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Abstract

Scoring rules that elicit an entire belief distribution through the elicitation of point beliefs

are time-consuming and demand considerable cognitive e¤ort. Moreover, the results are valid

only when agents are risk-neutral or when one uses probabilistic rules. We investigate a class

of rules in which the agent has to choose an interval and is rewarded (deterministically) on

the basis of the chosen interval and the realization of the random variable. We formulate

an e¢ ciency criterion for such rules and present a speci�c interval scoring rule. For single-

peaked beliefs, our rule gives information about both the location and the dispersion of the

belief distribution. These results hold for all concave utility functions.

Keywords: Belief elicitation, scoring rules, subjective probabilities.

JEL Codes: C60, C91, D81.

1 Introduction

The subjective beliefs of agents are crucial determinants of behavior in many situations. Finding

out these beliefs is thus an equally crucial matter not only for policy makers, but also for scientists

who test models under maintained assumptions about beliefs. Mechanisms called proper scoring

rules have been designed to elicit subjective beliefs or probabilities (Murphy and Winkler 1970,

Gneiting and Raftery 2007). In such mechanisms the elicitor asks the agent to report a speci�c

element or parameter of the belief distribution. She then rewards the agent in a way such that

the agent has an incentive to report truthfully.

Unfortunately, the most popular of these scoring rules, like the well-known quadratic scoring

rule or QSR (Brier 1950), su¤er from some practical as well as theoretical drawbacks. These
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scoring rules elicit point beliefs, i.e. beliefs about a speci�c event or a speci�c characteristic of

the distribution. To know the entire distribution therefore, the elicitor has to elicit probabilities

over all possible events. From a practical point of view, if the support is large, this procedure is

time consuming and cognitively demanding for the subject. The elicitor may therefore choose to

gain an understanding of only part of the distribution such as the mean or the median, or must

add parametric assumptions. A related problem is that eliciting beliefs with an intrusive method

potentially changes the perception of the agents about the tasks that they are asked to perform

after the elicitation. In the context of economic experiments, Rutström and Wilcox (2008) and

Croson (2000) suggest that more intrusive elicitation mechanisms may change agent�s strategic

choices.

These considerations limit the use of QSR in the practice of economic experiments, in which

the elicitation of beliefs is often only a small subset of the choices that the agents make and

hence cannot take up too much time. As a consequence, researchers have sometimes abandoned

the QSR or sought pragmatic tradeo¤s between elicitation costs and informational content. For

example, McDaniel and Rutström (2001) divide the support in separate intervals for which they

then incentivize agents using a QSR. Gächter (2006) and Croson (2000) simply reward a small

interval around a single correct prediction by the agents. Dufwenberg and Gneezy (2000) ask

agents for a guess of the average value of expected play by others. Other researchers use the

QSR to elicit only the expected value of the belief distribution (e.g. Huck and Weiszäcker, 2002).

While these procedures minimize the cost of elicitation, they give only limited information about

the distribution.

A second problem of deterministic elicitation methods, such as the QSR, is that these only

lead the agent to report her true beliefs if she is risk neutral. This is obviously and important

disadvantage, and the literature has yielded some ways around this. O¤erman et al. (2009) use

proper scoring rules like the QSR to correct reported probabilities for risk attitudes. To do so,

one has to elicit the beliefs of a agent for a set of known objective probabilities p. However

this remedy adds to the practical problems mentioned above, because it increases cost, time

and cognitive complexity of the elicitation procedure. Fountain (2002) designs a log-scoring rule

that elicits truthfully for the class of CARA-utility functions. It is possible to elicit point beliefs

for more general risk preferences only if one resorts to randomized rules (Schlag and Van der

Weele 2009), which in theory should lead the agent to be risk neutral. However, randomized

rules are more di¢ cult to implement, and some doubt has been raised about their e¤ectiveness

in inducing risk neutrality (Selten et al. 1999).

In this paper, we depart from the focus on proper scoring rules and the elicitation of point

beliefs and consider a di¤erent class of rules, known as interval scoring rules. Such rules ask
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the agent to specify a subset of the support of a random variable X, and reward the agent on

the basis of the chosen interval and a realization of X. We will show that interval scoring rules

can provide an appealing trade-o¤ between the cost of elicitation and the intrusiveness of the

procedure on the one hand, and the information that is gained about the belief distribution

on the other. Moreover, the scoring rule we propose allows inferences that are valid under any

degree of risk aversion of the agent.

Since the rules we investigate do not ask the agent for a speci�c element of the distribution,

the notion of �propriety� or truthful-telling is not applicable. Therefore, we �rst develop an

alternative measure to evaluate the performance of such rules. To do so we propose the notion

coverage. By this we mean the minimal mass that an agent who maximizes expected utility will

include in the interval, where the minimum is taken over all concave utility functions and all

possible belief distributions. On the basis of this notion we formulate a criterion of e¢ ciency,

which says that a rule is e¢ cient if there is not some other rule that has the same coverage but

captures it in a smaller interval. E¢ ciency thus implies that the inferences on the distribution

that can be drawn from the elicited interval are as precise as possible.

To show the applicability of interval scoring rules we the propose a speci�c scoring rule, that

we call the truncated interval scoring rule (TISR). This rule rewards the agent if a realization

of a random variable falls inside the speci�ed interval and punishes the agent for specifying a

wider interval. Under the assumption that beliefs are single-peaked, we are able to characterize

the coverage of the TISR, and show that it is e¢ cient. This means that the TISR can be used

to locate an amount of mass that is bounded below, and that it does so in the most precise

way possible. This result does not depend on risk preferences. Moreover, we can derive several

additional features of the TISR that make inference on both the location and the dispersion of

the rule possible.

Given the advantages of interval elicitation over point elicitation, it is perhaps surprising

that interval scoring rules have received little attention. Although there is some literature on

interval scoring rules, we are to our knowledge the �rst to posit a formal criterion to evaluate the

performance of interval scoring rules. Some authors have studied the optimal choice of interval

for a risk neutral agent under di¤erent interval scoring rules. Aitchison and Dunsmore (1968)

study the behavior of optimal forecasting intervals under a limited class of di¤erentiable densities.

They show the �rst order conditions for the optimal interval, and give some applications to

speci�c families of distributions such as the normal and exponential distributions. Winkler

(1972) does a similar exercise for a more general class of interval scoring rules. To our knowledge

however, no-one has systematically investigated the inferences an elicitor can make on the beliefs

of the decision maker from an observed interval choice.

3



Nevertheless, di¤erent variants of interval scoring rules have been used in experiments. In

his experiment on expectation formation, Schmalensee (1976) constructs an interval scoring rule

that is close to the TISR, although with an extra penalty parameter. However, the inferences

he makes are based on the assumption of risk neutrality, which we relax in this paper. In

experiments on temperature forecasts, some authors have elicited intervals using scoring rules

(e.g. Murphy and Winkler 1974). However, in most of these studies, the focus is either on

�credible intervals�with �xed probability (e.g. the forecaster is asked to specify an interval in

which he believes the temperature to be with some probability, say 50%) or on intervals with a

�xed width. Hamill and Wilks (1995) use a scoring rule to elicit an interval with variable width

for minimum and maximum temperatures. Galbiati et al. (2009) use an untruncated version of

the scoring rule proposed in this paper. In their study beliefs are elicited about the choices of

another player in a minimum e¤ort coordination game with large action spaces.

The paper proceeds as follows. In Section 2 we de�ne the notion of coverage and use this

to formulate a general criterion of e¢ ciency for interval scoring rules. In Section 3 we de�ne

an interval scoring rule that we call the TISR. We characterize its coverage and show that the

TISR satis�es the e¢ ciency criterion developed in Section 2. In Section 4 we elaborate on the

inferences that can be drawn under the TISR. All proofs are in the appendix.

2 E¢ cient Interval Scoring Rules

2.1 Preliminaries

Consider an agent endowed with preferences over R that admit an expected utility representa-
tion, denoted by u. This agent has subjective beliefs over the distribution of a random variable

X that generates outcomes belonging to the state space 
. The results of the paper are based

on the assumption that this space is compact and known to be


 = [a; b] : (A1)

The set of all random variables that generate outcomes in 
 will be denoted by�:With respect to

the preferences of the decision maker we assume that u is concave and continuously di¤erentiable.

Thus, our analysis includes both risk-neutral and risk averse agents.

To elicit characteristics of the beliefs about X, the elicitor (she) asks the agent (he) to specify

boundaries L and U of the interval and pay the agent an amount S (L;U; x) as a function of the

realization x: The payment function S is also called a scoring rule. The set of all such scoring

rules is denoted by S:
On an intuitive level it is easy to understand how such interval scoring rules can be used to
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gain an idea of the distribution. If the agent is rewarded when he is �correct�, i.e. the realization

x falls inside the interval, he will be tempted to specify the interval such that it contains a

large probability mass. Moreover, if he is penalized for the width of the interval, he will face a

trade-o¤ that will lead him to exclude regions with low probability mass. The rest of this paper

is dedicated to making this reasoning more precise.

Two main points of interest to the elicitor are the width of the interval and the mass that

is contained within the interval. The combination of these two variables allows inference on

the belief distribution of the agent. To ease notation, in the remainder we denote the mass

inside the interval by M = Pr (X 2 [L;U ]), and the width of the interval by W = U � L. We
indicate values chosen by a agent who maximizes expected utility with �. The expected reward

Eu (S (L;U; x)) will be denoted for simplicity by u (S (L;U;X)).

2.2 Coverage

Under a given scoring rule, M� will depend on the distribution X and preferences u. Moreover,

under any interval scoring rule that rewards the agent for a correct guess, even if he is punished

for choosing a greater width, the upper bound of M� is 1. To see this, consider a degenerate

distribution. With such a distribution the agent can cover all the mass in an arbitrarily small

interval. The lower bound of the mass covered by the interval will be called the coverage of the

rule.

De�nition 1 We say that S has coverage 
 if M� (X;S; u) � 
 for all X and all concave u:

It would be desirable that a rule covers exactly 
; so where M� (X;S; u) = 
 for all X and

all concave u where this is feasible, so where there exists L and U such that Pr (X 2 [L;U ]) = 
:
In fact, intervals that contain precisely p% of the mass, in this case p = 100 � 
, are known as
p% credible intervals or prediction intervals, and there has been considerable interest in their

elicitation. In particular, the fractile scoring rule (Murphy and Winkler 1974) is a proper interval

scoring rules for eliciting credible intervals for risk neutral agents.

However, as we show below in Corrolary 1 there is no proper interval scoring rule that elicits

p% credible intervals when agents are either risk neutral or risk averse. Because our de�nition of

coverage requires [L�; U�] to always contain the credible interval, one can interpret the elicited
interval [L�; U�] as a 100% con�dence interval for the 
% credible interval. In the future it may

be of interest to loosen this notion of coverage and elicit intervals that contain 
 with less than

100% con�dence.
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2.3 E¢ ciency

The second feature of the rule of interest to the elicitor is the width of the interval. A reasonable

objective for the elicitor is to locate the mass captured inside the interval as precisely as possible,

that is, in an interval that is as small as possible. In this context the following notion of e¢ ciency

is natural.

De�nition 2 A scoring rule S with coverage 
 is called e¢ cient within S if there is no scoring
rule S0 2 S with coverage 
 such that W � (X;S0; u) �W � (X;S; u) for all X 2 � and all concave
u with �<� for some u and X:

De�nition 2 imposes an intuitive criterion of e¢ ciency saying that S should be undominated

in terms of the interval width. That is, no other rule should dominate S in that it covers mass


 in a weakly smaller interval for all belief distributions, and in a strictly smaller interval for at

least one distribution. If such a rule does not exist, then in this sense S locates mass as precisely

as possible.

3 The Truncated Interval Scoring Rule

Having set the stage for evaluating and comparing interval scoring rules, we now propose a

speci�c interval scoring rule S
 that we call the truncated interval scoring rule (TISR). We will

show that under some assumptions on X, this rule has the attractive property that it satis�es

the e¢ ciency criterion developed above. That is, we can specify its coverage and show that

there is no rule with the same coverage that dominates S
 .

3.1 De�nition

We call the scoring rule S
 the truncated interval scoring rule with parameter 
 2 (0; 1) if

S
(L;U; x) =

8<:((b� a)� (U � L))
1�


 if x 2 [L;U ] and U � L � 
 � (b� a)

0 otherwise.

This rule rewards the agent if her guess is correct, i.e. if the realization of the random variable

belongs to the speci�ed interval. The parameter 
 determines the decrease in the reward as

a result of specifying a large interval: a lower 
 corresponds to a higher penalty for widening

the interval. In section 3.4 we explain the argument behind the truncation, i.e. the fact that

the reward drops to zero if the interval is bigger than 
 � (b� a). Note that S
 is linear when

 = 1=2; this particular representative without the truncation has been used in the literature
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(e.g. Galbiati et al. 2009) albeit without deriving its properties. Other papers have used more

complicated linear rules with extra penalty parameters, that for example punish the distance of

x to the midpoint of the interval (Schmalensee 1976) or to the bounds of the interval (Hamill

and Wilks 1995).

3.2 Existence of the optimal interval

We �rst show that there exists an interval that maximizes the expected utility of the agent under

TISR.

Proposition 1 There exist L� and U� with a � L� � U� � b such that u (S
 (L�; U�; X)) =

supL;U :a�L�U�b u (S
 (L;U;X)) :

The result is obtained by showing that u (S
(L;U;X)) is upper semi-continuous. Then, by

the extreme value theorem, it attains a maximum on the compact domain.

3.3 Coverage of the TISR

We now proceed to characterize the coverage of TISR under the following assumption:

X is single-peaked, (A2)

where single peakedness is de�ned as follows.

De�nition 3 X is single-peaked if there exists x0 2 [a; b], called a mode of X, such that for any
" � 0 we have that Pr (X 2 [x; x+ "]) is increasing in x for x+ " � x0 and decreasing in x for
x � x0.

Single-peaked beliefs represent a class of simple belief distributions that are easy to work with

and intuitively attractive. Moreover, as we will show below, it allows some crucial simpli�cations

that allow us to derive our results. Note that if X is single-peaked and Pr (X = x0) > 0 then

x0 = x0. Single-peakedness thus implies that X can have at most one point mass and this must

be at the mode x0: Moreover, the density of X must be increasing to the left and decreasing to

the right of x0. An agent with single-peaked beliefs who is paid using TISR will for given width

W aim to maximize the mass contained in [L;U ] : In particular this means that x0 2 [L�; U�] :
We will now establish a connection between the parameter 
 and the mass inside the interval

M�, using the �rst order conditions. A crucial variable in this relation is the density on the

boundary of the interval. Because the density function need not be di¤erentiable everywhere

(although we show that due to single-peakedness it is di¤erentiable almost everywhere), the
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value of the density on the �inside� of the boundary may di¤er from that on the �outside� of

the interval boundary. So notation will be helpful. We denote by f (y)� = limx"y f(x) and

f (y)+ = limx#y f(x) the respective densities to the left and to the right of the point y. Let

S
(L;U; in) = S(L;U; x : x 2 [L;U ]) be the score when the agent�s guess is correct, i.e. when
x 2 [L;U ]. We can now rewrite the relevant �rst order necessary conditions and obtain

max
�
f (L�)� ; f (U

�)+
	
� �

u0 (�) � S0
 (L�; U�; in) �M�

u(�) � min
�
f (L�)+ ; f (U

�)�
	
; (1)

where u(�) = u (S
(L;U; in)). By single-peakedness the mode x0 is inside the interval, and

hence the left term of (1) is the maximum density outside the interval, and the right term

is the minimum density inside the interval. The middle term represents the expected cost of

expanding the interval, which consists of the marginal disutility of the lower reward that comes

with specifying a higher width, normalized by the reward in case the agent gets it right (the

denominator). This expression is positive as S
 is decreasing inW . The left inequality says that

to make sure that the agent does not want to expand the interval, the value of the marginal

probability that is captured by the expansion should be low enough compared to the relative

cost of expansion. Potentially this condition holds with inequality, since the density need not

be continuous at the boundary of the interval. A similar logic explains the right inequality. To

ensure that the agent does not want to shrink the interval, the density that would be excluded

from the interval by shrinking it should be high enough relative to the gain in the reward

whenever x 2 [L�; U�].
The following step will be referred to below as the �attening argument. Any values of L0

and U0 that satisfy (1) will continue to do so if we �atten the mass outside the interval, so that

it is uniformly distributed on 
n [L0; U0] with density (1�M0)=((b� a)�W0). This is because

by single-peakedness, �attening the mass can only reduce f(L0)� and f(U0)+. Similarly, (1)

continues to hold if we �atten the mass inside the interval, provided W0 > 0; so that it is

uniformly distributed on [L0; U0] with density M0=W0. Again, single-peakedness guarantees

that the right hand inequality in (1) continues to hold. This transformation of mass yields a

random variable bX that has density (1�M0)=((b� a)�W0) on [a; L0)[ (U0; b], density M0=W0

on [L0; U0] if W0 > 0, and point mass M0 at x = L0 if W0 = 0:

Thus, the �attening argument tells us that [L0; U0] can be supported as an optimal interval

[L�; U�] for some X if and only if

1�M0

(b� a)�W0
� �

u0 (�) � S0
 (L0; U0; in) �M0

u (�)

� M0

W0
if W0 > 0;

8



where u(�) and S0
 (L0; U0; in) are de�ned as before but now as a function of bX instead of X.

For a risk-neutral decision maker we can rewrite these conditions as

1�M0

(b� a)�W0
�
�
1� 




�
M0

(b� a)�W0

� M0

W0
if W0 > 0: (2)

From the left hand side inequality (2) we observe a simple relationship between 
 and M� that

holds when the decision maker is risk-neutral. The proof in the appendix extends this �nding

to the risk averse case.

Proposition 2 The truncated interval scoring rule S
 has coverage 
 when X is single-peaked.

It should not be surprising that the coverage increases with 
. A higher 
 translates into a

lower penalty for widening the interval and therefore to a wider interval and greater coverage.

It is also easy to verify that a coverage of exactly 
 is attained for the uniform distribution, the

associated width is then 
 (b� a). In this sense, the uniform distribution constitutes a �worst

case�for the agent, as she will cover the least mass. Typically though, M > 
 even when there

is an interval I such that Pr (X 2 I) = 
.

3.4 E¢ ciency of the TISR

Having characterized the coverage of the TISR, we proceed to derive conditions under which

TISR is e¢ cient according to De�nition 2. We call S a simple scoring rule if S (L;U; x) = 0 if

x =2 [L;U ] and S (L;U; x) = S (L;U; x0) if x; x0 2 [L;U ] :

Proposition 3 S
 is e¢ cient within the set of simple scoring rules that have coverage 
 for all

single-peaked X.

The intuition behind this result comes from the fact that TISR achieves a coverage of exactly


 for a class of distributions that have one point mass and uniform density otherwise. Any rule

that is a candidate to dominate S
 therefore also has to capture exactly 
, or its induced

optimal width will be larger. In the proof we show that any rule that achieves exactly 
 for

those distributions has to be identical to the TISR when W � 
 (b� a). As remarked above,

 (b� a) is the maximum interval width that a risk neutral agent will ever specify, which happens
under the worst-case scenario that X is uniform. Larger interval widths will therefore be chosen

only by risk averse agents.

E¢ ciency thus provides the rationale for the truncation, i.e. the punishment of intervals W

that are larger than 
 (b� a) with payo¤ 0: This bound insures that risk averse agents can never
include more mass in the interval than would be necessary to capture 
 in a worst case scenario.
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Since TISR is e¢ cient and sometimes covers more than 
 it follows that there is no simple

scoring rule that always covers exactly 
 for all single peaked X and all concave u: In fact, the

proof of Proposition 3 reveals that this statement is true even when u is assumed to be risk

neutral.

Corollary 1 There is no simple scoring rule S such that M�(X;S; Id) = 
 for all single-peaked

X.

4 Inference from the TISR

The fact that the TISR is e¢ cient means that it locates the fraction 
 of the mass of any single-

peaked random variable X as precisely as possible. In this section we discuss some more speci�c

inferences that can be made on the basis of the elicited interval. Note that we maintain the

restriction to single-peaked X.

4.1 Location

We consider three di¤erent notions of the location of a distribution: the expected value or mean,

the mode(s) and the median. We investigate in turn how the interval chosen under the TISR

relates to these values.

By a counterexample it is easy to see that the interval under the TISR does not necessarily

cover the mean of the distribution.

Example 1. Consider " > 0 and assume thatX is distributed such that Pr (X = 0) = 1�" and
f (x) = " for x 2 (0; 1] : Note that this distribution is single-peaked and has expected value EX =

"=2. Suppose that L = 0. The �rst order condition for U is " (1� U�) =
�
1�




�
(1� "+ U�").

It follows that U� = maxf0; 
 � (1� 
)
�
1�"
"

�
g. Thus, if 
 + " � 1 then U� = 0 and the interval

does not include the mean of X. �

We now turn to the mode of the distribution, de�ned in De�nition 3. The following result

is given without proof as it follows directly from the �rst order conditions (1) and the single-

peakedness assumption.

Proposition 4 [L�; U�] contains a mode of X.

Note that the optimal interval will not necessarily cover all modes of X. To see this, note

that if X is uniformly distributed on [a; b] then each x 2 [a; b] is a mode of X:
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The next parameter of interest is the median. Whether the interval always contains the

median of the distribution depends on the size of the parameter 
. The interval elicited by

TISR need not contain the median when 
 < 1=2 (to see this, consider X that is uniformly

distributed). Yet the median will be covered if the interval contains at least 50% of the mass,

so it is an immediate implication of Proposition 2.2 that the median will fall inside the interval

when 
 � 1=2:

Corollary 2 If 
 � 1=2, then [L�; U�] contains the median.

Note that this result relies on the use of �attening argument, and thus on the assumption of

single-peakedness. One can easily construct examples of non-single-peaked distributions where


 � 1=2 is not su¢ cient to cover the median.

4.2 Inference on the Dispersion of Beliefs

The width of the interval for a given scoring rule depends on u and X. Regarding X, one would

think that an agent will specify a smaller interval, the less dispersed or noisy are her beliefs and

the more �certain�she is about X. Here we establish a formal statement for this intuition. We

show how the interval [L�; U�] changes when beliefs become more noisy in the following sense.

De�nition 4 X" is noisier than X if

X" =

8<:X with probability 1� "

Y with probability ";

where " 2 [0; 1] and Y is uniformly distributed on 
.

Note that under this notion of noisiness, unlike a mean preserving spread, the expected value

typically changes when noise increases.

Proposition 5 Assume 
 � 1=2: If X 0 is noisier than X, then W � (X;S
 ; u) �W � (X 0; S
 ; u) :

Proposition 5 establishes that a policy maker can use the TISR to get insights into the

degree of noisiness or dispersion of the beliefs of the agent. The condition on 
 insures that the

rule is concave, and the �rst-order conditions are su¢ cient. However, unless the preferences of

the agent are known, inference about the noisiness of the distribution will be confounded with

inferences about the risk aversion of the agent as the next result shows.

We now turn to the e¤ect of u on the interval width, expecting that agents that are less risk

averse to specify larger intervals. This intuition can be formalized as follows. We say that û is

more risk averse than u if there is a concave function g such that û (x) = g (u (x)) for all x:
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Proposition 6 Assume 
 � 1=2: If û is more risk averse than u thenW � (X;S
 ; u) �W � (X;S
 ; û).

Proposition 6 tells us that a more risk averse agent will always specify a larger width (and in

fact also generate a higher coverage).1 This is intuitive, since specifying a larger width decreases

the probability of getting a payo¤ of zero. In particular this means that any coverage attained

for a risk neutral agent is also attained for a risk averse agent.

In sum, learning about the dispersion of beliefs is confounded. When u can be reasonably

held constant, for example by eliciting intervals over time for the same agent, the elicitor can

falsify the hypothesis that the beliefs of an agent become noisier. This is important, since

the noisiness of the distribution can be interpreted as a proxy of uncertainty, which in many

applications will be relevant to the elicitor. In the same vein, if X can be assumed to be constant

over agents, for example because they have received the same information, the interval width

gives information about their relative degrees of risk aversion.

5 Conclusion

In this article, we have formulated the notions of coverage and e¢ ciency for interval scoring

rules. We presented a simple rule, the truncated interval scoring rule, or TISR, that satis�es

these criteria under the assumption of single peaked beliefs. The elicitor guarantees that the

elicited interval covers at least a mass of 
 by choosing the representative that is indexed by

this parameter. Moreover, TISR is e¢ cient, in the sense that no other rule achieves a coverage

of 
 within a weakly smaller interval (and strictly smaller for some distributions). Thus, TISR

o¤ers the elicitor the prospect of locating a proportion 
 of the mass within the support, and

does so in the most precise way possible.

In contrast to other scoring rules, the inferences from the TISR are valid for any degree of

risk aversion. The TISR is easy to understand, and requires only two inputs by the agent. This

eases constraints on time and cognitive resources of the subjects in economic experiments.

On the basis of these results we believe that interval scoring rules, and the TISR in particular,

can be a useful addition to the arsenal of belief elicitation methods. However, to date their

properties are not fully understood. A continued investigation of the properties of interval

elicitation methods is therefore of interest. An obvious topic for future research is to devise an

interval scoring rule for covering the mean. This may be possible if one designs more complicated

1The proof of Proposition 6 reveals that

[L� (X;S
 ; u) ; U
� (X;S
 ; u)] � [L� (X;S
 ; û) ; U� (X;S
 ; û)] :
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rules that include extra penalty parameters. For example, one could punish the distance of x

from the midpoint of the interval (Schmalensee 1976) or the bounds of the interval (Hamill and

Wilks, 1995).

As we remarked above, the notion of coverage that we propose requires a rule to elicit

intervals that cover 
% of the mass for sure. One could loosen this requirement and design

rules that cover a mass of 
 with less than 100% con�dence. Analogously, the notion of eliciting

con�dence intervals could be extended to proper scoring rules. Known proper scoring rules (like

the QSR) elicit point estimates of the parameters of interest, but as we have emphasized, these

methods do not apply to general risk preferences. Further research could relax the requirement

that con�dence intervals have width zero and instead try to elicit a 95% con�dence interval for

the mean for general risk preferences.
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Appendix with Mathematical Proofs

Proof of Proposition 1. By an extension of the extreme value theorem, we know that

an upper semi-continuous function attains a maximum on a compact domain. Hence, the

proof is complete once we show that u (S
 (L;U;X)) is upper semi-continuous in L and U:

Note that u
�
((b� a)� (U � L))

1�




�
is continuous in L and U: So all we have to show is that

Pr (X 2 [L;U ]) is upper semi-continuous, i.e. for every L0; U0 with L0 � U0 and every " > 0 we
need to show that there exists � > 0 such that k(L;U)� (L0; U0)k < � implies Pr (X 2 [L;U ]) �
Pr (X 2 [L0; U0])+": Since Pr (X 2 [L;U ]) � Pr (X 2 [min fL;L0g ;max fU;U0g]) it is su¢ cient
to prove the claim for [L;U ] such that [L0; U0] � [L;U ] :

Note that Pr (X 2 [L;U ]) = Pr (X � U)� Pr (X < L). Let F (x) = P (X � x) be the cdf of
X, which is right-continuous and non-decreasing. This implies that Pr (X � U) = F (U) is right
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continuous in U . Thus, for every " > 0 there exists � > 0 such that U � U0 + � implies that

Pr (X � U) � Pr (X � U0) + "=2. Similarly, let F� (x) = P (X < x), which is left-continuous

and non-increasing. This implies that Pr (X < L) = F�(L) is left continuous in L: Again, for

every " > 0 there exists � > 0 such that L � L0�� implies that Pr (X < L) � Pr (X < L0)�"=2.
This implies Pr (X 2 [L;U ]) � Pr (X 2 [L0; U0])+ ", which means that u (S
 (L;U;X)) is upper
semi-continuous.

Proof of Proposition 2. The outline of the proof is as follows. In step 1 we derive some

properties of the distribution function of X. In step 2 we derive necessary and su¢ cient condi-

tions for optimality. In step 3 we reformulate these in conditions that are easier to check. In

step 4 we use these to prove the statement of the proposition.

Step 1. Let F (x) = Pr (X � x), so F is monotonically increasing and hence di¤erentiable

almost everywhere (see e.g. Gordon 1994, p. 514).2 Let f be its derivative when it exists,

so f � 0. Since X is single-peaked, there exists x0 such that f is monotone increasing for

x < x0 and monotone decreasing for x > x0: Moreover, X can have at most one mass point,

we may assume that this attained at x0: Let � = Pr (X = x0) : Together, this implies that

F (x) =
R x
a f (x) dx + � � Ifx�x0g. Since f is monotone on either side of x0, it follows that f is

di¤erentiable almost everywhere, in particular f is continuous almost everywhere.

Step 2. If F is di¤erentiable at U , Pr (X = U) = 0 and U�L < 
 (b� a) then @
@U u (S
 (L

�; U;X))

exists and is given by:

@

@U
u (S
 (L

�; U; in)) =
@

@U
(u (S
 (L

�; U; in)) � Pr (X 2 [L�; U ]))

= f (U) � u (�)� u0 (�) � S0
(L�; U�; in) � Pr (X 2 [L�; U ])

where

S
(L
�; U�; in) = ((b� a)� (U � L))

1�


 ;

i.e. the payo¤ of the agent if x 2 [L�; U�].
Since F need not be continuous everywhere we formulate the �rst order necessary conditions

in terms of inequalities:

lim
U#U�

@

@U
u (S
 (L

�; U�; in)) � 0 if U� < b; (3)

lim
U"U�

@

@U
u (S
 (L

�; U�; in)) � 0 if U� > a: (4)

Note that these limits exist as f is monotone on either side of x0:

Similarly, when f is continuous at L and Pr (X = L) = 0 we can derive

@

@L
u (S
 (L;U

�; in)) = �f (U) � u (�) + u0 (�) � S0
(L�; U�; in) � Pr (X 2 [L�; U ]) ;

2�Almost everywhere�means that the set of points where F is not di¤erentiable has Lebesgue measure 0.
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and therefore

lim
L#L�

@

@L
u (S
 (L

�; U�; in)) � 0 if L� < b; (5)

lim
L"L�

@

@L
u (S
 (L

�; U�; in)) � 0 if L� > a: (6)

To simplify notation in the remainder, assume that f (x) = 0 if x =2 [a; b] and let f (x�)� :=
limx"x� f (x) and f (x�)+ := limx#x� f (x). Recall that we de�ned M

� = Pr (X 2 [L�; U�]) and
W � = U� � L�. It is easy to see that u (S (L�; U�; in)) > 0. It follows then from (3), (4), (5)

and (6), that

max
�
f (L�)� ; f (U

�)+
	
� u0(�)
u(�) S

0

(L

�; U�; in) �M� � min
�
f (L�)+ ; f (U

�)�
	
: (7)

Step 3. Since S
 (W �) = ((b� a)�W �)
1�


 > 0 it follows that (L�; U�) 6= (a; b) : So we can

assume without loss of generality that L� > a. Since f is increasing on [a; L�) and decreasing

on (U�; b] we obtain that f (x) � max
�
f (L�)� ; f (U

�)+
	
for all x 2 [a; L�)[ (U�; b] : Therefore

(7) continues to hold if we ��atten� the mass outside [L�; U�] to obtain that f (x) = q�o for

x 2 [a; L�) [ (U�; b] where

q�o =
Pr (X =2 [L�; U�])
(b� a)� (L� � U�) =

1�M�

(b� a)�W � : (8)

Similar arguments show that (7) continues to hold if we ��atten� mass inside of [L�; U�] to

obtain f (x) = q�i for x 2 [L�; U�] where q�i =M�=W �. (7) can now be rewritten as

q�o =
1�M�

(b� a)�W � �
u0 (�)
u (�) S

0

(L

�; U�; in) �M� � M�

W � = q
�
i : (9)

If u (x) = x then these conditions reduce to

1�M�

(b� a)�W � �
1� 




1

(b� a)�W �M
� � M�

W � : (10)

Step 4. Since u is concave, u0 (z) =u (z) � 1=z for z > 0 and hence

u0 (�)
u (�) S

0

(L

�; U�; in) �M� � 1

(b� a)�W �

�
1� 




�
M�: (11)

Combining (11) with the left hand side in (9) yields

1�M�

(b� a)�W � �
1

(b� a)�W �

�
1� 




�
M�

and hence

M� � 
:
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Proof of Proposition 3. Assume that S
 is not e¢ cient among the simple scoring rules. So

there exists a simple scoring rule S with coverage 
 that satis�es W � (X;S; u) � W � (X;S
 ; u)

for all X 2 � and all concave u with strict inequality for some X and some u: In the following

we will show that S is identical to S
 up to a constant factor when U � L � 
 (b� a) : Since
W � (X;S
 ; u) � 
 (b� a) this then implies that W � (X;S; u) = W � (X;S
 ; u) for all X and u

which contradicts the above and hence proves that S
 is e¢ cient among the simple scoring rules.

To simplify exposition we will assume that a = 0 and b = 1: Note that this can be done

without loss of generality by appropriate rescaling of the scoring rule.3 Consider the class of

random variables Xz indexed by z for z 2 [0; 
] where the underlying distribution Fz puts point
mass 
�z

1�z on x = 0 and has density fz (x) =
1�

1�z for x 2 [a; b] : So Fz (z) = 
: It follows

from (10) that W � (Xz; S
 ; Id) = z so M� (Xz; S
 ; Id) = 
. As S
 covers exactly 
 of the

mass of Xz, so must S; which means that L� (Xz; S; Id) = 0 and U� (Xz; S; Id) = z and hence

W � (Xz; S; Id) = z for all z 2 [0; 
] : Let rz (U) = S (0; U; 0) : Given 0 < z � 
; the �rst order
conditions imply Fz (z) � r0z (z) + fz (z) rz (z) = 0 and hence 
r0z (z) +

1�

1�z rz (z) = 0. We solve

this �rst order di¤erential equation and obtain rz (z) = c � (1� z)(1�
)=
 for z 2 (0; 
] and some
c > 0: It follows that S (0; U; in) = c � S
 (0; U; in) for all 0 < U � 
:

We now show that this result does not only hold for L� = 0, but for more general L�.

Consider now the class of distributions that have point mass 
�z1�z at 
 and density fz (x) =
1�

1�z

for x 2 [a; b]. Due to the uniform mass we can assume that U� (Xz; S; Id) = U� (Xz; S
 ; Id) = 
:
Replicate the above arguments, de�ning rz (L) = S (L; 
; in) ; to show that S (L; 
; in) = c0 �
S
 (L; 
; in) for some c0 > 0: Combining this with our previous analysis, setting L = 0; shows

that c = c0:

Continuing this way one can show, tediously, that S (L;U; in) = c � S
 (L;U; in) whenever
U � L � 
 which completes the proof.
Proof of Proposition 5. Consider random variables X, Y and X" as in De�nition 4. Let

[L�0; U
�
0 ] be the optimal interval selected under X and W �

0 = U
�
0 � L�0: We know from the �rst

order conditions (7) that

f (x) �
u0(�) � S0
(L�; U�; in)

u(�) Pr (X 2 [L�0; U�0 ]) for all x 2 [L�0; U�0 ] : (12)

We want to show that this also holds for X" at W �
0 , hence that

f" (x) �
u0(�) � S0
(L�; U�; in)

u(�) Pr (X" 2 [L�0; U�0 ]) for all x 2 [L�0; U�0 ] :

3 If S is a scoring rule for X 2 �[0; 1] with coverage 
 then S0 is a scoring rule for X 2 �[a; b] with the same
coverage if S0 (L;U; x) = S

�
L�a
b�a ;

U�a
b�a ;

x�a
b�a

�
:
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Since 
 � 1=2 and hence the �rst order condtions are su¢ cient, this then implies that [L�0; U�0 ]
is contained in [L� (X"; S
 ; u) ; U� (X"; S
 ; u)] :

We can write

Pr (X" 2 [L�0; U�0 ]) = (1� ") Pr (X 2 [L�0; U�0 ]) +
"W �

0

b� a; (13)

f" (x) = (1� ") f (x) +
"

b� a : (14)

Using (13) and (14), we have (with some suppression of notation)

f"(x)�
u0(�) � S0
(L�; U�; in)

u(�) Pr (X" 2 [L�0; U�0 ])

= (1� ")
�
f (x)�

u0(�) � S0
(L�; U�; in)
u(�) Pr (X 2 [L�0; U�0 ])

�
+ "

�
1

b� a �
u0(�) � S0
(L�; U�; in)

u(�)
W �
0

(b� a)

�
We want to show that this expression is positive. We know from (12) that the �rst term between

square brackets is positive. Remains to show that

u0(�) � S0
(L�; U�; in)
u(�)

W �
0

(b� a) �
1

b� a . (15)

But this is equivalent to the right hand side of (9).

Proof of Proposition 6. Again we use the �rst order conditions which, given 
 � 1=2;

are su¢ cient. Consider concave functions u, û and g such that û (x) = g (u (x)). Let W �
0 =

W � (X;S
 ; u) : Following (7),

f (x) � u0(�)
u(�) S

0

(L

�; U�; in) � Pr (X 2 [L�0; U�0 ]) for all x 2 [L�0; U�0 ] :

In order to prove W � (X;S
 ; u) �W � (X;S
 ; û) it is enough to show that

f (x) � û0(�)
û(�) S

0

(L

�; U�; in) � Pr (X 2 [L�0; U�0 ]) for all x 2 [L�0; U�0 ] :

Since g is concave, g0 (x) =g (x) � 1=x; and hence

û0 (x)

û (x)
=
g0 (u (x))u0 (x)

g (u (x))
� u0 (x)

u (x)

which implies the desired inequality.
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