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Abstract

We present an exact test for whether two random variables that have known

bounds on their support are negatively correlated. The alternative hypothesis

is that they are not negatively correlated. No assumptions are made on the

underlying distributions. We show by example that the Spearman rank corre-

lation test as the competing exact test of correlation in nonparametric settings

rests on an additional assumption on the data generating process without which

it is not valid as a test for correlation.

We then show how to test for the signi�cance of the slope in a linear regres-

sion analysis that invovles a single independent variable and where outcomes

of the dependent variable belong to a known bounded set.

Keywords: Correlation test, exact hypothesis testing, distribution-free, non-

parametric, simple linear regression.

JEL classi�cation codes: C12, C14, C01

1 Introduction

We present a test for identifying whether two variables are negatively correlated based

on a �nite sample of matched pairs without imposing additional assumptions. Results

are proven for the given �nite sample. So this is exact inference, there is no use of

asymptotic theory. The method applies whenever all outcomes of each variable belong

to some known bounded set (such as a closed interval). This is a condition on the data,
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not an assumption imposed by the modeler. The alternative hypothesis is formulated

as the complement of the null hypothesis, thus there will be no indi¤erence zone.

The di¢ culty with testing for correlation is that one cannot build on tests for

independence as being uncorrelated is weaker than being independent. Permutation

tests are commonly used as exact tests for independence. A special representative,

the Spearman (1904) rank correlation test, is the standard test for correlation in non-

parametric settings. However this test for correlation, being a permutation test, relies

on a hidden assumption. It namely concludes that the data is positively correlated

whenever there is su¢ cient evidence that the two distributions are not independent.

Thus it rules out by assumption that the data is not uncorrelated but dependent. We

illustrate this feature in an example and do not make such assumptions when deriving

the validity of our test.

Independence and uncorrelatedness coincide when there are only two possible out-

comes as is the case for Bernoulli distributions. For Bernoulli distributions there are

exact tests for correlation. For instance, Tocher (1950) shows that a randomized ver-

sion of Fisher�s exact test, designed originally for comparing means, is in fact UMPU

for testing negative covariance. Note that this test belongs to the class of permuta-

tion tests. Our test uses the equivalence between independence and uncorrelatedness

in the case of binary outcomes. We �rst transform the problem into one of compar-

ing two Bernoulli distributions and then apply the solution of Tocher (1950). This

transformation is stochastic, creating a randomized test. An additional step is then

needed to eliminate the randomness and thus to create a nonrandomized exact test.

The random transformation of the general data into binary values utilizes the

given bounded sets that contain all possible outcomes. Whether or not bounds can

be assigned to the possible outcomes of the variables depends on the application at

hand. The larger are these bounds the weaker is the inference. We hasten to point out

that nontrivial tests of correlation do not exist without such bounds without making

further assumptions, extending an argument of Bahadur and Savage (1956) made for

testing the mean of a single sample. To complete the picture, note that permutation

tests as tests of independence do not require such bounds.

We then show how our test for correlation can be used to investigate the signif-

icance of the slope in a simple linear regression (so there is only one independent

variable). We consider the classic setting of a conditional test in which it is as if out-

comes of the independent variable are known before sampling. The dependent variable

has unknown distribution, the statistician only knows a bounded set that contains

any possible outcome. Data is generated by drawing the dependent outcomes inde-
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pendently conditional on the value of the independent variable which makes errors

pairwise independent. The only assumption by the modeler on the data generating

process is the linear structure. We make no restrictions on the distribution of the

errors such as homoscedasticity. So we search for a test whose validity is robust to

heteroscedasticity of unknown form within the limits imposed by the known bounds

on the possible outcomes of the dependent variable.

To use our test for correlation for this objective we �rst have to show that our test

is a valid conditional test for correlation, that is that it has level � conditional on the

observed values of one of the two random variables. Thereafter the application to the

simple regression is then straightforward as the covariance of the dependent and the

independent variable is proportional to the coe¢ cient of the slope.

Once again known bounds on the outcomes, here on those of the dependent vari-

able, allow for the existence of a nontrivial test. For a discussion of lack of inference

possibilities without assumptions, and hence without such bounds, in the context of

regressions or econometrics more generally see Dufour (2003).

More related literature is discussed in the main section. Note that other exact

tests known in the literature used to investigate correlation or slopes in a simple linear

regression rely on unveri�able distributional assumptions.

2 Test of Covariance

Consider two random variables Z1 and Z2 where Zi 2 [ai; bi] for some a priori known
ai; bi 2 R with ai < bi, i = 1; 2: We wish to test H0 : Cov (Z1; Z2) � 0 against

H1 : Cov (Z1; Z2) > 0 based on a sample of n observations (z1i; z2i) for i = 1; ::; n

independently drawn from Z = (Z1; Z2) : Later we also consider conditional tests

where inference is conditional on the observed values of Z2:

2.1 Importance of the Bound

Assume that the set of outcomes of Z1 is either unbounded or that it is bounded but

where the bounds are unknown. Then there is no nontrivial test for testing the null

hypothesis that Cov (Z1; Z2) � 0. To see this consider the following example where
we present the conditional probabilities of Z1jZ2=z2 :



4

z2nZ1 0 1 v

0 1� 1=m 0 1=m

1 0 1 0

with m; v > 1 but where the values of m and v are not known to the investigator.

Note that Cov (Z1; Z2) � 0 if and only if v � m. Yet if m is su¢ ciently large then

the event Y jX=0 = v occurs with arbitrary low probability and hence with arbitrarily
high probability the statistician will not observe outcome v and hence will not able

to learn whether or not v = m. Consequently, any test of Cov (Z1; Z2) � 0 rejects

the null hypothesis with probability at most � whenever yi 6= v for all i. This means
that the type II error of any level � test is at least 1�� as long as there are no limits
on how large v can be.

Note that this example is a simple extension of the point made by Bahadur and

Savage (1956), that the mean of a single sample cannot be tested if there are no

restrictions on the possible distributions.

2.2 Permutation tests

Permutation tests are often used to uncover correlation. The most prominent rep-

resentative is the Spearman (1904) rank correlation test. Permutation tests can be

used to test the null hypothesis that two underlying distributions are independent. To

complete this to a test for correlation one then for instance can consider as alternative

hypothesis that the correlation of these two distributions is strictly positive. So one

rules out by assumption that it cannot be that the two distributions are dependent

but uncorrelated, as is the case in our above example when v = m. Note that this

particular assumption can hardly be deduced from objective characteristics of the

data. We do not wish to consider inference that is based on assumptions and not on

the data and its objective characteristics. Hence we consider as alternative hypothesis

the complement of the null hypothesis. In this sense the Spearman rank correlation

test is not a valid test to uncover correlation. To complete the formal argument we

provide a counter example. Assume � = 0:05: Consider the performance of the Spear-

man rank correlation test when facing data generated as in the above example and

when # fz2i = 1g = n=2 and n even.1 Then this test recommends to reject the null
hypothesis for � = 0:05 when n � 8 whenever v is not observed. Clearly this does not
contradict its validity as a test of independence as Z1 and Z2 are not independent in

1#A denotes the cardinality of the �nite set A:
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this example. However, repeating our point above, it also rejects the null hypothesis

with probability (1� 1=m)n=2 when v = m and hence when Cov (Z1; Z2) = 0: Thus

its type I error for testing Cov (Z1; Z2) � 0 conditional on (z2i)i is above 0:05 when
m is su¢ ciently large given n; for instance when m � 4 and 8 � n � 20: Its invalidity
as an unconditional test follows similarly provided n is not too small.

2.3 An Exact Unconditional Test

We present an exact unconditional test. First assume that Z1 and Z2 are Bernoulli

distributed, so Z1; Z2 2 f0; 1g : Our hypotheses are then equivalent to testing H0 :
E (Z1jZ2 = 1) � E (Z1jZ2 = 0) against H1 : E (Z1jZ2 = 1) > E (Z1jZ2 = 0) based on
an independent sample that consists of # fi : z2i = kg independent draws of Z1jZ2=k
for k = 0; 1. To see this, note that

Cov (Z1; Z2) = Pr (Z1 = Z2 = 1)� Pr (Z1 = 1)Pr (Z2 = 1)
= [Pr (Z1 = 1jZ2 = 1)� Pr (Z1 = 1jZ2 = 0)]V arZ2:

So if V arZ2 > 0 then the equivalence is immediate. If V arZ2 = 0 then there are not

observations of both Z1jZ2=0 and Z1jZ2=1 and hence any exact test will recommend
no rejection which again shows the equivalence.

So we can use a test for comparing the means E (Z1jZ2 = 1) and E (Z1jZ2 = 0)
to construct a one-sided test for whether covariance is negative. One such test would

be the randomized version of the Fisher exact test due to Tocher (1950). Note that

we have simply repeated what Tocher (1950) already pointed out, namely that the

randomized version of Fisher exact test is a UMPU test for our hypotheses involving

covariance.

We now use the above to construct an exact test for the more general case where

the two random variables Z1 and Z2 are bounded. Assume that Zj 2 [aj; bj] for

aj < bj and j = 1; 2: Consider the two Bernoulli random variables Z 001 and Z
00
2 such

that

Pr (Z 001 = Z
00
2 = 1) =

EZ1 � a1
b1 � a1

� EZ2 � a2
b2 � a2

Pr (Z 001 = 1; Z
00
2 = 0) =

EZ1 � a1
b1 � a1

� b2 � EZ2
b2 � a2

Pr (Z 001 = 0; Z
00
2 = 1) =

b1 � EZ1
b1 � a1

� EZ2 � a2
b2 � a2

:

These Bernoulli random variables emerge under the following algorithm. First renor-

malize Zj with a linear transformation such that outcomes are in [0; 1] : Then trans-
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form any outcome zj realized of Zj with probability zj into into 1 and with probability

1�zj into 0 where the random transformation of zj occurs independently of the trans-
formation of z3�j; j = 1; 2:

Note that EZ 00j = (EZj � ai) = (bi � ai) : More importantly,

E (Z 001Z
00
2 ) = E (Z1Z2) = [(b1 � a1) (b2 � a2)]

and hence

Cov (Z 001 ; Z
00
2 ) = Cov (Z1; Z2) = [(b1 � a1) (b2 � a2)] :

Thus, the randomized version of Fisher exact test can be used for testing H0 :

Cov (Z1; Z2) � 0 against H1 : Cov (Z1; Z2) > 0: Replace any observation zji of Zj in
the sample with 1 with probability (zji � aj) = (bj � aj) and with 0 with probability
(bj � zji) = (bj � aj) : Then apply the UMPU test to the transformed sample. This

generates a randomized test that has size �:Moreover it is unbiased. In fact, since the

underlying test is UMPU for the Bernoulli case this means that this randomized test

for the nonparametric setting minimizes the type II error among all unbiased tests

whenever the alternative hypothesis only depends on the expectations and on the

covariance. Formally, this is when H1 : fZ : (EZ1; EZ2) 2 W1; Cov (Z1; Z2) 2 W2g
for some W1 � [a1; b1]� [a2; b2] and W2 � R+n f0g :
Now we sketch how to construct a nonrandomized test (which will no longer be

unbiased). The procedure is as follows. Fix some threshold � 2 (0; 1) that may not
depend on the data gathered on Y but only on the independent variables. Calculate

the expected probability of rejection when using the UMPU test with level ��: Reject

the null hypothesis if this expected probability is above �: This nonrandomized test

has level �: Moreover its type II error can be bounded above. The reasoning follows

the analysis of Schlag (2007) who presents a test for comparing means. Schlag (2007)

also present several methods for selecting �; to prevent choice of � based on the data

we set the default equal to � = 0:2 (see also discussion below).

2.4 An Exact Conditional Test

We now show that the above randomized and nonrandomized unconditional tests are

in fact also valid exact conditional tests, so when inference in terms of the covariance

is conditional on the observed values of Z2: This conditional approach is valuable

when the values of Z2 are known before the sampling takes place such as when they

are determined by the investigator. It will be enough to consider the randomized test

as the construction of the nonrandomized test from the randomized test is a general
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valid procedure that does not depend on the fact that we are here testing for negative

correlation.

Assume that (z2i)i is known (and nonrandom) before running the test but that

Z1jZ2=z2 remains unknown. The sample (z1i)i is generated by drawing z1i indepen-
dently drawn from Z1jZ2=z2i. Let Z 02 be the random variable where Pr (Z 02 = z

0
2) =

# fi : z2i = z02g =n: Then

Cov (Z1; Z
0
2) =

1

n

nX
i=1

E (Z1jZ2 = z2i) z2i �
 
1

n

nX
i=1

E (Z1jZ2 = z2i)
! 

1

n

nX
i=1

z2i

!
:

We wish to test H0 : Cov (Z1; Z 02) � 0 against H1 : Cov (Z1; Z 02) > 0: Of course,

such a test will also be valid for H0 : Cov (Z1; Z2) � 0 against H1 : Cov (Z1; Z2) > 0
where Z2 is the random variable from which (z2i)i have been drawn, not necessarily

independently of each other.

In contrast to the above setting, (z2i)i is no longer a random sample from Z 02: We

claim that the above unconditional randomized test is an exact test for this conditional

inference. Analogously to above we �nd thatCov (Z 001 ; Z
00
2 ) = Cov (Z1; Z

0
2) = [(b1 � a1) (b2 � a2)]

where Z 002 is derived from Z 02 in the same way Z
00
2 was derived from Z2 above. Given

the construction of our test we only have to consider the properties of the test

when Z1 is Bernoulli distributed, (z2i)i 2 f0; 1gn and when we are testing H0 :
Pr (Z1 = 1jZ 02 = 1) � Pr (Z1 = 1jZ 02 = 0) againstH1 : Pr (Z1 = 1jZ 02 = 1) > Pr (Z1 = 1jZ 02 = 0) :
The validity of using our unconditional test as conditional test is possibly lost as we

no longer have iid observations of (Z1; Z 02) : In fact, generally Pr (Z1 = 1jZ2 = z2i) will
depend will depend on i: Consider however the special case where Cov (Z1; Z 02) = 0:

Then either V arZ 02 = 0 in which case the null hypothesis is not rejected or V arZ
0
2 > 0

and Pr (Z1 = 1jZ 02 = 1) = Pr (Z1 = 1jZ 02 = 0). In the latter case this means that
Pr (Z1 = 1jZ2 = z2i) is independent if i: So if Cov (Z1; Z 02) = 0 then our unconditional
test has type I error � regardless of how (z2i)i was created. Now consider the case

where Cov (Z1; Z 02) < 0: This means that Pr (Z1 = 1jZ 02 = 1) < Pr (Z1 = 1jZ 02 = 0) :
Note that our above test is based on the UMPU test of Tocher (1950) which has the

property that the null hypothesis is more likely to be rejected if Pr (Z1 = 1jZ 02 = 1) is
increased. This means that the type I error of our test is attained for the case where

Pr (Z1 = 1jZ 02 = 1) = Pr (Z1 = 1jZ 02 = 0) but here we argued above that the type I
error is equal to �: This means that the unconditional test has size � conditional on

the realized values of Z2 and hence it is also a valid exact conditional test. Moreover

our arguments show that it again is best (in terms of minimizing type II error) among

all unbiased tests provided the alternative hypothesis can be formulated in terms of
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EZj and Cov (Z1; Z2) only.

2.5 Discussion

2.5.1 Comparing Means

We presented our exact test for correlation as an extension of a test for the binary val-

ued case to distributions with support contained known bounded sets. Note however

that, after the random transformation into a problem involving Bernoulli distribu-

tions, it is really only about comparing two success probabilities Pr (Z 001 = 1jZ 002 = 1)
and Pr (Z 001 = 1jZ 002 = 0) : There are other tests besides the UMPU test for this objec-
tive. For instance, Schlag (2007) provides evidence that the Z test (see Suissa and

Shuster, 1984) performs better when the sample is almost balanced while the UMPU

test does better when the sample is very unbalanced. Balancedness refers to there

being approximately equally many realizations of Z 002 = 1 and of Z
00
2 = 0: Thus a more

sophisticated test of correlation would involve choosing di¤erent tests for comparing

means conditional on the realization of Z 002 :

Given this connection to tests for comparing success probabilities one can in fact

choose the same values of the threshold � as used when comparing success probabilities

using the UMPU test. This is why we suggest � = 0:2 as default as this was the typical

parameter discovered when comparing means (Schlag, 2007). A more sophisticated

test would use a threshold � that depends on the sample size n and possibly on the

sampled values of Z2 (such as through its empirical variance). Di¤erent methods for

selecting � are presented in Schlag (2007). Note that for proof of the exactness of this

test � may not depend on the transformed outcomes Z 002 :

A connection to tests for comparing means also emerges when we show that known

bounds on outcomes are necessary to ensure nontrivial tests of correlation. Here we

reiterate arguments by Bahadur and Savage (1956) originally formulated for testing

the mean of a single sample but easily extended to comparing two means.

2.5.2 Variations

Analogously one can construct a conditional test for H0 : Cov (Z1; Z2) � 0 against

H1 : Cov (Z1; Z2) < 0: Together with the above one can then create equi-tailed

conditional tests of zero covariance, so where H0 : Cov (Z1; Z2) = 0 against H1 :

Cov (Z1; Z2) 6= 0.
Similarly one may be interested in tests that refer to correlation coe¢ cient � (Z1; Z2) =
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Cov (Z1; Z2) =
p
V arZ1 � V arZ2 with the convention that � = 0 when V arZ1 �V arZ2 =

0: Note that V arZ1 � V arZ2 > 0 then � (Z1; Z2) � 0 if and only if Cov (Z1; Z2) � 0:
Moreover, V arZ1 � V arZ2 = 0 implies Cov (Z1; Z2) = 0: Hence our above conditional
test for covariance can be used as conditional test for H0 : � (Z1; Z2) � 0 against

H1 : � (Z1; Z2) > 0.

3 Simple Linear Regression

We now use our above test to construct an exact test of the signi�cance of the slope

in a simple linear regression.

Consider the following standard simple linear regression model that consists of

a single independent variable X and a dependent variable Y . We depart from the

classic framework by considering a dependent variable that generates outcomes that

belong to a known compact set. Let (xi)
n
i=1 be the outcomes of X that are known

to the investigator, so we will be making inference conditional on the values of X:

Let Y be a random variable that generates outcomes in [a; b] for known values a

and b with a < b where E (Y jX = xi) = �0 + �1xi where �0; �1 2 R are unknown.
Inference is based on a sample (yi)

n
i=1 of outcomes realized by Y conditional on xi

where speci�cally yi is drawn from Y jX=xi independently of the other draws for each
i = 1; ::; n. We wish to test H0 : �1 � 0 against H1 : �1 > 0:

3.1 Exact Approaches

We �rst review some other approaches to this problem to then conclude that there is

no existing exact approach that does not rely on additional assumptions on the data

when the dependent variable has bounded support.

3.1.1 Classic Approach

In the classic exact approach to linear regression one assumes that errors are normally

distributed. This is not applicable (in its exact formulation) when data has the

property that all possible outcomes of the dependent variable belong to some compact

set. This is because errors cannot be normally distributed as the normal distribution

has unbounded support. In addition, the classic approach is also only exact when all

errors have the same variance (homoscedasticity). This assumption is hard to verify

from the data and typically does not follow directly from properties of the underlying

data generating process. Note that we do not assume homoscedasticity.
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The typical regression analysis does not rely on the �nite sample exact approach

but instead assumes that the sample is su¢ ciently large, relying on the fact that

the p values of the exact approach are approximately correct provided the sample

is su¢ ciently large. The problem with using this methodology (also referred to as

asymptotic theory) here is that there is no upper bound on how large the sample

has to be. This is because the upper bound depends on the underlying data gener-

ating process which itself is unknown. The approximation is not uniform. In fact it

turns out that this approach of relying on the sample being su¢ ciently large can be

arbitrarily imprecise. For instance, consider the case where there are only two possi-

ble outcomes of the independent variable of a simple regression. Then the standard

tests of signi�cance are based on the two sample t test. For this test it is known

(see arguments of Lehmann and Loh, 1990) that without homoscedasticity there is

no upper bound on the sample size that makes the p values approximately correct

independently of the underlying data generating process. In fact, the size of the test

is known to be 1:

One way out of this dilemma, while retaining mathematically correct statements,

is to add additional assumptions on the data generating process such as imposing

bounds on higher moments. One could then explicitly derive the precision of the p

values derived under normality as functions of the imposed bounds, however this is

not done in practice.

3.1.2 Other Exact Approaches in the Literature

There are some alternative exact approaches, however these involve imposing addi-

tional assumptions. Daniels (1954) assumes that the distribution of errors does not

depend on dependent variable and has median 1=2: Sievers (1978) considers a simple

linear regression where the distribution of errors does not depend on independent

variable.

3.2 An Exact test for Signi�cance of the Slope

We wish to test H0 : �1 � 0 against H1 : �1 > 0: The claim is that this can be

done exact at level � by evaluating our above test for negative correlation to the data

(xi; yi)
n
i=1 :

To verify this claim consider the random variablesX 0 and Y 0 such that Pr (X 0 = �) =

# fi : xi = �g =n and Pr (Y 0 = �) = # fi : yi = �g =n: These variables arise when
choosing equally likely one of the n observations i and then setting X 0 = xi and
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Y 0 = yi: Let a1 = mini fxig and b1 = maxi fxig. Then X 0 2 [a1; b1] and Y 0 2 [a; b] :
The sample can be interpreted as an independent sample of Y 0jX0=xi conditional

on (xi)i that have been realized by X
0: Moreover, Cov (X 0; Y 0) = �1V ar (X

0). We

have thus established the necessary conditions to apply our above test to investigate

whether Cov (X 0; Y 0) � 0: Note that this will also be a test of whether �1 � 0 as

f(X 0; Y 0) : �1 � 0g � f(X 0; Y 0) : Cov (X 0; Y 0)g.
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