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Abstract 
It is shown that spillovers can enhance private returns to innovation if they feed back into the dynamic research 
of the original inventor (Internalized spillovers), but will always reduce private returns, if the 
original inventor does not benefit from the advancements other inventors build into the 
“spilled” knowledge (Externalized spillovers). I empirically identify unique patterns of 
knowledge flows (based on patent citations), which provide information about whether 
“spilled” knowledge is reabsorbed by its inventor. A simple model of sequential innovation 
with dynamic spillovers is developed, which predicts that market value and R&D 
expenditures should rise with Internalized spillovers and fall with Externalized spillovers. 
These predications are confirmed using panel data on U.S. firms between 1981 and 2001. To 
the extent that firms internalize some of the spillovers they create, the classical 
underinvestment problem in R&D will be mitigated and the central role of spillovers in 
promoting economic growth will be enhanced. 
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1. Introduction

Knowledge spillovers are at the centre of the modern endogenous growth literature. Nu-

merous studies have analyzed, empirically and theoretically, the contribution of knowl-

edge spillovers for economic performance1. The present paper studies knowledge spillovers

(hereafter, spillovers) in the context of sequential innovation: ‘spilled’ knowledge inspires

follow-up research outside the boundaries of the inventing firm.

It has been well recognized that spillovers have countervailing implications for the

incentive to innovate: on the one hand, spillovers encourage future research, but on the

other hand, they discourage current research due to obsolescence. There is an essential

distinction between the obsolescence of knowledge and the obsolescence of the rents an

inventor captures on its knowledge. When knowledge is sequentially developed it cannot

become obsolete since it inspires subsequent developments and it is embodied in a more

advanced knowledge. However, the stream of rents the original inventor captures on its

old knowledge could depreciate, especially if all the subsequent developments are done by

other agents.

Schumpeter (1943) introduced the concept of creative destruction; the arrival of new

knowledge renders old knowledge obsolete2. For example, the arrival of knowledge of how

to produce power using the steam engine renders the knowledge of producing power using

water obsolete. Yet, innovations that render knowledge obsolete cannot be sequential. For

example, the knowledge of converting heat to work has been embodied in the first New-

come automobile engine and later in the vapor pressure engine, before being substantially

improved by Englishman who studied the conversion rates from heat and back, which

inspired a whole field of “thermodynamics” research3. The original knowledge embodied

1The theory of endogenous growth was pioneered by Romer (1986) and Grossman and Helpman (1991).
The empirical literature has studied various types of spillovers. Griliches (1992) provides a comprehensive
survey of the micro empirical literature.

2Creative destruction both limits and generates the incentive to innovate by rent seeking firms. This
idea is modeled in various ways in the endogenous growth literature. The obsolescence of private returns
to R&D has been empirically addressed, using patent renewals, by Schankerman and Pakes (1986), Pakes
(1986) and Lanjouw (1998).

3Based on Mokyer( 2005).
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in the Newcome engine did not become obsolete; on the contrary, it was the basis of many

subsequent improvements. Yet, its commercial value to Newcome should have become ob-

solete once the original knowledge spread to other agents and was sequentially advanced

by them.

However, should we still argue that private returns to the old knowledge become ob-

solete, if the inventing firm reabsorbs in a future period its old knowledge including all

the advancements the other agents have built into it? I empirically show that the answer

should be no. Spillovers that feed back into the inventing firm should mitigate the nega-

tive effect spillovers have on private returns, since in this case, the inventing firm can still

extract rents from its old knowledge even though other agents have further advanced it.

In their classic paper, Aghion and Howitt (1992) model the idea that spillovers raise

private obsolescence as a negative dependency of current research on future research. Ac-

cordingly, the inventing firm has a lower incentive to innovate in case its knowledge is

spilled to other agents that further advance it. Actually, spillovers can generate a “no-

growth trap”; the negative effect of spillovers on private obsolescence can be so large that

the incentive to create the first generation of knowledge completely disappears.

Nonetheless, in a dynamic context, this negative effect of spillovers could be substan-

tially mitigated. The inventing firm could reabsorb its spilled knowledge in a future period,

which should reduce the obsolescence of rents the inventing firm captures. Suppose there

are two economies that are identical in all dimensions, but in the first economy firms are

more likely to reabsorb their spilled knowledge. We would expect innovation and growth

to be higher in the first economy, since spillovers would discourage current research to a

lesser extent.

The major contribution of this paper is to develop an empirical methodology, based on

patents and citations, that allows measuring spillovers and the extent they feed back into

the inventing firm. I define this feeding back of spillovers as technological internalization

and show it is an important channel through which private rents are appropriated. Tech-

nological internalization is identified by distinguishing between two types of spillovers:
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Internalized and Externalized. Internalized spillovers are spillovers that feed back into the

dynamic research of the inventing firm, whereas Externalized spillovers do not. Techno-

logical internalization is argued to be higher when spillovers are more Internalized and less

Externalized.

In addition to the technological channel of internalization, firms can internalize rents

through a contractual channel. The literature has studied the theoretical aspects of con-

tractual internalization, mainly as a mechanism through which rents are shared between

early innovators and their followers. Green and Scotchmer (1995), Scotchmer (1996) and

Chang (1995) study the theoretical aspects of the effect of a second-generation invention

on the rents captured on the first-generation invention4.

However, the literature has not yet investigated the technological channel through

which an inventor can reap the rents on its discovery. Potentially, this channel of inter-

nalization could be highly important for the generation of “pure” spillovers. According to

the endogenous growth literature, “pure” spillovers, which occur when knowledge trans-

fers freely across inventors, allow the economy to depart from decreasing returns in the

production of knowledge and achieve sustained economic growth. Contractual internaliza-

tion hinders the free access to knowledge (since the receivers of knowledge have to incur

some usage costs). Hence, contractual internalization should diminish economic growth,

through restricting the increasing returns in knowledge production. Yet, under technolog-

ical internalization, “pure” spillovers should not diminish in any obvious way, since private

rents can be captured without limiting future research. Thus, technological internalization

should be a more desirable channel through which private rents are captured.

A famous example that illustrates the importance of technological internalization for

private returns is the invention of the CT (Computed Tomography) scanners. Trajtenberg

(1990) finds that this invention is associated with large social returns. However, private

returns to this discovery were low, as the spillovers this invention created were mostly

Externalized. This technology was developed by EMI (a British electronic company) and

4Bessen and Maskin (2002) argue that competition in research could actually encourage the incentive
to innovate when innovation is cumulative and sequential.
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was patented in 1973. A market for CT scanners emerged following rapid innovation

aiming at exploiting the new technological opportunities. From 1975 onwards, hundreds

of offspring inventions were created. In the early years, most of these inventions were

developed by EMI itself, however, after less than a decade EMI failed to capture any

significant portion of the market (which was mainly dominated by General Electric) and

was no longer at the frontier of the technology it had originated. This implies that the

private returns to the invention of the CT scanners were strongly negatively affected by

the spillovers this invention created.

The essence of my empirical methodology is as follows: knowledge is identified as a

patent and knowledge flow is identified as a patent citation5. For each patent in the

sample a “family-tree” is constructed, based on the citations the patent receives. Figure

1 illustrates this methodology for a simple case of a sequence of three patents. Assume

patent m cites patent l and patent n cites patent m. Hence, the “family-tree” of patent l

includes both patent m and patent n, where, patent m is the ‘child’ of patent l and patent

n is the ‘grandchild’ of patent l. Given this “family-tree”, invention n is classified as an

offspring of invention l, even though knowledge did not transfer directly from invention l to

invention l. Applying this method to a high-order sequence of citations allows tracing the

trajectory knowledge has followed, while spreading across inventions and firms. Based on

these trajectories, it can be determined whether knowledge that leaves the inventing firm

and is further advanced by other firms will have been reabsorbed by the inventing firm in a

future period (e.g., if patents l and n are held by the same firm whereas patentm is owned

by another firm, the spillovers created by invention l are technologically internalized by

the inventing firm).

5Prior studies that empirically identified citations as knowledge flows are Jaffe, Henderson and Tra-
jtenberg (1993), Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1999).
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Figure 1: The “family-tree” of invention l

A model of sequential innovation with dynamic spillovers is developed: private returns

to the knowledge k are defined as the stream of profits the inventing firm captures from all

the subsequent developments it introduces along the line of research k originates. Spillovers

are modeled as the follow-up developments of k that are invented by other agents along

the line of research. In a dynamic perspective, private rents and, therefore, the R&D

expenditures of the inventing firm would depend on the extent the inventing firm is able

to build on the external developments of k.

Thus, the model predicts that technological internalization would raise the private

returns and R&D expenditures of the inventing firm. These predictions are confirmed

using panel data on the largest 500 patenting firms in the US between 1980 and 2001.

There is a substantial firm-level variation in technological internalization, even within

narrowly defined industries. This firm—level variation is exploited in estimating the effect

of technological internalization on the market valuation of the R&D stock of the firm. The

estimation results show that the effect of the R&D stock on market value intensifies when

technological internalization is higher. A one standard deviation increase in the measure

of Internalized spillovers raises, at the mean, the market valuation of an additional dollar

spent on R&D by 30 percent, whereas a one standard deviation increase in the measure of

Externalized spillovers lowers, at the mean, the market valuation of an additional dollar

6



spent on R&D by 10 percent.

In addition to quantifying the effect of technological internalization on private returns,

the findings from the market value estimation also suggest that firms themselves are aware

of their technological internalization and take it into consideration when making the R&D

decisions. This hypothesis is confirmed by estimating a R&D equation; firms that create

more Internalized and less Externalized spillovers, on average, invest substantially more

in R&D.

Finding that the R&D decision of the inventing firm is affected by the type of spillovers

it creates, once more, has important implications for the endogenous growth literature.

Spillovers encourage the innovation activity of the receivers of knowledge, however, the

effect of spillovers on the incentive to create the spilled knowledge at the first place depends

on whether they are Internalized or Externalized.

In summary, I show that firms are able to internalize dynamically some of their knowl-

edge that spills to other firms. To the extent that such internalization occurs, the classical

underinvestment problem in R&D will be mitigated, as the negative effect of spillovers on

private returns weakens.

The rest of the paper is organized as following: section 2 presents the analytical frame-

work, section 3 describes the empirical methodology, section 4 discusses the data, the

econometric specifications and findings are reported in section 5 and section 6 concludes.

2. Analytical motivation

Spillovers enhance the technological opportunities created by knowledge by increasing

the probability that subsequent developments of the knowledge will occur. The extent

spillovers raise private returns depends on whether the inventing firm benefits from these

enhanced technological opportunities. Technological internalization should be higher when

spillovers are more likely to feed back into the inventing firm.

Technological internalization is represented by the parameter θ. It is assumed that

firms do not behave in any strategic way to affect θ or the flow of their knowledge to other
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firms (although these might be interesting extensions). Also, the inventing firm cannot

extract monetary payoffs from the spread of its knowledge to follow-up developers (i.e.,

contractual internalization is not allowed). The model does not include time. Periods are

defined by the arrival of stages of developments (i.e., every period includes one stage of

development) and there is no discounting.

The model distinguishes between static and dynamic returns to innovation6. Static

returns are defined as the one period stream of profits attributed to a single invention7.

Dynamic returns, however, also consider the stream of profits the inventing firm can

capture by continuing to invent along the line of research it originates. The ability to do

so depends on the extent the inventing firm can build on the follow-up developments that

other firms introduce along the line of research.

Suppose firm i (the inventing firm) holds a piece of knowledge k, which has the potential

of being sequentially developed an infinite number of times. The static returns to this

knowledge include the stream of profits firm i receives from this invention, until these

profits become obsolete, which occurs with the development of the next generation of the

knowledge k. Nevertheless, dynamic returns to the knowledge k do not become obsolete

once a subsequent development takes place, if firm i continues to invent along the line of

research k originates.

Let v be a constant one-shot pay-off associated with winning a development stage of

the knowledge k. In every development stage there are n firms competing in a patent

race. Only one firm is allowed to win a development stage. If more than one firm makes

a discovery, a patent cannot be granted, and both firms engage in Bertrand competition

that drives profits to zero.

Every generation of development requires a constant R&D investment of x, which

yields a positive probability p of making a discovery by firm i (i.e., with probability p firm

6Bessen and Maskin (2002) also provide a model of sequential innovation that studies the incentive to
innovate in a similar dynamic framework.

7The huge literature on the optimal design of patents rights studies the effect of the outward flow of
knowledge on static private returns (which patents aim to protect). See, for example, Klemperer (1990),
Gilbert and Shapiro (1990), Scotchmer (1999) and Cornelli and Schankerman (1999).
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i discovers a piece of knowledge that awards the static payoff v, if no other firm invents

the given generation). Denote by q the positive probability that at least one of firm i’s

competitors along the line of research makes a discovery in every stage of development.

Hence, the expected static rent firm i captures from participating in a development

stage, Z, which is assumed to be strictly positive, is:

Z = p(1− q)v − x (2.1)

2.1. Dynamic returns and reabsorbing spilled knowledge

As a departure point, assume that once firm i fails to win in a given generation, it cannot

continue developing the next generation, even if some other firm has been successful in in-

venting this generation. In this case, technological internalization cannot occur. Dynamic

returns to the knowledge k are:

Wi = (p(1− q)v − x) + p(1− q) (p(1− q)v − x) + p2(1− q)2 (p(1− q)v − x) + ... (2.2)

The first term on the right hand side of equation (2.2) is the expected static pay-off of

winning the first generation of development, the second term is the expected static pay-

off of winning the second generation of development, which is positive with probability

p(1 − q) (the probability of winning the first generation), the third term is the expected

static pay-off of winning the third generation (which is positive only if firm i had won the

first and second generations of developments that occur with probability p2(1−q)2) and so
forth. It is straightforward to show that since an infinite number of potential developments

is assumed, Wi becomes:

Wi =
vp(1− q)− x

1− p(1− q)
(2.3)

Next, suppose that if firm i does not win in a given generation, whereas the subsequent

knowledge has been invented, firm i can still proceed to invent the follow-up generation.
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Thus, the extent technological internalization occurs is captured by the number of ‘second

chances’ the inventing firm gets to stay in the sequential development of its spilled knowl-

edge, if it fails to win in a development stage, but some other firm invents. The number

of “second chances” is denoted by θ (in equation (2.3), θ = 0, since the firm is not allowed

to have any ‘second chances’).

Consider the case where θ = 1, i.e., if firm i fails to win more than once, it is forced out

from the dynamic race (firm i receives one ‘second chance’). In this scenario, the dynamic

returns firm i captures on its knowledge k can be written as:

Wi(θ = 1) = (p(1− q)v − x) + p(1− q) (p(1− q)v − x) + p2(1− q)2 (p(1− q)v − x) + ...

+p(1− q)q(p(1− q)v − x) + 2p(1− q)(1− p)q (p(1− q)v − x) + ... (2.4)

Where the second row on the right hand side of equation (2.4) represents the ‘second

chance’ firm i gets (for example, the first term in the second row is the additional expected

rent the firm captures due to the fact it is allowed not to win in the first generation and

still participate in the development race of the second generation). It is easy to show that

equation (2.4) can be written as:

Wi(θ = 1) =
(1− q) pv − x

(1− p) (1− q)

Ã
1−

µ
q

1− (1− q) p

¶2!
(2.5)

This model can be generalized for any θ in the following way8:

Wi(θ) =
(1− q) pv − x

(1− p) (1− q)

Ã
1−

µ
q

1− (1− q) p

¶θ+1
!

(2.6)

This implies that the returns firm i faces increase in θ, since q
1−(1−q)p < 1

9. This sum-

marizes the main theoretical prediction; accordingly, private returns rise with the ability to

reabsorb spilled knowledge (which increases the likelihood of technological internalization).

8See Belenzon (2005) for detail on the derivation of this expression.
9q is also the probability an invention occurs, however, firm i is not the winner. Thus, q = q(1−p)+pq,

which is smaller than 1− p+ pq, as q < 1.
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Note that by substituting θ = 0 into equation (2.6) we get equation (2.3), which is

the dynamic returns firm i captures on its discovery without technological internalization.

Moreover, when the firm has a ‘complete’ ability to build on the research of its rivals

(θ =∞), the dynamic returns become:

Wi(θ =∞) =
v (1− q) p− x

(1− p) (1− q)
(2.7)

Hence, dynamic returns are the static returns per subsequent invention (Z in equation

(2.1)), discounted by the probability that the line of research will terminate10 (which occurs

with the probability (1− p) (1− q) , where no firm invents). As the probability that the

line of research terminates falls, dynamic returns rise.

2.2. The incentive to innovate and θ

θ should positively affect the innovation effort of the inventing firm since it increases

private returns (the subscript i is omitted in the rest of this section).

Suppose k originates two different lines of research. In the first line of research θ = 0

and in the second line of research θ = ∞. The next section shows how these two types

of lines of research are empirically identified. Lines of research with θ = 0 are associated

with knowledge leaving the boundaries of the inventing firm, never to return (defined as

Externalized lines of research), whereas lines of research with θ =∞ are associated with

the originating knowledge being reabsorbed by the inventing firm (defined as Internalized

lines of research).

The model is slightly modified to allow firm i choosing its R&D expenditures, x, which

affects the probability of inventing, p(x), with p0 (x) > 0, p00 (x) < 0, p(0) = 0 and

p(∞) = 111.
Suppose θ = 0. For simplicity, assume the firm is small in the sense there is no strategic

interaction in R&D. Thus, the dynamic returns to the knowledge k are:
10Compared to equation (2.3) , where Z is divided by the term 1− p(1− q), this term is the probability

that the line of research will be terminated in firm i’s perspective, which occurs when firm i fails to win
in a development stage.
11Decreasing returns to scale in the production of knowledge are necessary to ensure an interior solution
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W (θ = 0) =
vp (x) (1− q)− x

1− p (x) (1− q)
(2.8)

The firm maximizes equation (2.8) with respect to its R&D expenditures, x, which

yields the following first order condition:

p0 (x|θ = 0) = 1

(1− q) (W (θ = 0) + v)
(2.9)

Let x∗(θ = 0) solve equation (2.9). Thus, the optimality condition equates the marginal

benefit from R&D (the increase in the probability of a discovery that is achieved by a

marginal increase in the R&D spending, p0 (x)), adjusted by the probability that the firm

will be the sole winner in the research race (while taking into account the one shot pay-off,

v, and the total pay-off of winning the race,W (θ = 0)), to the marginal cost of R&D, which

is assumed to be 1. An increase in q reduces the probability of winning the development

stage and, consequently, reduces the R&D expenditures of the firm (note that W (θ = 0)

is a decreasing function of q). On the other hand, an increase in the one shot payoff, v,

encourages the firm to innovate more (note that W (θ = 0) is an increasing function of v).

More importantly, a rise in the dynamic rent, given byW (θ = 0) , increases the innovation

efforts of the firm.

Now consider the case where θ = ∞. Dynamic returns to knowledge k are expressed
as:

W (θ =∞) = vp (x) (1− q)− x

(1− p (x)) (1− q)
(2.10)

for x. The second order condition is:

∂W 2(·)
∂2x

= p00 (x)− 1

(1− q)

"
−

∂W (·)
∂x

(W (·) + v)2

#
≤ 0

Define x∗ as the optimal R&D decision, thus:

∂W 2(·)
∂2x

|x=x∗ = p00 (x)

For x∗ to be a maximum we require p00 (x) < 0.
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The first order condition for x is:

p0 (x|θ =∞) = 1

(1− q) (W (θ =∞) + v)
(2.11)

Let x∗(θ =∞) solve equation (2.11).

Proposition 2.1. The firm innovates more in case θ =∞, compared to the case θ = 0.

To prove proposition 2.1, it is enough to show thatW (θ =∞, x∗(θ =∞)) > W (θ = 0, x∗(θ = 0)),

since p00 (x) < 0. Suppose that W (θ = 0, x∗(θ = 0)) > W (θ =∞, x∗(θ =∞)) . This in-
equality cannot hold, since I have shown above that W (θ =∞, x) > W (θ = 0, x) . Thus,

W (θ =∞, x∗(θ = 0)) > W (θ =∞, x∗(θ =∞)) ,which is a contradiction of x∗(θ =∞) be-
ing the optimal R&D investment when θ =∞.Hence, it must be thatW (θ =∞, x∗(θ =∞)) >
W (θ = 0, x∗(θ = 0)), which implies that p0 (x|θ =∞) < p0 (x|θ = 0) and x∗(θ = ∞) >
x∗(θ = 0). The case where W (θ =∞, x∗(θ =∞)) = W (θ = 0, x∗(θ = 0)) cannot hold

from exactly the same argument12.

The simple intuition behind this proposition is that the firm is willing to invest more

in R&D, when private returns are higher.

In conclusion, a higher θ should intensify technological internalization and, therefore,

raise private returns. In case firms are aware of the effect of θ on private returns, R&D

expenditures should rise in θ as well.

The rest of the paper empirically supports these theoretical predications. In the econo-

metric section, dynamic private returns (Wi) are specified as ∂Vi
∂Ki

, where Vi is the market

value of the inventing firm and Ki is its knowledge stock (which is approximated by cur-

rent and past stream of own R&D expenditures)13. Private returns are specified as a

function of θ, ∂Vi
∂Ki

= Θ(θ), and θ is empirically identified by measures of Internalized and

Externalized spillovers.
12Appendix A.1 shows that proposition 2.1 can be generalized for every θ.
13It is convenient to model private returns as the effect of the knowledge of the inventing firm on its

market value, since markets are forward looking and should incorporate the dynamic consideration of
technological internalization developed in this paper.

13



3. Methodology

This section discusses the conceptual issues that underpin the empirical framework of

measuring technological internalization. I start by presenting how the technological con-

tribution of an invention is measured. Then, spillovers are defined as the external ex-

ploitation of the technological contribution of the invention. Finally, it is shown how it is

determined whether spillovers feed back into the inventing firm to generate technological

internalization.

3.1. Identifying the technological contribution of an invention

I propose measuring the technological contribution of an invention in two dimensions.

The first is the number of lines of research the invention originates and the second is

the ‘quality’ of these lines of research. A line of research is defined as a sequence of

inventions, where every invention is a follow-up development of its immediate ancestor.

This sequence of inventions is required to be unique over a given time period, i.e., not to

be fully contained in a longer sequence of inventions. Define the first invention in the line

of research as an originating invention. A line of research is assumed to be of a higher

‘quality’, if the number of subsequent developments of the originating invention along the

line of research is higher.

More formally, the technological contribution of invention i, TCi, is computed as the

‘quality’-weighted count of the lines of research invention i originates, as following14:

TCi =
X
k∈Ki

LRk ×Qk (3.1)

Where, Ki is the set of lines of research originated in invention i, k indexes lines of

research in this set, LRk is a dummy that receives the value 1 for line of research k and

zero otherwise, and Qk is the ‘quality’ of line of research k, as measured by the number of

14Belenzon (2005) shows that this method of measuring technological contribution is equivalent to an
alternative approach of counting the number of offspring inventions and weighing each one by the number
of direct citations received.
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inventions the line of research includes15.

Applying this formulation to the diffusion patterns in figure 1 yields:

TC1
A = (1× 3) = 3 (3.2)

Where, TC1
A is the technological contribution of invention A under pattern 1. The

term 1 in the brackets represents the singleton line of research A → B → C → D that

is adjusted by its ‘quality’, which is 3 (since it includes three subsequent developments of

invention A: B, C and D).

Similarly, the technological contribution of invention A under diffusion pattern 2, TC2
A,

is:

TC2
A = (1× 2) + (1× 2) = 4 (3.3)

The term 1 in the first brackets represents the line of research A → B → C that

is adjusted by its ‘quality’, which is 2 (since it includes two subsequent developments of

invention A: B and C). The term 1 in the second brackets represents the line of research

A → B → D that is adjusted by its ‘quality’, which is 2 as well (since it includes two

subsequent developments of invention A: B and D).

From this is concluded that the technological contribution of invention A under dif-

fusion pattern 2 is greater than its technological contribution under diffusion pattern 1

(intuitively, under both patterns of diffusion the number of subsequent developments is

equal. However, there are more research opportunities under pattern 2, as indicated by

the number of lines of research).

15Simply counting the number of inventions along a line of research may be an overestimate of the
technological contribution of the originating invention. A subsequent invention which is a high generation
of development of the originating invention is more likely to have benefited from other prior subsequent
inventions along the line of research. Thus, I always discount every generation by a discount factor of

δ per generation (which is assumed to be 15 percent), thus, Qk =
JX
j=1

δj−1, where, J is the number of

offspring inventions in line of research k. Since the choice of the discount factor is arbitrary, other values
of δ are experimented with as robustness tests.
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Figure 2: Technological contribution

Figure 2: Circles in this figure represent inventions and arrows represent the direction

of knowledge flow. Pattern 1 illustrates a singleton path of knowledge flow, which is A→
B → C → D, while diffusion pattern 2 illustrates two unique paths of knowledge flows,

which are A → B → C and A → B → D. Determining the technological contribution of

invention A under the two diffusion patterns requires weighing these lines of research by

their ‘quality’, by measuring their length in terms of the number of inventions they include.

3.2. Measuring spillovers

Spillovers are defined as the external exploitation of the technological contribution of an

invention, where external refers to the set of firms that are different from the inventing

firm. Following this definition, spillovers are measured as the number of external inventions

along the lines of research the originating invention inspires.

For illustration, it is useful to examine a slightly more complicated diffusion pattern, as
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shown in figure 2. Capital letters represent inventions, where arrows represent the direction

of knowledge flow. This figure plots the diffusion pattern of the originating invention A,

where the offspring inventions are B, C, D, E, F , G, H, I and J . To complete the

presentation, the shape of each capital letter represents a different firm, i.e., a circle firm

(the inventing firm), a triangle firm and a square firm.
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Figure 3: Measuring spillovers

Figure 3: This figure illustrates the diffusion pattern of the originating invention A.

Inventions are represented by a capital letter, while the firm that owns the inventions is

represented by a shape (e.g., the inventing firm is the circle, since it owns the originating

invention A). I define the spillovers created by invention A, given this diffusion pattern, as

the number of inventions that are owned by the square and triangle firms (all the firms in

the figure which are different from the inventing firm) along the lines of research invention

A originates.

17



Following the methodology presented above, in order to measure the technological

contribution of invention A, we need to identify the lines of research invention A originates

and weigh them by their ‘quality’. Since a line of research is defined as a singleton

sequence of subsequent developments of the originating knowledge, there are five such lines

of research: A→ B → D → H, A→ B → E → I, A→ C → F → I, A→ C → F → J

and A→ C → G→ J . The technological contribution of invention A following equation

(3.1) is given by:

TCA = (1× 3) + (1× 3) + (1× 3) + (1× 3) + (1× 3) = 15 (3.4)

Since spillovers are defined as the external inventions that compose the lines of research

an invention originates, they are formulated as:

Spilloversi =
X
k∈Ki

LRk × Sk (3.5)

Where, i is an originating invention, Ki is the set of lines of research invention i origi-

nates, k indexes lines of research in this set, LRk is a dummy that receives the value 1 for

line of research k and zero otherwise and Sk is the number of external inventions included

in line of research k. Following this formulation, the spillovers created by invention A are:

SpilloversA = (1× 3) + (1× 2) + (1× 2) + (1× 3) + (1× 3) = 13 (3.6)

Where, the second and third terms, (1× 2) and (1× 2) , correspond to the fact that
invention I is owned by the inventing firm. Thus, invention I is excluded from the spillovers

measure for invention A (the spillovers along lines of research A → B → E → I and

A→ C → F → I are based only on inventions B, E, C and F )16.

16In some patterns of diffusion, the first subsequent development of the originating knowledge is done by
the inventing firm (which is identified as a self-citation). Hence, knowledge does not immediately spread
to other inventors. In this case, the ‘in-house’ subsequent development is not measured as spillovers (where
spillovers along such lines of research occur only if in a future generation of development knowledge leaves
the boundaries of the inventing firm).
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Finally, I aim at distinguishing between two types of spillovers: spillovers that con-

tribute to the dynamic research of the inventing firm and spillovers that do not.

3.3. Internalized and Externalized lines of research

Two types of lines of research are identified: the first type is lines of research where the

originating knowledge leaves the inventing firm and returns to this firm after having been

further developed by other firms. The second type is lines of research where the originating

knowledge leaves the inventing firm and does not return. Spillovers along the former type

are internalized in the dynamic research of the inventing firm and, therefore, these lines of

research are defined as Internalized lines of research. However, spillovers along the latter

type do not contribute to the dynamic research of the inventing firm, therefore, these lines

of research are defined as Externalized lines of research.

Hence, the spillovers of an invention can be written as:

Spilloversi =
X

j∈Internalizedi

LRj × Sj +
X

t∈Externalizedi

LRt × St (3.7)

Where i denotes an originating invention, Internalizedi is the set of Internalized lines

of research originated in invention i, Externalizedi is the set of Externalized lines of

research originated in invention i, j indexes lines of research in the Internalizedi set and t

indexes lines of research in the Externalizedi set. I define the first term in the right-hand-

side of equation (3.7) as IntSpilli and the second term in the right-hand-side of equation

(3.7) as ExtSpilli. Thus, equation (3.7) becomes:

Spilloversi = IntSpilli +ExtSpilli (3.8)

In addition, IntSharei is defined as the ratio between IntSpilli and Spilloversi.

To illustrate this decomposition, it is useful to refer back to figure 2. Out of the five lines

of research that invention A originates, two are Internalized and three are Externalized.

The set InternalizedA is:
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InternalizedA = {A→ B → E → I,A→ C → F → I}

Similarly, the set ExternalizedA is:

ExternalizedA = {A→ B → D→ H,A→ C → F → J,A→ C → G→ J}

Given this decomposition, IntSpillA = (1× 2) + (1× 2) = 4 (two external inventions
in the first line of research and two external inventions in the second line of research in

the InternalizedA set).

Similarly, ExtSpillA = (1× 3) + (1× 3) + (1× 3) = 9 (three external inventions in

each of the three lines of research in the ExternalizedA set).

3.4. Empirical methodology

Inventions are empirically identified as patents and knowledge flows as citations (where

knowledge flows from the cited patent to the citing patent). Patents and citations data

contain significant noise and bias17. Nonetheless, these data also offer unique information

on the diffusion pattern of knowledge and sequential innovation, which I believe to be

extremely useful for exploring the ideas developed in this paper.

Hence, inventions in figures 2 and 3 are empirically identified as patents, whereas

arrows are empirically identified as citations. For example, an arrow from invention A to

invention B in figures 2 and 3 reflects the fact that patent B cites patent A. The task I

am facing is to effectively draw figure 2 for the set of originating inventions18.

A unique line of research is empirically identified as a singleton sequence of citations

(where, each patent cites its direct ancestor). As discussed above, a sequence of cita-

tions is defined as singleton, if it is not fully contained in a longer sequence of citations

17See, for example, Trajtenberg (1990) for the potential bias in patents as indicators for innovation
output, and Trajtenberg, Jaffe and Fogarty (2001) for a study on the noise component in citations as
indicators for knowledge flows.
18The design of this set is explained below.
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for the given time period being explored. After extracting the lines of research for the

sample of originating patents, each line of research is classified as either Internalized or

Externalized19.

The period for which lines of research are constructed is restricted to 15 years after the

grant year of the originating patent. For example, for a patent that was granted in 1975,

the youngest patents in all the lines of research it originates cannot be granted after 1990.

Further, citations along a line of research are added as long as the line of research has not

already been classified as Internalized20. Thus, this methodology extracts all the unique

trajectories where knowledge had left the boundaries of its inventor and returned to these

boundaries in a time period of 15 years after the knowledge had been created21, as well as

all the unique trajectories where knowledge had left the boundaries of the inventing firm

and did not return to these boundaries in the same time period22.

Since this paper exploits the firm-level variation in technological internalization, IntSpill,

ExtSpill and IntShare are aggregated to the firm level by the taking their mean over

the set of originating patents held by the inventing firms. For ease of notations, these

variables are not re-labeled. Hereafter, they refer to the firm-level aggregates.

19The reader who is familiar with the economics of patents literature can find the definition of an
Internalized line of research similar to a self-citation. A self-citation is the case where a firm develops its
prior knowledge directly (the first citation the patent receives is from the inventing firm). An Internalized
line of research is the case where the firm indirectly develops its prior knowledge, after it has been
developed by other firms. Thus, an Internalized line of research is a unique indirect self-citation, which I
associate with a higher appropriability, as the existing literature does with self-citations (e.g., Hall, Jaffe
and Trajtenberg (2005)).
20E.g., consider the Internalized line of research A→ B → E → I that is presented in figure 3. Assume

that patent I is cited by patent K, such that this line of research becomes A → B → E → I → K.
The imposed restriction implies that only the line of research A→ B → E → I will be extracted for the
originating patent A.
21Since I refer to the grant year of the patent and not to its application year, the creation date of the

patented knowledge is actually earlier. However, my algorithm builds on the fact that a citing patent
cannot be cited before it cites. This crucial feature of the data can be exploited only by referring to the
grant year of the patent (see Belenzon (2005) for detail on the algorithm).
22It is important to note that this methodology incorporates the case where knowledge is first developed

sequentially ‘in-house’ by the inventing firm (i.e., self-citations). In numerous cases the inventing firm
develops the first follow-up inventions of the originating knowledge. In such lines of research knowledge
leaves the boundaries of the inventing firm via a higher order generation of citation. These lines of research
are classified as Internalized or Externalized following the same criterion described above.
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4. Data

4.1. Diffusion data

Patents and citations data are taken from the U.S. Patent and Trademark Office from the

NBER archive. The sample of patents and citations includes about 1.7 million citations

and 600,000 patents (which can appear as offspring inventions)23. The set of originating

patents includes all patents granted between 1969 and 198024 that received at least one

citation during 1975-1995 (recall that all the direct and indirect citations the originating

patent receives are extracted for a period of 15 years since its grant year). These patents

must be held by the sample of firms for which complete accounting data are available

for the period 1980-2001 (IntSpill and ExtSpill are computed for patents from a pre-

estimation period. It is assumed that the pattern of diffusion of this set of inventions

is a time invariant characteristic of the firm25). This set of originating patents includes

104,694 patents26 (see appendix A.2.1 for more detail). Detail on the algorithm developed

to construct the diffusion data is provided in Belenzon (2005).

Table 1 describes the variation of lines of research across technology sectors and time.

The largest number of lines of research per citation received by an originating patent

is in the “Electrical and Electronics” sector. This may indicate a high technological

23The set of citing patents includes all patents held by the US Compustat firms that were matched
to the USPTO by Hall, Jaffe and Trajtenberg (2001), and made at least one citation. This set includes
about 30 percent of all citing patents in the USPTO (and 50 percent of US citing patents).
24The year 1969 is the earliest year for which there is citations information for the patents held by the

firms in the sample. Also, in practice I could extract the diffusion pattern of patents that were granted
up to 1985, since the citations data goes up to 1999. However, there is a huge spike in the number of
citations in 1995 (see figure A3), where the number of citations rises by around 800,000 in the period
1995-1999. In addition to the feasibly of extracting sequences of citations from these huge data, there is
also a concern that the explosion in citations in this period is not associated with stronger learning and
sequential innovation, but with changes in the patenting behavior of firms, which could contaminate the
results.
25There is a trade-off between constructing time varying diffusion variables and correctly measuring

IntSpill and ExtSpill. In case the 15 years horizon for which sequences of citations are extracted for
every patent is reduced, more periods for the construction of IntSpill and ExtSpill would be observed.
However, when analyzing a short diffusion period the lines of research are more likely to be Externalized,
as knowledge has less time to return to the inventing firm.
26This set includes 45 percent of all cited patents between 1969 and 1980 that are held by US Compustat

firms that were matched to the USPTO by Hall, Jaffe and Trajtenberg (2001).
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complexity in this sector, where complexity refers to the various distinct ways along which

knowledge can be sequentially developed27. About 7.6 percent of the lines of research are

Internalized. This share appears to be rather stable over time, with an exception in “Drugs

and Medicals”. In the period 1978-1980 there is a large drop in the share of Internalized

lines of research in this sector, which may be associated with the Biomed revolution that

took place at the end of the 70’s. I plan to investigate this separately in a future research.

4.2. Accounting data

The accounting data (sales, R&D, capital, etc.) and market value data are taken from US

Compustat for the period 1980-2001 and are merged to the U.S. Patent and Trademark

Office data from the NBER archive28. Only firms that were cited during the diffusion

period were included in the sample, leaving an unbalanced panel of about 500 firms in the

period 1980-2001 and a total of 9,454 observations. The final sample includes the largest

patenting firms in the US. The average number of years firms are active in the sample is 18.5

(and the median is 21). I find it important to focus the analysis on long surviving firms, due

to the interest of studying the effect of technological internalization on firms that wish to

remain at the frontier of the technology they originate. Otherwise, Externalized spillovers

could capture exit of firms (since firms that exit will have only Externalized spillovers

from the date they exit onwards), which will change the interpretation of technological

internalization29. Appendix A.2 provides detail on the construction of this sample.

Table 2 summarizes the descriptive statistics for IntSpill, ExtSpill and InShare as

well as for the main accounting variables. The correlation between IntSpill and ExtSpill

27For example, technology field 438 (Semiconductor Device Manufacturing: Process) in the “Electrical
and Electronics” sector has on average 112.3 lines of research per citation received by an originating
patent. On the other hand, technology field 139 (Textiles: Weaving) in the “Chemicals” sector has only
of 5.1 such lines of research.
28The matching between assignee names and Compustat firms is taken from Hall, Jaffe and Trajtenberg

(2001).
29It would be interesting to analyze the effect of technological internalization on exit, however, this is

not studied in this paper.
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is 0.365 (which implies that firms that create more Internalized spillovers also create more

Externalized spillovers). About 40 percent of firms do not create Internalized spillovers at

all, whereas all firms create Externalized spillovers.

5. Estimation

This section presents the estimation results of the effects of IntSpill and ExtSpill on the

market value and R&D expenditures of the firm. I start by showing that these variables

matter for the market valuation of the R&D stock of the firm. Findings that technological

internalization matters for market value may imply that it also matters for the R&D

decisions of firms. I test this hypothesis by estimating a R&D expenditures equation.

5.1. Market value equation

In order to estimate the effect of technological internalization on private returns, a simple

version of the value function approach proposed by Griliches (1981)30 is adopted. The

market value of firm i at period t, Vit, takes the following form:

Vit = κit (Ait + γKit) (5.1)

Where, Ait denotes physical assets, Kit is the R&D stock (representing knowledge

stock), γ is the shadow price of the R&D stock (higher values of γ indicate that the

market valuation of the knowledge stock relative to physical stock rises)31. The parameter

γ captures the private returns to innovation, which are defined as the change in market

value as a response to a change in the R&D stock of the firm. γ is modeled as a linear

function of IntSpill and ExtSpill32:

γ = γ0 + γ1 (IntSpilli) + γ2 (ExtSpilli) (5.2)

30See also Jaffe (1986), Hall et al (2005) or Lanjouw and Schankerman (2004).
31A constant returns in the market value function has been assumed, consistently with previous studies.
32Specifications where IntShare is included instead of IntSpill and ExtSpill are also reported.
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I expect γ1 to be positive and γ2 to be negative (the theoretical predication is that pri-

vate returns rise with θ, empirically captured by a higher IntSpill and a lower ExtSpill).

Taking logarithms and dividing by Ait, the left-hand-side of equation (5.1) becomes the

traditional Tobin’s average Q, where its deviation from unity depends on the ratio between

the R&D stock to the tangible stock
¡
K
A

¢
, IntSpill, ExtSpill and κit, as following:

log

µ
Vit
Ait

¶
= log κit + log

µ
1 + γ

Kit

Ait

¶
(5.3)

Finally, κit is specified as:

log κit = Z 0itβ0 + β1 log (1 + IntSpilli) + β2 log (1 +ExtSpilli) + τ t + ηi + it (5.4)

Where, Zit is a vector of controls (such as industry and technology dummies, sales,

patents stock, etc.), τ t is a complete set of time dummies, ηi is the firm fixed-effect,

which is discussed later in this section, and it is an idiosyncratic error term. The linear

terms of IntSpill and ExtSpill are included in the specification mainly as controls for

their interaction with the R&D stock. Since IntSpill has many zero values, a dummy for

IntSpill equals zero is always included.

Thus, the following equation is estimated by non-linear least squares (where standard

errors are clustered by firms):

log

µ
Vit
Ait

¶
= Z 0itβ0 + β1 log (1 + IntSpilli) + β2 log (1 +ExtSpilli) (5.5)

+ log

µ
1 + (γ0 + γ1 (IntSpilli) + γ2 (ExtSpilli))

Kit

Ait

¶
+ τ t + ηi + it

5.2. R&D equation

A R&D equation is estimated in order to test whether IntSpill and ExtSpill affect the

R&D decision of firms, as predicted by proposition 2.1 (intuitively, in case technological
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internalization raises private returns, we should find firms with higher technological in-

ternalization, on average, investing more in R&D). I estimate the firm fixed-effects in the

R&D equation (a complete set of firm dummies), and project the estimated firm fixed-

effects on IntSpill and ExtSpill.

The R&D equation that is estimated is:

logR&Dit = αi +X 0
itβ + it (5.6)

Where, R&Dit is the R&D expenditures of firm i in period t, αi is the firm fixed-

effect, Xit is a vector of controls for sales and patents variables and it is an idiosyncratic

error term. The sales variables (current and lagged) aim to capture demand shocks that

may affect R&D incentives. The patents stock (weighed by citations) can affect the R&D

decision of the firm in various ways. One possibility is that patents capture the intellectual

property protection the firm faces, so that a larger patent portfolio raises the incentive to

perform R&D. I also estimate a dynamic specification by adding R&Dit−1 in the right-

hand-side of equation (5.6).

Based on the estimates obtained from the R&D equation, bαi is projected in the second

stage on IntSpill and ExtSpill:

bαi = δ1 log (1 + IntSpilli) + δ2 (1 +ExtSpilli) + δ3X
0
i + νi (5.7)

Where, Xi is the mean of Xit over the estimation period (1980-2001) and νi is the error

term. δ1 is expected to be positive and δ2 is expected to be negative33. Since IntSpill has

many zero values, a dummy for IntSpill equals zero is always included.

33In addition, the estimation results of including only IntShare are reported. IntShare is expected to
have a positive effect on bαi.
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5.3. Preliminary issues for the market value estimation

5.3.1. Dealing with cross-industry variation

Firms in the sample are located in different industries. These industries may vary in private

returns and technological internalization. Hence, a pooling estimation across industries

may capture industry variation in private returns, via IntSpill and ExtSpill. I cope

with this concern in various ways. In all the specifications reported below, complete sets

of two-digit industry dummies and main technology sector indicators are included34. The

technology indicators are the share of the firm’s patents in each of the five main technology

sectors. Moreover, small sample evidences are presented for three specific heterogenous

industries.

Table 3 looks at the variation of the diffusion variables across four levels of industry

aggregation. The analysis of the variation of the diffusion variables shows that the main

variation comes from within industries, mainly for IntSpill and ExtSpill (IntShare ap-

pears to be more sensitive to industry effects, however, about 50 percent of its variation

is still evident within four-digit industry breakdown). This finding is encouraging, since it

is more likely that the source of variation in technological internalization is not strongly

associated with industry location.

5.3.2. Endogeniety

The use of firm level accounting data may lead to the classical endogeniety bias in the

R&D stock. A higher market value can, indeed, be the result of conducting more R&D,

however, the ability to devote more resources to R&D can reflect a higher market value

that provides more finance to the innovative activity. Moreover, demand or supply shocks

can simultaneously raise the R&D expenditures and the market value of the firm. In

order to mitigate this potential bias, a complete set of year dummies is included, aiming at

34The estimation results of a linearized version of equation (5.5) with a complete set of four-digit SIC
dummies are also reported.
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capturing transitory shocks35. Further, mymain interest is to recover the effects of IntSpill

and ExtSpill, which are less sensitive to the endogeniety of the accounting variables.

A more serious endogeniety bias may be associated with IntSpill and ExtSpill, as

there is an overlap in the period used for their construction and the estimation period36.

In order to test the sensitivity of the findings, I experiment with different time periods for

the construction of IntSpill and ExtSpill, so as to reduce the overlap with the estimation

period37. The pattern of results is robust to the different time periods.

5.3.3. Firm fixed-effects

I do not control for firm fixed-effects in the market value equation by including a complete

set of firm dummies from two main reasons: first, under the assumption of efficient mar-

kets, changes in market value should not be predicted (especially by common observable

characteristics, such as R&D stock)38. Second, IntSpill and ExtSpill are time-invariant.

Thus, in the presence of firm dummies, the only way to identify their effect is via the vari-

ation in their interaction with the R&D stock. Since the R&D stock is rather persistent

over time within firms, in practice, there is no significant effect of IntSpill and ExtSpill

when a complete set of firm dummies is included.

Therefore, I control for firm fixed-effects by adopting the “mean scaling” approach

developed by Blundell, Griffith and Van Reenen (1999). Their method assumes that

computing the mean of Tobin’s Q in a long enough pre-estimation period can be used as an

initial condition to proxy for unobserved heterogeneity, if the first moment is stationary. In

order to amplify the effectiveness of this method and test its robustness, I also include the

pre-estimation means of other firm-level variables, such as sales, industry sales, employees,

R&D stock, citations-weighted patents stock and citations stock39. The pre-sample means

35I also experiment with lagging the R&D stock by one period, which yields similar results.
36The estimation period is 1980-2001, whereas the diffusion variables are constructed for the period

1969-1995.
37IntSpill and ExtSpill are also constructed for the periods: 1969-1990, 1969-1985 and 1969-1980.
38Hall, Jaffe and Trajtenberg (2005) reach a similar conclusion.
39Including the mean of additional right-hand side variable is also important since they are computed

for a similar period used for the construction of IntSpill and ExtSpill. For example, in case technological
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of the accounting variables are constructed from US Compustat for the period 1970-1979

for the 476 firms in the estimation sample.

5.4. Estimation results for Tobin’s Q

All the Tobin’s Q specifications include a complete set of two-digit industry dummies (79

dummy variables), a set of indicators for the share of patents the firm has in each of the

five main technology sectors, a complete set of year dummies (21 dummy variables), a

dummy variable that receives the value one if the R&D stock of the firm is zero and a

dummy variable that receives the value one if IntSpill is zero.

Table 4 reports the estimation results of equation (5.5). Column 1 includes the linear

term of R&D over assets and its interaction terms with IntSpill and ExtSpill. The

coefficient on the linear term of R&D over assets (γ0) is positive and significant (0.280

with a standard error of 0.079). The coefficient on the interaction term of IntSpill with

R&D over assets (γ1) is positive and significant (0.208 with a standard error of 0.095),

while the coefficient on the interaction term of ExtSpill with R&D over assets (γ2) is

negative and significant (-0.011 with a standard error of 0.003). These findings support

the expectation that private returns rise with technological internalization.

Given these estimates, the elasticity of market value with respect to the R&D stock,

evaluated at the sample mean, is 0.10340. This implies that an additional one dollar

spent on R&D raises market value by 0.49 dollar (referred to as private returns). A one

standard deviation increase in IntSpill raises private returns to 0.63 dollar (thus, a 30

percent increase), whereas a one standard deviation increase in ExtSpill lowers private

returns to 0.44 dollar (thus, a 10 percent decrease)41.

internalization is higher when the firm has more originating patents, including only the patents stock in
the estimation period is not sufficient.
40The estimated elasticity is lower from that reported in previous studies. For example, Bloom,

Schankerman and Van Reenen (2005) report an elasticity of 0.24, using a similar estimation sample
without industry or technology effects.
41The estimated effects of IntSpill and ExtSpill on private returns are underestimated, as it is assumed

that a change in either measures is independent from the other. For example, it is likely that an increase
in IntSpill will reduce ExtSpill as well (thus, a line of research becomes Internalized instead of being
Externalized). This indicates that private returns will rise as a result of the increase in IntSpill and also
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In column 2, the pre-sample means are added42. The coefficient on the linear term of

R&D stock over assets halves (from 0.280 to 0.145) and remains significant. The coefficient

on the interaction term of IntSpill with the R&D stock over assets drops from 0.208 to

0.096, but it remains significant, while the coefficient on the interaction term between

ExtSpill and the R&D stock over assets drops in absolute value (from -0.011 to -0.005)

and remains significant as well43.

Based on the estimates from column 2, the elasticity of market value with respect

to the R&D stock, evaluated at the sample mean, is 0.056 (compared to 0.103 without

pre-sample means). An additional one dollar spent on R&D raises market value by 0.26

dollar (compared to 0.49 dollar without the pre-sample means). A one standard devia-

tion increase in IntSpill raises these private returns to 0.34 dollar, while a one standard

deviation increase in ExtSpill lowers private returns to 0.24 dollar.

In column 3, IntSpill and ExtSpill are added linearly. The same pattern of results

holds. The main change is a drop in the coefficient on the interaction term of IntSpill

(from 0.096 to 0.059), which remains significant. The coefficient on the linear term of

IntSpill is positive and significant, while the coefficient on the linear term of ExtSpill

is negative and significant, both as expected. Importantly, the positive effect of IntSpill

and the negative effect of ExtSpill are identified linearly and through their interaction

with the R&D stock over assets.

In columns 4 and 5, the sales of the firm, the aggregate sales in the industry the firm

operates in and the growth in the sales of the firm are added (see appendix A.2 for detail

on their construction). The same pattern of results with respect to IntSpill and ExtSpill

(linear and interacted terms) remains. The effects of Sales and Sales Growth are positive

and significant and the effect of Industry Sales is negative and significant.

as a result of a decrease in ExtSpill.
42The set of pre-sample means is jointly significant with a p-value<0.001.
43I also interact the pre-sample mean of Tobin’s Q with R&D over assets, in order to test the robustness

of the interaction terms of IntSpill and ExtSpill. The coefficient on the interacted term of IntSpill rises
to 0.112 with a standard error of 0.019 and the coefficient on the interacted term of ExtSpill is -0.006
with a standard error of 0.001.
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Table A2 reports the same estimations for IntShare. The effect of IntShare on market

value is always positive and significant.

Table 5 summarizes the quantitative effects of IntSpill, ExtSpill and IntShare on

private returns in terms of percentage point changes in market value as a response to

a 1 dollar increase in R&D expenditures, evaluated at the mean (the columns in table 5

correspond to the same columns in tables 3 and A2). Including pre-sample means does not

change the effect of IntSpill and ExtSpill (comparing column 1 to column 2), however, it

raises the effect of IntShare. Adding the linear terms IntSpill, ExtSpill and IntShare

(column 3) substantially lowers the effect of the interaction terms.

5.5. Estimation results for the R&D equation

Table 6 reports the estimation results for equations (5.6) and (5.7)44. I explore two speci-

fications: first, only IntSpill and ExtSpill are included, aiming at identifying the extent

cross-firm variation in the time-invariant component in the R&D decision is attributed to

technological internalization. Second, the means of the first-stage variable in the period

1980-2001 are added.

Column1 reports the results from the first-stage estimation for the static specification.

Current and lagged sales have a positive effect on R&D expenditures, where the effect of

industry sales is positive and significant only for the current term. A possible interpretation

of the positive effect of sales on R&D expenditures is transitory shocks which raise the

sales (both of the firm and its competitors) and the incentive to innovate. The citations-

weighted patents stock has a positive and significant effect on R&D expenditures. This

is consistent with the expectation that the citations-weighed patent stock captures higher

appropriation through stronger intellectual property protection, which raises the incentive

to perform R&D.

44In the dynamic specifications, the long-run fixed-effect is computed as bα
1−0.568 , where 0.568 is the

coefficient on the lag of R&D.
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Column 2 reports the estimation of a dynamic specification of the R&D equation. A

similar pattern of results holds, with the exception that the coefficient on lagged sales is

negative and significant.

In column 3, the firm fixed-effects obtained from the first-stage static estimation are

projected on IntSpill and ExtSpill. The effect of IntSpill is positive and significant,

whereas the effect of ExtSpill is negative and significant, both as expected. The R2 is

0.39, which indicates that about forty percent of the between-firm variation in the R&D

decision can be explained by technological internalization. In column 4, the means over

the estimation period of the first-stage variables are added. The coefficients on IntSpill

and ExtSpill drop, however, they keep their signs and remain significant.

Columns 5 and 6 report the equivalent estimation results for the fixed—effects from the

dynamic specification. The same pattern of results holds.

Finally, columns 7 to 10 report the same estimation for IntShare, which show similar

results.

Based on the static estimations, a one standard deviation increase in IntSpill raises

R&D expenditures by 33 percent, whereas a one standard deviation increase in ExtSpill

lowers R&D expenditures by 5 percent. Further, a one standard deviation increase in

IntShare raises R&D expenditures by 38 percent. Thus, the quantitative effects of In-

ternalized spillovers are large, whereas the effect of Externalized spillovers is much lower.

This implies that what matters most for the R&D decision of the inventing firm is the

spillovers that feed back into its research, rather spillovers that do not45.

45I also estimate the effect of IntSpill, ExtSpill and IntShare on R&D expenditures in a one stage,
where these variables are added to the first stage estimation reported above. For the static estimation,
the coefficients on log(1+IntSpill) and IntShare are positive and significant (0.133 with a standard error
0.032, and 0.037 with a standard error 0.018, respectively), however, the coefficient on log(1 +ExtSpill)
is not significant (0.006 with a standard error of 0.021). The same pattern of results holds for a dynamic
specification.
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5.6. Robustness tests

Table 7 reports the robustness tests for the Tobin’s Q estimation, using column 5 in table

4 as a benchmark.

The first robustness test relates to the concern that IntSpill and ExtSpill capture the

patenting activity of the firm (instead of technological internalization), such that firms

that have more patents will have higher IntSpill and lower ExtSpill (as the firm has

more patents, the probability that it will randomly indirectly cite its previous patents is

higher)46. The same pattern of results regarding IntSpill and ExtSpill can arise under

this interpretation, if patents have a positive effect on private returns. In column 1, the

citations-weighted patents stock is added. In case IntSpill and ExtSpill simply capture

the patenting activity of the firm, they should be uninformative in this specification. I

find the same pattern of results regarding IntSpill and ExtSpill, for the linear terms

and the interacted terms. The coefficient on the interaction term of the citations-weighted

patents stock is positive and significant, which is consistent with the higher appropriability

interpretation.

The second robustness test relates to the size of the firm in the product market, aiming

at mitigating the concern that larger firms are better at performing sequential innovation

and capturing higher private returns. The same reasoning as for patenting activity is

pursued, accordingly, IntSpill and ExtSpill should not be informative in the presence of

product market size variables. As the linear terms of the size of the firm in the product

market are already included, the R&D stock is interacted with Market Share. The same

pattern of results regarding IntSpill and ExtSpill still remains.

Next, I test the robustness of the findings to including the classical measure of the

external R&D stock of the firm (originally introduced by Jaffe, 1986), labeled as R&D Pool

(appendix A.2 provides detail on its construction), as reported in column 3. Omitting R&D

Pool may cause IntSpill to be upward biased and ExtSpill to be downward biased, from

two main reasons. First, a higher R&D Pool can imply stronger competition in research.

46The correlation between IntSpill and citations-weighted patents stock is 0.173.
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Thus, R&D Pool should have a negative effect on Tobin’s Q. Under this interpretation,

a higher R&D Pool should make it harder for the inventing firm to perform sequential

innovation. Thus, technological internalization is upward biased. Second, a higher R&D

Pool can imply stronger knowledge externalities, thus, the inventing firm can learn from

the R&D that surrounds it. In this case, we should expect R&D Pool to positively affect

Tobin’s Q. Also, sequential innovation should be easier in case knowledge externalities

intensify. Thus, technological internalization is overestimated in this case as well.

There is a positive and significant effect of R&D Pool on Tobin’s Q via the interaction

term with the R&D stock, and a negative, but not significant, linear effect. These results

confirm the countervailing effects of R&D Pool on Tobin’s Q: a positive learning effect

through the R&D stock, and a negative linear competition effect47. However, technological

internalization does not appear to be biased when R&D Pool is excluded, as there is no

important change in IntSpill and ExtSpill.

In column 4, citations-weighted patents stock, market share and R&D Pool (interacted

and linear) are all included together. The same pattern of results regarding IntSpill and

ExtSpill remains4849.

5.7. Estimation results for three specific industries

Since the above findings are based on a pooling estimation across industries, a big concern

is that the diffusion variables capture variation in private returns across industries (instead

of between-firms technological internalization). In order to mitigate this concern, I have

controlled for industry effects, by including a complete set of two-digit industry dummies as

47Jaffe (1986) finds a similar negative linear effect of R&D Pool on market value, which he interprets
as a negative competition effect in the technology space.
48I have also experimented with including self-citations (linearly and interacted with the R&D stock

over assets), under the conjecture that self-citations represent an ability of the firm to conduct sequential
innovation. In all specifications, the same pattern of results remains. With respect to self-citations, only
the linear term is positive and significant.
49A linear version of equation (5.5) was also estimated with a complete set of four-digit SIC dummies.

Only the coefficients on the interaction terms of IntSpill and ExtSpill remain significant (0.071 with a
standard error of 0.021 and -0.008 with a standard error of 0.002, respectively).
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a default in all specifications (in addition to main technology sector shares). Nevertheless,

even if the cross-industry variation could be captured by two-digit industry dummies,

they are included only linearly and not interacted with the R&D stock over assets (i.e.,

the linear industry effects are only an approximation of the cross-industry variation in

private returns and technological internalization).

In this section, I estimate the effect of IntSpill and ExtSpill on Tobin’s Q and R&D

expenditures in three small panels, which differ in the importance they place on sequential

innovation (appendix A.2 lists the industries that are included in each panel). Panel A

includes all firms (from the sample of inventing firms) that operate in the “Semiconductors”

industry. Sequential innovation plays a central role in this highly complex industry and

I expect the diffusion variables to matter the most (this panel includes 12 firms that

are active on average for 20 years)50. Panel B includes firms in the “Computers and

Communications” industry (this sample includes 25 firms that are active on average for

20 years)51. Finally, panel C includes the firms in the “Drugs and Medicals” industry (this

sample includes 19 firms that are active on average for 19 years). As sequential innovation

plays a minor role in this industry, the diffusion variables should not matter much in this

panel.

Table 8 summarizes the results, where the upper section reports the Tobin’s Q es-

timation and the lower section reports the R&D estimation. Regarding Tobin’s Q, the

strongest results are in the “Semiconductors” panel. In this panel, the effect of the inter-

action term of IntSpill is positive and significant, where the effect of the interaction term

of ExtSpill is negative and significant. When moving to the “Computers and Communi-

cations” panel, a similar pattern of results is observed. The interaction term of IntSpill is

positive and significant, where the interaction term of ExtSpill is negative and significant

(it is significant only in the specification with pre-sample means). Finally, in the “Drugs

and Medicals” panel there is no significant effect of either IntSpill or ExtSpill.

50See Hall and Ziedonis (2001) for an analysis of the innovation and patenting activity in the “Semi-
conductors” industry.
51Note that panel A is a subset of panel B.
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In the R&D specifications (static and dynamic) a similar pattern of results holds.

Technological internalization matters for R&D expenditures in the “Semiconductors” and

“Computers and Communications” panels, but does not matter in the “Drugs and Med-

icals” panel.

Overall, technological internalization matters the most in the industries where sequen-

tial innovation plays a central role. In these industries we should expect the theoretical

predications to bind.

6. Summary and conclusions

This paper shows that firms are able to internalize dynamically some of their knowledge

that spills to other firms. I exploit the firm-level variation of this internalization, through

estimating the market valuation of the R&D stock of the firm. There is strong evidence

suggesting that private returns rise with Internalized spillovers and fall with Externalized

spillovers. Evaluated at the mean, a one standard deviation increase in IntSpill raises

the market valuation of an additional dollar spent on R&D by 30 percent, whereas a one

standard deviation increase in ExtSpill lowers the market valuation of an additional dollar

spent on R&D by 10 percent.

In addition to quantifying the effect of technological internalization on private returns,

the findings from the market value estimation also suggest that firms themselves are aware

of their technological internalization and take it into consideration when making R&D

decisions. To test this, a R&D equation is estimated, which shows that firms that create

more Internalized and less Externalized spillovers, on average, invest substantially more

in R&D (e.g., evaluated at the mean, a one standard deviation increase in IntSpill raises

R&D expenditures by 33 percent).

Finding that the R&D decision of the firm is affected by the pattern of diffusion

its inventions follow has important implications for the endogenous growth literature.

Spillovers encourage the innovation activity of the receivers of knowledge, however, their
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effect on the incentive to create knowledge at the first place depends on whether they are

Internalized or Externalized. Suppose there are two economies that are identical in all

dimensions, but in the first economy technological internalization is stronger. Based on

the findings of this paper, innovation and, therefore, growth should be higher in the first

economy

Moreover, the firm-level variation in technological internalization this paper has shown

to exist may be linked to strategic behavior of firms optimizing the diffusion of their

knowledge. To the extent technological internalization is subject to the behavior of firms

has an important consequence for the way we model and think about knowledge spillovers.
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A. Appendices
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Figure A1: An example for an Externalized line of research

Figure A1: This figure shows a unique line of research originated in invention 3,836,478,
which is owned by IBM (the inventing firm). Since knowledge did not return to IBM in
the period 1974-1989, this line of research is Externalized.
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Figure A2: An example for an Internalized line of research

Figure A2: This figure shows a unique line of research originated in invention 4,131,983,
which is owned by Texas Instruments (the inventing firm). Since knowledge returned to
Texas Instruments in the period 1979-1994, this line of research is Internalized.
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Figure A3: This figure presents the number of citations made and received by patents
in our sample. The upward sloping graph shows the number of citations made each year,
where the U shaped curve shows the number of citations received each year.

A.1. Generalizing proposition 2.1

This section shows that proposition (2.1) holds for every θ, i.e., R&D rises continuously
with θ. The modified dynamic returns as a function of θ (following equation (2.6)) are:

Wi(θ) =
(1− q) p(x)v − x
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(A.1)

Since Wxx < 0 (the second derivative with respect to x), comparative statics imply:

dx

dθ
= sign(Wxθ) (A.2)

Differentiating equation (A.1) with respect to x yields:
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And differentiating equation (A.2) with respect to θ yields:
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Since q
1−p(x)(1−q) < 1, for Wxθ to be positive it is enough to show that the following

condition holds: µ
ln

q

1− p (x) (1− q)

¶
>

1

θ + 1
(A.5)

For θ = 0 condition (A.5) holds as q > 0. Since the right-hand-side of condition (A.5)
decreases with θ, it must hold for every θ.
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A.2. Data

The sample combines data mainly from two datasets:
The NBER USPTO patents database includes detailed patenting and citations

information for around 2,600 US firms (as described in Hall, Jaffe and Trajtenberg (2001))
and a list of all the citations made in the period 1975-1999.
The Compustat North-America dataset provides full accounts data for over

25,000 US firms from 1980 to 2001. This provides information on the key accounting
information of R&D, fixed assets, employment, sales, etc.
I started by matching the Compustat accounting data to the USPTO data, and kept

firms with 1 or more patents in the period 1969-1980 that received at least one citation
from the 2,600 firms in the NBER USPTO data set between 1975 and 1995. This leaves a
sample of 512 firms. The accounting dataset has been ‘cleaned’ to remove accounting years
with extremely large jumps (>+200% or <-66%) in sales, employment or capital signaling
merger and acquisition activity, leaving 476 firms and a total of 9,454 observations.

A.2.1. The sample of originating patents

The set of originating patents (the set of inventions whose diffusion pattern is constructed)
includes all cited patents that were granted between 1969 and 1980 and are held by the
Compustat firms for which accounting data between 1980 and 2001 are available. The
citations these patents receive must come from patents held by the 2,600 US Compustat
firms between 1975 and 1995 (the set of citing patents includes 599,884 patents, which
are about 30 percent of all citing patents and 50 percent of the US citing patents in the
USPTO). The set of originating patents includes 104,694 patents.
Using about 1.7 million citations as technological links (where 599,884 patents cite

573,373 patents in the sample), 13,107,634 lines of research (singleton sequences of cita-
tions) are extracted, which are originated in 97,921 inventions52. 999,718 lines of research
are classified as Internalized (7.6 percent of the total lines of research) and are origi-
nated in 29,964 patents (about 30 percent of the originating patents), while the remainder
12,107,916 lines of research are classified as Externalized and are originated in 97,212
patents53.

A.2.2. Constructing the accounting variables

The book value of capital is the net stock of property, plant and equipment (Compustat
Mnemonic PPENT); Employment is the number of employees (EMP). R&D (XRD) is used
526,773 patents that appear in our initial set of originating patents do not originate Internalized or

Externalized lines of research. These patents originate lines of research in which all the follow-up devel-
opments of the originating invention is done within the boundaries of the inventing firm.
53The remaining 709 originating patents inspire only Internalized lines research (thus, all the subsequent

generations of developments are done by the inventing firm).
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to create R&D capital stocks calculated using a perpetual inventory method with a 15%
depreciation rate (Hall et al, 2005). The citations-weighted patent stock was constructed
by normalizing the number of patents the firm owns according to the number of citations
it receives and the average number of citations to all patents in the same year. Given this
normalized patents count the stock is constructed using the perpetual inventory method.
The citations stock (used as a pre-estimation control) was constructed equivalently to the
R&D stock. For Tobin’s Q, firm value is the sum of the values of common stock, preferred
stock, total debt net of current assets (Mnemonics MKVAF, PSTK, DT and ACT). Book
value of capital includes net plant, property and equipment, inventories, investments in
unconsolidated subsidiaries and intangibles other than R&D (Mnemonics PPENT, INVT,
IVAEQ, IVAO and INTAN). Tobin’s Q was set to 0.1 for values below 0.1 and at 20 for
values above 20. See also Lanjouw and Schankerman (2004).

R&D Poolit is constructed as:

R&D Poolit = Σj,j 6=iTECij(R&D Stockjt) (A.6)

Where, the index j represents firms that operate in overlapping technology sectors to
firm i and TECij is the classical measure of the level of orthogonality in research between
firms i and j, originally developed by Jaffe (1986), and is defined as:

TECij =
(TiT
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j )

(TiT
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i )

1
2 (TjT
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j )

1
2

(A.7)

Where, T is a vector that its elements are the firm’s share of patents in the three-digit
technology sectors. The technology space information is provided by the allocation of
all patents by the USPTO into 426 different technology classes. I use the average share
of patents per firm in each technology class over the period 1970 to 2001 to create the
following vector for each firm: Ti = (Ti,1, Ti,2, ...Ti,426), where Ti,m is the share of patents
of firm i in technology class m.

Industry Salesit is defined as the aggregate sales of other firms facing firm i (denoted
by the index j), which operate in overlapping product markets, as following:

Industry Salesit = Σj,j 6=iSICij(Salesjt) (A.8)

Where, SICij is defined following Bloom, Schankerman and Van Reenen (2005), as:

SICij =
(SiS

/
j )

(SiS
/
i )

1
2 (SjS

/
j )

1
2

(A.9)

Where, S is a vector that its elements are the share of the firm’s sales in the lines
of business at the four-digit industry SIC codes. I use average share of sales per SIC
code within each firm over the period as our measure of activity by product market,
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Si = (Si,1, Si,2, ...Si,597), where Si,m is the share of sales of firm i in the four-digits SIC
code m. The degree of orthogonality between every pair of firms is then computed (where
higher orthogonality implies higher product market proximity). The normalization by the
vector size aims to control for product diversity.
Industry price deflators were taken from Bartelsman, Becker and Gray, 2000, until 1996

and from the BEA 4-digit NAICS Shipment Price Deflators afterwards. Finally, Market
Share is simply computed as the ratio between Sales and Industry Sales.
Finally, the industries considered in table 8 are as following: Semiconductors in panel

(A) (which is a subset of panel (B)) covers only SIC 3674 (Semiconductors and Related De-
vices). Computers and Communications in panel (B) covers SIC 3571 (Electronic Comput-
ers), 3572 (Computer Storage Devices), 3661 (Telephone and Telegraph Apparatus), 3663
(Radio and Television Broadcasting and Communications Equipment), 3669 (Communica-
tions Equipment, Not Elsewhere Classified), 3674 (Semiconductors and Related Devices),
5065 (Electronic Parts and Equipment, Not Elsewhere Classified) and 5731 (Radio, Televi-
sion, and Consumer Electronics Stores). Drugs and Medicals in panel (C) covers SIC 2834
(Pharmaceutical Preparations), 2835 (In Vitro and In Vivo Diagnostic Substances), 2844
(Perfumes, Cosmetics, and Other Toilet Preparations), 2851 (Paints, Varnishes, Lacquers,
Enamels, and Allied Products), 3841 (Surgical and Medical Instruments and Apparatus),
3842 (Orthopedic, Prosthetic, and Surgical Appliances and Supplies), 3845 (Electromed-
ical and Electrotherapeutic Apparatus) and 3851 (Ophthalmic Goods).
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A.3. The Algorithm

This paper develops an algorithm that will generate a “family tree” for every originating
patent in our sample. Since the computational task is highly complex and demanding,
the efficiency of the algorithm plays a major role in making the task feasible. This section
discusses the main steps of the algorithm. For the interested reader, a more detailed
description is available upon request.

A.3.1. Source File

The source file contains the raw data, taken from the USPTONBERPatents and Citations
database. This file includes 1,760,143 rows, where each row corresponds to one patent
citation, and 7 columns, which are the cited patent number, the citing patent number, the
firm owning the cited patent, the firm owning the citing patent, the grant year of the cited
patent, the grant year of the citing patent and an indicator to whether the cited patent is
an originating patent.
The source file is sorted by the citing patent number. Thus, the first row is the earliest

citation made in the sample, the second row is the second earliest citation etc. This sort
allows saving valuable running time due to the fact that a citing patent cannot be cited
before it cites. This sort is crucial for the running time of the algorithm.

A.3.2. Data Structure

In order to create an efficient algorithm that will produce the desired output in a reasonable
time considering the amount of data, we use a combination of a Tree procedure and a Hash
table. The Tree algorithm is a dynamic procedure that creates a ‘tree’ of patents without
any restrictions on the number of both direct and indirect offspring patents. Each node
in the ‘tree’ contains two types of information: information extracted from the source
file, such as citing patent number and citing firm, and information that the algorithm
generates, such as the location of the offspring patent in the ‘tree’. Note that the ‘tree’
is not balanced (its branches are not of equal length), thus it does not benefit from the
advantages of balanced ‘trees’, whose maximum length is already known. From this reason
a Hash table is used, which allows us to efficiently store the information on the offspring
patents in the diffusion ’tree’ and save valuable search time.
The Hash table contains information on all the patents in the source file, both citing

and cited defined as items. Each item contains the following fields: the depth in the ‘tree’
(the generation of citation), the place in the ‘tree’ (how it is linked to the originating
patent) and an indictor to whether the patent is an originating patent. The place of the
patent in the ‘tree’ is stored as a vector of numbers, as explained below.
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A.3.3. Running process

Each row in the source file indicates a ‘father-child’ relationship in the ‘tree’. The searching
and updating procedure involves scanning the source file for every originating patent and
updating the Hash table for each row according to the location of the citing patent in
the diffusion ‘tree’ (in case a patent does not take part in the diffusion ‘tree’ of a given
originating patent, its line is not updated).
The best way to explain the procedure of the algorithm is by a simple example. The

following list of citing and cited patents is a sample taken from the source file:
Citing Patent Cited Patent

3988245 3852388
3988250 3852388
4032309 3852388
4119408 4032309
4174374 4119408
4564373 4174374
4617029 4174374
4629563 3988245
4629570 3988255
4666607 3988245
4737166 4174374

Given this list, the algorithm will begin with the first row in the file, which says that
patent number 3988245 cites patent number 3852388. As the algorithm starts to construct
a new diffusion ‘tree’, it first checks whether the cited patent in the first row is part of the
set of the originating patents. If it is not part of this set, the algorithm skips this row and
jumps to the next one. If it does belong to the set of originating patents, the algorithm
starts the construction of the diffusion ‘tree’ for this patent by updating the Hash table
for this row and for the next rows in the source file. We will show now how the updating
procedure takes place.
The entries in the Hash table at the end on the running and updating procedure is as

following (at the beginning of the procedure, the items in the Hash table are initialized to
-1):
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Patent number Originating Place Depth
...

3852388 originating = 1 PlaceInTree = 1 Depth = 1
3988245 originating = 0 PlaceInTree = 11 Depth = 2
3988250 originating = 0 PlaceInTree = 12 Depth = 2
4032309 originating = 0 PlaceInTree = 13 Depth = 2
4119408 originating = 0 PlaceInTree = 131 Depth = 3
4174374 originating = 0 PlaceInTree = 1311 Depth = 4
4564373 originating = 0 PlaceInTree = 13111 Depth = 5
4617029 originating = 0 PlaceInTree = 13112 Depth = 5
4629563 originating = 0 PlaceInTree = −1 Depth = −1
3988255 originating = 0 PlaceInTree = −1 Depth = −1
4629570 originating = 0 PlaceInTree = −1 Depth = −1
4666607 originating = 0 PlaceInTree = −1 Depth = −1
4737166 originating = 0 PlaceInTree = 13113 Depth = 5

...
Once the algorithm finishes scanning the source file, another function is called in to

print all the branches of the ‘tree’ into a file. These branches are unique sequences of
patent citations, which we interpret as lines of research. The printed lines of research are
than given in a text format ready to be analyzed in any statistical package. Determining
whether a line of research is Internalized or Externalized is a straightforward task, as we
only need to compare the first firm in the sequence of citations to the last firm. If these
are identical (and there is at least one external invention along the line of research, such
that spillovers are created), the line of research is Internalized. Other wise, it is classified
as Externalized.
The next step is to clean the memory and initialize the Hash table before proceeding

to the next originating patent, and repeating the same algorithm.
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A.4. Theoretical model - developing equation (2.6)

This section shows how the expression of the dynamic returns in equation (2.6) is derived.
The model does not include time, only generation of developments of the originating

knowledge k. Suppose the model starts at the point in time where knowledge k becomes
available for sequential innovation by other firms (and by the inventing firm i). All com-
putations of the expected number of wins relate to the point of view of this starting
period.
The probability that firm i wins in generation g, as calculated at the initial period, is:

P (g) =

g−1X
s=0

µ
g − 1
s

¶
[p(1− q)]g−s qs (A.10)

It should be noted that the term qs reflects the ability of the firm to build on external
research along the line of research it originates. The probability that knowledge is created
in a given development stage and firm i not winning in this stage is q(1 − p) + pq = q
(since the firm does not win either if it fails to invent, or if it succeeds to invent, however,
at least one other firm succeeds as well).
I aim at computing the expected dynamic returns to knowledge k, given the expected

number of development stages won by firm i. For this purpose, the following equation for
the expected number of development stages won by firm i has to be computed:

E(wins) =
∞X
g=0

P (g) =
∞X
g=0

g−1X
s=0

µ
g − 1
s

¶
[p(1− q)]g−s qs (A.11)

Taking g to infinity (assuming the knowledge k has the potential of being developed an
infinite number of times) and computing the expected number of inventions firm i makes
along the line of research can be expressed as following:

p(1− q)

p2(1− q)2 p(1− q)q

p3(1− q)3 2p2(1− q)2q p(1− q)q2

p4(1− q)4 3p3(1− q)3q 3p2(1− q)2q2 p(1− q)q3

p5(1− q)5 4p4(1− q)4q 6p3(1− q)3q2 4p2(1− q)2q3 p(1− q)q4

Define h ≡ (1− q) p. The summation of equation (5.23) over g can be computed by
first summing each column across its rows and then summing over columns. Also, define
s as the number of times the firm failed to win a development stage and then summing
over s equals 0 to infinity.
Summation of s = 0 (zero failures):

S0 = h+ h2 + h3 + h4 + ... (A.12)
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S0 =
h

1− h
(A.13)

Summation of s = 1 (one failure):

S1 = q
¡
h+ 2h2 + 3h3 + 4h4 + ...

¢
(A.14)

Which can be written, as following:
h h2 h3 h4 ...

h2 h3 h4 ...
h3 h4 ...

h4 ...
Using the same method, I can first sum across rows and then across columns. This

yields:

S1 =
q

1− h

£
h+ h2 + h3...

¤
=

q

1− h
S0 (A.15)

For s = 2 (two failures) I get the following summation:

S2 = q2
¡
h+ 3h2 + 6h3 + 10h4 + ...

¢
Which can be expressed in the following form:
h h2 h3 h4 ...

h2 h3 h4 ...
h2 h3 h4 ...

h3 h4 ...
h3 h4 ...
h3 h4 ...

h4 ...
h4 ...
h4 ...
h4 ...

Using the same method described above, this summation becomes:

S2 =
q

1− h
q
¡
h+ 2h2 + 3h3 + 4h4...

¢
=

q

(1− h)
S1 (A.16)

With s = 3 (three failures) the summation is:

S3 = q3
¡
h+ 4h2 + 10h3 + ...

¢
(A.17)

Which can be expressed, as following:
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h h2 h3 ...
h2 h3 ...
h2 h3 ...
h2 h3 ...

h3 ...
h3 ...
h3 ...
h3 ...
h3 ...
h3 ...

As before, this summation becomes:

S3 =
q

1− h
q2
¡
h+ 3h2 + 6h3...

¢
=

q

(1− h)
S2 (A.18)

Thus, the summation of columns is a geometric series with a multiplicative factor
equals q

(1−h) and the first argument in the series is
h
1−h .

Thus, the dynamic returns as a function of the number of ‘second chances’ the firm
gets, θ, are given as (thus, θ is the number of columns to sum:

Wi(θ) =
(1− q) pv − x

(1− p) (1− q)

Ã
1−

µ
q

1− (1− q) p

¶θ+1
!

(A.19)
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A.5. The technological contribution of an invention - an alternative interpre-
tation

This section shows that the methodology of measuring technological contribution is a
generalization of the accepted approach of measuring the quality of patents by counting
the number of citations they receive, while also including indirect offspring patents.
To illustrate, refer back to figure 2. Under pattern 1 there are three offspring inventions,

and, therefore, there are three citing (direct and indirect) patents, where each citing patent
is cited only once. It should be noted that it is assumed that the last patent in the sequence
is counted as if it receives one citation. Thus, TC1

A = (1× 1) + (1× 1) + (1× 1) = 3.
With respect to diffusion pattern 2, there are three offspring inventions as well. However,
patent B receives two direct citations and, therefore, it receives the weight of 2. This
implies that TC1

A = (1× 2) + (1× 1) + (1× 1) = 4. These measures are identical to the
lines of research approach.
A closer look at this methodology would show that the scheme is recursive. Assume

patent C in figure 2 under diffusion pattern 1 receives another citation from patent E
(thus, it is cited twice, by patent D and patent E). Using the lines of research approach,
there are two lines of research: A→ B → C → D and A→ B → C → E. Thus, TC1

A =
(1× 3) + (1× 3) = 6. Under the alternative approach discussed above, TC1

A is computed
as following: starting with patent C (we continue to assume that the edge patents, D and
E in this case, are cited only once), it receives two citations of quality one each (the quality
of patents D and E). Regarding patent B, it is cited only once (by patent C). However,
since patent C is of quality 2, I treat the citation from patent C to patent B, as if patent
B receives two citations. In this case, TC1

A = (1× 2) + (1× 2) + (1× 1) + (1× 1) = 6,
which is the same as the technological contribution under the lines of research approach.
More formally, the alternative interpretation of the methodology is the following:

TCi =
X
k∈Ki

OSik × bQk (A.20)

And bQk is expressed as:

bQk =
X
j∈J

OSkj × bQj (A.21)

Where, Ki is the set of patents that cite directly or indirectly patent i, OSik denotes
the offspring invention k ∈ Ki, j is another patent in the set Ki, which directly cites
invention k, Jk is the set of patents that directly cite invention k (i.e., j ∈ Jk ⊂ Ki),

OSkj denotes the offspring invention which directly cite patent k and bQj is the quality of
invention j.
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A.6. Linearizing equation (5.5)

A linear version of equation (5.5) is estimated to test the robustness of the findings to
specifications where the term log(1+γKit

Ait
) is approximated by a polynomial series expan-

sion. The series of functions used for this approximation is denoted by γΦ(Kit

Ait
), which

is linear in γ. I experiment with a series expansion of degree one (Φ(Kit

Ait
) = Kit

Ait
), two

(Φ(Kit

Ait
) =

2X
j=1

³
Kit

Ait

´j
), three (Φ(Kit

Ait
) =

3X
j=1

³
Kit

Ait

´j
) and four (Φ(Kit

Ait
) =

4X
j=1

³
Kit

Ait

´j
). Thus,

equation (5.3) becomes:

log

µ
Vit
Ait

¶
= log κit + γΦ(

Kit

Ait
) (A.22)

Where, γ and log κit are specified in equations (5.2) and (5.4) , respectively. Equation
(5.5) is estimated by OLS, where the standard errors of the marginal effects are computed
using the Delta method.
Table A3 reports the estimation results with a series expansion of degree one (thus,

log(1 + γKit

Ait
) ≈ γKit

Ait
). Column 1 reports the estimation results of including R&D over

assets linearly and interacted with IntSpill and ExtSpill (as in column 1 in table 4
for the nonlinear specification). The pattern of results is similar to the one observed in
the nonlinear estimation. The coefficient on the interaction term of IntSpill is positive
and significant and the coefficient on the interaction term of ExtSpill is negative and
significant. Compared to the equivalent nonlinear specification (column 2 in table 4), the
linear specification yields a lower coefficient on the interaction term of IntSpill (0.089
compared to 0.208) and a lower coefficient on the R&D over assets (0.229 compared to
0.280). The coefficient on the interaction term of ExtSpill is similar to the coefficient
obtained from the nonlinear specification.
The elasticity of market value with respect to the R&D stock, evaluated at the mean, is

0.093, compared to 0.103 in the equivalent nonlinear specification. An additional one dollar
spent on R&D raises market value by 0.44 dollar, compared to 0.49 dollar in the nonlinear
specification. A one standard deviation increase in IntSpill raises private returns by 17
percent (compared to 30 percent in the nonlinear specification), whereas a one standard
deviation increase in ExtSpill lowers private returns by 5 percent (compared to 10 percent
in the nonlinear specification)54.
In column 2, the set of pre-sample means is added. The coefficients on R&D stock over

assets and the interaction terms of IntSpill and ExtSpill substantially drop, however,
their signs do not change and they remain significant. In column 3, I add the linear terms

54The effect of IntShare in the linear specification is identical to its effect in the nonlinear specification.
A one standard deviation increase in IntShare raises private returns to an extra dollar spent on R&D by
39 percent.
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of IntSpill and ExtSpill. The coefficients on the linear terms of IntSpill and ExtSpill
are similar to those obtained from the nonlinear specification, i.e., IntSpill is positive
and significant and ExtSpill is negative and significant. The coefficient on the interaction
term of IntSpill drops, however it remains significantly positive, while the coefficient on
the interaction term of ExtSpill do not change much.
In columns 4 to 6, similar robustness tests are repeated as reported in table 5. Thus,

adding linearly and interacted the citations-weighted patents stock and R&D Pool. The
same pattern of results regarding IntSpill and ExtSpill (linear and interacted) remains.

[Table A3 about here]
In table A4, I experiment with higher degrees of polynomial approximation55. Columns

2 to 4 report the estimation results with a polynomial expansion of degree two, three and
four, respectively. I find the same pattern of results regarding the interaction terms of
IntSpill and ExtSpill. With regard to the coefficients size, as the degree of the polynomial
expansion rises, the effects of the linear term of R&D stock over assets and its interactions
with IntSpill and ExtSpill rise. For example, the elasticity of Tobin’s Q with respect to
R&D stock over assets in the fourth-degree polynomial approximation is 0.14, compared
to 0.09 in the second-degree polynomial approximation. Nevertheless, although the size of
the effect changes, the pattern of results is very robust to any form of linear approximation.

[Table A4 about here]
Finally, I test the robustness of the above findings to four-digit industry effects. Table

A5 reports the estimation results of including a complete set of four-digit industry dummies
in polynomial expansions of degrees one and two. The same pattern of results holds,
where the coefficient on IntSpill is positive and significant and the coefficient on ExtSpill
is negative and significant. Interestingly, the effects of the linear term of R&D stock
over assets and its interactions with IntSpill and ExtSpill rise when exploiting only the
variation within four-digit industry SIC codes.

[Table A5 about here]

55The marginal effects are computed by differentiating equation (5.5) with respect to each variable.
Standard errors for the marginal effects are computed using the Delta method.

56



Number of lines of 
researcha

1979-19801976-19781969-1975Total sampleTotal sample

7.2%7.6%8.2%7.6%46.8Pooled

5.7%6.3%6.4%6.2%28.8Chemicals

7.1%7.1%8.8%7.6%30.2Computers and 
Communications

8.4%16.8%19.1%15.0%16.8Drugs and Medicals

7.5%7.1%7.5%7.4%78Electrical and 
Electronics

7.9%9.1%9.1%8.8%15.5Mechanicals

bComputed as the ratio between Internalized lines of research and the total number of lines of research.

Table 1
 Internalized and Externalized lines of research

Share of Internalized lines of researchb

aComputed as the average number of lines of research per citations received by an originating patent for the entire 
period of the sample.



Standard 
deviationMaxMinMedianMeanMnemonicVariable 

4589100.145.90IntSpill

25.2391.500.010.384.28ExtSpill1

0.040.2500.000.02IntShare2

2.34200.11.322V/ATobin's Q

16,782485,56605924,689VMarket value, $m

319547343049806KR&D stock, $m

11000.200.39K/AR&D stock / Assets

9,736199,3032.133923,090ACapital stock, $m

11,412180,55706863,925Sales, $m

4899,8480.42 18155Patents stock

58512,6430.2816158Patents stock weighted 
by citations

2For about 40 percent of firms IntSpill equals zero. 

Table 2
Descriptive statistics: accounting and patents variables

9,454 observations and 476 firms

The statistics are computed over all the observations that were included in the estimation (1980-2001) and are given in 
thousands of 1996 USD.
1Divided by 100.



Four-digits 
SIC

Three-digits 
SIC

Two-digits 
SICOne-digit SIC

0.240.230.301.51IntSpill

15%8%6%3%% Between industries 
variation

85%6%94%97%% Within industries 
variation

0.610.360.542.84*ExtSpill

31%12%9%5%% Between industries 
variation

69%88%91%95%% Within industries 
variation

1.52*1.47*1.71*1.37IntShare

52%36%25%3%% Between industries 
variation

48%64%75%97%% Within industries 
variation

Table 3
Analysis of Variance - diffusion variables

Table entries are the F -statistics for the null hypothesis of equal mean across the 
different industry breakdowns. * denotes that the mean varies across industries at the 
5 percent significance level.



(5)(4)(3)(2)(1)

0.217*0.167*0.152*0.145*0.280*R&D stock/Assets
(0.040)(0.029)(0.028)(0.021)(0.079)

0.062* 
(0.012)

0.059* 
(0.009)

0.059* 
(0.010)

0.096* 
(0.029)

0.208* 
(0.095)

IntSpill x (R&D 
stock/Assets)

-0.005* 
(0.002)

-0.004* 
(0.001)

-0.004* 
(0.001)

-0.005* 
(0.002)

-0.011* 
(0.003)

ExtSpill x (R&D 
stock/Assets)

0.028*0.027*0.031*log(IntSpill)
(0.005)(0.005)(0.005)

-0.026*-0.026*-0.023*log(ExtSpill)
(0.004)(0.004)(0.004)

0.028*0.031*log(Sales)
(0.003)(0.003)

-0.029*-0.024*log(Industry Sales)
(0.006)(0.006)

0.533*Sales Growth
(0.017)

YesbYesYesYesNoPre-sample meansa

9,0159,4549,4549,4549,454Observations
0.5160.5110.5090.5010.323R²

Table 4
The effect of IntSpill and ExtSpill on Tobin's Q

Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered at the firm level). * denotes a significant level of 5 percent.
All regressions include 78 two-digits industry dummies, 4 technology indicators, a 
complete set of year dummies, a dummy variable for R&D stock equals zero and a 
dummy variable for IntSpill equals zero.
aThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, Assets, R&D 
stock, Patents stock and Citations stock.
bThe estimates for the pre-sample mean variables are as following: Employees 0.003 
(0.002), Market Share -0.106* (0.018), log(Tobin's Q) 0.544* (0.011), Sales 0.013 
(0.027), Assets -0.856 (0.592), Patents stock -0.009 (0.013), Citations stock 0.029* 
(0.007) and R&D stock -0.292 (0.335).



Linear 
effects

Firm fixed-
effects

Interaction 
terms

(3)(2)(1)

One standard deviation 
increase

+16%+30%+30%Internalized Flows

-6%-10%-10%Externalized Spillovers

+37%+50%+40%Internalized Share

Quantitative effects of IntSpill, ExtSpill and IntShare

Table 5

Note: columns (1), (2) and (3) are based on the corresponding columns in tables 
3 and A5. Thus, column 1 includes only R&D stock over assets and interactions 
with IntSpill, ExtSpill and IntShare, column 2 adds pre-sample means and 
column 3 adds the linear terms of IntSpill, ExtSpill and IntShare.



(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)

DynamicStatic

0.083*0.182*0.197*0.276*log(IntSpill)
(0.038)(0.088)(0.031)(0.030)

-0.019*-0.032*-0.032*-0.048*log(ExtSpill)
(0.009)(0.011)(0.011)(0.014)

-0.736*-0.901* -2.083*-2.619*Dummy for IntSpill=0
(0.074)(0.079)(0.171)(0.170)

5.755*7.669*8.075*11.862*IntShare
(1.050)(1.423)(1.392)(2.000)

0.047*0.033*0.0220.006mean(Sales)
(0.012)(0.001)(0.013)(0.011)

0.035*0.041*0.034*0.053*mean(Industry Sales)
(0.006)(0.008)(0.006)(0.008)

0.054*0.011*0.0190.015mean(CW Patents stock)
(0.014)(0.003)(0.021)(0.018)

-0.0150.002*-0.008-0.041mean(R&D stock)
(0.009)(0.001)(0.054)(0.045)

0.568*log(R&Dt-1)
(0.006)

0.262*0.146*log(Salest)
(0.007)(0.013)

-0.199*0.044*log(Salest-1)
(0.007)(0.008)

0.125*0.296*log(Industry Salest)
(0.014)(0.019)

-0.007-0.033log(Industry Salest-1)
(0.008)(0.023)

0.079*0.286*log(CW Patents stock)
(0.008)(0.011)

0.3790.0770.4250.1130.4580.2230.5430.3910.9490.778R²

log(R&D)

dynamic

Fixed-effcets

The R&D equation includes a complete set of year dummies and a dummy for R&D equals zero.

Table 6

R&D expenditures and firm fixed-effects (FE1) estimation

9,454 observations (in the R&D regression), 476 firms (for the fixed-effects regressions)

Robust standard errors are in brackets. * denotes a significance level of 5 percent.

1The estimated firm fixed-effects are fitted from the R&D regression that is reported in column 1.

Static static dynamic



(4)(3)(2)(1)

0.187*0.183*0.222*0.204*R&D stock/Assets
(0.038)(0.037)(0.007)(0.039)

0.052* 
(0.014)

0.062* 
(0.012)

0.063* 
(0.012)

0.048* 
(0.013)

IntSpill x (R&D 
stock/Assets)

-0.005* 
(0.002)

-0.005* 
(0.002)

-0.005* 
(0.002)

-0.004* 
(0.001)

ExtSpill x (R&D 
stock/Assets)

0.021*0.024*0.028*0.025*log(IntSpill)
(0.005)(0.005)(0.005)(0.005)

-0.027*-0.026*-0.026*-0.027*log(ExtSpill)
(0.004)(0.004)(0.004)(0.004)

0.004* 
(0.002)

0.006* 
(0.002)

CW Patents Stock x 
(R&D stock/Assets)

0.016*0.010log(CW Patents Stock)
(0.006)(0.006)

-0.058 
(0.062)

-0.035 
(0.066)

Market Share x (R&D 
stock/Assets)

0.0730.061Market Share
(0.051)(0.049)

0.059 
(0.066)

0.074 
(0.064)

R&D Pool x (R&D 
stock/Assets)

-0.024*-0.018*log(R&D Pool)
(0.009)(0.009)

YesYesYesYesPre-sample meansa

9,0159,0159,0159,015Observations
0.5160.5160.5160.516R²

All regressions include 78 two-digits industry dummies, 4 technology 
indicators, a complete set of year dummies, a dummy variable for R&D stock 
equals zero, a dummy variable for IntSpill equals zero, sales and industry 
sales.
aThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, 
Assets, R&D stock, Patents stock and Citations stock.

Table 7
Robustness tests for the Tobin's Q estimation

Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered by firms). * denotes a significant level of 5 percent.



0.117*0.1330.133*0.319*0.0220.442R&D stock/Assets
(0.057)(0.109)(0.062)(0.095)(0.146)(0.367)

0.340 
(0.229)

0.237 
(0.542)

0.047* 
(0.012)

0.089* 
(0.015)

0.047* 
(0.012)

0.057* 
(0.023)

IntSpill x (R&D 
stock/Assets)

-0.435 
(0.368)

0.055 
(0.922)

0.001 
(0.004)

-0.018* 
(0.005)

-0.008* 
(0.004)

-0.004 
(0.007)

ExtSpill x (R&D 
stock/Assets)

YesNoYesNoYesNoPre-sample means

357357501501240240Observations

0.5670.2070.4480.1890.5160.308R²

R&D 
Dynamics

R&D 
Static

R&D 
Dynamics

R&D 
Static

R&D 
Dynamics

R&D 
Static

-0.0090.0310.189*0.283*0.318*0.279*IntSpill
(0.266)(0.238)(0.095)(0.136)(0.089)(0.092)

-0.0490.221-0.008-0.012-0.054*-0.029ExtSpill
(1.253)(1.030)(0.033)(0.039)(0.019)(0.021)

0.055-2.126*-1.316*-1.748*-2.323*-2.098*Dummy for IntSpill=0
(1.177)(1.061)(0.436)(0.652)(0.646)(0.729)

191925251212Observations

0.4320.4220.4020.4840.7220.629R²

Table 8

Dependent variable: log(Tobin's Q)

Dependent variable: Firm fixed-effects from the first stage R&D equation

(A) Semiconductors1 (B) Computers and 
Communications2 

(C) Drugs and 
Medicals3

The effect of IntSpill and ExtSpill - Heterogeneous industries

Standard errors are robust to arbitrary heteroskedacity and serial correlation. * denotes a significance 
level of 5 percent.

The R&D estimation is based on column 2 in table 6 for the static specification and column 2 in table
A4 for the dynamic specification (including the lag of R&D on the right-hand-side of the first-stage 
estimation).

(A) Semiconductors1 (B) Computer and 
Communications2 

(C) Drugs and 
Medicals3

Standard errors are robust to arbitrary heteroskedacity. * denotes a significance level of 5 percent.



IntShareExtSpillIntSpill

-0.0020.3384.162log(mean Sales)
(0.003)(0.209)(3.585)

0.0000.064-0.127log(mean R&D Stock)
(0.001)(0.066)(1.138)

0.001-0.613-5.079log(mean Employees)
(0.003)(0.233)(3.994)

0.0090.0345.274log(mean CW Patents Stock)
(0.001)(0.109)(1.873)

-0.0010.2591.075log(mean Citations Stock)
(0.002)(0.128)(2.188)

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation. * denotes a significant level of 5 percent.

The diffusion variables and the main characteristics of the 
firm: OLS estimation

Table A1

The estimation sample includes the 476 firms that are in our final sample.



(5)(4)(3)(2)(1)

0.217*0.141*0.135*0.120*0.330*R&D stock/Assets
(0.040)(0.026)(0.026)(0.064)(0.101)

1.311* 
(0.586)

1.379* 
(0.498)

1.702* 
(0.533)

2.341* 
(0.507)

5.624* 
(2.295)

IntShare x (R&D 
stock/Assets)

0.025*0.020*0.016*log(IntShare)
(0.007)(0.006)(0.004)

0.033*0.035*log(Sales)
(0.004)(0.004)

-0.011*-0.005*log(Industry Sales)
(0.006)(0.006)

0.538*Sales Growth
(0.018)

YesYesYesYesNoPre-sample meansa

9,0159,4549,4549,4549,454Observations
0.5040.4990.4960.4960.294R²

Table A2
The effect of InteShare on Tobin's Q

Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 
(clustered at the firm level). * denotes a significant level of 5 percent.

All regressions include 78 two-digits industry dummies, 4 technology indicators, a complete 
set of year dummies, a dummy variable for R&D stock equals zero and a dummy variable 
for IntSpill equals zero.
aThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, Assets, R&D 
stock, Patents stock and Citations stock.



(6)(5)(4)(3)(2)(1)

0.174*0.187*0.185*0.141*0.137*0.229*R&D stock/Assets
(0.037)(0.038)(0.028)(0.025)(0.025)(0.022)

0.028* 
(0.014)

0.029* 
(0.015)

0.030* 
(0.015)

0.026* 
(0.012)

0.044* 
(0.015)

0.089* 
(0.022)

IntSpill x (R&D 
stock/Assets)

-0.004* 
(0.002)

-0.004* 
(0.002)

-0.004* 
(0.002)

-0.004* 
(0.002)

-0.004* 
(0.002)

-0.008* 
(0.002)

ExtSpill x (R&D 
stock/Assets)

0.020*0.031*0.022*0.032*log(IntSpill)
(0.009)(0.008)(0.008)(0.008)

-0.021*-0.019*-0.026*-0.018*log(ExtSpill)
(0.007)(0.007)(0.004)(0.007)

0.003 
(0.020)

0.003 
(0.020)

CW Patents Stock x 
(R&D stock/Assets)

0.016*0.033*log(CW Patents Stock)
(0.006)(0.009)

0.002 
(0.033)

0.002 
(0.032)

R&D Pool x (R&D 
stock/Assets)

-0.043*-0.018log(R&D Pool)
(0.015)(0.014)

0.548*0.557*0.556*Sales Growth
(0.048)(0.048)(0.047)

9,0159,0159,0159,4549,4549,454Observations

YesYesYesYesYesYesPre-sample meansa

aThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, Assets, R&D stock, 
Patents stock and Citations stock.

Table A3
The effect of IntSpill and ExtSpill on Tobin's Q

Linear estimation, dependent variable: log(Tobin's-Q)

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation (clustered 
by firms). * denotes a significant level of 5 percent.

All regressions include 78 two-digits industry dummies, 4 technology indicators, a complete set of 
year dummies, a dummy variable for R&D stock equals zero and a dummy variable for IntSpill 
equals zero.



(4)(3)(2)(1)

0.353* 
(0.056)

0.292* 
(0.048)

0.233* 
(0.041)

0.137* 
(0.025)R&D stock/Assetsa

0.484* 
(0.091)

0.344* 
(0.061)

0.243* 
(0.045)(R&D stock/Assets)

-0.184* 
(0.062)

-0.069* 
(0.026)

-0.013* 
(0.005)(R&D stock/Assets)2

0.029* 
(0.012)

0.005* 
(0.002)(R&D stock/Assets)3

-0.001* 
(0.001)(R&D stock/Assets)4

0.063* 
(0.015)

0.059* 
(0.013)

0.041* 
(0.013)

0.044* 
(0.015)

IntSpill x (R&D 
stock/Assets)a

0.266* 
(0.067)

0.188* 
(0.047)

0.087* 
(0.031)

IntSpill x (R&D 
stock/Assets)

-0.233* 
(0.070)

-0.119* 
(0.035)

-0.022* 
(0.016)

IntSpill x (R&D 
stock/Assets)2

0.056* 
(0.021)

0.016* 
(0.005)

IntSpill x (R&D 
stock/Assets)3

-0.003* 
(0.001)      

IntSpill x (R&D 
stock/Assets)4

-0.008* 
(0.002)

-0.007* 
(0.002)

-0.005* 
(0.001)

-0.004* 
(0.002)

ExtSpill x (R&D 
stock/Assets)a

-0.0299* 
(0.012)

-0.024* 
(0.006)

-0.012* 
(0.004)

ExtSpill x (R&D 
stock/Assets)

0.016* 
(0.009)

0.009* 
(0.003)

0.002* 
(0.001)

ExtSpill x (R&D 
stock/Assets)2

-0.002* 
(0.002)

-0.001* 
(0.0002)

ExtSpill x (R&D 
stock/Assets)3

0.0001* 
(0.0001)

ExtSpill x (R&D 
stock/Assets)4

YesYesYesYesPre-sample meansb

All regressions include 78 two-digits industry dummies, 4 technology indicators, 
a complete set of year dummies, a dummy variable for R&D stock equals zero 
and a dummy variable for IntSpill equals zero.
aThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, 
Assets, R&D stock, Patents stock and Citations stock.

Table A4
The effect of IntSpill and ExtSpill on Tobin's Q

Dependent variable: Log(Tobin's-Q); 9,454 observations

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (Newey-West corrected). * denotes a significance level of 5 percent.

aEstimated marginal effects, evaluated at the mean. Standard errors are calculated 
using the Delta method.



(4)(3)(2)(1)

0.348* 
(0.068)

0.199* 
(0.042)

0.342* 
(0.068)

0.197* 
(0.042)R&D stock/Assetsa

0.373* 
(0.074)

0.366* 
(0.074)R&D stock/Assets

-0.031* 
(0.009)

-0.030* 
(0.009)(R&D stock/Assets)2

0.055* 
(0.014)

0.072* 
(0.019)

0.054* 
(0.015)

0.071* 
(0.021)

IntSpill x (R&D 
stock/Assets)a

0.111* 
(0.039)

0.109* 
(0.041)

IntSpill x (R&D 
stock/Assets)

-0.022 
(0.029)

-0.021 
(0.029)

IntSpill x (R&D 
stock/Assets)2

-0.005* 
(0.002)

-0.007* 
(0.002)

-0.005* 
(0.002)

-0.008* 
(0.002)

Externalized Spillovers x 
(R&D stock/Assets)a

-0.012* 
(0.005)

-0.014* 
(0.005)

ExtSpill x (R&D 
stock/Assets)

0.002* 
(0.0006)

0.002* 
(0.0006)

ExtSpill x (R&D 
stock/Assets)2

0.0050.005log(IntSpill)
(0.018)(0.019)

-0.011-0.009log(ExtSpill)
(0.014)(0.014)

0.573*0.549*0.551*0.551*Sales Growth
(0.054)(0.054)(0.055)(0.055)

YesYesYesYesPre-sample meansb

YesYesYesYesFour-digit Industry effects

0.5720.5690.5680.569R²

All regressions include a complete set of year dummies, and a dummy for R&D 
stock equals zero and a dummy for Internalized Flows equal zero.
bThe set of pre-sample means: Market Share, Employees, Tobin's Q, Sales, Assets, 
R&D stock, Patents stock and Citations stock.

Table A5
The effect of IntSpill and ExtSpill on private returns to 

innovation: adding four-digit industry dummies

Dependent variable: Log(Tobin's-Q); 9,015 observations, 475 firms

aEstimated marginal effects, evaluated at the mean. Standard errors are calculated 
using the Delta method. Standard errors (in brackets) are robust to arbitrary 
heteroskedacity and serial correlation (clustered at the firm level). * denotes a 
significance level of 5 percent.
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