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1 Introduction

The appropriate response of a central bank�s interest rate policy to banking crises is

the subject of a continuing and important debate. A standard view is that monetary

policy should play a role only if a �nancial disruption directly a¤ects in�ation or the real

economy; that is, monetary policy should not be used to alleviate �nancial distress per

se. Additionally, several studies on interlinkages between monetary policy and �nancial-

stability policy recommend the complete separation of the two, citing evidence of higher

and more volatile in�ation rates in countries where the central bank is in charge of banking

stability.1

Figure 1: The Taylor Rule and the fed funds rate

This view of monetary policy is challenged by observations that, during a banking

crisis, interbank interest rates often appear to be a key instrument used by central banks

1See Goodhart and Shoenmaker (1995) and Di Giorgio and Di Noia (1999).
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for limiting threats to the banking system and interbank markets. During the recent

crisis, which began in August 2007, interest rate setting in both the U.S. and the E.U.

appeared to be geared heavily toward alleviating stress in the banking system and in the

interbank market in particular. Figure 1 shows that the Federal Reserve sharply cut the

fed funds target rate well below the rate prescribed by the Taylor Rule (as measured by the

current output gap and headline CPI in�ation), which is a primary benchmark for interest

rate policy based on concerns of output and in�ation. Interest rate policy has been used

similarly in previous �nancial disruptions, as Goodfriend (2002) indicates: �Consider the

fact that the Fed cut interest rates sharply in response to two of the most serious �nancial

crises in recent years: the October 1987 stock market break and the turmoil following

the Russian default in 1998.�The practice of reducing interbank rates during �nancial

turmoil also challenges the long-debated view originated by Bagehot (1873) that central

banks should provide liquidity to banks at high-penalty interest rates (see Martin 2009,

for example).

We develop a model of the interbank market and show that the central bank�s interest

rate policy can directly improve liquidity conditions in the interbank lending market

during a �nancial crisis. Consistent with central bank practice, the optimal policy in our

model consists of reducing the interbank rate during a crisis. This view implies that the

conventionally supported separation between prudential regulation and monetary policy

should be abandoned.

Intuition for our results can be gained by understanding the role of the interbank

market. The main purpose of this market is to redistribute the �xed amount of reserves

that is held within the banking system. In our model, banks may face uncertainty regard-

ing their need for liquid assets, which we associate with reserves. The interbank market

allows banks faced with distributional shocks to redistribute liquid assets among them-
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selves. The interest rate will therefore play a key role in amplifying or reducing the losses

of banks enduring liquidity shocks.

Our model is well suited to think about the tremendous uncertainty and disparity

in liquidity needs among banks during the crisis. Many banks were subject to explicit

and implicit guarantees to provide liquidity funding for asset-backed commercial paper

(ABCP) conduits, structured investment vehicles (SIVs), and other credit lines. These

banks had potential liquidity risks of needing to pay billions of dollars on a same-day

notice. European banks were especially in need of dollar funds. Many of those banks had

very large funding needs for dollar asset-backed securities, and they had little access to

U.S. domestic dollar deposits. In contrast, other banks received large in�ows of funds from

�nancial investors who were �eeing AAA-rated securities, �nancial commercial paper, and

money market funds in a �ight to liquidity. Many U.S. banks also had access to domestic

retail and commercial dollar deposits.

A key theoretical innovation of our model captures the variation of liquidity needs

that was observed among banks during the crisis. We introduce two di¤erent states of

the world regarding the uncertainty of the distribution of liquidity required by banks.

We associate a state of high uncertainty with a crisis and a state of low uncertainty

with normal times. We also permit the interbank market rate to be state dependent.

According to our model, the central bank should lower the interbank interest rate during

the crisis state to improve the redistribution of liquidity among banks; we also predict

that interbank lending increases as banks redistribute liquidity. Despite widespread claims

that interbank markets froze, the volume of fed funds lending actually increased during

the period that the Federal Reserve cut the fed funds rate, as shown in Figure 1.

A novel result of our model is that there are multiple Pareto-ranked equilibria asso-

ciated with di¤erent pairs of interbank market rates for normal and crisis times. The
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multiplicity of equilibria arises because the demand for and supply of funds in the inter-

bank market are inelastic. This inelasticity is a key feature of our model and corresponds

to the fundamentally inelastic nature of banks�short-term liquidity needs. We show that

the role for the central bank is to determine a unique equilibrium interbank rate and to

select the equilibrium that produces the optimal allocation.

Figure 1 shows the fed funds target rate, which is the announced rate that the Federal

Reserve uses as its instrument for interest rate policy. The �gure also shows the e¤ective

fed funds rate, which is the daily average of interest rates on uncollateralized overnight

loans among banks. The �gure illustrates that as the Federal Reserve lowered its target

rate during the �nancial turmoil, the e¤ective rate was roughly centered around the target

most of the time. Despite brief periods when the e¤ective rate deviated from the target,

the Federal Reserve was generally able to determine the average overnight fed funds rate.

We do not study counterparty risk, which is important for examining credit spreads in

longer term interbank lending. However, credit risk plays a small role relative to liquidity

risk in the overnight market, which is the primary market for banks to handle their short

term liquidity needs.

The interbank interest rate plays two roles in our model. From an ex-ante perspective,

the expected rate is the return from holding liquidity, and it in�uences the banks�portfolio

decision for holding short-term liquid assets and long-term illiquid assets. Ex post, the rate

determines the terms at which banks can borrow liquid assets in response to distributional

shocks, so that a trade-o¤ is present between the two roles. The optimal allocation can be

achieved only with state-contingent interbank rates. The rate must be low in crisis times

to achieve the e¢ cient redistribution of liquid assets. Yet in order to make low interest

rates during a crisis compatible with the higher return on banks�long-term assets, during

normal times interbank interest rates must be higher than the return on long-term assets
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to induce banks to hold optimal liquidity ex ante. As the conventional separation of

prudential regulation and monetary policy implies that interest rates are set independently

of prudential considerations, our result is a strong criticism of such separation.

Our framework yields several additional results. First, when aggregate liquidity shocks

are considered, we show that the central bank should accommodate the shocks by injecting

or withdrawing liquidity. Interest rates and liquidity injections should be used to address

two di¤erent types of liquidity shocks: Interest rate management allows for coping with

e¢ cient liquidity reallocation in the interbank market, while injections of liquidity allow

for tackling aggregate liquidity shocks. Hence, when interbank markets are modeled as

part of an optimal institutional arrangement, the central bank should respond to di¤erent

types of shocks with di¤erent tools. Second, we show that the failure to implement

a contingent interest rate policy, which will occur if the separation between monetary

policy and prudential regulation prevails, will undermine �nancial stability by increasing

the probability of bank runs.

In their seminal study, Bhattacharya and Gale (1987) examine banks with idiosyn-

cratic liquidity shocks from a mechanism design perspective. In their model, when liquid-

ity shocks are not observable, the interbank market is not e¢ cient and the second-best

allocation involves setting a limit on the size of individual loan contracts among banks.

More recent work by Freixas and Holthausen (2005), Freixas and Jorge (2008), and Hei-

der, Hoerova, and Holthausen (2008) examines interbank markets that are not part of an

optimal arrangement. Allen, Carletti, and Gale (2008) make an advancement by develop-

ing a framework in which interbank markets are e¢ cient. The central bank responds to

idiosyncratic and aggregate shocks by buying and selling particular quantities of assets,

using its balance sheet to achieve the e¢ cient allocation.
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Building on Bhattacharya and Gale (1987) and Allen, Carletti, and Gale (2008), the

modeling innovation in our paper is to introduce a richer state space of multiple distrib-

utional liquidity-shock states. We show that this additional state-space dimension allows

the central bank to address liquidity shocks with an additional tool, namely a dynamic

interest rate policy, which is the standard instrument of central bank policy in practice.

We show that with state-contingent interbank rates, the central bank can achieve the

full-information e¢ cient allocation.

Goodfriend and King (1988) argue that central bank policy should respond to aggre-

gate, but not idiosyncratic, liquidity shocks, because interbank markets are e¢ cient and

can distribute liquidity optimally. We show how central bank policy needs to respond to

shocks in the distribution of liquidity in order for interbank markets to operate e¢ ciently.

The results of our paper also relate to those of Diamond and Rajan (2008), who show that

interbank rates should be low during a crisis and high in normal times. Diamond and Ra-

jan (2008) examine the limits of central bank in�uence over bank interest rates based on a

Ricardian equivalence argument, whereas we �nd a new mechanism by which the central

bank can adjust interest rates based on the inelasticity of banks�short-term supply of and

demand for liquidity. Our paper also relates to Bolton, Santos and Scheinkman (2008),

who consider the trade-o¤ faced by �nancial intermediaries between holding liquidity ver-

sus acquiring liquidity supplied by a market after shocks occur. E¢ ciency depends on the

timing of central bank intervention in Bolton et al. (2008), whereas in our paper the level

of interest rates is the focus. Acharya and Yorulmazer (2008) consider interbank markets

with imperfect competition. Gorton and Huang (2006) study interbank liquidity histori-

cally provided by banking coalitions through clearinghouses. Ashcraft, McAndrews, and

Skeie (2008) examine a model of the interbank market with credit and participation fric-

tions that can explain their empirical �ndings of reserves hoarding by banks and extreme
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interbank rate volatility.

Section 2 presents the model of distributional shocks. Section 3 gives the market

results and central bank interest rate policy. Section 4 analyzes aggregate shocks, and

Section 5 examines �nancial fragility. Available liquidity is endogenized in Section 6.

Section 7 concludes.

2 Model

The model has three dates, denoted by t = 0; 1; 2, and a continuum of competitive banks,

each with a unit continuum of consumers. Ex-ante identical consumers are endowed with

one unit of good at date 0 and learn their private type at date 1. With a probability � 2

(0; 1); a consumer is �impatient�and needs to consume at date 1. With complementary

probability 1� �; a consumer is �patient�and needs to consume at date 2. Throughout

the paper, we disregard sunspot-triggered bank runs. At date 0, consumers deposit their

unit good in their bank for a deposit contract that pays an amount when withdrawn at

either date 1 or 2.

There are two possible technologies. The short-term liquid technology, also called

liquid assets, allows for storing goods at date 0 or date 1 for a return of one in the following

period. The long-term investment technology, also called long-term assets, allows for

investing goods at date 0 for a return of r > 1 at date 2: Investment is illiquid and cannot

be liquidated at date 1.2

At date 1, each bank faces stochastic withdrawals that are bank-speci�c. There is no

aggregate withdrawal risk for the banking system as a whole; on average, each bank has

� withdrawals at date 1.3 We model distributional liquidity shocks by allowing the size

2We extend the model to allow for liquidation at date 1 in Section 6.
3We study a model with distributional and aggregate shocks in Section 4.
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of the bank-speci�c liquidity shocks to vary with the distributional liquidity-shock state

variable i 2 I � f0; 1g, where

i = f
1 with prob � (�crisis state�)

0 with prob 1� � (�normal-times state�),

and � 2 [0; 1] is the probability of the crisis liquidity-shock state i = 1: We assume that

state i is observable but not veri�able, which means that contracts cannot be written

contingent on state i: Banks are ex-ante identical at date 0. At date 1, each bank learns

its private type j 2 J � fh; lg; where

j = f
h with prob 1

2
(�high type�)

l with prob 1
2
(�low type�).

In aggregate, half of banks are type h and half are type l. Banks of type j 2 J have a

fraction of impatient depositors at date 1 equal to

�ij = f
�+ i" for j = h (�high withdrawals�)

�� i" for j = l (�low withdrawals�),
(1)

where i 2 I and " > 0 is the size of the bank-speci�c withdrawal shock. We assume that

0 < �il � �ih < 1 for i 2 I.

To summarize, under the liquidity-shock state i = 1; a crisis occurs and there is a

large distributional shift in liquidity among banks. Banks of type j = h have relatively

high liquidity withdrawals at date 1 and banks of type j = l have relatively low liquidity

withdrawals. Under the liquidity-shock state i = 0; there is no crisis, and the size of the

distributional shift in liquidity is zero. All banks have constant withdrawals of � at date

1. Under either state, at date 2 the remaining depositors withdraw. Banks of type j 2 J

have a fraction of depositor withdrawals equal to 1� �ij, i 2 I.

A depositor receives consumption of either c1 for withdrawal at date 1 or c
ij
2 ; an equal

share of the remaining goods at the depositor�s bank j, for withdrawal at date 2. Depositor
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utility is

U = f
u(c1) with prob � (�impatient depositors�)

u(cij2 ) with prob 1� � (�patient depositors�),

where u is increasing and concave. We de�ne c02 � c
0j
2 for all j 2 J , since consumption

for impatient depositors of each bank type is equal during normal-times state i = 0: A

depositor�s expected utility is

E[U ] = �u(c1) + (1� �)(1� �)u(c02) + �
�
1

2
(1� �1h)u(c1h2 ) +

1

2
(1� �1l)u(c1l2 )

�
: (2)

Banks maximize pro�ts. Because of competition, they must maximize the expected

utility of their depositors. Banks invest � 2 [0; 1] in long-term assets and store 1 � � in

liquid assets. At date 1, depositors and banks learn their private type. Bank j borrows

f ij 2 R liquid assets on the interbank market (the notation f represents the federal

funds market and f ij < 0 represents a loan made in the interbank market) and impatient

depositors withdraw c1. At date 2, bank j repays the amount f ij�i for its interbank loan

and the bank�s remaining depositors withdraw, where �i is the interbank interest rate. If

�0 6= �1; the interest rate is state contingent, whereas if �0 = �1; the interest rate is not

state contingent. Since banks are able to store liquid assets for a return of one between

dates 1 and 2, banks never lend for a return of less than one, so �i � 1 for all i 2 I. A

timeline is shown in Figure 2.
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Date 0 Date 1 Date 2

Consumers deposit
endowment

Bank investsα,
stores 1­α

Liquidity­shock state i=0,1

Depositors learn type,
impatient withdrawc1

Bank learns type j=h,l,
starts period with 1­α goods,
pays depositors λijc1,
borrows f ij, stores βij

ιi is the interbank interest
rate in state i

Patient depositors
withdrawc2

ij

Bank starts withαr+βij goods,
repays interbank loan f ijιi,
pays depositors (1­ λij)c2

ij

Figure 2: Timeline

The bank budget constraints for bank j for dates 1 and 2 are

�ijc1 = 1� �� �ij + f ij for i 2 I; j 2 J (3)

(1� �ij)cij2 = �r + �ij � f ij�i for i 2 I; j 2 J ; (4)

respectively, where �ij 2 [0; 1��] is the amount of liquid assets that banks of type j store

between dates 1 and 2. We assume that the coe¢ cient of relative risk aversion for u(c) is

greater than one, which implies that banks provide risk-decreasing liquidity insurance. We

also assume that banks lend liquid assets when indi¤erent between lending and storing.

We only consider parameters such that there are no bank defaults in equilibrium.4 As

such, we assume that incentive compatibility holds:

cij2 � c1 for all i 2 I; j 2 J ;

which rules out bank runs based on very large bank liquidity shocks.

The bank optimizes over �; c1; fcij2 ; �ij; f ijgi2I; j2J to maximize its depositors�ex-

pected utility. From the date 1 budget constraint (3), we can solve for the quantity of

4Bank defaults and insolvencies that cause bank runs are considered in Section 5.
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interbank borrowing by bank j as

f ij(�; c1; �
ij) = �ijc1 � (1� �) + �ij for i 2 I; j 2 J : (5)

Substituting this expression for f ij into the date 2 budget constraint (4) and rearranging

gives consumption by patient depositors as

cij2 (�; c1; �
ij) =

�r + �ij � [�ijc1 � (1� �) + �ij]�i

(1� �ij)
: (6)

The bank�s optimization can be written as

max
�2[0;1];c1;f�ijgi2I;j2J�0

E[U ] (7)

s.t. �ij � 1� � for i 2 I; j 2 J (8)

cij2 (�; c1; �
ij) = �r+�ij�[�ijc1�(1��)+�ij ]�i

(1��ij) for i 2 I; j 2 J , (9)

where constraint (8) gives the maximum amount of liquid assets that can be stored be-

tween dates 1 and 2.

The clearing condition for the interbank market is

f ih = �f il for i 2 I: (10)

An equilibrium consists of contingent interbank market interest rates and an allocation

such that banks maximize pro�ts, consumers make their withdrawal decisions to maximize

their expected utility, and the interbank market clears.

3 Results and interest rate policy

In this section, we derive the optimal allocation and characterize equilibrium allocations.

We start by showing that the optimal allocation is independent of the liquidity-shock
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state i 2 I and bank types j 2 J . Next, we derive the Euler and no-arbitrage conditions.

After that, we study the special cases in which a �crisis never occurs�when � = 0 and

in which a �crisis always occurs�when � = 1. This allows us to build intuition for the

general case where � 2 [0; 1]:

3.1 First best allocation

To �nd the full-information �rst best allocation, we consider a planner who can observe

consumer types. The planner can ignore the liquidity-shock state i, bank type j; and bank

liquidity withdrawal shocks �ij: The planner maximizes the expected utility of depositors

subject to feasibility constraints:

max
�2[0;1];c1;��0

�u(c1) +
�
1� �

�
u(c2)

s.t. �c1 � 1� �� ��
1� �

�
c2 � �r + 1� �+ � � �c1

� � 1� �:

The constraints are the physical quantities of goods available for consumption at date 1

and 2, and available storage between dates 1 and 2, respectively. The �rst-order conditions

and binding constraints give the well-known �rst best allocations, denoted with asterisks,

as implicitly de�ned by

u0(c�1) = ru0(c�2) (11)

�c�1 = 1� �� (12)�
1� �

�
c�2 = ��r (13)

�� = 0: (14)
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Equation (11) shows that the ratio of marginal utilities between dates 1 and 2 is equal to

the marginal return on investment r:

3.2 First-order conditions

Next, we consider the optimization problem of a bank of type j given by equations (7) -

(9) in order to �nd the Euler and no-arbitrage pricing equations.

Lemma 1. First-order conditions with respect to c1 and � are, respectively,

u0(c1) = E[
�ij

�
�iu0(cij2 )] (15)

E[�iu0(cij2 )] = rE[u0(cij2 )]; (16)

Banks do not store liquid assets from date 1 to date 2:

�ij = 0 for all i 2 I; j 2 J : (17)

Proof. The Lagrange multiplier for constraint (8) is �ij� : The �rst-order condition with

respect to �ij is

1
2
�u0(c1j2 )(1� �1) � �1j� for j 2 J (= if �1j > 0) (18)

(1� �)u0(c02)(1� �0) � �0j� for j 2 J (= if �0j > 0): (19)

We �rst will show that �ij� = 0 for all i 2 I; j 2 J . Suppose not, that �
bibj
� > 0 for somebi 2 I, bj 2 J . This implies that equation (18) or (19) corresponding to bi;bj does not bind

(since �i � 1); which implies that �bibj = 0: Hence, equation (8) does not bind (since clearly
� < 1; otherwise c1 = 0); thus, �

bibj
� = 0 by complementary slackness, a contradiction.

Taking the �rst order conditions of equations (7) - (9) with respect to c1 and �; and

substituting for �ij� = 0 for i 2 I; j 2 J gives equations (15) and (16), respectively.
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Next, suppose �ij > 0 for some i 2 I, j 2 J : Substituting from the interbank

borrowing demand equation (5) into the market clearing condition (10) and simplifying

shows that total bank storage at date 1 in state � = 0 and � = 1 must be equal:

�0h + �0l = 2(1� �� �c1)

�1h + �1l = 2(1� �� �c1):

Since �ij � 0; �0j > 0 for some j 2 J if and only if �1j
0
> 0 for some j0 2 J . Conditions

(18) and (19) imply that �0 = �1 = 1; which implies by condition (16) that r = 1; a

contradiction. Hence, �ij = 0 for all i 2 I, j 2 J . �

Equation (15) is the Euler equation and determines the investment level � given �i for

i 2 I: Equation (16), which corresponds to the �rst-order condition with respect to �; is

the no-arbitrage pricing condition for the rate �i, which states that the expected marginal

utility-weighted returns on storage and investment must be equal at date t = 0. The

return on investment is r: The return on storage is the rate �i at which liquid assets can

be lent at date 1, since banks can store liquid assets at date 0, lend them at date 1, and

will receive �i at date 2. At the interest rates �1 and �0; banks are indi¤erent to holding

liquid assets and long-term assets at date 0 according to the no-arbitrage condition.

The interbank market-clearing condition (10), together with the interbank market

demand equation (5), determines cj1(�) and f
ij(�) as functions of �:

c1(�) =
1� �
�

(20)

f ij(�) = (1� �)(�
ij

�
� 1) for i 2 I; j 2 J (21)

= f
i"c1 for i 2 I, j = h

�i"c1 for i 2 I, j = l:

Since no liquid assets are stored between dates 1 and 2 for state i = 0; 1, patient depos-

itors�consumption c02 in state i = 0 equals the average of patient depositors�consumption
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cij2 in state i = 1 and equals total investment returns �r divided by the mass of impatient

depositors 1� �:

c02(�) =
(1� �1h)c1h2 + (1� �1l)c1l2

1� �
=

�r

1� �
: (22)

The choice of � is given in the next subsections, where the full equilibrium results are

derived.

3.3 Single liquidity-shock state: � 2 f0; 1g

We start by �nding solutions to the special cases of � 2 f0; 1g in which there is certainty

about the single state of the world i at date 1. These are particularly interesting bench-

marks. In the case of � = 0; the state i = 0 is always realized. This case corresponds

to the standard framework of Diamond and Dybvig (1983) and can be interpreted as a

crisis never occurring. In the case of � = 1; the state i = 1 is always realized. This

corresponds to the case studied by Bhattacharya and Gale (1987) and can be interpreted

as a crisis always occurring. These boundary cases will then help to solve the general

model � 2 [0; 1].

With only a single possible state of the world at date 1, it is easy to show that the

interbank rate must equal the return on long-term assets. First-order conditions (15) and

(16) can be written more explicitly as

u0(c1) = �[�
1h

2�
u0(c1h2 ) +

�1l

2�
u0(c1l2 )]�

1 + (1� �)u0(c02)�0 (23)

�[1
2
u0(c1h2 ) +

1
2
u0(c1l2 )]�

1 + (1� �)u0(c02)�0

= �[1
2
u0(c1h2 ) +

1
2
u0(c1l2 )]r + (1� �)u0(c02)r: (24)
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As is intuitive, for � = 0; the value of �1 is indeterminate, and for � = 1; the value of �0 is

indeterminate. In either case, there is an equilibrium with a unique allocation c1; c
ij
2 ; and

�. The indeterminate variable is of no consequence for the allocation. The allocation is

determined by the two �rst-order equations, in the two unknowns � and �0 (for � = 0) or

�1 (for � = 1). Equation (24) shows that the interbank lending rate equals the return on

long-term assets: �0 = r (for � = 0) or �1 = r (for � = 1):With a single state of the world,

the interbank lending rate must equal the return on long-term assets.

For � = 0; the crisis state never occurs. There is no need for banks to borrow on the

interbank market. The banks�budget constraints imply that in equilibrium no interbank

lending occurs, f 0j = 0 for j 2 J . However, the interbank lending rate �0 still plays the

role of clearing markets: It is the lending rate at which each bank�s excess demand is

zero, which requires that the returns on liquidity and investment are equal. The result is

�0 = r; which is an important market price that ensures banks hold optimal liquidity. Our

result� that the banks�portfolio decision is a¤ected by a market price at which there is

no trading� is similar to the e¤ect of prices with no trading in equilibrium in standard

portfolio theory and asset pricing with a representative agent. The Euler equation (23)

is equivalent to equation (11) for the planner. Banks choose the optimal �� and provide

the �rst best allocation c�1 and c
�
2:

Proposition 1. For � = 0; the equilibrium is characterized by �0 = r and has a unique

�rst best allocation c�1; c
�
2, �

�:

Proof. For � = 0; equation (24) implies �0 = r: Equation (23) simpli�es to u0(c1) =

u0(c02)r; and the bank�s budget constraints bind and simplify to c1 =
1��
�
; c02 =

�r
1�� : These

results are equivalent to the planner�s results in equations (11) through (13), implying

there is a unique equilibrium, where c1 = c�1; c
0
2 = c

�
2; and � = �

�: �
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To interpret these results, note that banks provide liquidity at date 1 to impatient

depositors by paying c�1 > 1: This can be accomplished only by paying c�2 < r on with-

drawals to patient depositors at date 2. The key for the bank being able to provide

liquidity insurance to impatient depositors is that the bank can pay an implicit date 1

to date 2 intertemporal return on deposits of only c�2
c�1
; which is less than the interbank

market intertemporal rate �0; since c�2
c�1
< �0 = r: This contract is optimal because the

ratio of intertemporal marginal utility equals the marginal return on long-term assets,

u0(c�2)
u0(c�1)

= r:

We now turn to the symmetric case of � = 1; where the crisis state i = 1 always

occurs. We show that, in this case, the optimal allocation cannot be obtained, even

though interbank lending provides redistribution of liquidity. Nevertheless, because the

interbank rate is high, �1 = r, patient depositors face ine¢ cient consumption risk, and

the liquidity provided to impatient depositors is reduced. The banks�borrowing demand

from equation (21) shows that f 1h = "c1 and f 1l = �"c1.

First, consider the outcome at date 1 holding �xed � = ��. With �1 = r; patient

depositors do not have optimal consumption since c1h2 (�
�) < c�2 < c

1l
2 (�

�): A bank of type

h has to borrow at date 1 at the rate �1 = r; higher than the optimal rate of c
�
2

c�1
.

Second, consider the determination of �: Banks must compensate patient depositors

for the risk they face. They can do so by increasing their expected consumption. Hence,

in equilibrium, investment is � > �� and impatient depositors see a decease of their

consumption. The results are illustrated in Figure 3. The di¤erence of consumption c02 for

equilibrium � compared to c�2(�
�); c1h2 (�

�); and c1l2 (�) for a �xed � = �
� is demonstrated

by the arrows in Figure 3. The result is c1 < c�1; c
0
2 > c

�
2; c

1h
2 > c1h2 (�

�); and c1l2 > c
1l
2 (�

�):

For any " > 0 shock, banks do not provide the optimal allocation.
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Figure 3: First best allocation and equilibrium allocation for � = 1

Proposition 2. For � = 1; there exists an equilibrium characterized by �1 = r that has a

unique suboptimal allocation

c1 < c�1

c1h2 < c�2 < c
1l
2

� > ��:

Proof. For � = 1; equation (24) implies �1 = r: By equation (6), c1l2 > c1h2 : From the

bank�s budget constraints and market clearing,

1� �� "
2(1� �)

c1h2 +
1� �+ "
2(1� �)

c1l2 =
�r

1� �
= c02;

which implies 1
2
c1h2 +

1
2
c1l2 < c

0
2, since c

1l
2 > c

1h
2 : Because u (�) is concave, 12u

0(c1h2 )+
1
2
u0(c1l2 ) >

u0(c02): Further,
�1h

2�
u0(c1h2 )+

�1l

2�
u0(c1l2 ) > u

0(c02) since �
1h > �1l, �

1h

2�
+ �1l

2�
= 1 and c1h2 < c1l2 :

Thus,

u0(c1(�
�)) = ru0(c02(�

�))

< r[
�1h

2�
u0(c1h2 (�

�)) +
�1l

2�
u0(c1l2 (�

�))]:

Since u0(c1(�)) is increasing in � and u0(c
1j
2 (�)) for j 2 J is decreasing in �; the Euler

equation implies that, in equilibrium, � > ��: Hence, c1 = 1��
�
< c�1; c

1l
2 > c

0
2 =

�r
1�� > c

�
2

and c1h2 < c�2: �
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Notice that, for � = 1, the di¤erence between our approach and that of Bhattacharya

and Gale (1987) is that in our framework the market cannot impose any restriction on the

size of the trades. This forces the interbank market to equal r and creates an ine¢ ciency.

The mechanism design approach of Bhattacharya and Gale (1987) yields a second best

allocation that achieves higher welfare, but in that case the market cannot be anonymous

anymore, as the size of the trade has to be observed and enforced.

3.4 Multiple liquidity-shock states: � 2 [0; 1]

We now apply our results for the special cases � 2 f0; 1g to the general case � 2 [0; 1]: It

is convenient to de�ne an ex-post equilibrium, which refers to the interest rate that clears

the interbank market in state i at date 1, conditional on a given � and c1: For distinction,

we use the term ex-ante equilibrium to refer to our equilibrium concept used above from

the perspective of date 0. We �rst show that the supply and demand in the interbank

market are inelastic, which creates an indeterminacy of the ex-post equilibrium interest

rate. Next, we show that there is a real indeterminacy of the ex-ante equilibrium. There

is a continuum of Pareto-ranked ex-ante equilibria with di¤erent values for c1; c
ij
2 ; and �.

We �rst show the indeterminacy of the ex-post equilibrium interest rate. In state

i = 1; the amount of liquid assets that bank type l supplies in the interbank market is

�f 1l(�1) = f
"c1 for �1 � 1

0 for �1 < 1:
(25)

The liquid bank has an inelastic supply of liquid assets above a rate of one because its

alternative to lending is storage, which gives a return of one. Bank type h has a demand

19



for liquid assets of

f 1h(�1) = f

0 for �1 > 1 + (1��)(c02�c1)
"c1

"c1 for �1 2 [1; 1 + (1��)(c02�c1)
"c1

]

1 for �1 < 1:

(26)

The maximum rate �1 at which the illiquid bank type j can borrow, such that the incentive

constraint c1h2 � c1 holds and patient depositors do not withdraw at date 1, is 1 +

(1��)(c02�c1)
"c1

. The illiquid bank has an inelastic demand for liquid assets below the rate �1

because its alternative to borrowing is to default on withdrawals to impatient depositors

at date 1. The banks�supply and demand curves for date 1 are illustrated in Figure 4.

In state i = 0; each bank has an inelastic net demand for liquid assets of

f 0j(�0) = f
0 for �0 � 1

1 for �0 < 1:
(27)

At a rate of �0 > 1; banks do not have any liquid assets they can lend in the market.

All such assets are needed to cover the withdrawals of impatient depositors. At a rate of

�0 < 1, a bank could store any amount of liquid assets borrowed for a return of one.

εc1

1+(1­λ)(c2
0­c1)/εc1

f1h(ι1)

ι¹

1
­ f 1l(ι1)

goods

Figure 4: Interbank market in state i = 1
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Lemma 2. The ex-post equilibrium rate �i in state i; for i 2 I, is indeterminate:

�0 � 1

�1 2 [1; 1 +
(1� �)(c02 � c1)

"c1
]:

Proof. Substituting for f 0j(�0) from (27), for j 2 J , into market-clearing condition (10)

and solving gives the condition for the equilibrium rate �0: Substituting for f 1l(�1) and

f 1h(�l) from (25) and (26) into market-clearing condition (10) and solving gives the cor-

responding condition for the equilibrium rate �1: �

This result highlights a key feature of our model: The supply and demand of short-term

liquidity are fundamentally inelastic. By the nature of short-term �nancing, distributional

liquidity shocks imply that liquidity held in excess of immediate needs is of low fundamen-

tal value to the bank that holds it, while demand for liquidity for immediate needs is of

high fundamental value to the bank that requires it to prevent default. The interest rate

�i determines how gains from trade are shared ex-post among banks. Low rates bene�t

illiquid banks and their claimants, and decrease impatient depositors�consumption risk,

which increases ex-ante expected utility for all depositors.

Next, we show that there exists a continuum of Pareto-ranked ex-ante equilibria.

Finding an equilibrium amounts to solving the two �rst-order conditions, equations (15)

and (16), in three unknowns, �; �1; and �0: This is a key di¤erence with respect to the

benchmark cases of � = 0; 1: For each of these cases, there is only one state that occurs

with positive probability, and the corresponding state interest rate is the only ex-post

equilibrium rate that is relevant. Hence, there are two relevant variables, � and �i; where

i is the relevant state, that are uniquely determined by the two �rst-order conditions.

In the general two-states model, a bank faces a distribution of probabilities over two

interest rates. A continuum of pairs (�1; �0) supports an ex-ante equilibrium. This result
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is novel in showing that, when there are two distributional liquidity states i at date 1,

there exists a continuum of ex-ante equilibria.5 Allen and Gale (2004) also show that

a continuum of interbank rates can support an ex-post sunspot equilibrium. However,

because they consider a model with a single state, the only rate that supports an ex-ante

equilibrium is r, similar to our benchmark case of � = 1.

If the interbank rate is not state contingent, �1 = �0 = r is the unique equilibrium,

as is clear from equation (24). The allocation resembles a weighted average of the cases

� 2 f0; 1g and is suboptimal, showing an important drawback of the separation between

prudential regulation and monetary policy. In the case where �1 = �0 = r; equation (23)

implies that �(�), c02(�); c
1h
2 (�); and c

1l
2 (�) are implicit functions of �. The cases of � = 0

and � = 1 provide bounds for the general case of � 2 [0; 1]: Equilibrium consumption

c1(�) and c
ij
2 (�) for i 2 I; j 2 J ; written as functions of �, are displayed in Figure 5. This

�gure shows that c1(�) is decreasing in � while c
ij
2 (�) is increasing in �:

cij2 (0) � cij2 (�) � c
ij
2 (1) for � 2 [0; 1]; i 2 I; j 2 J

c1(1) � c1(�) � c1(0) for � 2 [0; 1]:

In addition,

c02(� = 0) = c�2 for j 2 J

c1(� = 0) = c�1

c1j2 (� = 0) = c1j2 (� = �
�) for j 2 J :

With interbank rates equal to r in all states, patient depositors face too much risk. To

compensate them for this risk, their expected consumption must be increased to the

detriment of impatient depositors.
5The results from this section generalize in a straightforward way to the case of N states, as shown

in the Appendix.
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Figure 5: Equilibrium allocation for � 2 [0; 1]

Finally, we show that there exists a �rst best ex-ante equilibrium with state contingent

interest rates for � < 1: The interest rate must equal the optimal return on bank deposits

during a crisis:

�1 = �1
� � c�2

c�1
< r: (28)

To show this, �rst we substitute for �1; �ij; c1; and �
ij from equations (28), (1), (20), and

(17) into equation (6) and simplify, which for i = 1 and j = h; l gives

c1h2 = c1l2 =
�r

1� �
: (29)

This shows that, with �1 equal to the optimal intertemporal return on deposits between

dates 1 and 2, there is optimal risk-sharing of the goods that are available at date 2. This

implies that the interbank market rate has to be low for patient depositors to face no

risk. Substituting for �1; c1j2 ; and c
0
2 from equations (28), (29), and (22), respectively, into

equation (24) and rearranging gives the interest rate in state i = 0:

�0 = r +
�(r � c02

c1
)

1� � ; (30)

and further substituting for these variables into equation (23) and rearranging gives

u0(c1) = r
0u0(c02): This is the planner�s condition and implies � = �

�; c1 = c
�
1; and c

0
2 = c

�
2;

a �rst best allocation.

23



Substituting these equilibrium values into equation (30) and simplifying shows that

�0 = �0
� � r +

�(r � c�2
c�1
)

1� � > r: (31)

The market rate �0 must be greater than r during the no-shock state, in order for the

expected rate to equal r; such that banks are indi¤erent to holding liquid assets and

investing at date 0. Equation (16) implies, then, that the expected market rate is E[�i] = r:

Figure 6 illustrates the di¤erence between the �rst best equilibrium (with �1
�
; �0

�
) and

the suboptimal equilibrium (with �1 = �0 = r): Arrows indicate the change in consumption

between the suboptimal and the �rst best equilibria.

c2
0j(1)c2

0j(0)c1(1) c1(0) c2
1l(0) c2

1l(1)c2
1h(1)c2

1h(0)
ct

ij(ρ)

u(ct
ij) c2

1h(ρ)
c2

0j(ρ)

c1(ρ)

c2
1l(ρ)

Figure 6: Di¤erence between equilibrium allocation and �rst best allocation for � 2 [0; 1]

Proposition 3. For � 2 (0; 1); there exists a continuum of ex-ante equilibria with di¤er-

ent Pareto-ranked allocations. In particular, there exists a suboptimal ex-ante equilibrium

with

�1 = �0 = r

� > ��

c1 < c�1 < c
�
2 < c

0
2

c1h2 < c�2 < c
1l
2 ;
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corresponding to a noncontingent monetary policy and a �rst best ex-ante equilibrium

with

�1 =
c�2
c�1
< r

�0 = �0
�
> r

� = ��

c1 = c�1

cij2 = c�2 for i 2 I; j 2 J :

3.5 Central bank interest rate policy

The result of multiple Pareto-ranked equilibria and a need for a state-contingent interest

rate in our model suggest a role for an institution that can select the best equilibrium.

Since equilibria can be distinguished by the interest rate in the interbank market, a

central bank is the natural candidate for this role. A central bank can select the optimal

equilibrium and intervene by targeting the optimal market interest rate. We think of the

interest rate �i at which banks lend in the interbank market as the unsecured interest rate

that many central banks target for monetary policy. In the U.S., the Federal Reserve

targets the overnight interest rate, also known as the federal funds rate.

We extend the model by adding a central bank that can o¤er to borrow an amount

� > 0 below �i� and lend an amount � > 0 above �i� on the interbank market in order

to target the interbank rate equal to �i�. The central bank�s objective is to maximize the

depositor�s expected utility equation (2), subject to the bank�s optimization equations (7)

through (9), by submitting the following demand and supply functions, respectively, for
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the interbank market:

f iD(�i) = f
0 for �i � �i�; i 2 I

� for �i < �i� i 2 I
(32)

f iS(�i) = f
�� for �i > �i�; i 2 I

0 for �i � �i�; i 2 I;
(33)

for any � > 0: The goods-clearing condition for the interbank market (10) is replaced by

f ih(�i) + f iD(�i) = �[f il(�i) + f iS(�i)] for i 2 I. (34)

Substituting for the supply and demand functions, the market-clearing condition (34) can

be written as

i"c1 + 1�i<�i�� = i"c1 + 1�i>�i�� for i 2 I;

which, for any � > 0; holds for the unique state i ex-post equilibrium rate �i = �i�, for i 2

I. The ex-post equilibrium rate in state i = 1 is shown in Figure 7. The �gure illustrates

how the central bank shifts the market supply and demand curves such that there is a

unique equilibrium at �1�: At �i�; the equilibrium quantity that clears the market according

to condition (34) is i"c1: The quantity �; with which the central bank intervenes out of

equilibrium, is irrelevant. The state-conditional equilibrium rate is uniquely determined

as �i� and the ex-ante equilibrium is uniquely determined as (��; �0�, �1�), for any � > 0.
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Figure 7: Interbank market in state i = 1 with optimal central

bank interest rate policy

Proposition 4. Under optimal central bank interest rate policy, the central bank sets

�1 = �1� < r and �0 = �0� > r: There exists a unique ex-ante equilibrium, which has a �rst

best allocation ��; c�1; c
�
2:

This proposition provides the main policy result of our model. Several things are

worth noting. First, the central bank should respond to pure distributional liquidity

shocks, i.e., involving no aggregate-withdrawal liquidity shocks, by lowering the interbank

rate. Second, the central bank must keep the interbank rate su¢ ciently high in normal

times to provide banks with incentives to invest enough in liquid assets. Third, the policy

rule should be announced in advance so that banks can anticipate the central bank�s

state-contingent actions.

All of our results hold in a version of our model where bank deposit contracts are

expressed in nominal terms and �at money is borrowed and lent at nominal rates in

the interbank market, along the lines of Skeie (2008) and Martin (2006). In the nominal

version of the model, the central bank targets the real interbank rate by o¤ering to borrow
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and lend at a nominal rate in �at central bank reserves rather than goods (see Appendix

B in Freixas, Martin, and Skeie (2009)). This type of policy resembles more closely the

standard tools used by central banks.

3.6 Discussion and evidence

A key feature of our model is the inelasticity of banks�supply and demand for liquidity,

which leads to the multiplicity of market clearing interbank rates absent central bank

intervention. There are several pieces of evidence suggesting that in practice, banks may

have inelastic supply and demand for reserves, and interbank rates may be indeterminate.

Ashcraft, McAndrews and Skeie (2008) give empirical evidence of the inelasticity of

supply and demand for bank reserves. They also show theoretical support to explain the

inelasticity of supply and demand for bank reserves during the crisis before the interest-

on-reserves regime was implemented on October 9, 2008. In the absence of bank reserve

requirements, the marginal return on bank reserves held overnight must equal either zero

or the shadow cost of borrowing reserves from the discount window. The reason is that

if a bank has a positive supply of reserves (i.e. a long position), the overnight return

on marginal reserves held in reserve accounts at the Federal Reserve is zero. If instead

the bank has a negative supply of reserves (i.e. a short position), then the bank has an

overdraft with the Federal Reserve. The bank must cover this overdraft by borrowing

at the discount window at a cost of the discount rate plus any potential stigma cost of

accessing the discount window. Many times throughout the crisis, reserve requirements

were not binding, which would imply that banks e¤ectively had inelastic supply and

demand for reserves.

Figure 8 shows the daily intraday high-low range of interest rates at which fed funds

lending occurred during the crisis. The e¤ective fed funds rate was typically close to
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the target, which shows that the Federal Reserve could generally determine the average

daily rate with the daily open market operations (o¤ering to borrow or lend reserves) that

the Federal Reserve scheduled each morning. However, the fed funds market trades all

throughout the day. During the afternoon when the Federal Reserve was not intervening

in the market, the fed funds rate often traded over the course of a few hours at extremely

di¤erent rates in a range of several hundred basis points from nearly zero to above the

discount rate. This evidence is consistent with banks�having very inelastic supply and

demand for short term liquidity.
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Figure 8: Fed funds rate and intraday range

Further evidence that the interbank market can clear at any of a range of interest rates

chosen by the central bank without requiring actual liquidity intervention is suggested by

the appearance of �open mouth operations.�This term refers to the broadly recognized

ability of many central banks to adjust short-term market rates by announcing their

intended rate target, without any trading or lending by the central bank in equilibrium.

Guthrie and Wright (2000) describe monetary policy implementation in New Zealand as

working through open mouth operations. Open mouth operations have also been used to
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describe how the Federal Reserve changes the level of reserves in the banking system only

very slightly to e¤ect interest rate changes after the target change has been announced.

Often, the fed funds rate changes in anticipation of the announcement of a change in the

target rate in advance of any intervention by the Federal Reserve. In our model, zero

trading is required by the central bank in equilibrium, and the amount � of borrowing

and lending o¤ered by the central bank approaches zero in the limit.

Other examples of highly inelastic bank supply and demand for reserves comes from

countries with low aggregate bank reserves and wide interest rate corridors (or channels).

These corridors are methods of monetary policy implementation that have been used in

Canada, New Zealand, the ECB, the UK, and other countries. A corridor consists of

standing facilities at which banks can lend or borrow reserves at the central bank on a

daily basis at the corridor deposit or lending rates, respectively. Whitesell (2006) shows

that with a very small amount of reserves in the banking system, banks have very inelastic

supply and demand for reserves in the interbank market for reasons similar to the analysis

of the fed funds market by Ashcraft, McAndrews and Skeie (2008) as described above.

In our model, the central bank supply and demand curves resemble a corridor system of

zero width.

In Section 6 below, we examine the robustness of a bank�s inelastic demand when a

bank has options for liquidation of its assets outside of borrowing on the interbank market.

The possibility of liquidation of investment may restrict the set of feasible real interbank

rates and may preclude the central bank from selecting the �rst best equilibrium with

interest rate policy. We show that interbank market rates that are larger than the return

on liquidation are not feasible. However, even with outside liquidity options, the general

principle of the model holds. Inelastic supply and demand for liquidity within a range of

interest rates implies that there can be some indeterminacy of market clearing interest
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rates, and the central bank can implement the constrained e¢ cient rates among them.

4 Aggregate shocks and central bank liquidity injec-

tions

The standard view on aggregate liquidity shocks is that they should be dealt with through

open market operations, as advocated by Goodfriend and King (1988), for example. Since

our framework provides micro-foundations for the interbank market, and this has conse-

quences for the overall allocation, it is worth revisiting the issue of aggregate liquidity

shocks. Despite the apparent complexity, we verify that the central bank should use a

liquidity injection policy in the face of aggregate shocks. Thus, the central bank should

respond to di¤erent kinds of shocks with di¤erent policy instruments: liquidity injection

to deal with aggregate liquidity shocks and interest rate policy for distributional liquidity

shocks.

We extend the model to allow the probability of a depositor being impatient� and,

hence, the aggregate fraction of impatient depositors in the economy� to be stochastic.

This probability is denoted by �a; where a 2 A � fH;Lg is the aggregate-shock state,

a = f
H with prob �

L with prob 1� �;

and � 2 [0; 1]: The state a = H denotes a high aggregate-withdrawal liquidity shock,

in which a high fraction of depositors are impatient, and state a = L denotes a low

aggregate-withdrawal liquidity shock, in which a low fraction of depositors are impatient.

We assume that �H � �L and ��H + (1� �)�L = �: Hence, � remains the unconditional

fraction of impatient depositors. The aggregate-withdrawal state random variable a is
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independent of the distributional-state variable i:6 We assume that the central bank can

tax the endowment of agents at date 0, store these goods, and return the taxes at date 1

or at date 2. We denote these transfers, which can be conditional on the aggregate shock,

� 0, � 1a, � 2a, a 2 A, respectively.

The depositor�s expected utility (2) is replaced by

E[U ] =
�
��H + (1� �)�L

�
u(c1)

+(1� �)
�
�(1� �H)u(c02H) + (1� �)(1� �L)u(c02L)

�
+�
�

2

�
(1� �1hH )u(c1h2H) + (1� �1lH)u(c1l2H)

�
+�
1� �
2

�
(1� �1hL )u(c1h2L) + (1� �1lL )u(c1l2L)

�
;

and the bank�s budget constraints (3) and (4) are replaced by

�ija c1 = 1� � 0 � �� �ija + f ija + � 1a; for a 2 A; i 2 I; j 2 J

(1� �ija )c
ij
a2 = �r + �ija � f ija �ia + � 2a; for a 2 A; i 2 I; j 2 J ;

respectively, where the subscript a in variables cij2a; �
ij
a ; �

ij
a ; and �

i
a denotes that these

variables are conditional on a 2 A in addition to i 2 I and j 2 J .

The planner�s optimization with aggregate shocks is identical to the problem described

in Allen, Carletti, and Gale (2008). They show that there exists a unique solution to this

problem. Intuitively, the �rst best with aggregate shocks is constructed as follows. The

planner stores just enough goods to provide consumption to all impatient agents in the

state with many impatient agents, a = H. This implicitly de�nes c�1. In this state, patient

6We refer to a as the �aggregate state variable�(or alternatively as the aggregate-shock state variable)

in order to highlight that this state variable corresponds to the amount of the aggregate withdrawal of

liquidity from the banking system. While the state variable i does correspond to an aggregate state of

the world (crisis or normal-times), we refer to i as the distributional-state variable (or liquidity-shock

state variable).
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agents consume only goods invested in the long-term technology. In the state with few

impatient agents, a = L; the planner stores (�H��L)c�1 goods in excess of what is needed

for impatient agents. These goods are stored between dates 1 and 2 and given to patient

agents.

Proposition 5. If � < 1, the central bank can implement the �rst best allocation.

Proof. We prove this proposition by constructing the allocation the central bank imple-

ments. The �rst-order conditions take the same form as in the case without aggregate

risk and become

u0(c1) = E[
�ija

��H + (1� �)�L
�iau

0(cija2)]; for a 2 A; i 2 I; j 2 J (35)

E[�iau
0(cija2)] = rE[u0(cija2)]; for a 2 A; i 2 I; j 2 J : (36)

Assume that the amount of stored goods that the central bank taxes is � 0 = (�H �

�L)c1. Consider the economy with large distributional shocks, i = 1: If there are many

impatient depositors, the banks do not have enough stored goods, on aggregate, for these

depositors. However, the central bank can return the taxes at date 1, setting � 1H =

(�H � �L)c1 (and � 2H = 0), so that banks have just enough stored goods on aggregate.

The interbank market interest rate is indeterminate, since the supply and demand of

stored goods are inelastic, so the central bank can choose the rate to be �1 = c�2
c�1
. If there

are few impatient depositors, the central bank sets � 1L = 0 (with � 2L = (�H ��L)c1) and

�1 =
c�2
c�1
.

Now consider the economy in the case where i = 0. If there are many impatient

depositors, the banks will not have enough stored goods for their them. However, as

in the previous case, the central bank can return the taxes at date 1, setting � 1H =

(�H ��L)c1 (and � 2H = 0), so that banks have enough stored goods. There is no activity

in the interbank market, and the interbank market rate is indeterminate. If there are few

33



impatient depositors and the central bank sets � 1L = 0 (with � 2L = (�H � �L)c1), then

banks have just enough goods for their impatient depositors at date 1. Again, there is no

activity in the interbank market, and the interbank market rate is indeterminate. Hence,

the interbank market rate can be chosen to make sure that equation (36) holds.

With interbank market rates set in that way, banks will choose the optimal investment.

Indeed, since equation (36) holds, banks are willing to invest in both storage and the long-

term technology. In states where there is a zero distributional shock, there is no interbank

market lending, so any deviation from the optimal investment carries a cost. In states

where there is a positive distributional shock, the rate on the interbank market is such

that the expected utility of a bank�s depositors cannot be higher than under the �rst

best allocation, so there is no bene�t from deviating from the optimal investment in these

states. �

The interest rate policy of the central bank is e¤ective only if the inelastic parts of

the supply and demand curves overlap. With aggregate liquidity shocks, this need not

happen, which creates ine¢ ciencies. Proposition 5 illustrates that the role of the liquidity

injection policy is to modify the amount of liquid assets in the market so that the interest

rate policy can be e¤ective. Hence, the central bank uses di¤erent tools to deal with

aggregate and distributional shocks. When an aggregate shock occurs, the central bank

needs to inject liquidity in the form of stored goods. In contrast, when an distributional

shock occurs, the central bank needs to lower interest rates. Both actions are necessary

if both shocks occur simultaneously.

During the recent crisis, certain central banks have used tools that have been charac-

terized as similar to �scal policy. This is consistent with our model in that the central

bank policy of taxing and redistributing goods in the case of aggregate shocks resembles

�scal policy. The model does not imply that the central bank should be the preferred
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institution to implement this kind of policy. For example, we could assume that di¤erent

institutions are in charge of 1) setting the interbank rate, and 2) choosing � 0, � 1a, � 2a,

a 2 A. Regardless of the choice of institutions, our model suggests that implementing

a good allocation may require using tools that resemble �scal policy in conjunction with

more standard central bank tools.

In the U.S., the Federal Reserve has conducted several operations during the crisis that

are broader than traditional monetary policy tools to provide aggregate liquidity. Under

the Agency Mortgage-Backed Securities (MBS) Purchase Program, the Federal Reserve

is purchasing $1.25 trillion of agency MBS. The Federal Reserve �nanced large asset pur-

chases involving Bear Stearns and AIG. The Federal Reserve has extended funding for

various securities, markets and institutions beyond the traditional scope of Open Market

Operations and the Discount Window through the Commercial Paper Funding Facility

(CPFF), the Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Fa-

cility (AMLF), and the Money Market Investor Funding Facility (MMIFF), and the Term

Asset-Backed Securities Loan Facility (TALF). The CPFF targeted funding for issuers

of commercial paper, while the AMLF and MMIFF targeted funding for money market

funds to help against redemption requests, and the TALF provided funding to support

the issuance of asset-backed securities targeted towards credit needs for households and

small businesses. In these transactions, the Federal Reserve has taken potential interest

rate and credit risk, which theoretically could lead to losses that are borne by taxpayers

through reduced revenues delivered to the Treasury by the Federal Reserve.
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5 Contingent interest rate setting and �nancial sta-

bility

Our model allows us to shed light on the role of the interbank market in coping with

distributional liquidity shocks and the impact of interest rates on the ex-post redistrib-

ution of risks. In our framework, a contingent interest-rate-setting policy dominates a

noncontingent one. This is a strong criticism of the conventional view supporting the

separation of prudential regulation and monetary policy. We now proceed to compare

contingent and noncontingent interest rate policy in terms of �nancial stability. We show

that fundamental bank runs can occur for a noncontingent interest-rate-setting policy,

whereas they cannot arise when a contingent interest rate setting is implemented. Thus,

contingent interest-rate-setting policy, and the rejection of separation between prudential

and monetary policies, fares better also in terms of �nancial stability.

To simplify the exposition, we assume that the probability of an aggregate liquidity

shock is zero, such that the fraction of impatient depositors is always �; as in the basic

distributional-shock model of Section 3. We now consider a wider range of parameters. We

no longer require that cij2 > c1; we now consider any parameters such that c
ij
2 > 0. This

allows us to consider fundamental bank runs, which we de�ne as occurring to bank j in

state i if cij2 < c1: In this case, each impatient consumer prefers to withdraw at date 1 even

if all other consumers withdraw at date 2. The origin of possible fundamental bank runs

is that, in the state where i = 1, patient depositors of banks with many impatient agents

will consume less if the central bank sets the interest rate higher than c�2
c�1
: If " is large, it

may be the case that the consumption of patient depositors of banks with many impatient

agents would be lower if they withdraw at date 2 than if they withdraw at date 1, which

would trigger a bank run. Obviously, if the optimal contingent interest-rate-setting policy
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is applied, and i1 = c�2
c�1
; fundamental bank runs are ruled out.

Proposition 6. If � � 1=2 and the central bank chooses to implement a noncontingent

interest rate policy, for � su¢ ciently low there exist " su¢ ciently large such that bank

runs will occur in equilibrium.

Proof. The central bank sets an interest rate �1 = �0 = r >
c�2
c�1
: For �i > 1; i 2 I; the

�rst-order conditions of the bank�s optimization with respect to �ij; equations (18) and

(19), do not bind, implying �ij = 0 for i 2 I; j 2 J : As � converges to 0; by continuity,

equilibrium allocations converge to

c1h2 =
�r � "c1r
1� �� "

=
r

1� �� "
[�� "c1] ;

with c1 = 1��
�
and c02 =

�r
1�� . A fundamental bank run will occur in state i = 1 if and

only if c1h2 < c1: This is equivalent to

r [�� "c1] < (1� �� ")c1;

so that " has to satisfy

" >
r�� (1� �)c1
c1(r � 1)

;

or equivalently

" >
(1� �)( c

0
2

c1
� 1)

r � 1 :

Recall that 0 � �ij � 1 implies " � minf�; 1 � �g. If � � 1
2
; then this condition

becomes " � 1 � �: The condition on parameters such that cij2 > 0 requires " < �
c1
;

which is su¢ cient to ensure " � 1 � � since � = 1 � �c1 and c1 > 1: So, bank runs
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will occur for " 2 (
(1��)( c

0
2
c1
�1)

r�1 ; �
c1
); which is a non-empty interval. Thus, there exist " for

which bank runs will occur. Now, since bank runs are anticipated, banks could choose

a �run preventing�deposit contract, as suggested by Cooper and Ross (1998). However,

following the argument in that paper, banks will not choose a run-preventing deposit

contract if the probability of a bank run is su¢ ciently small. So for � su¢ ciently close to

zero, there exist " for which bank runs will occur in equilibrium. �

6 Liquidation of the long-term technology

We endogenize the amount of liquid assets available in the interbank market at date 1

by extending the model to allow for premature liquidation of the investment. Allowing

for liquidation also allows us to examine the robustness of the central bank�s interest rate

policy to banks�options outside of borrowing on the interbank market. Banks in need of

liquidity may choose to liquidate investment if the interbank rate is too high. This can

restrict the set of feasible real interbank rates and may preclude the �rst best equilibrium.

Indeed, as banks have the alternative option of liquidating their assets, interbank market

rates that are larger than the return on liquidation are not feasible, and this might restrict

the central bank�s policy options.

Again, to simplify the exposition, we assume that the fraction of impatient depositors

is always �. At date 1, bank j can liquidate 
ij of the investment for a salvage rate of

return s at date 1 and no further return at date 2. The bank budget constraints (3) and

(4) are replaced by

�ijc1 = 1� �� �ij + 
ijs+ f ij for i 2 I; j 2 J (37)

(1� �ij)cij2 = (�� 
ij)r + �ij � f ij�i for i 2 I; j 2 J ; (38)

38



respectively, and the bank optimization (7) is replaced by

max
�;c1;f�ij ;
ijgi2I;j2J

E[U ]

s.t. �ij � 1� � for i 2 I; j 2 J


ij � � for i 2 I; j 2 J

equations (37) and (38).

The ability for banks to liquidate long-term assets for liquid assets and lend them on the

interbank market restricts the ex-post equilibrium interest rate from being too high. This

is the case because, for any state i; the ex-post equilibrium rate is restricted by �i � r
s
.

Indeed, for �i > r
s
banks would prefer to liquidate all investment and no banks would

borrow. Consequently, the optimal equilibrium cannot be supported if the rate required

to support the �rst best ex-ante equilibrium in state i = 0 is too high. Proposition 7 gives

a more precise statement:

Proposition 7. If �0� = r+
�(r� c�2

c�1
)

1�� > r
s
; the �rst best cannot be achieved as a contingent

interest-rate-setting market equilibrium.

Proof. If �0� > r
s
; then the equilibrium rate is �0 < r

s
< �0�; it is less than the equilibrium

rate required to support a �rst best equilibrium. �

If the probability of a crisis is low enough, then the �rst best equilibrium is always

feasible. The limit of �0� as � �! 0 is r: Moreover, for small �; �0� has to be only slightly

greater than r for the interest rate in expectation to equal r; because the probability of

the rate being low during a crisis is small. This result is expressed in the next proposition.

Proposition 8. For any s � 1; there exists a b� > 0 such that for all � 2 (0;b�); �0� < r
s

and the �rst best ex-ante equilibrium exists.
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Proof. Consider bs < 1 and de�ne b� � r(1�bs)
1+bs(r� c�2

c�1
)
> 0: The �rst best equilibrium exists if

�0� <
r

s

() r +
�(r � c�2

c1�
)

1� � <
r

s

() � < b�: �
It is interesting to emphasize that, as s stands for salvage value of the investment, it

can be interpreted as the liquidity of a market for the long-run technology. From that

perspective, our result states that the higher the liquidity of the market for the long-term

technology, the lower the ex-ante e¢ ciency of the banking system. Our result is surprising

in the context of central bank policy, but it is quite natural in the context of Diamond-

Dybvig models, where the trading of deposits destroys the liquidity insurance function of

banks.

7 Conclusion

The Federal Reserve drastically lowered the fed funds rate during the recent banking crisis.

The insights of our model explain the bene�ts of low rates for the e¢ cient redistribution

of liquidity in the interbank market.

Our paper provides micro-foundations for the interbank market role in allocating liq-

uidity, which is important in order to understand how central banks should respond to

liquidity shocks. Two types of liquidity shocks are considered: distributional shocks and

aggregate shocks. The main insight is that, because of the inelasticity of the short-term

market for the liquid asset, the central bank can pick an optimal equilibrium from a set of

equilibria by setting the interest rate in the interbank market appropriately. Faced with

a distributional shock, the central bank should lower the interbank rate to facilitate the
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reallocation of liquid assets between banks in the interbank market. However, in order to

provide incentives for banks to hold enough liquid assets ex ante, the central bank must

make sure that interbank rates are high enough when the distributional shock does not

occur.

On the other hand, the central bank should respond to aggregate shocks with a policy

of injecting liquid assets in the economy. The goal of this policy is twofold. First, it

helps achieve the optimal distribution of consumption between patient and impatient

depositors. Second, it sets the amount of liquid assets in the interbank market at the

level at which the central bank can adjust the interbank rate to address the suboptimal

distribution of liquidity among banks. Hence, the liquidity injection policy required in

the face of aggregate shocks complements the interest rate policy that is optimal in the

face of distributional shocks.

Our model also shows that a failure to implement the optimal interest rate policy can

lead to bank runs. When the interbank market rate is not set appropriately, a distrib-

utional shock creates consumption risk for patient depositors. If the rate is high, banks

that need to borrow in the interbank market will be left with few goods for their patient

depositors. For some parameter values, and if the rate is high enough, the goods available

to patient depositors will yield less consumption than the amount promised to impatient

depositors. This will create a run as all patient depositors will have an incentive to claim

to be impatient. Even without considering risky long-term assets and counterparty risk,

we show how liquidity shocks can create banking fragility under suboptimal interest rate

policy. Our model provides an important framework for future research that incorporates

credit risk with liquidity risk to examine the impact of central bank rate policy on longer

term interbank interest rates.
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8 Appendix: Generalization to N states

Consider a generalization of the baseline model (without runs or liquidation of long-term

assets) with N distributional-shock states i1; :::; iN � 0. We assume i1 = 0; �inH = �+in";

and �inL = �� in"; where in 2 fi1; :::; iNg. The probability of in is �n,
PN

n=1 �n = 1.

A bank�s problem is thus

max
�2[0;1];c1;f�ijgi2I;j2J�0

�u(c1) +
NX
n=1

�n[
1
2
(1� �inH)u(cinH2 ) + 1

2
(1� �inL)u(cinL2 )]

s.t. �injc1 � 1� �+ �inj + f inj

(1� �inj)cinj2 � �r � �inj � f inj�in

for in 2 fi1; :::; iNg; j 2 J :

The �rst-order conditions with respect to � and c1 are, respectively,

NX
n=1

�n[
1
2
u0(cinH2 ) + 1

2
u0(cinL2 )]�in =

NX
n=1

�n[
1
2
u0(cinH2 ) + 1

2
u0(cinL2 )]r

u0(c1) =
NX
n=1

�n[
�inH

2�
u0(cinH2 ) + �inL

2�
u0(cinL2 )]�in :

By the same logic as in the case with two states, the interest rate in the interbank

market should be equal to c�2
c�1
whenever in > 0 in order to facilitate risk sharing between

banks. Without loss of generality, assume that in > 0 for all n � 2. Then we have �in = c�2
c�1

and cinH2 = cinL2 = �r
1�� for all n � 2. Let � =

PN
n=2 in, and then we can write interest rate

�i1 as

�i1 = r +
�(r � c�2

c�1
)

1� � ;

which is equal to �0 = �0
�
in the two-state baseline model.7

7We can show that if there is no state with a zero-size shock, then a �rst best equilibrium does not exist

because an equilibrium requires an interest rate of li > c�2
c�1
for at least one distributional-shock state i;
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