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Abstract
I introduce a new approach to modeling aggregate bidding functions (demand functions) submitted 
by participants of share auctions, the one based on (scaled) normal cumulative distribution 
functions. I provide a simple model illustrating how normal cdf-shaped demand might arise. Then, 
using new data from the Polish Treasury securities auctions, I show first, that assumptions of the 
model underlying the normal cdf specification fit the stylized characteristics of the data set and, 
second, that this approach actually generates a slightly better fit than the traditional approximation 
by logistic function. I also relate the parameters of the fitted function to economic variables known 
prior to the auction. This method appears to be a useful tool for early detection of slumps in the 
performance of a particular auction design.  
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1. Introduction 

Despite the spectacular progress in our knowledge on divisible goods auctions in the last years 
(see e.g. Daripa 2001), it appears that researchers have yet to deliver clear and uncontested answers 
to some of the questions that appear crucial from the policy-maker’s point of view. The most 
important examples are the four-decades-long discussions regarding the relative performance of 
different pricing rules and magnitude of underpricing in Treasury auctions when compared to 
the secondary market. Even though these inter-related issues constituted (for a good reason) the 
essence of research on Treasury auctions, the answers are not clear-cut; theoretical results seem to 
be quite sensitive to particular assumptions. It seems especially difficult to derive a general form 
of equilibrium strategies in discriminatory share auctions; see however Wang, Zender (2002) as 
well as Back, Zender (1993), Hortaçsu (2002a) and Viswanathan, Wang, Witelski (2000) for special 
cases. 

One general conclusion from this literature seems to be that in such a complex environment 
there typically arise multiple equilibria. It seems then that the most promising way to get insight 
into the impact of possible changes in the auction design, economic situation etc. is to analyze 
the actual bidding behaviour. In this way the burden of investigation is transferred to the 
empiricists. 

Unfortunately, the quest to measure and compare underpricing across different auction types 
also faced substantial difficulties. Studies comparing different countries are of limited value, due to 
several institutional differences that may be confused with the pricing rule effect. Within-country 
comparisons are only possible in the rare cases when the Treasury decided to change the auction 
format. Even then, it cannot be taken for granted that relevant economic variables did not change 
over the period. Furthermore, it can be argued that it takes time for the bidders to adjust to the 
new system, thus the period directly following the introduction of the new rule may be atypical. 
Worse still, change of the pricing rule is likely to be endogenous – if, for example, its performance 
is subject to random variation and the change of the pricing rule occurs after a longer period of 
dissatisfying results, the new system will probably outperform the old one due to the regression to 
the mean rather than any substantial advantage (just as rain summoning works quite fine if you 
wait long enough and duration of droughts exhibits increasing hazard rate). 

Given these obstacles, it should not be surprising that results are not univocal. To mention 
just a few examples, Umlauf (1993) found underpricing of 0.018% of the face value in the case 
of discriminatory auctions of Mexican Treasury securities and no significant underpricing 
in uniform price auctions. Nyborg and Sundaresan (1996) and Goldreich (2003) also reported 
higher revenue for uniform pricing rule, introduction of which lowered underpricing by 
some 0.2 basis points in the USA, constituting a significant improvement. Using a different 
technique, Heller and Lengwiler (1997) find qualitatively similar results for Swiss government 
auctions. 

On the other hand, Bjonnes (2001; 2002) found opposite evidence in Norway. Also Hortaçsu 
(2002b), using a clever counterfactual analysis based on bootstrap estimation of unobservable true 
valuations, concluded that in Turkey discriminatory auctions yield higher revenues than uniform 
auctions. Fevrier et al. (2002) came to a similar conclusion using French data. Hamao and Jagadeesh 
(1998) found no significant underpricing in discriminatory auctions in Japan. 
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In view of the above-mentioned difficulties and generally mixed results, a new approach 
to investigation into Treasury auctions has emerged in the last ten years, which, rather than 
aggregate statistics, analyzes actual bid functions submitted by the buyers. In this way the 
researchers seek to identify determinants of actual bidding behaviour and resulting proceeds 
from the auction. The main research route is to model the, typically S-shaped, bid functions 
as logistic functions. This functional form is attractive due to its flexibility and the fact that 
it might be obtained as an integral of a bell-shaped distribution of yield rates in individual 
bids. The variations of the estimated parameters of the logistic function over time can be 
assumed to be random (Boukai, Landsberger 1999; Berg et al. 1999), or to depend on other 
economic variables (Preget, Waelbroeck 2005; Özcan 2004). The latter approach seems more 
promising as it allows generating out-of-sample predictions of bid functions, and thus cut-off 
price conditional on changes in explanatory variables (Preget, Waelbroeck 2005). As shown 
by Özcan (2004), the logistic function approach can help us to compare the performance of 
different pricing rules. His strategy is to estimate the relationships between certain economic 
variables and (parameters of) bid functions under the uniform and discriminatory pricing 
rules separately (which is possible thanks to  switching from one mechanism to the other 
which occurred in his sample of Turkish Treasury auctions) and simulate the hypothetical bids 
that would have been submitted under the counter-factual pricing rule. He concluded that the 
discriminatory pricing rule would have outperformed the uniform rule. Preget and Waelbroeck 
(2005), who only have data on discriminatory auctions, investigated potential results of 
hypothetical design changes within this pricing rule. They found, inter alia, that the Treasury 
should avoid running too many auctions on the same day and that reopening of a particular 
line of bills generates additional costs, compared to launching a new issue. Vargas (2003) used 
estimation of bidding functions in uniform price Treasury auctions in Argentina to compute 
the (revenue-relevant) level of risk-aversion prevalent among the bidders. 

This paper continues this line of research, yet, introducing some substantial changes in the 
methodology. First, I approximate the bids using normal cumulative distribution function (cdf) 
rather than logistic function. While logistic approach might be justified on the grounds that 
the two functions differ only slightly and logistic function is somewhat more handy from the 
computational viewpoint, I argue that normal cdf is more appropriate as aggregation of individual 
demand functions. To illustrate the point, I sketch a model of dealer-specific bid functions that 
is consistent with data features and lends support to the normal cdf specification of aggregate 
demand functions. I also show that normal cdf model performs at least as well as logistic function: 
it generates a better fit in majority of auctions and slightly lower overall sum of squared residuals. 
Finally, I am able to contribute to the discussion on the performance of particular Treasury auction 
mechanisms and, consequently, rents obtained by the primary dealers, by predicting parameters 
of the fitted demand functions basing on the information available prior to the auction. Any 
substantial deviations from the forecast values might indicate a systemic change in the behaviour 
of primary dealers. This can, for example, result from the emergence of a collusive agreement. 
Likewise, behavioural results of institutional modifications (i.e. changes in the auction design) can 
be assessed in a handy way in terms of corresponding shifts in demand parameters. In the case of 
Poland, the implementation of new regulations for supplementary fixed-price tenders in 2005 calls 
for such analysis and will be addressed elsewhere. 
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The second contribution is that this is one of the very few papers on Treasury auctions in 
a former communist country (and the only one that I know of that models individual demand 
functions). Given that features of the auction design, secondary market thickness, market power 
and links between primary dealers etc. differ significantly among countries and may substantially 
affect auction results, an analysis of data from economies with varying background is highly 
desirable. Here, I indeed find some unusual features of the data, most notably underpricing being 
much higher than in most previous studies.� 

The remaining part of the paper is organized as follows. Section 2 describes the Polish 
Treasury auctions data, including evidence of substantial underpricing relative to the secondary 
market. Section 3 explains the methodology of fitting logistic and normal cdf curves to the 
aggregated demand functions and estimating their parameters. This section also discusses the 
model of individual bidder behaviour supporting the normal cdf curve approach. Section 4 
presents the results of the estimation procedures and Section 5 displays the relationship between 
the parameters of the fitted functions and underlying economic variables. Conclusion is presented 
in Section 6. 

2. Description of data

The paper makes use of two data sets: the primary market data set reporting individual bids 
in two-year bond auctions and fifty-two week bill auctions and the secondary market data set 
containing yields of securities of the same duration. In this section I give a brief description 
of both. 

Fifty-two week Treasury bills are the most important short-term government security in 
Poland. The Ministry of Finance (MF), represented by the Central Bank, auctions approximately 
USD 250 million of those every Monday. Tenders of 2-year zero-coupon bonds are organized on 
a monthly basis with the face value of approximately USD 750 million at every auction. Bids are 
required to be submitted before 11.00 am of the specified day (Wednesday or Thursday) and results 
of the auctions are published within an hour. Since the beginning of 2003, only primary dealers 
have had the right (and obligation) to submit sealed bids at auctions and resell securities on the 
secondary market. There were 12 such dealers in the analyzed period.� Bids are formulated in 
terms of price per PLN 10 000 (52 week bills) or PLN 1000 (2Y bonds) of the face value. No deposits 
against the submitted bids are required. Payments follow within two days after the auction in 
the case of Treasury bills and up to two weeks in the case of 2Y bonds. The minimum bid is PLN  
1 million (approximately USD 280 thousand) and the number of bids is unlimited. The MF uses the 
discriminating (multi-price) rule and noncompetitive bids are not allowed. In general, the supply is 
known in advance. It is at the MF’s discretion to reduce the amount sold in the case of dissatisfying 
demand, but this occurs on very rare occasions. In the case of 2Y bonds the MF may however, and 
frequently does, offer additional bonds on the next day, at fixed price equal to the weighted average 
of the accepted bids. 

� �  This finding may partly be due to imperfect secondary data source, see next section.
� �  �Additionally, Bank Gospodarstwa Krajowego, while not a dealer, was allowed to participate in auctions and is consi-

dered as thirteenth dealer for the purpose of this paper.
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The primary market data set contains all individual bids (price-quantity pairs) submitted by 
primary dealers in auctions of 52-week Treasury bills from April 2003 to September 2004 and  
2-year bonds from January 2003 to December 2004. As Treasury bills are offered weekly, this 
time span encompasses 74 auctions. In the case of 2Y bonds sold on a monthly basis, there are  
36 observations, 12 of which were supplementary, fixed price tenders. The total value of 2Y bonds 
sold within the analyzed period amounts to approximately PLN 62 billion (or over USD 17 billion) 
and this of bills, to PLN 75 billion (approximately USD 20.6 billion). 

Selected statistics of the market and bidding functions of the bidders are presented in table 1. 
Observations that are noteworthy from the researcher’s viewpoint are the following. First, 

competition as measured by bid/cover ratio (the ratio of the sum of all bids to the amount sold) is 
not very tough. In the analyzed period the ratio was 2.43 in the case of Treasury bills and 2.63 in 
the case of 2Y bonds, lower than reported in most studies. It was, however, significantly higher in 
fixed price tenders. 

Regarding the individual bids, it is clear that buyers submit non-trivial demand functions; the 
average number of bids submitted by the individual dealer active in a particular auction was equal 
to 12.6 in the case of 2Y bonds and 9.6 for 52W bills. This is a clear message that it is desirable 
to model individual demand functions as a downward-sloping continuous or multi-step function 
rather than as a single-step function. This also implies making use of the divisible goods auction 
theory rather than unit-demand extensions of the standard one-item auction theory. 

Potential reasons for large number of bids per bidder examined in the literature include risk 
aversion, adjustment to winner’s curse (Gordy 1999) or collusion (see e.g. Back, Zender 1993). 
The latter, however is restricted to the case of uniform pricing rule. Furthermore, major banks – 
primary dealers can be convincingly argued to display risk neutrality.� 

� � This “preference” might however not be faithfully implemented by the manager. The incentive scheme may induce 
risk-aversion.

Table 1
Selected summary statistics of the primary market data

52W bills 2Y bonds

Number of competitive auctions 74.00 24.00

Mean bid/cover ratio 2.43 2.63

Total number of bids 8 988.00 3 356.00

Bids per auction, min. 54.00 69.00

Bids per auction, mean 118.70 145.60

Bids per auction, max. 198.00 217.00

Accepted bids per auction, min. 2.00 2.00

Accepted bids per auction, mean 60.00 62.80

Accepted bids per auction, max. 109.00 108.00

Active dealers per auction, mean 12.30 12.20

Bids per dealer in auction, mean 9.60 12.50
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Yet, the analysis of institutional features of the Polish market, supplemented by information 
gathered from talks with traders and representatives of the Ministry of Finance suggests another 
possible explanation of the large number of bids. Whereas primary dealers make purchases on their 
own account and the when-issued market is non-existent,� every auction is preceded by meetings 
of the primary dealers with representatives of other large financial institutions. These convey 
information regarding the demand in the market and are thus very valuable from the dealers’ 
viewpoint. On the other hand, the clients signaling early their willingness to buy the security are 
able to negotiate a price below the official post-auction ask price posted by the dealers. 

The secondary market data was obtained from the Warsaw Stock Exchange. This is not entirely 
satisfactory given that it only represents a small fraction of the secondary Treasury securities 
market in Poland. The volume of transactions is by far the greatest on the unregulated market of 
negotiated inter-bank transactions. Unfortunately, no data on those can be obtained. The other 
segment of the secondary market, the Electronic Treasury Securities Market (ERSPW), while 
having higher average volumes of transactions than the WSE, is however quite often too thin, 
particularly for short-term securities. 

The secondary market data set used in this paper contains bid and ask yields of benchmark 
1-year and 2-year securities posted on the day of the auction and one (working) day before the 
auction. Further, to capture the level of market volatility, I compute the sample variance of logged 
daily price changes within 22 trading days (or approximately one month) preceding each auction. 

2.1. Underpricing

Following the standard approach, I compute the mean spread between the weighted average yield 
of an accepted bid in the auction and the midpoint of the bid-ask spread of the benchmark security 
at the end of the auction day. The numbers reported in this subsection have to be treated with 
caution due to data problems signaled in the previous subsection. In particular, the bid-ask spread 
is relatively wide (around 6 basis points on average). If the average price in negotiated transactions 
in the inter-bank market differs systematically from the mean bid-ask spread on the WSE, the 
aggregate profits may be over- or under-estimated. 

Underpricing measured in this way amounts to 5.41 basis points in the case of 2Y bonds and 
5.7 basis points in the case of 52W bills. This translates into profit of 9.5 cents or 5.4 cents per  
USD 100 respectively, numbers statistically different from zero. 

These figures are substantially higher than those reported in the previous studies (see e.g. 
Keloharju et al. 2005 for an overview). This might not be surprising given that the Polish securities 
market is still in its development stage. In particular, the primary dealer system was only launched 
in 2002. To the extent that brokers responsible for submitting demand functions are concerned 
about possible overbidding (which is immediately seen as a loss from the bank management’s 
viewpoint) rather than underbidding (resulting in a less obvious loss due to missed opportunity), 
relative underpricing might have resulted from their willingness to deal cautiously with the new 
system. Investigation into possible collusion as a potential reason for substantial gap between 
yields in the primary and secondary markets seems difficult. 

� � As in many other countries where relatively small market is likely to be short-squeezed.
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We are also able to compute individual, dealer-specific profits, aggregating over all successful 
bids made by a particular dealer. Of particular interest is the relationship between profits and 
aggregate purchases, as it indicates to what extent smaller bidders are in a position to compete 
with the large ones. It is quite clear that large players have the incentive and means to pursue more 
detailed research regarding possible shifts in the value of the security. Further, when controlling 
a substantial part of the market the dealer faces relatively less uncertainty regarding the aggregate 
bid function. In other words, two separate entities could, in general, raise their joint profit by 
joining forces and thus, taking into account what previously had been an external effect. Thus, 
profits would be expected to grow more than proportionally with the volume of purchases. 

The data does not provide substantial support for this hypothesis. Relationship between overall 
amount of purchases and profits in 52W bill auctions is presented in Figure 1, along with a linear 
approximation fitted by the ordinary least squares method. As the line fits the data rather well and 
can be extended to (nearly) cross the origin, it clearly suggests that dealers’ rents are proportional 
to the amount bought. This can be confirmed by running a log-linear regression showing that 
elasticity of profit with respect to purchase is equal to 1.06 and not significantly different from 
1 (p = 0.339). In the case of bond auctions, log-linear regression can only be run if we exclude  
a single outlier observation with negative profit,� just to find that elasticity of the profit with 
respect to the amount purchased is 1.27, significantly more than 1 (p = 0.032). Without dropping 
any observation, we can only compute the ratio of profits to purchases and regress it on the amount 
purchased, concluding that the null hypothesis that dependent variable is a plain constant cannot 
be rejected. 

To sum up, the obtained results indirectly indicate that dealers possess information of 
comparable precision and that they compete on roughly equal terms – additional profits owed 
solely to the scope of operation are not observed in bill auctions and are modest, at best, in  
the case of bond auctions. 

� � This is justified by the fact that this dealer’s poor performance resulted predominantly from a catastrophic loss in  
a single auction early after the introduction of the system.
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3. Methodology

Estimation of economic determinants of aggregated demand functions and resulting profits proceeds 
in following steps. First, I fit the logistic and normal cdf functions to the aggregate demand. Next, 
I regress the obtained parameters on economic variables that are known at the beginning of the 
auction. Finally, I reconstruct the expected demand functions conditional on these variables 
and compute the degree of underpricing and dealers’ profits. Before we turn to the detailed  
description of the estimation procedures, let us first consider a simple model of individual 
behaviour that lends support to the normal cdf formulation. 

3.1. Rationale for the normal cdf model

The advantage of the normal cdf specification is that it arises naturally under assumption of 
normality imposed on the distribution of signals available to the dealers. To illustrate the point 
with a simple example, we can assume that each bidder i = 1,…I observes a normally distributed 
signal yi in the yield space� with identical mean μ0 and variance σ0

2. Further, each bidder submits  
a single bid of value Ai. I assume that this volume is independent of the signal, but possibly differently 
distributed for different i’s. This corresponds to the observation that in the analyzed data set the 
amount sought tends to be quite steady over time for each bidder, yet differs substantially among 
bidders. In other words, bidders seem to adjust the quantity demanded to their “capacity” and the 
price level to the perceived market conditions. I assume that the bid is calculated as a signal inflated 
by a fixed amount K. Obviously, such inflating of the yield rates corresponds to shading of prices.� 
Then, denoting the aggregate demand at yield rate y by D(y) and individual demands by di(y), we 
can express the expectation of D(y) in terms of probability of observing particular signals: 

where Φ is the standard normal distribution function. I
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f the number of bidders is sufficiently  
large, the aggregate demand function can be approximated by the scaled normal cdf specification 
(see also next subsection) 
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where                                             
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� � Throughout the paper I speak of bids, demand functions etc. being made in terms of yield to maturity rather than 
price. Given that the relation between the two is locally linear, this choice seems rather innocuous. 

� � We expect that the K will be positive, reflecting the bidder’s attempt to make positive profit. Shading of prices by  
a fixed amount is a fairly standard, if simplifying, assumption, made e.g. in Goldreich (2003). Proportional shading 
would lead to identical results. Note that we find, in particular, that shading is not player-specific; indeed, we do not 
find any hints in the data that some players consistently bid more aggressively than others.

	(1)

	(2)
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In this simple environment the estimated parameters of the aggregate demand function can 
be readily translated into parameters of the distribution of signals observed by the players and 
amounts they seek to purchase. 

Similar reasoning can be followed for cases of multiple bids per participant and more complex 
signal-contingent behaviour. In our data set, as shown previously, the assumption that bidders’ 
information is equally precise can be sustained. Yet, the single-bid feature of the simple model 
sketched above, cannot. Still, if we are willing to accept the supposition that primary dealers 
submit multiple bids mostly based on the demand signals received from potential contractors, the 
following extension of the model can account for normal cdf shape of aggregate demand function. 

Each bidder i = 1,… I  observes some 
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quantity-yield pair signals (aij, yij),  j = 1, 2,… n 
from potential investors; ni being identically and independently distributed, yij following normal 
distribution with mean μ0 and variance σ0

2. Regarding ai we only assume it is positive and 
independent of the vector y with the typical element yij. The bidder’s strategy is to submit mi bids 
(suppose for simplicity that mi = m is fixed), (Yik,  Aik), k = 1, 2,… m with yield rates being linear 
combinations of yield signals observed by this bidder, possibly shifted by a constant: 
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(4)

where wikj , j = 0,…, ni are pre-specified weights. Further, we assume that amounts sought are func-
tions of the observed quantity signals: 
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(5)

The weights wikj may be conditional on any information available prior to the auction and, 
obviously, depend on ni. Functions fi are also allowed to vary among bidders. Because submitted 
yield rates are linear combinations of independent normal variables, they are also normally 
distributed. We also note that each Aik is independent of Yik. Derivation analogous to (1) leads also 
in this case to the conclusion that aggregate demand function can be described by a normal cdf 
curve. 

While this formulation is quite general, it is tempting to consider a simple and intuitively 
appealing example. The dealer may, for instance, upon observing the signals from potential 

investors, compute the average signaled yield rate 
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and submit bids for quantities 

identical to those originally signaled with yield rates being weighted averages of original signals 
and 
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possibly shaded by a fixed amount: 
Aik = aik
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for k = 1, 2,…,  ni. Amount-weighted average of the terms wik0 can then be interpreted as shading. 
The dealer may also submit an additional bid (or bids), not aimed at any particular investor, e.g. 
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where z denotes a positive constant. It is very easy to check that this stra-
tegy is a special case of the model given by Eq. (4) and (5). 

It should be noted that this model implies that also dealer-specific individual demand curves 
may be approximated by normal cdf specification. Indeed, running the estimation procedure 
described in the following subsection for each bidder in each auction separately,� I find on average 
a much better fit of the logistic and normal functions than of the linear-quadratic function 
(which also has three parameters). This analysis is, of course, problematic given a relatively small 
number of observations (bids per dealer). Even when this number is greater than 10, I still observe  
a remarkably good fit. This lends support to the simple model described above. 

Of course, the normal cdf shape is obtained in the model sketched above partly due to the 
assumption of normality of signals. It would probably be possible to develop a similar model 
supporting the logistic distribution (though convolution of variables following logistic distribution 
is not logistic) but normality of signals (which are likely to be an aggregation of great many bits  
of information) is an intuitively compelling assumption. 

3.2. Fitting aggregated demand functions

To compare the two approaches of approximating the aggregate demand function, namely the 
logistic function approach and the normal cdf approach, I first estimate the three-parameter 
logistic function given by the formula: 
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where D(y) stands for demand (aggregate bid) at given yield� of the security y. 
Interpretation of the parameters is as follows: 
·	 α is the maximal demand, that is, asymptotic demand for increasing y, 
·	 λ is a scale parameter that captures dispersion of the bids, 
·	� τ determines the point of inflection of the logistic curve, thus corresponds to the general 

yield level (and resulting price level). 

To ensure that the iterated non-linear least squares estimation procedure converges to the 
global minimum, it is essential to start with appropriate initial values of parameters. To this end, 
I first estimate the linearized version of the equation given above: 
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 (9)	 		   	

� �  �Due to the scarcity of place and the fact that this analysis is of no direct practical importance, I do not reproduce the 
detailed results here. These are available from the author upon request.

� �  Modeling relationship between demand and price is also customary. See footnote 1.

  (8)
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To transform this relationship into an estimable linear model, α has to be set a certain value. 
In view of the interpretation of this parameter as theoretical maximal demand, it is natural to set α 
equal to a number somewhat higher than the actual maximal demand (or demand for lowest price) 
in a given auction. While this is admittedly an arbitrary decision, I follow Preget and Waelbroeck 
(2005) in this respect and set α equal to exactly 1.01 of the maximal demand. It is then possible to 
estimate the linearized equation and obtain initial values for τ and λ: 

										           		     
(10)	
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where a denotes the estimate of intercept in Eq. (9), while b is the estimated slope.
 With these initial values I perform the non-linear least squares estimation of Eq. (8) to obtain 

the parameters and goodness-of-fit statistics of the logistic approximation. 
Next, a scaled normal cdf, 	
												               (11)
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is fitted. Given that the interpretation of β is identical to α, I set identical initial value for this 
parameter. Also μ, which indicates the point of inflection, is set equal to τ obtained from the 
regression model (9). As for σ, one has to take into account the relationship between the variance 
of logistic and the standard normal distributions. If random variable X follows logistic distribution 
with cdf 
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Thus I set initial value of σ as: 

						      						          (13)
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and analogously estimate parameters of the normal cdf specification by means of the iterated 
non-linear least squares method. The choice of this procedure stems, on one hand, from the fact 
that normal and logistic curves are so similar; on the other hand, there is no useful linearization  
of the normal model. I shall hasten to say, however, that this somewhat mechanical application 
of the estimation procedure, most suitable for the logistic model, to the normal model may lead  
to a worsened fitting of the latter, if anything. 

3.3. Explaining parameters of demand functions

To be able to relate the shape of the aggregated demand functions to the underlying economic 
conditions and subsequently make predictions, I estimate the model by means of the Seemingly 
Unrelated Regression (SUR). This choice of the estimation method is justified by the fact that 
within-period error terms affecting the value of particular parameters of the aggregated demand 
functions are likely to be correlated (as these parameters are jointly determined by strategic 
decisions of players). 
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Formally, I assume the following model: 
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  (14)

where yi stands for n-vector of observations on the ith dependent variable (parameter of the logistic 
or normal cumulative distribution function) and Xi is a n x k matrix of explanatory variables. 

As mentioned before, I allow for correlation of error terms across equations within the set time 
period: 
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The Σ matrix with typical element σii is referred to as contemporaneous covariance matrix. 
We further assume weak exogeneity:
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Under these assumptions, performing separate regressions for each of the explained variables 
yields consistent but inefficient estimates. Two important exceptions from the latter result are 
when the contemporaneous covariance Σ matrix is diagonal (but the diagonal elements σii need 
not be identical) and when each of the Xi matrices of explanatory variables for variable yi are 
identical. In both cases OLS can be shown to be numerically identical to SUR (see e.g. Davidson, 
MacKinnon 2004, pp. 508–509). This appears to be the case both in Preget and Waelbroeck (2005) 
and Özcan (2004). In the current paper, employing different sets of explanatory variables to each 
of the equations seems desirable given the small number of observations and, as discussed in the 
following section, justified on grounds of economic reasoning. 

As Σ matrix is generally unknown, the SUR model must be estimated by means of Feasible 
Generalized Least Squares (FGLS). Alternative approach would be to make use of Maximum 
Likelihood estimation, based on the assumption of normality of error terms. 

To assess the statistical significance of particular variables and the precision of parameters 
estimation in the relatively small sample at hand, I make use of the non-parametric bootstrap 
technique (bootstrap percentile, Efron 1981) to compute standard errors and confidence intervals 
(the latter based on quantiles of the bootstrap statistic distribution). 

4. Results of estimation of parameters

4.1. Fitting aggregated demand functions

Upon running the procedure described in subsection 3.2, we note the following findings.10

First, both the logistic and normal functions perform very well  in fitting the empirical demand 
function. The (uncentered) R2 of the regressions is hardly ever below 0.98 in particular auctions; 
overall, it exceeds 0.995 in bill auctions and 0.997 in bond auctions. 

10 � A rather large table of auction-specific estimates and measures of goodness-of-fit, as well as diagnostic plots are 
available from the author upon request.
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Second, both models generate similar predictions. The sum of squared differences between the 
predicted values from the logistic model and the normal model in case of 2Y (52W bills) is close 
to 0.005% (0.007%) of the total sum of squares of the predicted values from the logistic model. In 
order words, this sum of squares amounts to about 2% of the Residual Sum of Squares (RSS) from 
the normal model. Consequently, we find a high correlation of over 99% between corresponding 
parameters of both models: α and β, τ and μ, and λ and σ. 

Both of these regularities are clearly seen on a scatter plot (Figure 2) presenting the actual 
demand function and predictions from both models for one of the auctions. Visual inspection of 
the plots from the remaining auctions confirms the excellent fit. 

Auction-specific differences between goodness-of-fit of the two methods are rather moderate: 
ratios of Residual Sum of Squares generated in the normal model to RSS from the logistic model 
vary from 0.72 to 1.10 in the case of 2-year bonds and from 0.84 to 1.17 for 52 week bills. 

The extraordinary good fit of the normal cdf model may be further confirmed by reconstructing 
the cutoff-price that would emerge if the predicted demand functions are submitted under the 
actual volume of sales. Figures 3 and 4 show that normal cdf model makes essentially perfect 
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predictions of the cut-off price (here: for 2Y bonds) and the average price paid (here: for 52 weeks) 
respectively. Pictures for the logistic model are similar. 	

On average, the normal model appears to perform better in bond auctions. It generates lower 
residuals in 16 cases (2/3 of the sample), whereas the opposite is true in 8 auctions. The total sum 
of squared residuals aggregated over all auctions (which, given the common unit, seems to be  
a fair measure of the overall performance of the model) is some 4.7% lower in the normal model 
than in the logistic model. Further, as we have noted previously, the normal model appears to be 
“less risky” in that it generates, at worst, RSS 10% higher than the other model, whereas using the 
logistic model may result in inflating RSS by 39% as compared to the normal model. 

In the case of Treasury bills auctions, both models perform equally well, the logistic model 
being fitted more closely than the normal model in exactly half (37) of the auctions. The sum of 
squared residuals is 1.0% lower in the latter. 

We conclude that the normal cdf model, which, as shown before, has some theoretical appeal, also 
performs at least as well, indeed better in one of the samples, as the logistic model. Thus, it is advisable 
to use the normal cdf model in fitting aggregate demand functions. In the following section I focus on 
this approach, reporting estimation results for parameters of the normal cdf specification. Needless to 
say, however, all the mentioned techniques could have been equally well applied to the logistic form. 

5. Economic determinants of demand function parameters

5.1. Estimation

Because one of the dependent variables11 – μ – is found to be non-stationary, I subtract from 
it its moving average (window width equal to three observations taken with equal weights).12  
The examined set of explanatory auction-specific variables is presented in Table 2. 

11 � I only present the results for normal model parameters. Those for the logistic model are rather similar. It should 
be noted that, for the sake of the estimation process, explanatory variables have been scaled in such a way so as to 
obtain coefficients of the same order of magnitude.

12 � I am grateful to an anonymous referee who has pointed out that omitting this step could lead to spurious results.
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Table 3
Determinants of demand function parameters in 2Y bond auctions (SUR estimates)

β/1000 coeff. st. era conf. intervalb

a_supply*102 0.388 0.172 0.094 0.655

a_vol*104 0.100 3.297 -0.287 0.698

return_on_wig 0.318 0.444 -0.015 1.26

cons*10 -0.414 0.414 -1.069 0.262

μ-moving average coeff. st. era conf. intervalb

a_supply*106 -0.157 0.634 -1.170 0.827

det_ a_y_1*10 0.109 0.010 0.100 0.129

a_vol22 -0.534 16.572 -16.645 1.188

return_on_wig*10-4 0.917 1.906 -3.618 1.813

a_nb_01*102 -0.230 0.611 -1.267 0.697

cons *10-3 0.451 1.583 -1.897 3.064

σ coeff. st. era conf. intervalb

a_supply *10-6 0.024 0.158 -0.156 0.335

det_a_y_1*10-2 0.654 0.258 0.088 0.884

a_vol22*10-4 0.528 3.107 -0.118 1.712

return_on_wig*10-4 -0.262 0.551 -0.894 0.622

a_newbond*10-3 0.153 0.147 -0.094 0.384

cons*10-3 0.410 0.362 -0.306 0.790

a Non-parametric bootstrap, M = 1 000 replications.
b 90% percentile non-parametric bootstrap, M = 1 000 replications.

Table 2
Explanatory variables in SUR estimation: description, mean and standard deviation

Variable Description m(2Y) sd(2Y) m(52W) sd(52W)

a_supply volume on offer (in bill. PLN) 2.488 0.445 0.985 0.188

return_wig return on WIG20 from the last 
auction 2.042 0.433 2.084 0.331

det_a_ y_1 yield in sec. market, previous daya 0.062 0.010 0.058 0.009

a_vol22 volatility in sec. marketb 1.469 3.806 1.252 4.143

a_nb_01 first issue of particular security 0.25 0.442 1 0

a Detrended by subtracting moving average, constant weight, window width = 3.
b ����This should not be confused with the ¾ parameter measuring the spread in the auction bids.
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The results of the estimation of the model in the sample of bond auctions and bill auctions are 
presented in Tables 3 and 4 respectively. As is readily seen, the total demand in bond auctions, as 
measured by β depends, in the first place, on the total volume offered in the auction (a_supply). This 
is in line with the findings reported in Preget and Waelbroeck (2005) and especially Boukai and 
Landsberger (1998) and Berg et al. (1999). In the latter two models, the investors bid for a fraction 
of the total supply rather than particular amount. The inflection point μ is best predicted by the 
(detrended) recent secondary market yield. Somewhat unexpectedly, this yield also contributes 
slightly to the variance of bids σ. 

The general climate on the financial markets captured by the monthly return on WIG20 index 
of the Warsaw Stock Exchange has no significant effect on any parameter. 

I also verify the suggestion made inter alia by Fleming (2002), that reopening is associated with 
higher borrowing cost, comparing to the first issue of a particular security. The dummy variable 
indicating whether the bond is issued for the first time is found to have no significant effect on the 
overall bids level μ. 

Similar results are obtained for 52W Treasury bills. Parameter β depends heavily on the amount 
supplied, increasing by PLN 1.09 million for an additional PLN 1 million of the face value offered. 
Secondary market volatility reduces the amount sought. What regards the inflection point μ (detrended 

Table 4
Determinants of demand function parameters in 52W bill auctions (SUR estimates)

β/1000 coeff. st. era conf. intervalb

a_supply*10-2 0.109 0.045 0.035 0.184

a_vol22*103 -0.502 0.215 -0.887 -0.189

return_on_wig*10-1 -0.123 0.198 -0.380 0.229

cons*10 0.143 0.047 0.065 0.219

μ-moving average coeff. st. era conf. intervalb

a_supply*10 0.115 0.063 0.027 0.227

det_a_y_1*10 0.771 0.139 0.570 1.008

a_vol22 0.356 0.173 0.092 0.648

return_on_wig*10-5 -0.148 0.166 -0.410 0.076

cons*10-2 -0.108 0.059 -0.216 -0.030

σ coeff. st. era conf. intervalb

a_supply*10-6 0.361 0.171 0.070 0.624

det_a_ y_2*10-1 -0.247 0.261 -0.668 0.168

a_vol22*10-1 -0.127 0.620 -1.004 0.949

return_on_wig*10-7 -0.214 7.552 -1.735 13.786

cons*10-3 0.119 0.172 -0.129 0.415

a Non-parametric bootstrap, M = 1 000 replications.
b 90% percentile non-parametric bootstrap, M = 1 000 replications.



Demand functions in Polish Treasury auctions 47

by subtraction of its moving average), it is by far mostly determined by the (detrended) secondary 
market rate before the auction. The inflection point is also affected by the amount on offer and volatility 
of WIG20 – bidders offer lower prices when this volatility is higher. The dispersion parameter σ is 
positively affected by the supply offered by the Treasury – large supply of the bills offered on auction 
contributes to increased uncertainty regarding the optimal bidding level. 

5.2. Out-of-sample prediction of the parameters of bidding functions and  
the resulting profits

To assess the strength of the model, I perform an out-of-sample prediction of the three parameters 
of aggregate demand functions and the corresponding underpricing and primary dealers’ profits. To 
this end, I first estimate the SUR model on the sample of first 50 observations for 52W bills auctions 
(the sample of 2Y auctions is rather small, rendering predictive power tests almost infeasible). 
Basing on the actual values of the explanatory economic variables and estimated coefficients,  
I compute the predicted values of β, μ and λ. Table 5 reports the results. 

We conclude that the model generates, on average, roughly correct predictions for all of the 
three parameters of the bidding functions. Table 5 also displays validity of the predictions at  
a given level, i.e. the fraction of the predicted values that fell into a certain interval around the 
actual value. Prediction of the inflection point μ is very good, 96% of the out-of-sample predictions 
being between 95% and 105% of the real value. Forecasts of other parameters are somewhat less 
precise, particularly, we note the poorly predicted standard deviation of the scale parameter β, 
which is largely due to two outlier observations (one with very high demand, the other with 
very low one). On the whole, however, the model can be said to deliver unbiased and reasonably 
accurate forecasts of key characteristics of the bidding behaviour and auction results. 

Table 5
Out-of-sample prediction of dealers’ profits and demand function parameters

β/1000 Observed Predicted

mean 2.276 2.680

std. dev 0.725 0.182

validity at 20% 33% x

μ-moving average Observed Predicted

mean 0.071 0.071

std. dev. 0.004 0.005

validity at 5% 96% x

σ Observed Predicted

mean 0.375 0.522

std. dev. 0.136 0.088

validity at 20% 25% x
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6. Conclusions

This paper analyzes the unique data set from the Polish primary and secondary Treasury securities 
markets. Some interesting features of the data such as large numbers of bids per bidder, low cover/
bid ratio and high underpricing are found. I offer some interpretation of these findings in terms 
of institutional characteristics of this emerging market. The paper also introduces a modified 
approach to modeling aggregate demand functions in Treasury auctions, based on the normal cdf 
rather than the standard logistic formulation. In the analyzed data, the former appears to slightly 
outperform the latter in terms of goodness of fit. The reasonably accurate prediction (despite  
a rather small sample at hand) of the parameters of the normal cdf specification based on economic 
variables known before the auction makes forecasts of the auction results possible. This enables 
the economists (and the Treasury alike) to monitor the performance of the auction design used. 
Any substantial and systematic deviation from the predicted shape of the demand functions and 
the corresponding profit obtained by the primary dealers should induce an in-depth investigation 
and consideration of possible institutional changes. Particularly in the case of collusive agreement, 
an early detection of the resulting underpricing is essential to avoid huge losses by the Treasury. 
Finally, the model delivers a powerful tool for an analysis of the impact of any possible change in 
the design of auctions on dealers’ behaviour and the corresponding cost of public debt servicing. 
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