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Abstract

We study the impact of university-industry research collaborations on academic

output, in terms of productivity and direction of research. We report findings from

a longitudinal dataset on all the researchers from the engineering departments in

the UK in the last 20 years. We control for the endogeneity caused by the dynamic

nature of research and the existence of reverse causality. Our results indicate that

researchers with industrial links publish significantly more. Productivity, though,

is higher for low levels of industry involvement. Moreover, growing ties with the

industry skew research towards a more applied approach.
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1 Introduction

In a modern economy it is essential to transform scientific research into competitive ad-

vantages. In the US, extensive collaboration between universities and industry and the

ensuing transfer of scientific knowledge has been viewed as one of the main contributors

to the successful technological innovation and economic growth of the past three decades

(Hall, 2004). At the same time, the insufficient interaction between universities and firms

in the EU is, according to a report of the European Commission (1995) itself, one of

the main factors for the poor commercial and technological performance of the EU in

high-tech sectors.

Nowadays, increasing the transfer of knowledge from universities to industry is a pri-

mary policy aim in most developed economies. In the 1980s, spurred by the so-called

competitiveness crisis, the US introduced a series of structural changes in the intellectual

property regime accompanied by several incentive programs, designed specifically to pro-

mote collaboration between universities and industry (Lee, 2000).1 Almost 30 years on,

many elements of the US system of knowledge transfer have been emulated in many other

parts of the world.2

The increased incentives (and pressures) to collaborate with industry have controver-

sial side effects on the production of scientific research itself. Nelson (2004) argues that

industry involvement might delay or suppress scientific publication and the dissemination

of preliminary results, endangering the “intellectual commons” and the practices of “open

1As documented by Poyago-Theotky et al. (2002) the US passed during the 1980s: (i) the Bayh-Dole

act (1980) that allowed universities to own and license patents emanting from federally funded research;

(ii) the National Cooperative Research Act (1984) that reduced antitrust penalties from engaging in

research joint ventures; (iii) the Omnibus and Trade and Competitiveness Act (1988) that established

the Advanced Technology Program, which supports collaborative research projects in generic technolo-

gies. During this decade, the National Science Foundation also substantially increased the funding for

University-Industry Cooperative Research Centers.
2The UK Government, for example, published in 1993 a White Paper on Science, Engineering and

Technology, which set out a strategy to improve welfare by exploiting the UK strengths in science and

engineering.
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science” (Dasgupta and David, 1994). Florida and Cohen (1999) claim that industry col-

laboration might come at the expense of basic research: growing ties with industry might

be affecting the choice of research projects, “skewing” academic research from a basic

towards an applied approach.

Faculty contributing to knowledge and technology transfer, on the other hand, main-

tain that industry collaboration complements their own academic research by securing

funds for graduate students and lab equipment, and by providing them with ideas for

their own research (Lee, 2000). Financial rewards might even have a positive impact

on the production of basic research because basic and applied research efforts might be

complementary (Thursby et al., 2007) or because they might induce a selection of riskier

research programmes (Banal-Estañol and Macho-Stadler, 2010).3

These claims bring forward two questions for empirical research: (1) Does collaboration

with industry affect researchers’ productivity in terms of publication rates? (2) Does

collaboration with industry shift the focus away from basic research? Previous research

has investigated these questions using patents and licensing and the formation of start-

up companies as measures of industry collaboration (see Geuna and Nesta, 2006, and

Baldini, 2008, for recent reviews).4 Many papers, however, have stressed the relatively

small role of the commercialisation of intellectual property rights relative to other channels

of knowledge transfer. Collaborative links through joint research, consulting or training

arrangements are far more important transmission channels for the industry than patents,

licenses and spin-offs (Cohen et al. 2002). Academics believe that patents account for

less than 10% of the knowledge transferred from their labs (Agrawal and Henderson,

2002). Contract research or joint research agreements are far more widespread (D’Este

and Patel, 2007), especially in Europe (Geuna and Nesta, 2006). Possibly due to the

3This debate has now reached society at large. Many public channels, including the BBC (through the

BBC Radio 4 programme ‘In Business’, October 13, 2005), The Guardian (August 5, 2005 and January

27, 2007), The Observer (April 4, 2004), have addressed the consequences of increased university-industry

collaborations.
4A different strand of literature has studied the effects of university spillovers and industry-science

links on firm performance (Jaffe, 1989, Cassiman et al. 2008).
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lack of comparable data, though, we still know very little about the impact of more

collaborative forms of university-industry interactions.

To fill this gap, we compiled a unique, longitudinal dataset containing academic re-

search output (publications), research funds and patents for all the academics that were

employed at all the Engineering Departments of 40 major UK universities between 1985

and 2007. We concentrate on the engineering sector, as it has traditionally been associ-

ated with applied research and industry collaboration and it contributes substantially to

industrial R&D (Cohen et al. 2002). Comparing the effect of grants with and without

industry partners, we can identify the individual impact of industrial collaboration on

academic productivity. Following the academics over time we are also able to control for

individual characteristics, potential reverse causality problems, and the dynamic effect of

publications. Moreover, since our dataset contains the majority of academic engineers in

the UK, our results are not driven by the most successful researchers, those at a single

university, or academic inventors alone.

As a first contribution, we uncover two countervailing effects in the impact of collab-

orative research on academic research output. Researchers with no industry involvement

are predicted to publish less than those with a small degree of collaboration. Nevertheless,

higher levels of industry involvement negatively affect research productivity. Therefore,

the existence of industry partners is positive but the intensity of industry collaboration is

negative. The predicted publication rate of an academic with an average level of collab-

oration is higher than that of an academic with no collaborative funding. But, for higher

levels of collaboration, the predicted number of publications turns out to be lower, and

can even be lower than for those with no funding at all.

We show that it is key to take into account the inherent endogeneity problems caused

by the dynamic effects and the existence of reverse causality. As shown by previous

papers (e.g. Arora et al. 1998, Agrawal and Henderson, 2002), past, present and future

publications are correlated. If one does not include past publications in the regression,

industry collaboration would capture the positive effects of past productivity and it would

appear to be unambiguously good. But if one includes lags of the dependent variable, there
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are endogeneity problems. Further, successful, productive researchers are better placed

to attract interest from industry. Industry collaboration can be the consequence, and

not just the cause, of high numbers of publications. We therefore use a dynamic panel

data estimation method in which the lagged dependent variable and other endogenous

variables are instrumented for.

Our results bolster empirical evidence from previous surveys and cross-sectional studies

by establishing a causal relationship between collaborative research and academic output.

Some survey studies suggest that industry involvement is linked to higher academic pro-

ductivity (e.g. Gulbrandsen and Smeby, 2005).5 Once controlling for endogeneity, we

still find supportive evidence for the positive impact of the presence of collaboration on

research output. The negative effect of the intensity of collaboration is also consistent

with other survey results (Blumenthal et al., 1986) and cross-section empirical evidence

(Manjarres-Henriquez et al., 2009). We are only aware of one (two-period) panel study

that is able to control for individual characteristics: Goldfarb (2008) documents a de-

crease in the academic output from 1981-1987 to 1988-1994 for the average researcher in

a sample of 221 university researchers repeatedly funded by the NASA.6

The second main contribution of this paper is to show that industry collaboration has a

negative effect on the number of basic research articles while it increases the more applied

type of research publications. These results are consistent with the “skewing” effect of

industry involvement on direction and focus of research pointed out by questionnaire data

studies. Blumenthal et al. (1986) and Gulbrandsen and Smeby (2005), for example, report

that the choices of research topics of academics whose research is supported by industry

were biased by their commercial potential. Instead, the empirical papers using patenting

and licensing as measures of industry involvement fail to find evidence of a negative effect

of patenting on the number of basic publications (Breschi et al., 2008; Calderini et al.

2007; Hicks and Hamilton, 1999; Thursby and Thursby, 2002, 2007; van Looy et al.,

5As argued by Blumenthal et al. (1986), “the most obvious explanation for this observed relation [...]

is that companies selectively support talented and energetic faculty who were already highly productive”.
6The NASA, despite not being an industrial partner, is a very programmatic, mission-oriented gov-

ernment agency.
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2006).7 We believe that our findings are the first to firmly establish the presence of a

“skewing” effect.

The third contribution of this study is to compare and separate out the effects of

collaboration sponsored through research grants with industrial partners from the effects

of patenting. After controlling for the dynamic nature of the publication process and the

endogeneity of partnerships with the industry, we find that patenting does not hinder or

delay the publication of research results but does not affect it positively either. These

findings diverge from most recent empirical studies suggesting a positive relationship be-

tween patenting and publication rates (Azoulay et al., 2009; Breschi et al., 2008; Calderini

et al. 2007; Fabrizio and DiMinin, 2008; Stephan et al., 2007; van Looy et al., 2005).8

Our results are most consistent with those of Agrawal and Henderson (2002), who found

that patenting did not affect publishing rates of 236 scientists in two MIT departments

in a 15-year panel, and those of Goldfarb et al. (2009) who report similar results for the

effect of licensing on the number of publications for 57 inventors at Stanford University

in an 11-year panel.

The paper is organised as follows. In section 2 we describe the dataset and intro-

duce our empirical strategy. Section 3 presents our main results, discussing in detail the

problem of endogeneity. Section 4 discusses and concludes.

7Thursby and Thursby (2002), for example, conclude that changes in the direction of faculty research

seem to be relatively less important than other factors in explaining the increased licensing activity.

Thursby and Thursby (2007), as Hicks and Hamilton (1999) earlier, find no systematic change in the

proportion of publications in basic versus applied journals between 1983 and 1999.
8Fabrizio and DiMinin (2008), for instance, found a positive effect of researchers’ patent stocks on

publication counts in a sample of 166 academic inventors as compared to a matched set of non-patenting

scientists. Azoulay et al. (2009) observe that both the flow and the stock of scientists’ patents are

positively related to subsequent publication rates without comprising the quality of the published research.
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2 Empirical Strategy

2.1 Data

We created a unique longitudinal dataset containing demographic characteristics, publi-

cations, research funds and patents for all researchers employed at the Engineering De-

partments of 40 major UK universities between 1985 and 2007 (see Table 1 for a list of

universities). Starting from all universities with engineering departments in the UK, we

discarded those for which university calendars providing detailed staff information were

available for less than five years. Our final sample contains 40 major universities, includ-

ing all the 19 universities that are members of the prestigious Russell Group, a coalition of

research intensive UK universities, as well as 21 comprehensive universities and technical

institutions.

We retrieved names and academic ranks of university researchers from university cal-

endars.9 We focused on academic staff carrying out both teaching and research and did

not consider research officers or teaching assistants. Whenever possible, we obtained full

names (first and last name), when not possible, we had to record last names with the two

initials of the first name. We followed the researchers’ career paths between the different

universities in our dataset.10 Academics leave (and join or rejoin) our dataset at different

stages in their career, when they move to (or from) abroad, industry, departments other

than engineering (e.g. chemistry, physics, computer science), or universities not part of

our dataset. In total we collected 7,707 individuals, 5,172 of which remain in our dataset

for six years or more. They represent the basis for our data collection and enable us to

retrieve information on publications, research funds and patents.

9University calendars and prospectuses are available through the British Library, which by Act of

Parliament is entitled to receive a free copy of every item published in the United Kingdom. This data

was supplemented with information from the Internet Archive. The Internet Archive is a not-for-profit

organisation maintaining a free Internet library, committed to offering access to digital collections. Their

collection dates back to 1996 and enabled us to retrieve information from outdated Internet sites.
10This was done by matching names and subject areas and checking websites of the researchers.
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Publications. Data on publications was derived from the ISI Science Citation Index

(SCI). The number of publications in peer-reviewed journals even if not the only measure

is the best recorded and the most accepted measure for research output as publications

are essential in gaining scientific reputation and for career advancements (Dasgupta and

David, 1994). We collected information on all the articles published by researchers in

our database while they were employed at one of the 40 institutions in our sample. Most

entries in the SCI database include detailed address data that allowed us to identify

institutional affiliations and unequivocally assign articles to individual researchers.11

Research funds. The information on industry collaborations are based on grants given

by the Engineering and Physical Sciences Research Council (EPSRC), the main UK gov-

ernment agency for funding research in engineering and the physical sciences. Each award

holds information on research collaborators, and grants with one or more industry partner

are considered “collaborative grants”. As defined by the EPSRC, “Collaborative Research

Grants are grants led by academic researchers, but involve other partners. Partners gen-

erally contribute either cash or ‘in-kind’ services to the full economic cost of the research.”

The EPSRC encourages research in collaboration with the industry. As a result, around

35% of EPSRC grants presently involve partners from industry. The volume of EPSRC

grants with industry partners cannot be taken as a proxy for direct funding from the

industry. But, since the EPSRC is by far the largest provider of funding for research in

engineering (amounting to around 50% of overall funding), these mediated partnerships

allow for a very comprehensive (and homogeneous) insight into the dynamics of university-

industry collaborations. Our database contains information on start year and duration of

the grant, total amount of funding, names of principal investigators and coinvestigators,

institution of the principal investigators (the grant receiving institution), and names of

partner organisations. Data on these grants is available from 1986 onwards.

11Publications without address data had to be ignored. However, we expect this missing information

to be random and to not affect the data systematically.
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Patents. Patent data was obtained from the European Patent Office (EPO) database.

We collected those patents that identify the aforementioned researchers as inventors and

were filed while they were employed at one of the 40 institutions. We not only consider

patents filed by the universities themselves but also those assigned to third parties, e.g.

industry or government agents. The filing date of a patent was recorded as representing

the closest date to invention. Since the filing process can take several years, we were

only able to include patents awarded by 2007, hence filed before 2005.12 The EPO covers

only a subsample of patents filed with the UK Intellectual Property Office (UKIPO).

Nevertheless, those patents that are taken to the EPO may probably be those with higher

economic potential and/or quality (Maurseth and Verspagen, 2002).

Sample. Limited information on patents and grants reduced our sample period to

1986-2004. We further excluded all inactive researchers (those with neither publications,

patents or funds during the entire sample period). This left us with a final sample con-

sisting of 4,066 individuals, with 44,722 year observations, 75,380 publications, 29,347

research projects, and 1,828 patents.

2.2 Variables and Descriptive Statistics

In this section we define the variables used to estimate our models. We created measures

of research output, research collaboration, patents, and time variant and time invariant

control variables. Russell Group universities are considered research intensive institutions

and attract most of the UK’s research funding, we therefore display all summary statistics

separately for researchers at universities belonging to the Russell Group and for researchers

that are not.
12Just like previous studies (see e.g. Fabrizio and DiMinin, 2008), data construction requires a manual

search in the inventor database to identify the entries that were truly the same inventor and to exclude

others with similar or identical names. This was done comparing address, title and technology class for

all patents potentially attributable to each inventor. The EPO database is problematic in that many

inventions have multiple entries. It was therefore necessary to compare priority numbers to ensure that

each invention is only included once in our data.
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Research output. As a measure of research output, we consider the normal count

of publications (the number of publications for which the researcher is an author) in

accordance with the majority of studies on industry collaboration. However, publication

counts might be misleading for articles with a large number of authors and may not

reflect a researcher’s effective productivity. We therefore additionally obtain the “co-

author-weighted” count of publications for which we weight a publication associated to

an academic by the inverse of the publication’s number of coauthors.13

To investigate the question whether researchers with links to industry publish articles

of lower quality we use the “impact-factor-weighted” sum of publications (with the weights

being the impact attributed to the publishing journal) as an additional proxy of academic

publishing activity. To do so, we use the SCI Journal Impact Factor (JIF), a measure

of importance attribution based on the number of citations a journal receives to adjust

for relative quality. Though not a direct measure for quality, the JIF represents the

importance attributed to a particular article by peer review. As the JIF of journals

differs between years, and journals are constantly added to the SCI, we collected JIFs

for all the years 1985-2007, to capture all SCI journals and to allow for variation in the

impact factor.

Figure 1 shows that the average number of publications per staff was rising continu-

ously over the sample period, in both the Russell Group and the Non-Russell Group of

universities.14 Table 2 shows the all-time averages and the differences between the two

groups of universities and it shows that the average number of publications per member

of staff per year is significantly higher for the elite Russell Group of universities (1.67 vs.

1.10). The difference in publications between the Russell Group universities and the rest

stays significant even after we take into account the number of coauthors (0.61 vs. 0.42)

or we adjust for quality (1.77 vs. 0.97).

13Formally, the coauthor weighted count of a researcher i in year t is given by
PPubit

p=1
1

Coaitp
, where

Pubit is his number of publications in that year and Coaitp is the number of coauthors of an article p.
14Several papers have documented a trend towards increasing multi-coauthorship (see Katz and Martin,

1997), but, even after we control for the number of coauthors we still find that the publication count has

at least tripled between 1985 and 2007.
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As an indicator of the direction of research we use the Patent board (formerly CHI)

classification (version 2005), developed by Narin et al. (1976) and updated by Kimberley

Hamilton for the National Science Foundation (NSF). Based on cross-citations matrices

between journals, it characterises the general research orientation of journals, distinguish-

ing between (1) applied technology, (2) engineering and technological science, (3) applied

and targeted basic research, and (4) basic scientific research. Godin (1996) and van Looy

et al. (2006) reinterpreted the categories as (1) applied technology, (2) basic technology,

(3) applied science, and (4) basic science; and grouped the first two as “technology” and

the last two as “science”. Due to the applied character of engineering science, categories

1 and 2 represent 27% and 46% of all publications whereas category 4 only represents 7%

of the articles in our sample.

Collaborative research and patents. Principal investigators and coinvestigators on

sponsored projects are understood to contribute to the research project and benefit from

generated outcomes. To account for the participation of all investigators, we divided the

total monetary income from the research grants between the principal investigator (PI)

and her named coinvestigator(s). Although we include coinvestigators as beneficiaries of

the grant, we positively discriminated PIs by assigning them half of the grant value and

splitting the remaining 50% amongst their coinvestigators. PIs are assigned a major part

of the grant as they are expected to be responsible for the leadership of the research and

to profit most from a successful partnership. We additionally spread the grant value over

the whole award period, i.e., if the grant is 2 years we split it equally across those 2

years, if it is over 3 or more years, the first and the last years (which are assumed to not

represent full calendar years) receive 25% each, the remaining 50% is split equally across

the intermediate years.15 This is done in order to account for the ongoing benefits and

implications of a project and to mitigate against the effect of focusing all the funds at the

15Formally, if Fundi,s,d,f is the monetary value of a grant f received by researcher i with start year s

and duration d, the value of the grant assigned to a year t is: (i) for d = 1, Fundi,s,d,f when t = s; (ii) for

d = 2,
Fundi,s,d,f

2 when t = s and t = s+ 1; and, (iii) for d > 2, Fundi,s,d,f2(d−1) when t = s and t = s+ d− 1
and Fundi,s,d,f

d−1 when s < t < s+ d− 1.
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start of the project.

We use a 5-year window to calculate the stock of “accumulated” collaboration to better

capture the “permanent” profile of an academic. We constructed two time-variant dummy

variables, which allow for a differential effect for researchers who received funding that

did not involve industry collaboration, and for researchers who collaborated with industry

in the 5 years preceding the publication. Since our objective is to evaluate not only the

influence of the existence of industry partners but also the intensity of collaboration

activity, we also compute the fraction of funds with one or more industry partners over

all EPSRC funds.

Figure 2 reports the percentage of industry collaboration and shows that the two

groups of universities do not seem to differ much. Table 2 reveals that these differences,

no matter how small, are still significant and on average the percentage of industry col-

laboration is slightly higher (33% vs. 31%) for Russell Group universities. Figure 2 gives

evidence of a sudden increase in industry partnerships in the mid-1990s and a stagna-

tion in recent years, which affected all UK universities equally. This might imply severe

changes in funding allocation through the UK research councils following the government’s

White Papers from 1991 and 1993, which outlined changes in the structure of funding and

higher education.

As mentioned above, we aim to separate the effect of patenting from the effect of

industry collaboration. To measure the impact of academic patenting on timing and rate

of publications, we use the number of patents filed during the same year and the two

years preceding the publication. Researchers in Europe, unlike the US, cannot benefit

from a “grace period” and hence they have to withhold any publication related to the

patent until the patent is filed. Publications might be released once the patent is filed.

We therefore expect a lag of up to 2 years between invention and publication in a journal.

We can see from Table 2 that the average number of patents differs significantly between

the two groups of universities (0.04 vs. 0.03). The values are very small for both groups

but the average number of patents filed by researchers has increased substantially over

the past 20 years and in particular after 1995 (from 0.03 in 1985 to 0.06 in 2003).
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Control Variables. Research productivity and collaborative activity might be linked

to the researchers’ personal attributes such as sex, age, education and academic rank.

Some of these attributes, however, do not vary over time and therefore they do not play a

role in the dynamic variation, which is the focus of this paper. Academic rank is the only

time-variant observable characteristic in our dataset. Thus we incorporate information

on the evolution of researchers’ academic status from lecturer to senior lecturer, reader

and professor into our analysis. Lecturer and senior lecturer correspond to the assistant

professor in the US, whereas reader would be equivalent to associate professor. Year

dummies are included in all regressions to control for time effects in our panel.

Interaction Variables. The effect of industry collaboration on research output might

additionally differ for different types of academics. We therefore interact our measures of

industry collaboration with several categories of individuals in some of our models.

Firstly, since the descriptive statistics above show significant differences between the

two types of universities, we interact membership to the Russell Group with the mea-

sures of industry collaboration. Most of the previous literature on the impact of industry

collaboration (e.g. Agrawal and Henderson, 2002, Thursby and Thursby, 2007) only use

data on researchers at top universities (in terms of research or patents). However, the

benefits and costs of collaborative projects differ depending on the institutional culture

(Owen-Smith and Powell, 2001; Levin and Stephan, 1991) and might therefore lead to

differential impact of industry collaboration on publication outputs. For the UK, Geuna

(1997) finds that universities with small science, engineering or medical departments pub-

lish fewer papers and receive less grants than other universities, but that a larger share

of these grants comes from industry.

Secondly, several papers have argued that the most able researchers, which in this

paper we label as stars, may differ considerably from the rest of academia in that they are

more able to combine academic and commercial research. Publication stars are not only

found to collaborate more with industry, but they also produce more patents (Zucker and

Darby, 1996; Stephan et al. 2007). However, they also have plenty more opportunities

to conduct their research and do not need to adjust to specific societal needs (Goldfarb,
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2008). We hence expect the impact of industry collaboration to differ for these stars.

As stars we define all those researchers that are on the top 25 percentile of research

productivity, with an average of 2 or more articles per year.

Thirdly, the impact of industry partnerships on the publication behaviour of senior

academics, who have more experience and an established network of research partners,

may differ from that of younger researchers, who pursue publications to further their

career (Dasgupta and David, 1994). The changes in university culture and the increasing

emphasise on collaboration, however, have been recent developments and it might be that

researchers at the start of their career best adjust to these new requirements. We therefore

create a binary variable that determines whether the researcher is at the start (lecturer

or senior lecturer) or at a later stage of her career (reader or professor).

2.3 Empirical Model

We base our empirical specification on the implicit assumption that the utility of an acad-

emic in a given year depends on her academic reputation and status, which are determined

by the stream of academic research output (past and present publications in peer-reviewed

journals), on the amount of research grants generated (research council funds), and on

commercial output (number of patents). Publications, grants and patents are directly

linked to how much time or effort the academic devotes to research, to collaboration with

industry, and to teaching and other activities. The time devoted to collaboration with

the industry may pose a trade-off for academic research output, as it might provide new

ideas but also crowd out time for research.

The optimal time allocation problem for the academic consists of choosing the utility

maximising fraction of time she devotes to each activity. The associated first-order con-

ditions involve first derivatives of the utility function with respect to the time devoted

to research and to collaboration with industry. Thus, for any utility function which is

not linear in publications, the first order conditions define an implicit function by which

publications can be expressed as a function of the relative time dedicated to collaborate

with industry. This function will of course be conditional to time-variant and invariant
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socio-demographic characteristics of the academic, and past publications.

To estimate how collaboration with the industry affects research output, we estimate a

dynamic model where current publications are influenced not only by past publications but

also by the degree of collaboration with industry. We choose a specification that allows

current publications to be affected by the existence and the intensity of collaborative

funding. To do so, we include a dummy for having had any type of EPSRC past funding

in the last five years, another dummy for having had EPSRC funding with industry

partners, and then a variable that measures which fraction of the overall funding was

joint with industry. By including a dummy (intercept) and a continuous variable (slope),

we intend to capture the trade-off of industry collaboration on publications described

above.16

Accordingly, we formulate our reduced form equations as:

ln yit = β0+
P
j=1,2

αj ln yi,t−j+β1fit+β2indfit+β3 ln indintit+
P

k=1,2,3

γkpit−1−k+δx
0
it+μi+vit

where yit represents academic i’s research output at time t, β0 a constant, fit is an indicator

variable for having received any kind of EPSRC funds; indfit is an indicator variable for

having received EPSRC funding with industry partners; indintit measures the intensity

of the collaboration with industry; pit, are indicator variables for having filed patents;

and xit is a vector time-variant explanatory variables including tenure rank. Note that

the constant and the two dummies need not be collinear as they are not exclusive. The

parameters β0, β1, and β2 capture the incremental effect of different sources of funding. An

academic with no funding at all will only have a constant term equal to β0, one academic

with non-industrial EPSRC β0 + β1, and, one academic with EPSRC grants with the

industry β0 + β1 + β2. Since the distribution of grants and academic research output

has been found to be highly skewed (D’Este and Fontana, 2007), we take logarithms of

both measures. The error term contains two sources of error: the academic i’s fixed effect

term μi, and a disturbance term vit. Thus, our specification corrects for the fact that

16A specification with an intercept and a linear term fits our data better because the researchers

with no collaborative grants at all are substantially different from those with a very small percentage of

collaborative grants.
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industry collaboration, patents, past publications and academic rank may be endogenous.

Publishing, being a professor or getting a lot of industry funds, for example, are correlated

with having a high cognitive ability, which is unobserved.

Still, although the fixed idiosyncratic disturbances μi are uncorrelated across individ-

uals, they create autocorrelation of the errors over time. To ensure consistency and to

solve the fixed effects induced autocorrelation of our estimates, we estimate these models

using the GMM based Arellano-Bond estimator (Arellano and Bond 1991; Blundell and

Bond 1998). In brief, this estimator treats the model as a system of equations — one for

each time period — where the predetermined and endogenous variables in first differences

are instrumented with suitable lagged variables. To further improve the efficiency of our

estimates, we use the two-step GMM based on taking deeper lags of the dependent vari-

able as additional instruments, as described in Roodman (2006). The two-step standard

errors tend to be downward biased and we therefore calculate Windmeijer corrected stan-

dard errors (Windmeijer, 2005). We treat the lagged number of publications, the number

of patents, the variables for the degree of industry collaboration, the collaboration dum-

mies and the academic rank as endogenous. The year dummies are treated as exogenous

and are used as instruments. Finally, we use department size as an additional exogenous

instrument.

We also report GLS with fixed effects, and GMM estimations treating industry col-

laboration and/or patents as exogenous variables in order to illustrate the importance of

correcting for reverse causality of industry collaboration and past realisations of research

output when trying to estimate the true impact the former on the latter.

3 Empirical Results

In this section we present our estimates on the impact of industry collaboration on re-

search productivity. We first introduce our main results, comparing the estimates of our

benchmark model with those of alternative regression models. Then, we show how the

impact of research collaboration and patents on research productivity differs across types
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of researchers. Finally, we show how robust results are if we use alternative measures of

research productivity.

3.1 Main Results

Table 3 reports the estimates of research productivity measured as the total number of

publications using four different model specifications. While the first model uses a GLS

with fixed effects estimator, specifications 2, 3 and 4 are estimated using two-step differ-

ence GMM. In specification 2 industry collaboration and patents are treated as exogenous

explanatory variables. In the third column, industry collaboration terms are instrumented

as endogenous variables while patents are still considered exogenous. Finally, in the fourth

model, which we consider to be our benchmark, all the explanatory variables except for

the year dummies are treated as endogenous. For all GMM specifications, we report

the Arellano-Bond test and the Sargan/Hansen test at the bottom of the table. In the

following paragraphs we present the main results grouping them in themes for clarity.

Baseline and past publications: In all specifications, the exponent of the estimate of

the constant term can be considered as the “baseline” productivity prediction, i.e. the

expected number of publications for a lecturer who does not have any previous funding

or previous patents. This baseline prediction for the number of publications ranges from

1.57 articles per year in the GLS specification to 1.36 in the benchmark GMM model

(1.57 and 1.36 are the antilogs of 0.453 and 0.308, respectively). Note that the baseline

number of publications decreases when we include the logarithm of the lagged number of

publications (GMM columns). We interpret this fact as an indication that the constant

term in the GLS specification was capturing the omitted lagged publications’ effect.

The strong statistical significance of the lagged publications in the GMM specifications

in Table 3 shows that it is important to take into account the dynamic nature of the

publication process and thus use GMM as opposed to GLS. In all GMM specifications,

the coefficients associated with the lagged publications are positive and, although the first

lag is insignificant, the second lag is highly significant throughout. Because we have taken

logarithms of both the dependent variable and its lagged terms, we can interpret these
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coefficients as elasticities. Thus, according to benchmark specification results, increasing

by 100% (i.e. doubling) the number of publications two years prior will increase the

expected number of current publications by 4.95%.

Having had funding: As expected, the existence of any funding in the last five years

enhances research productivity in all four specifications. In the GLS specification the “had

some funding” coefficient is significant and equals 0.0309, indicating that if an academic

had received funding she publishes, on average, around 3% more articles than if she

had not received any funding at all. If we take into account the dynamic nature of

the publishing process but not the fact that industry collaboration and patents may

be endogenous (second column’s specification), funding does not have any significant

impact on the number of publications. However, as soon as we take into consideration

that funding and collaboration are endogenous (columns three and four), the coefficient

becomes significant again.

Having collaborated with industry: More importantly, if some of this past funding

involved partners from industry, the average number of publications increases by a further

4% in the GLS regression. As a result, an academic collaborating with industry would

publish 7% more articles than one who did not receive any funding at all. As in the

previous case, in the benchmark specification, in which we take into consideration the

dynamics and the endogeneity problems (column four), the coefficient is larger.

Intensity of industry collaboration: The coefficient associated with this variable can be

interpreted as an elasticity as we measured it as the logarithm of the fraction of EPSRC

grants with the industry. Although it is insignificant for the first two specifications, this

elasticity is significant and negative in the last two specifications. Thus, there is a discrete

positive impact of collaborating with industry, but the more an academic collaborates with

industry, the less she publishes.

To summarise, and drawing from the benchmark specification in the last column, a

lecturer without funding in the last five years is predicted to publish 1.36 articles per year.

If she had obtained funding but did not collaborate she would be predicted to publish 14%

more publications or up to 1.57 publications. If part of the funding had been with industry
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partners, she would see her publications increase by an additional 11%, up to 1.78. Thus,

having collaborated with industry would mean that she is expected to publish 25% more

than if she had not received any funding at all. However, as the level of collaboration

with industry increases, by say 10%, the predicted number of publications decreases by

2.66%.

In Figure 3 we illustrate the impact of industry collaboration on publications with a

plot of the predicted number of publications for a lecturer with no patents for different

levels of intensity of industry collaboration. The levels of collaboration with industry

range from 0% to 100%, i.e., from no funding involving industry partners to all funding

involving industry partners. A lecturer collaborating with industry is expected to publish

1.78 publications in a given year, but the larger the intensity of her collaboration with

industry, the less she is expected to publish. At 33% of funds in collaboration with

industry, or the sample average, the predicted number of publications is still above 1.57,

and thus higher than if she did not collaborate with industry. At 38.5% of collaboration

intensity, the predicted number of publications matches exactly the number for non-

collaborative funding. Finally, if the percentage of her collaborative funding is 81.8%,

the predicted number of publications is lower than if she had not received any grants in

the previous 5 years. At even higher levels of collaboration intensity she is expected to

publish less than 1.36 articles per year.

Patents: Consistent with the recent literature, filing a patent in the current year, and

in each of the two previous observation periods increases the number of publications in

the GLS specification (column one). The number of current patents and those in the year

before the last (t and t− 2) increase the number of articles by about 2% each. However,

when we correct for the dynamic effect of publications using GMM, the signs turn nega-

tive. If we assume that past publications and rank are endogenous and collaboration and

patenting exogenous (column two), the coefficients associated to patents are all insignif-

icant. When we add industry collaboration to the set of endogenous variables, current

and past patents are significant and have a negative effect on publications (column three).

Finally, in our fourth -benchmark- specification which also takes into account the endo-
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geneity of patents, all patent variables are insignificant. The release of patents hence has

no influence on publications as soon as we correct for endogeneity.

Academic Rank: We can also observe differences between the GLS and the GMM

specifications with respect to the effect of academic rank. In the GLS regression, later

career stages are associated with higher number of publications. All senior ranks (senior

lecturer, reader and professor) publish significantly more than the omitted junior category

(lecturer). Moreover, being a professor has a stronger effect than being a reader, which

in turn has a stronger effect than being a senior lecturer. In the GMM regressions, on the

other hand, the effect of being a professor is lower than that of being a senior lecturer or

a reader, although it is still significantly positive. Readers seem to be those who publish

most, followed by senior lecturers, professors and lecturers, respectively. Hence, after

allowing for endogeneity of research output, which is linked to tenure promotion, we find

evidence for reduced productivity over the career life-cycle (Levin and Stephan, 1991).

Goodness of fit: With respect to goodness of fit of the GMM models, the Arellano-

Bond tests (reported at the bottom of Table 3) do not reject the null that there is absence

of second (or higher) order correlation of the disturbance terms of our specifications,

which is required for consistency of our estimates. The Sargan and Hansen tests are also

insignificant suggesting that the models do not suffer from over-identification.

3.2 Differences across Academics

In Table 4 we present the estimates of model specifications that interact researchers’

characteristics with our variables of interest, that is, industry collaboration and patents.

For simplicity, we present the main and interacted effects estimates in two columns. The

first column of each block (main effect) corresponds to the researchers in the groups

described in the column header, the second column (interaction effect) corresponds to the

estimates of the comparison group.

In the first specification we separate out the effects of academics belonging to the elite

group of universities (Russell Group) from the academics at other universities. Despite

the dissimilarities in terms of descriptive statistics, the effect of industry collaboration

20



on publications does not differ significantly between the two groups of universities in our

sample. The estimates and the levels of significance for the Russell Group academics do

not differ substantially from those in our benchmark model in column four of Table 3

except for the estimates associated to the number of filed patents. For academics at a

Russell Group university the estimates for the patent variables turn negative and the effect

of the number of patents filed the previous year becomes significant (-0.201, equivalent

to a reduction of 20% in publications). Although statistically not significantly different,

the effect of patents is more positive for academics at universities that are not members

of the Russell Group.

The second block of regressions presents the estimates of the effect of industry collab-

oration and patents for the star researchers, academics in the top 25 percentile in terms

of average publication numbers, which in our sample is an average of 2 or more publica-

tions per year. As in the previous regression, we observe that the estimates for stars are

similar to the average estimated in the benchmark model in Table 3. The estimates for

the academics not categorised as stars do not differ from the non-stars significantly ei-

ther. Hence, both regressions suggest that the effect of knowledge transfer on publication

productivity does not differ by the level of prestige, whether that of the academic or that

of the university.

Looking at the third block of results, we can see that the coefficients for senior staff

(readers and professors) are larger than in the benchmark model and that they differ

significantly from the coefficients for junior academics (lecturers and senior lecturers).

Firstly, the impact of having received funding on the number of articles is more posi-

tive for senior academics (0.390, equivalent to an increase of 39% of the constant) as is

collaboration with industry (0.163 equivalent to a further 16%). Also, the effect of the

intensity of a researcher’s involvement in collaborative research is more negative than that

of the benchmark (elasticity of -0.729). Junior staff on the other hand benefit less from

research funding, which indicates that less experienced members of staff are less able to

transform funding into research output in terms of publications. Their number of publi-

cations, however, decreases far slower as the fraction of grants involving industry partners
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increases.

3.3 Weighted Number of Publications

Table 5 contains the estimates of variations of the benchmark model as a robustness check

exercise. Instead of the natural count of publications, we model the number of publications

weighted by the number of coauthors and the quality of the publishing journal.

All the coefficients have the same sign as in the benchmark regression in Table 3. Their

magnitude, however, is smaller and some of the effects of funding and collaboration become

insignificant. Receipt of funding, with and without the industry, does not significantly

affect the number of publications if they are weighted by the number of coauthors. The

intensity of collaboration still has a significant and negative effect. Therefore, industry

collaboration has a more damaging effect on coauthor weighted publication counts than

in the normal count of publications.

Instead, if publications are weighted by the impact factor, the intercepts associated

with receipt of funding and collaboration are positive and significant. The coefficients are

very similar to those of the benchmark regression in Table 3. The estimate of the intensity

of collaboration is rather, much smaller and insignificant. Therefore, collaboration with

industry increases is better in terms of quality of the publications.

Interestingly, when weighting publications by the number of coauthors, professors

no longer publish more than lecturers. Academics tend to publish with an increased

number of coauthors as they progress in the academic rank and although the count of

publications is significantly greater, the weighted average is not. Nevertheless, when

adjusting publications by quality, the effect of the professor dummy again becomes positive

and significant.

3.4 Basicness of Publications

We now disaggregate our results using the patent board classification index. Table 6

reports the estimates for the impact of collaboration and patents on the count of publi-

cations in each of the four categories of research journals, “applied technology”, “basic
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technology”, “applied science” and “basic science”. The first category is considered the

most applied and the last one the most basic.

In all the regressions, except for the fourth specification, the coefficients of collabora-

tion display the same sign as in the benchmark regression in Table 3. But the magnitudes

of the coefficients for the two dummies differ substantially across the regressions. The

positive effect of the existence of funding is mainly due to an increase in the number

of publications in the basic technology category. The positive effect of the existence of

collaboration is mainly due to an increase in the number of publications in the applied

technology category. The negative effect of the intensity of collaboration, instead, is more

widespread. It not only reduces the number of publications in the most applied set, but

also in the most basic set of publications.

In sum, funding has a positive impact on technological research (applied technology

and basic technology). While funding without industrial partners biases output towards

the area of basic technology, funding with industrial partners introduces a bias in pub-

lications towards the area of applied technology. Funding alone does not significantly

increase the number of publications in applied technology unless it involves partners from

industry. The effect of collaboration on this set of publications is indeed more positive

than for the aggregate set in the benchmark regression. The positive dummy coefficient

is larger and the negative effect of the intensity is lower.

We do not find a positive effect of funding on publications in scientific research jour-

nals. For both, applied scientific and basic scientific, the funding dummies do not have a

significant effect. The overall effect of the two dummies on the most basic set of publica-

tions is negative. However, we do observe significant decreasing numbers of publications

for an increasing fraction of industry collaboration. A researcher hence mostly publishes

in the scientific research journals if she does not receive any research grants or research

grants with no industry involvement.

The release of patents in the current year has a negative effect on the number of

publications in basic technology journals. Patenting in the previous year also has a neg-

ative effect on publications in applied scientific journals. As these represent the fields
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of research most closely related to the invention of new technology and hence patenting

activity, the negative signs could indeed confirm the secrecy hypothesis and a crowding

out of publications in favour of patents.

4 Discussion and Conclusion

This paper studies the effects of research collaborations, a knowledge transmission chan-

nel that does not necessarily involve commercialisation. As argued by many authors,

research collaborations, contract research, consultancy, and conferences are far more im-

portant channels of knowledge transfer than patents, licenses and spin-offs. They are,

however, more difficult to measure empirically and even more difficult to compare across

institutions and time. Here, we have focused on the effects of research collaborations using

homogeneous information on grants awarded by the EPSRC, the by far most important

funder of research in engineering sciences in the UK. By comparing individuals who are

involved in industry collaboration mediated through these grants with researchers who do

not receive funding or do not partner with industry, we are able to identify the effects of

collaboration on research productivity.

Our main results for this panel indicate that, on average, researchers benefit from

collaborating with industry. Researchers with no industry involvement are shown to pub-

lish less than those with a small degree of collaboration. Nevertheless, higher levels of

industry involvement negatively affect research productivity in terms of number of publi-

cations. Still, the publication rate of an academic with an average level of collaboration

is higher than that of an academic with no collaborative funding. But for higher levels

of collaboration, the predicted number of publications turns out to be lower. There are,

therefore, two countervailing effects: the presence of industry partners is associated with

a higher degree of academic research output but the intensity of industry collaboration

decreases academic productivity.

We show that the impact of excessive diversion from academic activity through indus-

try collaboration can be seriously underestimated when an inadequate estimation method
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is used. As documented in previous research (e.g. Arora et al. 1998, Agrawal and Hender-

son, 2002), past, present and future publications are correlated. Thus, including lags of

the dependent variable creates endogeneity and biases the estimates. Further, successful,

productive researchers are better placed to attract interest from industry. Industry col-

laboration and patents can be the consequence, and not just the cause, of high numbers

of publications. We therefore use a dynamic panel data estimation method in which the

lagged dependent variable and other endogenous variables are instrumented for.

Without controlling for the dynamic effects, both the existence and the intensity of

industry collaboration would appear to enhance the number of publications. But as col-

laboration and past publications are correlated, the positive effects of past publications

would be wrongly attributed to collaboration. When this dynamic effect of the publica-

tions is taken into account, the intensity of collaboration no longer enhances academic

productivity. Still, if one assumes that collaboration is exogenous, its effect is very small

and insignificant. This could be caused by a correlation between industry collaboration

and other unobserved time variant factors, such as accumulated ability or experience,

which also enhance academic productivity. Once we instrument the industry collabora-

tion, the negative effect of the intensity grows stronger and becomes significant.

To estimate the effect of patents it is again crucial to take into account both the

dynamic effect of publications and the endogeneity problem. In a standard fixed effects

regression, patents would have a positive and significant impact on the number of publi-

cations. This result would be consistent with the more recent evidence on patents (e.g.

Fabrizio and DiMinin, 2008, and Azoulay et al., 2009). This positive effect disappears

in the dynamic panel data models because the patents no longer capture parts of the

effect of past publications. If one considers patents exogenous to publications, the num-

ber of patents even has a negative and significant impact on the count of publications.

This significance is not confirmed once we control for endogeneity. Indeed, it is possible

that patents are positively correlated to an unobserved factor, such as consultancy ac-

tivity, which is also negatively correlated with publications. Correcting for endogeneity,

the patents do not predict publication rates, as already found in Agrawal and Henderson
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(2002) and Goldfarb et al. (2009).

Our findings suggest that encouraging universities to collaborate moderately with

industry is a beneficial policy. A small degree of industry collaboration not only facilitates

the transfer of basic knowledge and accelerates the exploitation of new inventions, but also

increases academic productivity. Collaboration, though, promotes applied research and

discourages basic research. Collaboration unambiguously increases the publications in

the most applied set of journals while it decreases those in the most basic set. Therefore,

collaboration might need to be discouraged if basic research output is the desired objective.

We use a large uniquely created longitudinal dataset containing the academic career

of the majority of academic engineers in the UK. We concentrate on the Engineering

sector because it has traditionally been associated with applied research and industry

collaboration and it contributes substantially to industrial R&D (Cohen et al. 2002). In

other less applied fields, collaboration might generate fewer ideas for further research and

therefore the impact of industry collaboration might be worse. But, the time actually

spent collaborating with the industry might also be lower.

Ours can only be a first step in the research of other channels of knowledge transfer.

We expect researchers with a high proportion of collaborative EPSRC grants to also have a

high proportion of contract research. But it is not clear whether our results would change if

the intensity of industry collaboration was measured as the proportion of contract research

with respect to total research funding. With more information on different channels

of knowledge transfer, we would be better able to make comparisons. Here we have

already shown that research collaborations have more impact on research productivity

than patents. Further, it might also be interesting to tackle interactions between different

knowledge transfer channels. We know very little on whether collaboration channels

complement or substitute each other. Consultancy, for example, might have a positive

effect on research if it is complemented by collaboration in research. Of course, this is

only a conjecture and a challenging task for future research.
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Figure 1: Average number of publications per faculty member.
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Figure 2: Average percentage degree of industry collaboration based on EPSRC funds.
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Russel Group Universities Number of ID
Number of 

Observations

Birmingham, University of 204 2467
Bristol University 87 988
Cambridge, University of 200 2433
Cardiff, University of 110 1310
Edinburgh, University of 99 1184
Glasgow, University of 109 1543
Imperial College London 294 3495
Kings College London 55 587
Leeds, University of 179 2060
Liverpool, University of 110 1401
Manchester, University of 242 1454
Newcastle, University of 155 1956
Nottingham, University of 176 2118
Oxford, University of 103 1271
Queens University, Belfast 107 1453
Sheffield, University of 185 2110
Southampton, University of 145 1734
University College London 137 1699
Warwick, University of 72 960

Other Universities

Aberdeen, University of 49 591
Aston University 64 897
Bangor University 32 328
Brunel University 87 988
City University, London 68 892
Dundee, University of 57 700
Durham, University of 49 528
Essex, University of 30 435
Exeter, University of 44 509
Hull, University of 41 533
Heriot Watt University 153 1838
Lancaster, University of 27 344
Leicester, University of 40 421
Loughborough, University of 247 3033
Queen Mary London 90 999
Reading, University of 51 656
Salford, University of 109 1362
Strathclyde, University of 201 2532
Swansea University 97 1299
UMIST (merged with Machester in 2004) 224 2804
York, University of 31 356

Table 1: List of Universities

* Researchers can belong to more than one university during their career. Therefore the numbers of id 
do not add up to 4066.



Comparison
Variable Mean Std.Dev. Min Max Mean Std.Dev. Min Max Mean Diff. (Non-Russel - Russel)

Dependent Variables

Number of publications 1.07 2.10 0 41 1.57 2.56 0 37 0.497 (0.021)***

Number of co-author weighted publications 0.41 0.76 0 11.58 0.59 0.92 0 12.27 0.171 (0.007)***

Number of Impact Factor weighted publications 0.89 2.64 0 69.59 1.52 3.85 0 73.96 0.624 (0.029)***

Number of citation weighted publications 9.42 33.01 0 1747 16.59 49.78 0 2445 7.175 (0.379)***

Number of applied technological publications (Level 1) 0.18 0.56 0 11 0.25 0.69 0 12 0.073 (0.006)***

Number of basic technological publications (Level 2) 0.41 1.07 0 17 0.62 1.37 0 24 0.203 (0.011)***

Number of applied scientific publications (Level 3) 0.22 0.95 0 22 0.34 1.23 0 26 0.118 (0.010)***

Number of basic scientific publications (Level 4) 0.06 0.41 0 17 0.12 0.59 0 15 0.062 (0.005)***

Explanatory Variables

EPSRC funds in £1000 60.1 163.9 0 7569 78.7 225.8 0 11400 18.591 (1.762)***

Fraction of EPSRC funds with industry collaboration 29.9% 38.7% 0.0% 100.0% 31.1% 38.3% 0.0% 100.0% 0.012 (0.004)***

Fraction of 5 year accumulated EPSRC funds with industry collaboration 23.4% 33.4% 0.0% 100.0% 24.6% 33.2% 0.0% 100.0% 0.012 (0.004)***

Number of patents 0.30 0.23 0 11 0.04 0.27 0 9 0.014 (0.002)***

The total number of observations for Russel Group is 42091 (3431 academics); for Non-Russel Group it is 28066 (2269 academics).

Standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%

Inactive Staff -or those having no publications and no EPSRC funds- are excluded

Table 2: Descriptive Statistics

Non-Russel Group Russel Group



(1) GLS (2) GMM (3) GMM (4) GMM
Fixed effects Instrumenting for 

publications and rank
Instrumenting for 

publications, rank and 
industry collaboration

Instrumenting for the 
full set               

(benchmark)

Constant 0.453*** 0.357*** 0.312*** 0.308***
[0.0153] [0.0412] [0.0476] [0.0453]

Lagged Dependent Variable
Ln (publications)t‐1 0.0918 0.0195 0.0419

[0.0900] [0.0798] [0.0709]
Ln (publications)t‐2 0.0510*** 0.0480*** 0.0495***

[0.0115] [0.0118] [0.0115]
Collaborative Research

Had some fundingt‐1 0.0309** 0.0170 0.174** 0.135**
[0.0126] [0.0208] [0.0701] [0.0640]

Had some funding with Industryt‐1 0.0412*** ‐0.00804 0.130* 0.108*
[0.0157] [0.0231] [0.0664] [0.0625]

Ln (fraction of acumulated funding with Industry)t‐1 0.00319 ‐0.0115 ‐0.301** ‐0.266**

[0.0350] [0.0492] [0.132] [0.126]
Patents Filed

# Patents t 0.0262** ‐0.0545 ‐0.105* 0.0516
[0.0120] [0.0676] [0.0608] [0.0470]

# Patents t‐1 0.00996 ‐0.160 ‐0.261** ‐0.0359
[0.0128] [0.140] [0.126] [0.0477]

# Patents t‐2 0.0237* ‐0.0857 ‐0.149 0.0394
[0.0137] [0.170] [0.158] [0.0549]

Academic Rank
Senior Lecturert‐1 0.0724*** 0.226*** 0.198*** 0.194***

[0.0154] [0.0489] [0.0479] [0.0456]
Readert‐1 0.149*** 0.321*** 0.296*** 0.316***

[0.0234] [0.0727] [0.0742] [0.0711]
Professort‐1 0.184*** 0.216*** 0.174** 0.140*

[0.0267] [0.0708] [0.0763] [0.0718]
Controlled by Years Yes Yes Yes Yes

Number of observations 34086 34086 34086 34086
Number of ids 4066 4066 4066 4066

R^2 0.020
Number of Instruments 198 297 347

AR(1) test z (p‐value) 0.0000 0.0000 0.0000
AR(2) test z (p‐value) 0.8853 0.3366 0.4706
Sargan  test p‐value 0.0616 0.1851 0.2754

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3: Regressions of the number of publications on industry collaboration



Russell Group Effect Non Russell Group Stars Effect Non Stars Seniors Effect Juniors

Constant 0.313*** 0.265*** 0.313***
[0.0444] [0.0721] [0.0468]

Lagged Dependent Variable
Ln (publications)t‐1 0.0204 0.0648 0.061

[0.0600] [0.0595] [0.0710]
Ln (publications)t‐2 0.0532*** 0.0544*** 0.0589***

[0.0116] [0.0117] [0.0119]
Collaborative Research

Had some fundingt‐1 0.129* 0.0243 0.404 ‐0.297 0.390*** ‐0.193**
[0.0733] [0.0791] [0.405] [0.419] [0.0910] [0.0757]

Had some funding with Industryt‐1 0.119* 0.00471 0.190** ‐0.087 0.163* ‐0.0176
[0.0718] [0.111] [0.0904] [0.108] [0.0951] [0.132]

Ln (fraction of acumulated funding with Industry)t‐1 ‐0.253* ‐0.063 ‐0.660*** 0.476** ‐0.729*** 0.637**
[0.145] [0.212] [0.215] [0.235] [0.194] [0.262]

Patents Filed
# Patents t ‐0.0534 0.0687 0.0592 ‐0.226* 0.0521 0.0384

[0.105] [0.111] [0.0381] [0.137] [0.0570] [0.101]
# Patents t‐1 ‐0.201* 0.161 0.024 ‐0.0967 ‐0.00913 ‐0.0112

[0.108] [0.110] [0.0342] [0.127] [0.0609] [0.0911]
# Patents t‐2 ‐0.0128 0.061 ‐0.0598* ‐0.0996 0.102 ‐0.023

[0.110] [0.117] [0.0307] [0.139] [0.0956] [0.118]
Academic Rank

Senior Lecturert‐1 0.198*** 0.171***
[0.0455] [0.0433]

Readert‐1 0.310*** 0.229***
[0.0703] [0.0683]

Professort‐1 0.160** 0.148**
[0.0702] [0.0676]

Controlled by Years Yes Yes Yes
Number of observations 34086 34086 34086

Number of ids 4066 4066 4066
Number of Instruments 501 500 347

AR(1) test z (p‐value) 0.0000 0.0000 0.0000
AR(2) test z (p‐value) 0.1886 0.4881 0.4620
Sargan  test p‐value 0.5517 0.3924 0.3169

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) GMM ‐ Interaction with Russell Group (2) GMM ‐ Interaction with Stars (3) GMM ‐ Interaction with Seniors

Table 4: Regressions of the number of publications on industry collaboration with interactions



Table 5: Regressions of the weighted number of publications

(1) GMM (2) GMM
publications weighted 

by number of 
coauthors

publications weighted 
by journal impact 

factor

Constant 0.200*** 0.174***
[0.0285] [0.0360]

Lagged Dependent Variable
Dependent Variablet‐1 0.00679 0.0838

[0.0727] [0.0727]

Dependent Variablet‐2 0.0550*** 0.0569***

[0.0114] [0.0145]
Collaborative Research

Had some fundingt‐1 0.0567 0.131**

[0.0393] [0.0593]

Had some funding with Industryt‐1 0.0489 0.103*

[0.0388] [0.0559]

Ln (fraction of acumulated funding with Industry)t‐1 ‐0.166** ‐0.115

[0.0774] [0.115]
Patents Filed

# Patents t 0.0161 0.00443

[0.0391] [0.0603]

# Patents t‐1 ‐0.032 ‐0.0238

[0.0409] [0.0537]

# Patents t‐2 0.029 0.066

[0.0376] [0.0566]
Academic Rank

Senior Lecturert‐1 0.0867*** 0.162***

[0.0263] [0.0388]

Readert‐1 0.191*** 0.256***

[0.0446] [0.0639]

Professort‐1 0.0266 0.248***

[0.0429] [0.0678]
Controlled by Years Yes Yes

Number of observations 34086 34086
Number of ids 4066 4066

Number of Instruments 348 366
AR(1) test z (p‐value) 0.0000 0.0000
AR(2) test z (p‐value) 0.1821 0.7342
Sargan  test p‐value 0.1273 0.2028

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1



(1) GMM (2) GMM (3) GMM (4) GMM

Applied technology Basic technology Applied science Basic science

Constant 0.0563 0.0608 0.0579 0.0712*
[0.0712] [0.0919] [0.0578] [0.0423]

Lagged Dependent Variable
Dependent Variablet‐1 0.0588*** 0.123*** 0.0873** 0.0601

[0.0215] [0.0234] [0.0339] [0.0436]
Dependent Variablet‐2 0.0014 0.0554*** 0.0691*** 0.0571**

[0.0178] [0.0175] [0.0250] [0.0286]
Collaborative Research

Had some fundingt‐1 0.0547 0.159** 0.0344 ‐0.0347
[0.0558] [0.0709] [0.0523] [0.0370]

Had some funding with Industryt‐1 0.115** 0.0279 0.0261 0.0151
[0.0502] [0.0634] [0.0454] [0.0286]

Ln (fraction of acumulated funding with Industry)t‐1 ‐0.151* ‐0.108 ‐0.132** ‐0.0983**

[0.0790] [0.0975] [0.0662] [0.0436]
Patents Filed

# Patents t 0.0671 ‐0.289** ‐0.0106 0.065
[0.0706] [0.124] [0.0895] [0.0539]

# Patents t‐1 0.00334 0.0329 ‐0.0284** ‐0.00239
[0.0101] [0.0270] [0.0130] [0.0134]

# Patents t‐2 ‐0.00332 0.00904 ‐0.0293 ‐0.000169
[0.0314] [0.0617] [0.0479] [0.0508]

Academic Rank
Senior Lecturert‐1 0.0528 0.136*** 0.0891*** 0.00728

[0.0374] [0.0477] [0.0295] [0.0200]
Readert‐1 0.00248 0.222** 0.0966* 0.0666*

[0.0692] [0.0952] [0.0552] [0.0363]
Professort‐1 ‐0.000987 0.134 0.0759 0.0415

[0.0880] [0.115] [0.0554] [0.0346]
Controlled by Years Yes Yes Yes Yes

Number of observations 14695 14695 14695 14695
Number of ids 3187 3187 3187 3187

Number of Instruments 104 104 104 104
AR(1) test z (p‐value) 0.0000 0.0000 0.0000 0.0000
AR(2) test z (p‐value) 0.7846 0.6441 0.7365 0.3960
Sargan  test p‐value 0.7576 0.5284 0.7824 0.2926

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Regressions of the number of publications in each category




