between the 

stocks limits the use of smaller time windows and prevents the analysis from pinning down the lag precisely.  

Given available data, the analysis can only identify an approximate time window.  
19

 Cockburn and Henderson (1998) report the average lag from enabling discovery to FDA approval to be 23.3 

years.  The 20.5 year period ends at FDA application, not approval.  This estimate was calculated by subtracting 

the average FDA review period for drugs approved in the 1980s, which was 2.8 years as reported by DiMasi 

(2001).  
20

 Appendix B shows corroborating results that use a “flow” approach to identify the lag period rather than the 

“stock” approach described above. 
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NIH investments and enabling discoveries necessarily build on a long history of investments 

into basic biomedical research, perhaps decades.  

 

5.1 Economic Significance 

The economic importance of public basic research in pharmaceutical product 

innovation is revealed by the magnitude of the coefficient estimate.  Focusing on the 

preferred model (5) in Table 3, the elasticity estimate indicates that a 1% increase in the stock 

of public basic research dated at t-17 increases the expected number of NME applications 

(and ultimately marketed) by 1.8% in each therapeutic market.  Holding all else constant and 

using the sample averages, this estimate implies a marginal physical product of about 0.0018 

NMEs per $1 million and a marginal cost per NME of about $556 million (real 2000 dollars). 

  Concerning the estimated magnitude of private R&D investment, model (5) in Table 

3 shows the elasticity of NME applications with respect to the stock of industry R&D is about 

0.78.  Holding all else constant and using the sample averages, this estimate implies a 

marginal physical product of about 0.0021 NMEs per $1 million and a marginal cost per 

NME of about $370 million in real 2000 dollars.
21

  In the literature, DiMasi et al. (1991, 

2003) found the average out-of-pocket cost per NME increased from $251 to $405 million 

(real 2000 dollars) between the two sample periods they analyzed.
22

  Although their sample 

periods do not exactly match the sample period used here, the $370 million marginal cost 

figure falls within the expected range. 

                                                 
21

 The marginal product is calculated as:  mp = elasticity x (avg. NME / avg. industry flows).  The industry 

R&D flows assume a twelve year investment period and are adjusted by a proportionality factor of 0.80 to 

account for industry investment directed at NMEs as opposed to product extensions.  The proportionality factor 

is taken from the PhRMA annual survey reports. 
22

 In both studies, the authors define the population for their sample based on when the NMEs entered clinical 

trials.  In their earlier study, which covers drugs entering clinical trials from 1970 to 1982, the average out-of-

pocket cost was given as $114 million in real 1987 dollars.  The figure in the text was calculated by readjusting 

the base to the year 2000 using the Bureau of Labor Statistics producer price index (series ID WPU035).  Their 

second study covered drugs entering clinical trials from 1983 to 2000.   
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Drawing on the research of Grabowski and Vernon (1994), it is possible to estimate a 

lower bound on the social return to public investment in basic biomedical research.  Their 

study used a cohort sample of new molecular entities approved by the FDA between 1980 

and 1984 and a twenty-year product life cycle model to estimate the time profile of sales 

revenue for an average NME.
23

  Of course, sales revenue for an average NME is only a 

fraction of the expected benefit stream from public investments in basic biomedical research.  

The broader benefit stream would include components such as consumer surplus, cost 

savings from fewer hospital visits or shorter hospital stays, reductions in mortality, health 

benefits enjoyed by future generations, earnings from continued work force participation, and 

so forth.  Moreover, NME innovation is only one channel for reaping the benefits of public 

investments in biomedical research and cannot capture the plurality or totality of channels 

through which basic research is likely to impact social outcomes.  Consequently, one must 

interpret the magnitude of the return estimate given below with these caveats in mind.
24

  

Following Griliches (1958) and Trajtenberg (1990), the rate of return is estimated as a 

capitalized benefit-cost ratio at the time of NME introduction.  The thought experiment asks:  

What is the social return if public basic research increased by $1 million and the resulting 

marginal physical product of NMEs earned its share of the sales revenue for an average 

NME?  The initial $1 million dollar public investment is capitalized at real rate of 5% to the 

date of NME entry into the market, a period of nineteen years, and this is the denominator of 

the benefit-cost ratio.  Similarly, the numerator of the benefit-cost ratio is the share of real 

sales revenues after discounting back to the date of NME entry.  The rate of return for each 

therapeutic market, denoted by ρi, takes the following form: 
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23

 I would like to thank Henry Grabowski for providing the sales profile for an average NME. 
24

 Research by Jones et al. (1998) and David et al. (1992) present a broader framework for understanding and 

analyzing the social returns to R&D and basic research investment.  Also see the references in footnote #4. 
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where MP is the marginal physical product of public basic research and the other variables 

are self-explanatory.   

For an individual therapeutic market, ρi = .05(3.591/2.527) = 0.071.  Across all six 

markets considered in this analysis, the total direct return to public basic research is 0.426, or 

43%.  This says that a dollar of public basic research investment yielded about $0.43 in 

annual benefits through NME innovation in perpetuity.
25,

 
26

  In addition to this direct return, 

there is an indirect return to public basic research acting through industry R&D.  

Incorporating that component, however, would require a number of industry specific 

assumptions as discussed in Grabowski and Vernon (1994) such as tax treatment and 

contribution margins.  It is important to remember that the long nineteen year lag between 

initial public investment and subsequent cash flows has a strong impact on the calculated 

return.  Since payoffs from innovations made possible by investments in basic science are 

subject to long lags, the private incentives to make these investments will be very sensitive to 

changes in the real interest rate (Adams 1990).  When combined with the limited 

appropriability of the benefits from basic research, the funding role of public sector appears 

justified based on this analysis. 

 

5.2 Robustness 

Table 4 reports the results using six alternative specifications and/or estimators as 

robustness checks.  In previous research, Toole (2007) found that both public basic and 

clinical research stimulated additional pharmaceutical industry investment in R&D.  If public 

clinical research has a direct effect on NME innovation, it could be an important omitted 

variable.  Model (1) included the stock of public clinical research dated one year before NME 

                                                 
25

 The internal rate of return is an alternative to the capitalized benefit-cost ratio.  The internal rate of return in 

each therapeutic market is about 6.3% and implies a total direct return of 37.8%. 
26

 Under the assumption that NIH investment represents one-half of the total world stock of public basic 

research, the worldwide rate of return is essentially the same since Grabowski and Vernon (1994) estimate 

global NME sales as twice U.S. sales.  
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application as an additional covariate.  This stock was not significant and the results remain 

essentially unchanged.  Unreported results showed that changing the timing for the stock of 

public clinical research had no effect.   

Model (2) tests the possibility that industry R&D investment is not sequentially 

exogenous as required for consistent estimators.  A statistically significant coefficient on the 

residuals from a first-stage reduced form regression would indicate endogeneity.  The test 

uses two instrumental variables.  The first is the length of hospital stays per thousand people 

in the population by therapeutic market and year.  The second is the proportion of deaths by 

race, white versus non-white, by therapeutic market and year.  These instruments reflect 

developments in the patient population and are separate from decisions or outcomes within 

the pharmaceutical innovative process.  Developments in the patient population are important 

inputs into the decision to invest in R&D.  The instruments are strongly jointly significant in 

the first stage regression with an F-statistic of 62.87 and a p-value<.000 (Shea partial R
2
 of 

excluded instruments is 0.7334).  Having evaluated a drug candidate and committed to 

expensive Phase III clinical trials, unobserved shocks influencing the year of FDA 

application are likely to be related to firm-level and industry-level developments, not to 

contemporaneous changes in mortality or length of hospital stays in the patient population.  

This reasoning supports the exogeneity of the instruments.
27

  As reported for model (2), the 

test finds no evidence that industry R&D violates the sequential exogeneity assumption. 

Models (3) and (4) in Table 6 report the results using the fixed effects Poisson quasi-

maximum likelihood estimator (QMLE).  Model (3) tests for the possibility that industry 

R&D investment is not strictly exogenous as required for consistency of standard panel data 

estimators by including the lead of industry R&D as a regressor.  The lead of industry R&D 

is positive and highly significant with a t-statistic of 2.35 and a p-value<.019.  This is strong 

                                                 
27

 As shown in model (6), these instruments pass the Hanson’s J overidentification test. 
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evidence that industry R&D is not strictly exogenous and reflects follow-on investments for 

post-approval clinical trials and product extensions.  Even though the fixed effects estimator 

is inconsistent, model (4) reports the Poisson QMLE results.  Compared to the preferred 

model, the estimated coefficient on industry R&D is smaller while the market size and public 

basic research stock have larger coefficient estimates.   

Models (5) and (6) in Table 6 use Ordinary Least Squares and Two Stage Least 

Squares (2SLS) methods to estimate the linear analog of equation (1).  The dependent 

variable is the log of NME applications and drops eight annual observations where NMEs are 

zero.  The estimated elasticity on the stock of public basic research is about 1.7 and is 

statistically significant at the 1% level.  The 2SLS estimator addresses potential endogeneity 

of industry R&D using the same instruments as discussed above for model (2).  The results 

are very similar to the OLS regression.  There is no statistically significant evidence that 

industry R&D is endogenous.  Hansen’s J test (the heteroskedasticity-robust version of the 

Sargan test) is 
2
(1) = 0.176 (p-value = 0.6752) indicates that the IVs satisfied the exogeneity 

requirement. 

6 Conclusion 

 

Applying an econometric approach, this study found a systematic relationship 

between NIH investments into basic biomedical research performed in academic laboratories 

and pharmaceutical industry innovation.  The preferred model implies a 1% increase in the 

stock of public basic research is associated with a 1.8% increase in the number of industry 

new molecular entity (NME) applications after a substantial lag.  For an average NME, the 

lag between public investment and industry application is seventeen to twenty-four years.  As 

interpreted through the lens of existing qualitative research, this time window identifies the 

occurrence of “enabling discoveries” in public basic research that build on and reflect a long 

history of prior research in both the public and private sectors.  Combining the estimated 
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magnitude and lag of public basic research with sales data for an average NME, the total 

direct return to public basic research is estimated to be 43%.  While this estimate is subject to 

a number of caveats (see Section 5), it does show that the returns to public investment in 

basic biomedical research are positive.  The results also show that industry R&D investment 

and potential market size are economically and statistically significant determinants of NME 

innovation.  Industry R&D investment, however, cannot be modeled as strictly exogenous 

since NME innovations stimulate follow-on R&D investment. 

The econometric results are consistent with a large body of anecdotal and case study 

evidence that suggests a positive causal relationship between advances in public basic 

research and industry NME innovation.  However, by itself, the econometric evidence 

presented here does not prove causality.  Causation can be viewed as a cumulative 

phenomenon in which the combination of many studies using alternative approaches and 

evidence ultimately surpass some “belief threshold.”  The results of this study add to the body 

of evidence.   

It is important to keep in mind that the discovery stage of NME innovation, as 

described in the case study literature, is an interdependent, complementary, and often 

complex bi-directional process involving scientists in both academic and industrial 

laboratories.  Because the information channels connecting public and private researchers are 

diverse, one cannot conclude that the elasticity estimate reflects only disembodied knowledge 

spillovers through “open science” mechanisms.  This knowledge flow is probably occurring 

through a number of channels including meetings and conferences, informal contact, and 

consulting, and so forth (Cohen et al. 2002; Monjon and Waelbroeck 2003; Arundel and 

Geuna 2004). 

The analysis did not find any direct relationship between public clinical research and 

NME innovation.  However, it would be wrong to conclude that public clinical research plays 



 23 

no role in pharmaceutical innovation.  Public clinical research may be very important for 

non-NME innovations and off-label uses that may generate substantial health benefits 

(Cockburn 2006).  Moreover, both public basic and clinical research have statistically and 

economically important indirect effects on pharmaceutical innovation by stimulating 

complementary follow-on private R&D investment (Toole 2007). 

Notwithstanding the new findings from this research, a lot of work remains before we 

have a sufficient understanding of the complex relationship between public research and 

pharmaceutical innovation.  One unresolved issue is the level of aggregation used to link 

product markets to academic research.  As a first approximation, this analysis used a simple 

mapping that aligned product markets with biomedical research areas using broad therapeutic 

markets such as cardiovascular and so forth.  However, it remains unclear how the 

contribution of public research varies when one considers disaggregated therapeutic markets.  

Progress on this issue will require the development of “technological distance” metrics that 

allow for more detailed mapping of biomedical research to disease markets (Griliches 1992; 

Jaffe 1989).  Additionally, more research is needed to understand the mechanisms facilitating 

knowledge spillovers and other forms of public-private interaction stimulating innovation 

both within and between therapeutic markets.   

While it is reasonable to expect that other industries benefit from publicly supported 

university research, it is not appropriate to generalize the findings on the timing or economic 

significance of public basic research to other industries.  The regulatory structure imposed by 

the FDA, while advantageous for the purposes of research, makes the characteristic lag 

structure in pharmaceutical industry unique.  Furthermore, as one of the most science-

intensive industries, the estimated magnitude may be large compared to other industries. 
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Appendix A: Data Sources and Measurement 

 
Industry Research and Development (R&D) 
Pharmaceutical industry R&D expenditure by therapeutic market and year were obtained 

from the U.S. Pharmaceutical Research and Manufacturers Association (PhRMA).  PhRMA 

collected these data through their annual survey of members.  The data were aggregated 

across firms as well as across the drug discovery and development phases before public 

release.  The aggregate figures correspond to domestic U.S. company-financed R&D 

expenditures for human-use (dosage form) ethical drugs for the years 1965-1999.  These 

figures include expenditure on physical capital, labor, manufacturing, as well as a share of 

overhead.  Consistent data on investment shares into six therapeutic markets were available.  

These markets accounted for over 80% of the industry’s investment.  The therapeutic markets 

shares were available for all years except three.  For those years, the therapeutic market 

shares were imputed. 

 

Pharmaceutical Innovation: Approved New Molecular Entities (NMEs) 
In response to a Freedom of Information Act request, the U.S. Food and Drug Administration 

provided information on all approved new molecular entities (NMEs) for the period 1964 to 

2001.  The raw FDA data had to be adjusted to match the six therapeutic markets as defined 

by the industry data and duplicate entries in the FDA list had to be eliminated.  Diagnostic 

agents, certain biological agents, surgical and other materials such as contact lenses and 

devices were eliminated as they did not match the therapeutic markets available for analysis.  

New dosage formulations were eliminated to avoid double counting.  Some researchers, such 

as DiMasi et al. (1991, 2003), refer to this more narrowly defined group as new chemical 

entities.  The approved NMEs were grouped by year of application and therapeutic market.  

Although the year of application was supplied by the FDA, the compounds needed to be 

assigned to one of the six medical therapeutic markets.  This was accomplished by using the 

clinical pharmacology and treatment indication descriptions from the Physician's Desk 

Reference, Merck Index, and Martindale The Extra Pharmacopoeia.  The final group of 

pharmaceutical innovations includes both self-originated and in-licensed compounds.  In 

cases where empirical observation revealed additional uses of a compound, such as Upjohn’s 

Loniten (minoxidil) having the beneficial effect of hair growth, the compound was classified 

in its original therapeutic market (cardiovascular in the case of minoxidil).   

 

Public Biomedical Research Investment 
Two data sources were obtained on extramural biomedical research grant and contract awards 

by the NIH and other governmental agencies under the authority of the U.S. Department of 

Health and Human Services.  (These other agencies include the FDA, the Center for Disease 

Control, the Agency for Health Care Policy and Research, and so forth.).  The first data 

source was an extract from the NIH IMPAC database covering the years 1955 to 1994.   For 

each grant and contract award, the data includes:  the title, the identification number (activity 

code, institute code, and grant or contract number), the fiscal year of award, the award 

amount, and the scientific review group that recommended its approval.  The second source 

was the NIH CRISP (Computer Retrieval of Information on Scientific Projects) database 

covering the years 1972 to 1996.  Each grant and contact record in the CRISP database 

contains:  the title, the identification number (activity code, institute code, and grant or 

contract number), investigator name, narrative description of project, organization receiving 

the award, address, administrative organization of the NIH or other agency, award amount, 

type of award, fiscal year of award, city, and state.  Using the IMPAC database, the CRISP 
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records were supplemented to include the scientific review group that recommended 

approval.  A scientific review group is a committee of peers within a scientific field that 

review grant applications and recommend applications for approval by the National Advisory 

Councils. 

 

Identifying the relevant NIH research began with definitions of basic and clinical research.  

Public basic research was broadly defined as bench-level laboratory research directed at the 

discovery and characterization of physiologically active substances and the definition of 

metabolic pathways related to normal and disease function.  Public clinical research was 

defined as patient-oriented research involving human subjects.  It includes epidemiological 

research, but excludes social, behavioral, occupational, and health services research.  This 

definition is more restrictive than the definition suggested by the NIH Director’s Panel on 

Clinical Research (NIH 1997); however, the NIH definition of clinical research has been 

criticized for being too broad (Reicher and Milne 2002).  The data process took place in two 

stages.  This first stage separated all awards into three groups (mixed, clinical, and other) 

using the “type of award code” field.  (These are codes like R01 for traditional research 

award or K08 for clinical investigator award.)  A second step in this stage required taking the 

mixed group and separating out any remaining clinical and other awards from the basic 

research awards using keyword searches over the grant and contract titles.  This finalized the 

breakout by basic, clinical, and other.  The second stage took the basic and clinical groups 

and separated them into therapeutic markets and a general category.  This was done in five 

steps.  First, agencies that did not fund basic or clinical research relevant to the 

pharmaceutical industry were eliminated.  For instance, agencies such as the Centers for 

Disease Control, the National Library of Medicine, the National Institute of Nursing 

Research, etc. were eliminated.  Second, scientific review groups were matched to their 

respective therapeutic markets.  For instance, the grants and contracts recommended by the 

neurology review group were placed into the central nervous system therapeutic market.  

Third, keyword filters were used to further sort those grants and contracts not matched by 

scientific review group.  Fourth, the remaining uncategorized grants and contracts were 

allocated to therapeutic markets using the Institute codes.  For instance, the remaining 

National Cancer Institute awards went to the endocrine/neoplasm market; the remaining 

National Eye Institute awards went to the central nervous system market.  Fifth, for those 

Institutes which were too general to be classified (e.g. the National Institute of General 

Medicine), those awards were allocated in proportion to the grants and contracts successfully 

categorized.  This process resulted in nominal investment flows by character and year for 

each of the therapeutic markets.  Using the 1955-1985 sample growth rates by therapeutic 

market, the annual flow series were projected back five years to 1950.  The 1950 initial stock 

of public basic research was estimated following Hall et al. (1988) by dividing the 1950 

investment flow by the market specific growth rate.  The nominal flows were adjusted for 

inflation using the Biomedical Research and Development Price Index and cumulated into a 

stock as described in the text.    
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Appendix B: Public Basic Research Lag Analysis Using Investment Flows 

 
The “stock” method presented in the text found the lag between investment in public basic research and new molecular entity (NME) applications by industry firms to be 

between seventeen and twenty-four years.  The stock argument used the partialling out property of multiple regression analysis to identify this lag.  If the key enabling 

discoveries are taking place in the period identified using stocks, then investment flows should also identify the same lag period.  Table B.1 repeats the analysis to determine 

the lag using investment flows summed across years.  Consistent with the stock formulation, model (1) includes the sum of the investment flows for each of three periods:  a 

clinical development period (t-1 to t-8), an extended pre-clinical discovery period (t-9 to t-16), and a pre-discovery period (t-17 to t-25).  The results show the lag between 

investment in public basic research and NME applications is between seventeen and twenty-four years.  For interpreting the magnitude of the coefficient, however, the stocks 

of basic research are appropriate because they account for the cumulative nature of research. 
 
Table B.1:  Pharmaceutical Innovation (1980-1997):  "Flow" Method to Determine Public Basic Research Lag 

  (1) (2) (3) (4) 

Dependent Variable: NME Applications NME Applications NME Applications NME Applications 

QML Estimator: Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson 

  

    

PubBAS Flows(t-1 to t-8) 0.448 

     (0.573) 

   

PubBAS Flows(t-9 to t-16) -0.148 -0.150 

    (0.547) (0.539) 

  

PubBAS Flows(t-1 to t-16) 

  

0.490 

   

  

(0.826) 

 

PubBAS Flows(t-17 to t-24) 1.368 1.331 1.208 1.267 

  (0.417)*** (0.418)*** (0.364)*** (0.365)*** 

Ind R&D Stock(t-1) 0.767 0.804 0.775 0.801 

  (0.123)*** (0.111)*** (0.122)*** (0.112)*** 

Market Size(t) 5.434 4.155 5.423 4.342 

  (2.820)* (2.148)* (2.784)* (2.042)** 

Pre-sample NME (1964-79) -1.594 -1.102 -1.618 -1.187 

  (0.876)* (0.548)** (0.877)* (0.446)*** 
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1979 Mortality  -1.252 -0.967 -1.262 -1.014 

(per 1000 pop.) (0.574)** (0.412)** (0.570)** (0.374)*** 

1979 Hosp. Discharges -0.452 -0.347 -0.451 -0.363 

(per 1000 pop.) (0.236)* (0.182)* (0.233)* (0.174)** 

  

    Joint significance PubBAS(t-1 to t-8) 

and PubBAS(t-9 to t-16) Chi(2)=1.26, p<0.5333 

     

    Year Dummy Variables Y Y Y Y 

Log Likelihood -196.677 -196.87 -196.777 -196.891 

R-squared 0.5762 0.570 0.5727 0.5696 

Dispersion parameter 1.011 1.007 1.009 1.003 

Observations 108 108 108 108 

*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests.  All explanatory variables are in natural logs 

except the time dummy variables.  Newey-West H/SC robust standard errors (Bartlett weights, lag length=3) 
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Table 1:  Descriptive Statistics by Therapeutic Market (1980-1997) 
        

Variable All Markets 
Endocrine/ 

Cancer 

Central 
Nervous 
System 

Cardio-
vascular 

Anti-
infective 

Gastro-
Intestinal/ 

Genito-
urinary 

Respiratory 

        

New Molecular Entities (counts)        

   Mean 3.56 4.17 4.94 4.11 5.11 2.06 1.00 

   Standard deviation 2.59 2.92 2.44 2.08 2.54 1.21 0.97 

   Minimum 0 1 1 1 1 0 0 

   Maximum 10 10 10 9 9 4 3 

        

Industry R&D Stock 
(12 year, real millions $)        

   Mean       7,054  8,824 8,445 10,858 8,454 2,898 2,843 

   Standard deviation       4,086  3,558 3,692 3,600 2,065 515 1,219 

   Minimum       1,217  4,285 4,784 4,761 5,738 1,876 1,217 

   Maximum     16,911  16,591 16,911 14,976 12,486 3,578 5,076 

        

NIH Public Basic Stock 
(lagged 17 years, real millions $)        

   Mean       3,623         7,176        3,821        3,862        3,516        2,854  511 

   Standard deviation       2,702         3,452        1,690        1,668        1,554        1,232  316 

   Minimum         134         2,293        1,305        1,360        1,156         941  134 

   Maximum     13,484        13,484        6,880       6,822        6,158       5,036  1,157 

        

Potential Market Size (real billions $)        

   Mean 105 98 147 160 35 139 49 

   Standard deviation 51 15 21 23 5 20 7 

   Minimum 29 75 116 124 29 108 40 

   Maximum 207 127 188 207 44 178 63 
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Table 2:  Pharmaceutical Innovation (1980-1997): "Build up" Regression Models 

  

   

  

  (1) (2) (3) (4) 

Dependent Variable: NME Applications NME Applications NME Applications NME Applications 

QML Estimator: Poisson Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson 

          

PubBAS Stock(t-1) 0.586 1.485 4.299 2.852 

  (0.104)*** (0.339)*** (1.541)*** (1.212)** 

  

    
Ind R&D Stock(t-1) 

   

0.727 

  

   

(0.130)*** 

Market Size(t) 

  

12.790 8.738 

  

  

(6.112)** (4.905)* 

Pre-sample NME (1964-79) 

 

-0.715 -4.007 -2.814 

  

 

(0.344)** (1.776)** (1.369)** 

1979 Mortality 

 

-0.308 -2.794 -1.990 

(per 1000 pop.) 

 

(0.103)*** (1.228)** (-0.968)** 

1979 Hosp. Discharges 

 

0.004 -1.075 -0.727 

(per 1000 pop.) 

 

(0.012) (0.515)** (0.415)* 

  

    
Year Dummy Variables Y Y Y Y 

Log Likelihood -217.751 -211.636 -208.029 -197.867 

R-squared 0.347 0.4168 0.4744 0.5627 

Dispersion parameter 1.184 1.140 1.128 1.010 

Observations 108 108 108 108 

*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests.  All explanatory variables are in  

natural logs except the time dummy variables.  Newey-West H/SC robust standard errors (Bartlett weights, lag length=3) 



 35 

 
Table 3:  Pharmaceutical Innovation (1980-1997): "Stock" Method to Determine Public Basic Research Lag 

   

    

  

  (1) (2) (3) (4) (5) 

Dependent Variable: NME Applications NME Applications NME Applications NME Applications NME Applications 

QML Estimator: Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson Entry Stock Poisson 

  

     

PubBAS Stock(t-1) 1.433 

  

0.959 

   (1.601) 

  

(1.311) 

 

PubBAS Stock(t-9) -1.291 -0.725 

     (1.464) (1.331) 

   

PubBAS Stock(t-17) 2.367 2.476 1.874 1.478 1.844 

  (1.210)* (1.183)** (0.475)*** (0.644)** (0.450)*** 

PubBAS Stock(t-25) -0.285 -0.400 -0.229 

    (0.659) (0.677) (0.574) 

  

Ind R&D Stock(t-1) 0.737 0.771 0.774 0.754 0.780 

  (0.119)*** (0.109)*** (0.110)*** (0.118)*** (0.107)*** 

Market Size(t) 9.716 6.804 7.941 10.918 9.532 

  (6.977) (5.991) (5.467) (3.793)*** (3.126)*** 

Pre-sample NME (1964-79) -2.377 -1.442 -1.778 -2.662 -2.081 

  (1.727) (1.279) (1.070)* (1.075)** (0.640)*** 

1979 Mortality -1.992 -1.378 -1.618 -2.231 -1.903 

(per 1000 pop.) (1.337) (1.104) (0.980)* (0.750)*** (0.565)*** 

1979 Hosp. Discharges -0.823 -0.58 -0.676 -0.927 -0.815 

(per 1000 pop.) (0.598) (0.517) (0.473) (0.320)*** (0.268)*** 
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Year Dummy Variables Y Y Y Y Y 

Log Likelihood -196.272 -196.547 -196.634 -196.511 -196.685 

R-squared 0.579 0.572 0.570 0.5734 0.570 

Dispersion parameter 1.006 1.003 1.002 1.002 0.998 

Observations 108 108 108 108 108 

*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests.  All explanatory variables are in natural 

logs except the time dummy variables.  Newey-West H/SC robust standard errors (Bartlett weights, lag length=3) 
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Table 4:  Pharmaceutical Innovation (1980-1997):  Robustness Checks 

  

     

  

  (1) (2) (3) (4) (5) (6) 

Dependent Variable: NME Apps NME Apps NME Apps NME Apps ln(NME Apps) ln(NME Apps) 

Estimator: Entry Stock Poisson Entry Stock Poisson Poisson QMLE FE Poisson QMLE FE OLS Model 2SLS Model 

Purpose: 

 Include Public Clinical 

Test Endogeneity of 

Ind RD Test Strict Exogeneity 

  

Instrument for Ind RD 

              

PubBAS Stock(t-17) 1.806 1.851 2.025 1.897 1.702 1.719 

  (0.473)*** (0.498)*** (0.607)*** (0.909)** (0.533)*** (0.534)*** 

Public Clinical Stock(t-1) 0.630 

       (1.109) 

     

Ind R&D Stock(t-1) 0.769 0.787 0.326 0.688 0.682 0.647 

  (0.112)*** (0.134)*** (0.224) (0.146)*** (0.130)*** (0.160)*** 

Market Size(t) 10.917 9.592 10.083 9.873 10.372 10.414 

  (4.171)*** (3.276)*** (3.779)*** (3.853)*** (4.074)*** (4.078)*** 

Pre-sample NME (1964-79) -2.671 -2.093 

  

-2.125 -2.126 

  (1.284)** (0.674)*** 

  

(0.755)*** (0.761)*** 

1979 Mortality -2.239 -1.914 

  

-2.015 -2.018 

(per 1000 pop.) (0.858)*** (0.594)*** 

  

(0.709)*** (0.713)* 

1979 Hosp. Discharges -0.927 -0.820 

  

-0.888 -0.893 

(per 1000 pop.) (0.350)*** (0.280)*** 

  

(0.352)*** (0.352)*** 

First Stage Residual 

 

-0.022 

      

 

(0.261) 

    

Lead of Ind R&D 

  

0.452 

     

  

(0.186)** 

   



 38 

  

      Year Dummy Variables Y Y Y Y Y Y 

Log Likelihood -196.572 -196.683 -178.177 -179.073 

  Dispersion parameter 1.001 1.003 

    R-squared 0.5728 0.570 

  

0.5283 0.5280 

Hansen's J Overid Test 

     

Chi(1)=0.176, 

P<0.6752 

Observations 108 108 108 108 100 100 

*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests.  All explanatory variables are in natural 

logs except the time dummy variables.  Newey-West H/SC robust standard errors (Bartlett weights, lag length=3) except for the Poisson QMLE fixed effects 

regresssions (3) and (4).  The two instruments for industry R&D are:  (1) log of the proportion of deaths by race (white versus non-white) by therapeutic market  

and year; (2) log of total hospital days of care per 1000 population by therapeutic market and year.  OLS and 2SLS regressions were performed using the 

“ivreg2” Stata command developed by Baum et al. (2007).  Full output available upon request. 

 

 




