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Abstract

I discuss the identifiability of a structural New Keynesian Phillips curve when it
is embedded in a small scale dynamic stochastic general equilibrium model. Identi-
fication problems emerge because not all the structural parameters are recoverable
from the semi-structural ones and because the objective functions I consider are
poorly behaved. The solution and the moment mappings are responsible for the
problems.
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1 Introduction

Kleinbergen andMavroeidis (KM) have written an excellent paper, compactly reviewing

what we know about the identification of the parameters of a New Keynesian Phillips

curve when estimated by GMM, and contributed with interesting Monte Carlo evidence

to shed light on the properties of various identification-robust methods proposed in the

literature. This comment takes on two issues of interest for applied macroeconomists

that the paper has left on the back burner: nowadays structural, rather than semi-

structural Phillips curves of the type KM consider, are typically considered; for policy

∗The financial support of the Spanish Ministry of Education through the grant SEJ-2004-21682-E
and of the Barcelona Economic Program (CREA) is gratefully acknowledged.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6431467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


exercises, a Phillips curve is typically embedded into a small or medium scale general

equilibrium (DSGE) model. Therefore, the identification of its parameters requires a

system-wide rather than a single equation perspective.

To discuss these issues I will first write down a canonical small scale structural

model, which constitutes the backbone of those medium scale models currently used

in policy institutions for forecasting and policy evaluation. I will then discuss the

difference between the structural and the semi-structural versions of such a model and

examine identification of the parameters when impulse responses or likelihood based

methods are used to construct the objective function.

I want to stress that this comment is concerned with population identification prob-

lems. That is, the problems I highlight are intrinsic to the theory rather than specific

to a data set or a sample. Their solutions therefore require alterations of the theory

rather than the acquisition of better or longer data sets and/or a careful selection of

objective functions to be optimized.

2 A prototype small scale New Keynesian model

The baseline model I consider has log-linearized optimality conditions of the form:

yt =
h

1 + h
yt−1 +

1

1 + h
Etyt+1 +

1

φ
(it − Etπt+1) + v1t (1)

πt =
ω

1 + ωβ
πt−1 +

β

1 + ωβ
Etπt+1 +

(φ+ ν)(1− ζβ)(1− ζ)

(1 + ωβ)ζ
yt + v2t (2)

it = λrit−1 + (1− λr)(λππt−1 + λyyt−1) + v3t (3)

where h is the degree of habit persistence, φ the relative risk aversion coefficient, β

the discount factor, ω the degree of price indexation, ζ the degree of price stickiness, ν

the elasticity of labor supply, while λr, λπ , λy are monetary policy parameters. v1t and

v2t are AR(1) processes with parameters ρ1, ρ2, while v3t is iid. The variances of the

shocks are denoted by σ2i , i = 1, 2, 3. Equation (1) is a log-linearized Euler condition;

the second is a version of a New Keynesian Phillips curve obtained by log-linearizing the

optimal pricing decision around a zero steady state inflation; and the third is a policy

rule. The model has 14 structural parameters: θ1 = (h, φ, β, ω, ν, ζ, λr, λπ, λy) are

economic parameters and θ2 = (σ
2
1, σ

2
2, σ

2
3, ρ1, ρ2) are auxiliary parameters. While the

specification is rather standard, two features of (1)-(3) are worth discussing. First, the

policy rule is backward looking - this allows to name v3t a monetary policy innovation.
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Second, there is habit in consumption, a feature typically absent from basic versions of

the theory, but always included in the larger scale structures.

The semi-structural version of the model eschews the cross-equation restrictions

that the theory imposes on the coefficients and is of the form:

yt = a1yt−1 + a2Etyt+1 + a3(it −Etπt+1) + v1t (4)

πt = a4πt−1 + a5Etπt+1 + a6yt + v2t (5)

it = a7it−1 + a8πt−1 + a9yt−1 + v3t (6)

Note that (5) corresponds to the specification used by KM. This version of the model

also has 14 parameters, α = (a1, . . . , a9) and θ2 = (σ21, σ
2
2, σ

2
3, ρ1, ρ2) but following the

logic of rank and order conditions, one can see that even when all the parameters of

(4)-(6) were identifiable, it is impossible to recover all the θ1 from estimates of the a´s

- ζ and ν enter multiplicatively and only in the slope parameter a6, while a1 and a2

contain information only about h. Hence, conditioning on a model where variables are

expressed in deviation from the steady state, and absent external information, it will

be in general impossible to examine, e.g., the structural determinants of the slope of

the Phillips curve and, as a consequence, back out estimates of the frequency of price

adjustments, ζ. Clearly, to solve this problem, it is necessary to specify additional

equations which allow the elasticity of labor supply ν to be identifiable - for example,

one could solve the model around a flexible price equilibrium, rather than the steady

state, and add to the system of equations the definition of flexible output.

3 Mapping the semi-structural model into a population
objective function

Local identification of the parameters of the model (4)-(6) requires that the objective

function has a unique extremum in correspondence of the true parameter vector; that

the Hessian of the objective function is of full rank in the neighborhood of the true

parameter vector; and that the curvature of the objective function in the neighborhood

of the true parameter vector is sufficient to translate the objective function information

into parameters information.

Absent the first condition, models with different theoretical features may be obser-

vationally equivalent, given a particular objective function (see Sargent (1978), Ken-

nan (1988), Kim (2001), Neely, et. al. (2001), Beyer and Farmer (2004), Canova and
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Sala (2006) among others). Clearly, observational equivalence crucially depends on

the selected objective function. The second condition ensures that under-identification

pathologies where the objective function is insensitive to variations in one or more pa-

rameters (see Choi and Phillips (1992) and Canova and Sala (2006)) will be absent. For

example, the belief that the discount factor β is hard to estimate with cyclical data in

a Real Business Cycle model can be formalized by showing that the rank of the Hessian

of the objective function is deficient for any true β ∈ [0.96, 0.9999].
The first two conditions rule out somewhat extreme kinds of identification patholo-

gies. The third safeguards against more subtle weak and partial-identification problems.

Deficiencies in the curvature of the objective function in the neighborhood of the true

parameter vector in fact imply that parameter changes only marginally affect the ob-

jective function - it is either nearly flat in some dimensions (weak identification) or

displays ridges (partial-identification).

The mapping from the parameters of the model (4)-(6) to a given objective function

may fail to meet these three necessary criteria for identification because three types of

transformations are needed to go from the former to the latter. First, the model needs

to be solved - this involves a non-linear and typically numerical transformation. Second,

some sufficient statistic (unconditional moments or impulse responses) is computed to

summarize the informational content of the solution - this is another non-linear trans-

formation. Third, an objective function expressing the distance between model-based

and actual summary statistics is constructed - this can be a highly non-linear trans-

formation if, e.g., one compares turning points of economic activity. When likelihood

based methods are used, the last two steps are convoluted into one and the VAR(1)

solution directly used to construct the likelihood or the kernel of the posterior. When

some variables appearing in the solution are omitted because, e.g., they are unobserv-

able, the solution for the observables is an ARMA(∞,∞) (see Canova (2007)) so one
extra non-linear transformation is needed.

It is difficult to study in theory how these non-linear transformations repackage

the information contained in the parameters. However, one can use graphical and

exploratory analyses to detect problems. To compare my conclusions with those of

KM, I will solely focus attention on the identification of a4, a5 and a6, which give us

information about the structural parameters β, ω and, given estimates of a3, about

the conglomerate of ζ and ν. To make the discussion concrete, I choose the true

parameter vector θ to be β = 0.985, φ = 2.0, ν = 1.0, ζ = 0.68, ω = 0.70, h = 0.85, ρr =
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0.2, ρy = 1.1, ρπ = 1.5, ρ1 = 0.65, ρ2 = 0.65, σ1 = 0.003, σ2 = 0.002, σ3 = 0.001, in

line with Rabanal and Rubio-Ramirez´s (2005) estimates. These values imply that

a4 = 0.4143, a5 = 0.5830, a6 = 0.2759 are the true values of the parameters of interest.

I consider three objective functions: one measures the distance of responses to mon-

etary policy shocks - twenty equally weighted responses of the three variables are used;

the second is the likelihood function, constructed under normality of the disturbances;

the third the kernel of the posterior, obtained using informative priors for the structural

parameters entering a4, a5 and a6, centered at the true values with small spreads.

4 Are the parameters of the Phillips curve theoretically
identifiable?

For this class of models and for my choice of ”true” θ, all the objective functions

have a unique local extremum. Five of the eigenvalues of the Hessian of the distance

function are exactly zero - those corresponding to ρ1 and ρ2, which are underidentified

from monetary policy shocks, and those corresponding to σi, i = 1, 2, 3, which are

underidentified from any scaled impulse responses. The other two objective functions

have no eigenvalue with this feature. Nevertheless, six eigenvalues of both the Hessian

of the distance function and of the likelihood function are small relative to the average

eigenvalue - weak and partial identification problems could be present. To examine

if these eigenvalues are associated with a4, a5 and a6, I graphically explore how the

objective functions change when these parameters vary in a neighborhood of the true

parameter vector (see the range presented in the x-axis in Figure 1), keeping all other

parameters are fixed at their true values.

The distance function is rather flat in all dimensions (the elasticity is always smaller

than 0.1) and somewhat asymmetric in a4. When plotted in two dimensions, it is still

very flat particularly for a5, the forward looking parameter of the Phillips curve. The log

likelihood function, which contains all the information of the model, is better behaved

except for the marked asymmetry it displays in all dimensions. When plotted in two

dimensions it has sufficient curvature in both a4, a5 and a5, a6 but displays diagonal

ridges - a4, a5 and a6 are not separately identifiable. The log posterior kernel, instead,

is nicely peaked in all dimensions. Since the priors used in structural estimation are

conventionally centered at calibrated values and with tight spreads - as we have done

here - it is not difficult to see that the prior may determine the shape of the posterior.
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Figure 1: Shape of different objective functions

These visual impressions are confirmed using the relative size of the eigenvalues

of the Hessian of the objective function at the true parameters. For example, the

eigenvalues of the Hessian of the distance associated with a4 and a6 are of the order of

ten percent of the average eigenvalue of both matrices, and the one associated with a5

is smaller than 0.001 percent of the average eigenvalue.

In conclusion, both the distance and the likelihood functions will have hard time

to appropriately identify the forward looking parameter of the Phillips curve but for

different reasons: distance function because identification of a5 is weak; the likelihood

function because a5 is linearly related to the other parameters of the Phillips curve.

Which mapping is responsible for these information deficiencies? The solution and

moment mappings both contribute. In the solution mapping four of the nine eigenvalues

are smaller than 0.20 of the average eigenvalue, while with the moment mapping two

additional eigenvalues are smaller than 0.20 of the average. Since the smallest eigenvalue

of the solution mapping is the one associated with a5, identification of this parameter is
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difficult unless the model or the way it is solved is changed. Note that the use of higher

order approximations does not guarantee better identification properties in population

(see e.g. Canova and Sala (2006)).

5 Estimation

Since it is unlikely that applied investigators will spend time altering the theory or

refining their numerical solution techniques, estimation methods that work when the

identification problems exist are needed. While KM have made it clear that identi-

fication robust methods exist in the single equation GMM literature, no procedure

has been devised for likelihood based methods. Furthermore, while impulse response

matching estimators share similarities with GMM, failure to use the continuously up-

dating weighting matrix in the estimation precludes a direct extension of the GMM

results.

In this section, I first show what identification problems imply when non-identification

robust methods are used to estimate the parameters of the Phillips curve and then I

used ideas of the literature KM review to construct estimates of the parameters of inter-

est. The punchline is the following: when weak and partial identification problems are

present, standard methods produce erratic estimates and meaningless standard errors,

even in extremely large samples. However, estimation intervals obtained inverting the

objective function are practically identical to those obtained with standard methods

because the distance function is extremely flat in many dimensions (compare with Na-

son and Smith (2008)). This is perhaps unsurprising since the distance function I use

is not a robust objective function in the sense of KM.

The exercise is as follows. Given the correct model and 500 initial conditions in the

neighborhood of the true parameter vector, I estimated a4, a5 and a6 using a distance

function which measures how far output gap, inflation and the nominal rate responses

to monetary shocks in the model are from the true ones. Figures 2 and 3 present the

histograms of initial and final estimates for two different choices of the true parameter

vector; the x-axis shows the range for the chosen initial conditions. When the forward

looking component of the Phillips curve is strong and the slope economically different

from zero, problems are concentrated in a5 - the range of final estimates of a5 is only

marginally smaller than the range of initial conditions, and the correlation between

initial conditions and final estimates is high (around 0.7).
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Figure 2: Histogram of intial conditions and estimates

When the forward and the backward looking components are roughly similar and

marginal costs are important for inflation, estimates of all semi-structural parameters

are always away from the true parameters, the sum of estimates of a4 and a5 always

exceeds one, the slope of the Phillips curve systematically underestimated, and the bias

large (order of 10-25 percent). When sample rather than population objective functions

are available, all these problems could be greatly magnified.

Figures 2 and 3 shows that the range of estimates of a5 obtained by inverting the

objective function is practically identical to the one obtained with standard minimum

distance estimators - out of the 500 cases only five are eliminated. This is because, in

all the simulations I have run, the value of the objective function at the estimates is

close to the median value of the χ2(51) distribution. This could have been expected:

figure 1 the objective function is so flat in a5 that estimates in the range [0.45, 0.80]

only very marginally change its value.
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Figure 3: Histogram of intial conditions and estimates

To conclude, the problems that KM highlighted in their excellent review get com-

pounded when the New Keynesian Phillips curve is embedded into a small scale DSGE

model and multivariate estimation techniques are considered (see also Cochrane (2007));

in addition there are additional headaches for applied investigators when structural,

rather than semi-structural, estimation is attempted. The solution mapping seems to

be responsible for the identification difficulties. Poorly behaved solution mappings are

especially problematic because they leave applied investigators with no choice other

than respecify the structure they wish to estimate or refine their solution procedure.
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