CENTRE for ECONOMIC P E R F O R M A N C E

CEP Discussion Paper No 1096

November 2011

Worktime Regulations and Spousal Labor Supply
Dominique Goux, Eric Maurin and Barbara Petrongolo

Abstract

We investigate cross-hour effects in spousal labor supply exploiting independent variation in hours worked generated by the introduction of the short workweek in France in the late 1990s. We find that female and male employees treated by the shorter legal workweek reduce their weekly labor supply by about 2 hours, and do not experience any reduction in their monthly earnings. While wives of treated men do not seem to adjust their working time at either the intensive or extensive margins, husbands of treated wives respond by cutting their labor supply by about half an hour to one hour per week, according to specifications and samples. Further tests reveal that husbands' labor supply response did not entail the renegotiation of usual hours with employers or changes in earnings, but involved instead a reduction in (unpaid) work involvement, whether within a given day, or through an increase in the take-up rate of paid vacation and/or sick leave. These margins of adjustment are shown to have no detrimental impact on men's (current) earnings. The estimated cross-hour effects are consistent with the presence of spousal leisure complementarity for husbands, though not for wives.

Keywords: Spousal labor supply, cross-hour effects, workweek reduction
JEL Classifications: J22, J12, J48
This paper was produced as part of the Centre's Labour Markets Programme. The Centre for Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements

We thank Philippe Askenazy, Thomas Piketty and Steve Pischke for helpful discussions as well as seminar participants at London School of Economics, Paris School of Economics, CREST Malinvaud Seminar, University of Maastricht, Greqam (University of AixMarseille), the OECD, and at the CEPR conference on the Economics of Family Policy (Bergen 2010) for valuable comments.

Dominique Goux is a Researcher at the Centre de Recherche en Économie et Statistique (CREST), France. Eric Maurin is Director of Research at Ecole des Hautes Études en Sciences (EHESS), Paris School of Economics. Barbara Petrongolo is a Research Associate, Centre for Economic Performance, London School of Economics and Professor of Economics, Queen Mary University London.

Published by
Centre for Economic Performance
London School of Economics and Political Science
Houghton Street
London WC2A 2AE
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of the publisher nor be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the above address.

[^0]
I. Introduction

Interdependencies in spousal labor supply have long been identified as an important factor shaping individual labor market outcomes (see e.g. Ashenfelter and Heckman, 1974). Complementarities in labor supply and leisure within or beyond the household are also a key policy issue, as they represent a channel through which reforms targeted at specific segments of the population can ultimately affect a wider sample of individuals. When the value of leisure time for an individual depends on the amount of leisure enjoyed by her family members, co-workers, neighbors, social contacts, etc., reforms of the welfare state, or tax reforms, or changes in workweek regulations aimed at some segments of the workforce may impact individual behavior well beyond the targeted population (Alesina, Glaeser and Sacerdote, 2005).

While spillovers in work and leisure represent an important and controversial issue, there is still little micro-level evidence on the actual magnitude of these effects. Progress in this direction has been limited by the difficulty of finding independent variation in the labor supply of one's peers, as individuals within the same social or family network may be subject to the same reforms, or more in general to correlated labor supply shocks. Another major challenge is that changes in leisure time and working hours for individuals are in most cases associated with important changes in their earnings. Thus the labor supply responses of peers cannot be interpreted as reflecting pure cross-hour effects, as they may also encompass crossearning effects.

In this paper we exploit the specific design of the workweek reduction policy implemented in France in the late 1990s to overcome these issues and provide one of the very first micro estimates of the effect of an exogenous change in individuals' number of hours worked on the labor supply behavior of their spouses.

In June 1998 the French socialist government mandated a reduction of the legal workweek, from 39 to 35 hours, to be implemented in large firms by January 2000 and in small firms by January 2002, without an associated reduction in monthly earnings. In order to attenuate the impact of higher hourly wages on profitability, employers who would implement the shorter workweek before the relevant deadline would benefit from significant cuts in their payroll taxes. In January 2000 the Government pushed back the deadline for full adoption of the shorter workweek, and only about 300,000 firms had implemented it before the come back of the conservative party to power in April 2002 and the interruption of the original workweek reform. The reform implied a noticeable change in the workweek of at least one spouse in over one third of French households, with no direct impact on family income. Both withinhousehold variation in the workweek reduction, and the absence of income effects, make the French worksharing reform a unique scenario for assessing cross-hour effects between spouses.

In general, it is theoretically ambiguous whether a fall in working hours and thus an increase in 'non-market' time of one spouse would generate a fall or a rise in working hours of the other spouse. Substitutability in non-market time of husbands and wives could be driven by substitutable spouse efforts in home production. A reduction in the workweek of one spouse would shift some of her time endowment from market to home production, thus freeing up some home production time of the other spouse, who could devote more time to market work. Conversely, if one detects complementarity in non-market time of spouses, this would rather be consistent with complementarity of their leisure time. A reduction in the workweek of one spouse would increase her leisure time and thus raise the value of leisure of the other spouse if spouses enjoy spending time together. Alternative explanations for complementarity of non-market time could rest on other forms of social interactions, such as for example spouses influencing each other's perceptions and adjusting accordingly their preferences about work, leisure and work-life balance.

This paper uses a unique matched worker-firm dataset obtained by combining the French Labor Force Survey with firm level information on the implementation of the shorter workweek, in order to estimate the labor supply response of men and women to a reduction in the legal workweek in their spouses' workplaces. We detect an average reduction of about 2 hours in the workweek of both male and female employees whose employers signed a workweek reduction agreement. ${ }^{2}$ When looking at spousal responses, we find that women do not adjust their labor supply, whether at the intensive or extensive margin, when their husbands become subject to the shorter workweek. Men, by contrast, tend to work about 0.5 hours less per week when their wives become treated, independent of whether or not a man's own employer signed a workweek reduction agreement at the same time as his wife's employer.

Further tests reveal that men's labor supply response to wife treatment is not associated with a reduction in their usual working hours, but with a reduction in the 'nonusual' component of their workweek. Moreover, such response does not involve a loss of earnings, suggesting that husbands cut on some form of unpaid work involvement, whether within a given day, or through an increase in the take-up rate of paid vacation and/or sick leave. If employees do not use their whole paid leave entitlement, or simply spend some unproductive time at work, they have some leeway in cutting their hours while avoiding earnings losses, and it is mostly by adjusting around these unpaid work margins that men respond to shorter workweek agreements in their wives' firms.

These estimates are all the more suggestive as the direct (first-stage) effect of shorter workweek agreements on treated wives is estimated to be only about 2 hours. Assuming that the workweek reduction in wives' firms affects their husbands only via wives' labor supply, we provide an instrumental variable estimate of the average cross-hour effect for husbands of

[^1]0.24 , rising to 0.38 for managers and professionals, and to 0.58 for fathers of young children. The interpretation is that managers and professionals work relatively longer hours and have much closer control on their actual hours than employees in less-skilled occupations. For fathers, the leisure complementarity motive is plausibly stronger than for the childless, in so far children may be interpreted as household public good (Lundberg, 1988).

Our estimated spillover effects would imply a value for the social multiplier in the range 1.1 to 1.3 , depending on household composition. That is, the equilibrium labor supply response to an exogenous shock is about 10% to 30% larger than the initial impact. As discussed by Glaeser, Sacerdote and Scheinkman (2003), the role of social interactions and social multipliers may vary widely across demographic groups and levels of aggregation, and the French reform provides a clean experiment to identify the multiplier in labor supply at the household level.

By looking at interdependencies in labor supply within the household, our paper relates to a long strand of literature on family labor supply, dating back (at least) to seminal work by Ashenfelter and Heckman (1974). This literature typically investigates the response of an individual's labor supply to independent changes in her spouse's income and/or hours of work. These changes may in turn be driven by events as diverse as retirement, job loss, fiscal reforms, etc. There is a fairly large literature documenting a positive correlation between husbands' and wives' retirement decisions, over and above what would be predicted by correlation in age and incentives in the retirement system (see, among others, Blau, 1998, and Gustman and Steinmeier, 2000). Conversely, the added worker effect literature detects a mild substitutability between spousal labor supply, as married women tend to increase their working hours following husband's job loss (Lundberg, 1985). More recently, Gelber (2011) exploits the Swedish tax reform of 1990-91 to examine the response of husbands' and wives' earnings to a change in the marginal tax rate for the other spouse, and shows that as net-of-tax earnings of one's spouse rise, own earnings rise too. Insofar earnings responses reflect labor
supply responses, these findings suggest complementarity in spousal leisure. Complementarity is also detected by Hamermesh (2002), who finds that spouses' daily work schedules are more synchronized than would occur randomly. While building on very different sources of variation, these papers tend to agree in documenting important spillovers in the labor supply behavior of spouses.

Our contribution to this literature is threefold. First, we exploit independent variation in spousal hours of work, while keeping monthly earnings constant. This allows us to abstract from income effects of changes in spousal labor supply, and focus on pure cross-hour effects. In particular, under the assumption that an employee's workweek regulations affect their spouses only via their labor supply, we can recover an estimate of the structural parameter capturing leisure complementarity in the utility function. Secondly, while most of the existing literature has focused on the labor supply response of secondary earners, we show in this paper that it is in fact men who significantly cut their working hours following the adoption of the shorter workweek in their wives' workplaces, while the corresponding women's response is close to zero. This may in turn be due to different degrees of leisure complementarities in spouses' utility functions, or a greater ability of men to control their working schedules. Thirdly, we provide evidence on specific adjustment margins in labor supply spillovers, and in particular we find that it is mostly husbands' unpaid involvement in their workplace that is affected when their wives' workweek is reduced.

Our paper is also related to the literature on work-sharing policies in developed countries. The study which is closest to ours is Hunt (1998), who shows that the gradual decline in standard working hours of male, German employees between 1984 and 1994 was not accompanied by changes in their wives' employment rates, but nevertheless produced a small decline in their hours of work. These results, while consistent with complementarity in spousal leisure, may also reflect underlying trends in female labor supply in Germany over this period, including wives' own gradual exposure to shorter standard workweeks.

Finally, our paper adds to the literature evaluating the effects of workweek reduction reforms in France (see e.g. Crépon and Kramarz, 2002, Crépon, Leclair and Roux, 2004, Askenazy, 2008, Estevao and Sa , 2008, Chemin and Wasmer, 2009). Existing evaluations typically focus on the employment effects of such reforms by comparing employment levels across large and small firms (or across regions) before and after the introduction of the shorter workweek. The focus and methodology of our paper are different insofar we exploit variation in the exact dates of implementation of the workweek reduction across firms to investigate the labor supply response of individuals to their spouses' reduction in working hours.

The paper proceeds as follows. Section II gives an overview of the workweek reduction reform. Section III describes the data used and provides some graphic analysis of the effect of the workweek reduction on treated individuals and their spouses. Section IV presents our main regression results. Section V shows robustness of our results to alternative identification strategies. Section VI provides instrumental variable estimates of cross-hour effects, using mandated workweek reductions as instruments for spousal labor supply. Section VII finally concludes.

II. Historical and institutional context

Since the early 1980s, the legal workweek in France has been 39 hours. The overtime wage premium was 25%, and the maximum number of overtime hours per worker was set at 130 per year. In 1993, the French economy went through one of the most severe recessions of the post-war period, accompanied by a rapid increase in unemployment, reaching the peak rate of 12% in 1996. In this highly depressed context, the French conservative government passed a law offering private firms fiscal incentives to expand employment levels through a workweek reduction (Robien law). The impact of the Robien law was very limited, with less than 3,000 workweek reduction agreements signed with unions, affecting less than 2% of the workforce
(see Fiole and Roger, 2002). The law did not modify the legal workweek, which remained at 39 hours.

In April 1997, the French president Jacques Chirac dissolved the parliament and called general elections one year ahead of the end of the legislature. This decision was highly unexpected and the electoral campaign that followed was very short. The socialist party proposed a program whose main axis was the reduction of unemployment through worksharing, with two basic slogans: "travailler moins pour travailler tous" (work less in order to work all) and " 35 heures payées 39 " (35 worked hours paid 39). The left coalition won the election in June 1997.

The workweek reduction was implemented in two steps (see Askenazy, 2008, for a detailed description of the reform). The first law (Aubry I, named after the then labor secretary Martine Aubry) was passed in June 1998. It set the legal workweek at 35 hours in the private sector and mandated that the new workweek be implemented by January 2000 in firms with more than 20 employees, and by January 2002 in smaller firms. ${ }^{3}$ Hours worked beyond the $35^{\text {th }}$ hour would be treated as overtime hours, subject to a 25% hourly wage premium and to a maximum of 130 overtime hours per employee per year.

Also, the law stipulated that firms who would implement the shorter workweek through a collective agreement with unions before the relevant deadline would benefit from substantial cuts in payroll taxes, ${ }^{4}$ provided that they commited to maintain employment levels.

Finally, the law required that workers should not experience a drop in their monthly earnings following the legal workweek reduction. In particular, firms who passed a 35 -hours agreement had to grant a specific (4 hours) bonus to workers paid the monthly minimum wage. The general purpose of the law was to induce firms to raise employment levels by

[^2]worksharing, while offering them fiscal advantages to attenuate detrimental impacts of this reform on profitability.

In January 2000, the second law (Aubry II) introduced several additional regulations in order to limit the cost of the shorter workweek to employers. In particular, it became possible to implement the shorter workweek via slightly modified definitions of working time, without losing eligibility for fiscal aids. For example, it became possible for employers to exclude 'unproductive breaks' from the definition of working time. Also, firms could introduce shorter working hours on an annual - rather than weekly - basis, with a cap on annual hours being set at 1600 . In practice it means that a collective agreement could be signed (and fiscal advantages obtained) even with actual reductions of working hours below 10%. Most importantly, the new law introduced a two-year transitional phase during which it became possible for employers to keep the 39-hour workweek by using overtime at a reduced 10% rate. ${ }^{5}$

Two years later, in summer 2002, the conservative party came back to power and, while the Aubry laws remained formally in place, the whole transition to the shorter workweek was discontinued in practice. The new conservative government raised the maximum number of overtime hours from 130 to 220 , and extended fiscal incentives to all firms, including those that did not sign workweek reduction agreements. In this new scenario firms could effectively have employees working 39 hours weekly, at no extra hourly cost with respect to the pre-reform period. As a consequence of these political changes, the 35 -hour was never fully implemented, especially in small private firms. Nevertheless, the Aubry laws have had a very large impact on the French economy, with roughly 350,000 agreements signed, covering about 10 million workers.

[^3]To sum up, the French workweek reform had several important features: it was unexpected; it has been interrupted, with only a fraction of workers being affected; it did not affect monthly earnings; and given its gradual implementation it would likely not treat spouses in a given household at the same time. In the remainder of this paper, we will build on these features of the reform in order to evaluate the effect of an exogenous variation in an individual's workweek on the number of hours worked by her spouse.

III. Data and descriptive evidence

III. 1 Data

We combine individual level information on worker characteristics and working hours with firm level information on collective agreements signed by employers who adopted the shorter workweek.

We use individual records from the French Labor Force Surveys (hereafter, LFS), which is conducted each year by the French Statistical Office (Institut National de la Statistique et des Etudes Economiques, herafter, INSEE). Before 2003, the LFS was conducted in March of every year, and covered a representative sample of about 100,000 households each year (with a $1 / 300$ sampling rate). From 2003 onward, the survey is conducted each quarter and covers a representative sample of about 55,000 households each quarter. Our main analysis will be based on all repeated cross-sections from 1994-2002, namely all annual 1994-2002 surveys, and all first quarterly surveys for 2003-2009.

For each household member aged 15 or above, the LFS provides information on gender, marital status, employment status, occupation, educational level, industry, monthly earnings and hours worked during the previous week.

Crucial for our purposes, our restricted use version of the LFS also provides employer identifiers. Specifically, each employee is asked to report the name and address of her
employer, and this information is coded by INSEE. The coded employer identifier is available for just over 80% of the employees in the LFS. ${ }^{6}$ This information allows us to match worker level information with firm level information from the DARES-URSSAF dataset, an administrative database collected by the French Ministry of Labor, which provides detailed information on all firms who signed a workweek reduction agreement, including the signing and implementation dates. We thus obtain a matched employer-employee dataset containing information on working hours of respondents and their spouses, as well as information on when, if ever, their employers implemented the shorter workweek.

The matched employer-employee dataset used has some clear advantages compared to the non-matched LFS. First, it allows us to identify which workers were actually treated, and not simply the intention to treat based on the number of employees in their firms and the proximity to the law deadlines. ${ }^{7}$ Also, the information on the exact date of treatment makes it possible to exploit the gradual implementation of the shorter workweek, thus avoiding to solely rely on the announced 2000 and 2002 deadlines.

III. 2 Descriptive statistics

In what follows we focus on a sample of married or cohabiting respondents, whose spouse is a wage-earner, and we focus on the labor supply response of main respondents to spousal exposure to the shorter workweek. We restrict our analysis to respondents aged 18-65, and drop the small number of those whose spouses' employers signed an agreement either before 1996 or after 2002, since it is not clear whether these early and late agreements really correspond to the reforms implemented in the late 1990s. Our working sample includes 189,894 males and 236,802 females.

[^4]Table 1 provides some basic descriptive statistics on our sample, distinguishing between male and female respondents, and by the treatment status of their spouses. Throughout the paper we define as treated all spouses whose employers ever implement a workweek reduction agreement. Both men and women are less likely to work in the public sector when they have a treated spouse, which is consistent with the reform having mostly affected the private sector. But the age and years of education of both men and women are nonetheless very similar whether or not their spouses are treated.

Table 2 reports the distribution of own and spousal legal workweek status in the employed sample, and shows that about 54% of husbands of treated women are non-treated themselves by the workweek reduction (Panel A, column 1), while about 29% of husbands of non-treated women are treated. Thus there is some assortative mating along the treatment dimension, but spouses have nonetheless different treatment status in a large proportion of cases. Furthermore, even when both spouses are treated, the timing of treatment differs for about half of the couples. Panel B shows a very similar picture for wives of treated and nontreated men. To further illustrate timing of treatment, Figure 1 graphically shows the gradual implementation of the shorter workweek for spouses of employed respondents, i.e. on the same sample described in Table 2. While only about 40% of employees are eventually treated in this sample, there is substantial variation in treatment dates between 1998 and 2002. Information on exact dates of treatment thus allows us to separately identify the direct and cross-effects of shorter workweeks across spouses, as in the majority of cases the year of treatment differs across spouses.

III. 3 Graphical evidence: Direct and cross-effects of treatment

Before moving on to regression analysis, below we provide some simple graphical evidence on the direct and cross-effects of the workweek reform on the number of hours worked by spouses in our sample. Figure 2 plots hours worked during the survey week by wives who are
wage earners, by treatment status (189,894 observations in total). The solid line refers to treated wives, and time zero refers to the year in which a shorter workweek agreement is implemented at their workplace. Their weekly hours are stable, if anything slightly rising during the pre-treatment years, and drops by about 2 upon treatment. The dotted line refers to non-treated wives, and reports their working hours for the same dates at which treated wives were observed. Their weekly hours follow a gradually rising trend throughout the sample period, with no break at time 0 . Thus we observe a decline of about 2 hours in working hours of treated wives relative to control wives at time of treatment. Interestingly, wives that become treated have longer weekly hours initially, and their hours converge almost exactly to hours of non-treated wives when their employers adopt the shorter workweek.

This observed drop in weekly hours for treated wives relative to the non-treated is a sort of first-stage effect for the cross-hour effect that we intend to analyse next. A first-stage effect of about 2 hours is roughly half the reduction in the legal workweek (i.e. the intended first-stage), and this may be explained by a number of factors. In particular, part of the implementation of the worktime regulation may have taken place with slight modifications of working time definition (for example excluding unproductive breaks from the hours count) or reducing the number of weeks worked per year rather than the number of hours worked per week, keeping usual weekly hours constant (see also Askenazy, 2008). This would deliver a mitigated effect of the workweek reduction on mean actual hours worked in the LFS, as the survey week falls in March of each year, and thus tends not to coincide with popular holiday seasons. Finally, the effect of the introduction of the 35-hour workweek has also been mitigated by the fact that about 30% of French female employees work part-time, and for them the shorter workweek would not be binding. The estimated 2 -hour drop in working
hours can be interpreted as an average of a higher drop for women initially working more than 35 hours, and a smaller drop for women initially working less than 35 hours. ${ }^{8}$

Given the behavior of treated wives, the next question is whether we observe a variation in either the employment rate or the number of hours worked by their husbands. Figure 3 shows flat and virtually identical employment patterns of husbands of treated and non-treated wives. When focusing on a $[-3,+3]$ years window around time of treatment, the difference in employment rates between husbands of treated and non-treated wives is very small (about 1.5 percentage points) and almost exactly the same before and after the time of the treatment. Thus we detect no spillover effects at the extensive margin.

Figure 4 then addresses corresponding variations at the intensive margin, by showing the impact on hours worked by the subsample of employed husbands, and reveals a sizeable drop in average working hours of husbands of treated wives, relative to husbands of nontreated wives. Specifically, the difference in working hours between the treatment and control group is close to zero during the five pre-treatment years, and rises to nearly 1 during the five post-treatment years.

These spillover effects may in part reflect the fact that some husbands were themselves employed in firms who adopted the shorter workweek, and thus became treated at the same date as their wives. To purge this effect out, we replicate the same trends on a sub-sample that excludes households in which spouses became treated at the same date, and still observe a clear change in the relative number of hours worked by husbands of treated wives at the time of treatment (see Figure A1 in appendix). The same result holds when we further restrict the sample to households in which the husband was never treated (see Figure A2). In the regression analysis that follows we will pool all households and control for own and spouse treatment separately.

[^5]Figures 5 to 7 repeat a similar analysis for female respondents and their husbands. Again we observe a clear drop in working hours of treated relative to non-treated husbands (see Figure 5), whose magnitude is very close to that we observed for wives in Figure 2. However, we find no evidence of spillover effects on their wives' labor supply, either at the extensive margin (Figure 6), or the intensive margin (Figure 7).

To summarize, our descriptive evidence is suggestive of labor supply spillovers at the intensive margin for husbands of treated wives, but no spillovers at the extensive margins or for wives of treated husbands. The next section will show estimates of these effects that control for observable characteristics of the individuals, and explore further the nature of these spillovers.

IV. Regression results

IV. 1 Main estimates

As in the previous descriptive analysis, we focus on two main outcome variables for each individual i in our sample, namely her employment status and her weekly hours worked, and assess how each is affected by the implementation of a shorter workweek agreement by her spouse's employer. This would work via an effect on the spouse's labor supply, and thus we start by estimating a first-stage specification that regresses spouse working hours on treatment variables and other covariates. We denote by $H_{i t}^{S}$ the actual weekly hours worked by the spouse, and introduce a dummy variable $A_{i t}^{S}$ indicating whether at time t she works for a firm who has ever adopted the shorter workweek. Our first-stage regression is the following difference-in-differences specification:

$$
\begin{equation*}
H_{i t}^{S}=\alpha_{1} A_{i t}^{S}+\alpha_{2} \text { APost }_{i t}^{S}+\alpha_{3} X_{i t}^{S}+D_{t}+u_{i t} \tag{1}
\end{equation*}
$$

where APost $t_{i t}^{S}$ indicates the period following a workweek reduction in the spouse's firm, D_{t} denotes a set of year fixed effects, and $X_{i t}^{S}$ are relevant individual covariates, including a constant term. The α_{2} coefficient shows the direct (first-stage) effect of workweek regulations on labor supply.

Table 3 shows the regression results for specification (1) for wives (Panel A) and husbands (Panel B) of main respondents. All reported standard errors in this and later tables are clustered at the year*treatment level (32 clusters). Column (1) in Panel A shows that wives working in firms who implemented a workweek reduction agreement were working about 1.36 hours more than wives in other firms in the pre-reform period, but then cut their labor supply by about 1.81 hours per week once the shorter workweek was implemented. This pattern of working hours was also evident from Figure 2, and the only difference here is that we control for aggregate time effects and a public sector dummy. Turning to husbands, column (1) in Panel B shows small pre-treatment differences (-0.28 hours), but again strong and significant effects of the workweek reduction (-1.95 hours). All these estimates are robust to the introduction of controls for age, education and industry effects in column (2), suggesting that the implementation of the shorter workweek was largely orthogonal to these job and worker characteristics. ${ }^{9}$

Columns (3) and (4) in each panel report estimates of a similar specification for (the \log of) monthly earnings, and once extra controls are included these show near zero effects of the workweek reduction on the earnings of wives and husbands. These first-stage results are clearly in line with the reform's intended outcome to shorten the workweek without cutting monthly earnings of treated employees. If anything, the effect of the shorter workweek on the

[^6]monthly earnings of husbands is positive rather than negative, albeit tiny, and only significant at the 10% level.

We next assess labor supply spillovers by looking at the reduced-form effects of the workweek reduction in the spouse firm on the employment status of the main respondent and her weekly hours. Note that we can interpret such cross-effects as stemming from the sole reduction in the amount of time spent at work by the spouse once we have ruled out the presence of income effects, as shown in columns (3) and (4) of Table 3. Our reduced-form specification for employment is

$$
\begin{equation*}
E_{i t}=\beta_{1} A_{i t}^{S}+\beta_{2} \text { APost }_{i t}^{S}+\beta_{3} X_{i t}+D_{t}+v_{i t} \tag{2}
\end{equation*}
$$

where $E_{i t}$ is a dummy variable that is equal to 1 for the employed and 0 for the nonemployed. For hours worked, we restrict the sample to employed individuals and estimate

$$
\begin{equation*}
H_{i t}=\gamma_{1} A_{i t}^{S}+\gamma_{2} \text { APost }_{i t}^{S}+\gamma_{3} A_{i t}+\gamma_{4} \text { APost }_{i t}+\gamma_{5} X_{i t}+D_{t}+\varepsilon_{i t}, \tag{3}
\end{equation*}
$$

where $H_{i t}$ denotes weekly hours conditional on working, $A_{i t}$ is a dummy variable denoting whether the current employer of the main respondent has ever implemented a shorter workweek agreement, whereas APost $_{i t}$ indicates the period following this agreement. The main coefficients of interest are β_{2} in model (2) and γ_{2} in model (3). Note that these specifications allow us to estimate cross-effects in labor supply (captured by APost $_{i t}^{S}$), over and above the direct effect stemming from the adoption of the shorter workweek in the own firm (captured by APost $_{i t}$). These two effects can be separately identified in so far treatment is not simultaneous for all spouses.

The regression results are reported in Table 4. Columns (1) and (2) refer to employment, and columns (3)-(5) refer to weekly hours. Estimates show no evidence of any significant cross-effects on employment for men, and the associated point estimate is always very close to zero, in line with the trends reported in Figures 3. For women, the cross-effect
on employment becomes marginally significant when further controls are included in column (2), but its magnitude stays very close to zero. As we find virtually no impact on employment, we next look at hours worked for those who are employed. ${ }^{10}$ In column (3) of Panel A we regress men's hours on own treatment variables ($A_{i t}$ and APost ${ }_{i t}$), and on their wives' treatment variables $\left(A_{i t}^{S}\right.$ and APost $\left.{ }_{i t}^{S}\right)$. The own treatment effect is about $-2,{ }^{11}$ and the crosseffect is -0.44 and highly significant, showing that when their wife becomes treated by the shorter workweek, working men reduce their weekly labor supply by nearly half an hour. The magnitude of this effect does not change when we control for individual characteristics of respondents (column (4)), or when we exclude own treatment variables $A_{i t}$ and APost $_{i t}$ (results not reported). Finally, the estimated cross-effect stays largely unchanged when we exclude men who are themselves treated at some point during the sample period (column (5)).

Panel B reports corresponding estimates for women. While the own effect of workweek regulations is negative and significant, the cross effect is positive, small, and not significantly different from zero. We thus detect no evidence of any spousal spillover in the labor supply of women. ${ }^{12}$

Our estimates provide one of the first pieces of evidence showing that changes in the workweek of a subsample of employees may have a very significant impact well beyond the targeted population. A simple back-of-envelope calculation can help quantify overall spillover effects. In particular, the adoption of the shorter workweek implies a reduction of nearly two hours in the labor supply of married women, and nearly half an hour in the labor supply of

[^7]their husbands. Assuming for simplicity that the same probability of treatment (0.4) and the same first stage effect (-2 hours) would apply to all categories of workers, the average direct effect of the reform on the male labor supply would be $-0.4 \times 2=-0.8$ hours, whereas the average cross effect would be $-0.4 \times 0.61 \times 0.5=-0.12$ hours, where 0.61 represents the proportion of male workers who are married to a female wage earner. Thus neglecting spillover effects would lead to an underestimate of the overall impact of the workweek reduction on male labor supply of about $0.12 /(0.12+0.8)=13 \%$. Given that men represent about half of the overall employed population, this implies underestimating its impact on the overall population by about $0.12 /(0.12+0.8+0.8)=7 \%$.

IV. 2 Further estimates: Cross-effects on usual and non-usual working hours

We have shown that, following a workweek reduction at their workplaces, women work about 1.9 hours less per week at constant earnings, and their husbands respond by cutting their labor supply by about half an hour. The aim of this section is to assess the nature of these labor supply spillovers. How did respondents manage to cut their actual hours just after an agreement was passed in their spouses' firm?

One simple way to shed light on this question is to exploit information provided by the LFS on the difference between actual hours (that we denoted by H) and usual hours (that we will denote by H_{u}), defined as the number of hours worked in a typical week. ${ }^{13}$ Using this information, actual hours H can be conceptualized as the sum of a usual number of hours H_{u} and a non-usual component $H-H_{u}$, which may be either positive or negative, depending on

[^8]whether overtime hours exceed various forms of unworked hours (e.g., unusually short working days, sickness absence, paid or unpaid leaves, etc...) in a given week.

Based on this distinction, there are two ways of reducing weekly hours H. The first one is to negotiate a new contract with one's employer, involving a smaller number of usual hours H_{u}. The second way is to keep one's contract unchanged, together with the associated usual hours H_{u}, but to reduce $H-H_{u}$, and namely some form of work involvement that is typically not specified in the contract. It may involve a reduction in overtime work or an increase in the take-up rate of leaves or an increase in absenteeism. It would be reasonable to expect that the observed cross-effects mostly occur through reductions in $H-H_{u}$, since such reductions do not require the negotiation of a new contract, and are more easily under an employee's individual control than adjustments in usual hours H_{u}.

To look into possible adjustment margins, columns 1 and 2 of Table 5 re-estimate our reduced-form specification (3), using H_{u} and $H-H_{u}$ as dependent variables in turn. The sample period is now restricted to 1994-2002, as the information on usual hours is only available until 2002 in the LFS. These regressions show a sizeable (-0.59) cross-hour effect for non-usual hours $H-H_{u}$ only, but no cross effect on usual hours H_{u}. This finding confirms that cross effects on husbands' hours did not occur through a renegotiation of usual working schedules, but mostly through a reduction in non-usual hours. By contrast, the direct effect of the shorter workweek mostly happens on usual hours (-1.99), which is consistent with the collective nature of these agreements. For women, we did not detect significant cross-effects on either usual or non-usual hours (results not reported).

We next test whether cross-effects in male hours were accompanied by earnings losses. Column 3 of Table 5 shows that it is clearly not the case. Using the same reduced-form specification as in Table 3, we find that if anything a workweek reduction agreement in the wife's workplace is associated with a 0.8% increase in husband's earnings, and this effect is
marginally significant. Column 4 re-estimates the same specification on the 1994-2002 sample period, consistently with columns 1 and 2 , and the results show lack of earnings effects at any conventional significant level.

As for how adjustments in non-usual hours may be achieved in practice, recent waves of the LFS confirm that there exists significant leeway for most employees, and especially for the highly-skilled, in reducing their individual involvement in the workplace. From 2003 onwards the LFS provides information on the take-up rate of paid leaves, as well as on paid and unpaid overtime work. During the 2003-2009 period, about 12% of male employees declare that their paid holiday entitlement exceeded the amount of paid leave actually taken by one week or more. Also, about 23% declare that they have worked overtime in the survey week, and that over 61% of their overtime hours were unpaid. For employees in high-skill occupations, about 37% have been working overtime, and about 84% of their overtime hours were not remunerated (see Table A2).

Adjustments via these margins are further explored in Table 6, where we report crosshour effects on overtime hours and unworked hours, separately. These are defined as ($H-$ $\left.H_{u}\right)^{+}=\max \left(H-H_{u}, 0\right)$ and $\left(H-H_{u}\right)^{-}=\max \left(H_{u}-H, 0\right)$, respectively. Table 6 shows that cross-hour effects feature strongly on unworked hours (column (2)), ${ }^{14}$ while overtime hours are hardly affected (column (1)). Further tests show that cross effects on unworked hours $\left(H-H_{u}\right)^{-}$involve an increase in the frequency of both unworked weeks (i.e. $H=0$, see column (3)) and unusually short workweeks (i.e. $0<H<H_{u}$, see column (4)). Interestingly $\left(H-H_{u}\right)^{-}$turns out to be the sole component of labor supply that employees may cut unilaterally without earning losses, as discussed in Appendix A.

Finally, for cases in which $H<H_{u}$, respondents are asked to state the main reason why they worked less than usual in the reference week. Possible answers include: holidays

[^9]and absence for personal reasons, ${ }^{15}$ sickness leave, maternity leave, continuous training, unusual workload, strike, and lock-out. Interestingly, we detected significant cross-hour effects for the first two categories, namely holidays and sickness leave, which are margins on which employees have closer control (results not reported). By contrast, we detected no cross effects on any other margin.

In summary, we find evidence that cross-effects did not entail the renegotiation of usual hours with employers or changes in earnings, but involved instead a simple reduction in (unpaid) work involvement, whether within a given day, or through an increase in the take-up rate of paid vacation and/or sick leave. These margins of adjustment typically have no detrimental impact on (current) earnings.

An explanation for why men may work some unpaid hours in the first place is that these may have an impact on future, as opposite to current, earnings, to the extent that someone who is more absent from work may lose on prospects of promotion and/or earnings growth. Another possible explanation is that some individuals may derive utility from work per se. Regardless of the underlying explanation, our results show that men decide to cut on such unpaid hours following their wives' treatment, as increased spousal nonmarket time would raise the utility of their own nonmarket time relative to the utility of being at work. This mechanism will be illustrated in a simple mode of spousal labor supply in Section IV and Appendix B.

IV. 3 Heterogeneous Cross-Hour effects

As Table A2 shows, workers in high-skill occupations typically work longer hours than the less-skilled and are also more likely to do overtime work. High-skill occupations here include managers, professionals and engineers at various levels (cadres in the French classification of

[^10]occupations), and cover about 20% of the employed workforce. About 51% of males in these occupations work more than 45 hours weekly, while only 24% of those in less-skilled occupations do so. For women, the proportions are 21% and 8% respectively. Moreover, highskill workers typically have higher control over the organization of their workweek. One could therefore expect that high-skill workers are more likely to respond to changes in their spouses' workweek than the less-skilled, who are instead more likely to work the legal workweek and therefore would only be able to cut their working hours via new contractual agreements.

To test this assumption, we replicate our previous analysis for men in high-skill occupations and other men separately. The results are reported in Table 7, which shows in column (1) a strong and significant first-stage effect of the shorter workweek on wives’ working hours, which is somewhat higher for wives of managers and professionals than for other wives. Interestingly, the associated cross-effect on hours is about three times larger for managers and professionals than for other workers (column 2). In particular, managers and professionals cut their working time by nearly one hour when their wives are treated, while the corresponding figure for workers in other occupations is about 19 minutes. One can draw similar conclusions by looking at the probability of working more than 45 hours weekly in column (3), which shows that wives' treatment lowers the likelihood of a long workweek for men in managerial or professional jobs by 3.3 percentage points, representing a 6.5% reduction on the baseline proportion of 51%. Spillover effects on men's labor supply thus seem a lot stronger for the high-skilled than for the less-skilled.

We further explore spousal labor supply responses in households with young children, as compared to other households. It has been argued that the interdependence of spousal labor supply may be stronger when there are young children in the household, as children appear to play the role of a "jointly-consumed commodity" for husbands and wives (Lundberg, 1988). To test this assumption, Table 8 replicates previous regressions for households with at least
one child aged 0-6 and for other households separately. In column 1, we find weaker firststage effects for mothers of young children (-1.30) than for other women (-2.08). This difference is at least partly explained by higher incidence of part-time work among mothers, as for part-timers the mandatory workweek reduction would not necessarily be binding (Bloch-London and al., 2003). Moving to reduced-form regressions in column 2, the reaction of husbands to their wives' treatment is noticeably stronger in households with young children than in other households, despite a weaker first-stage effect. The presence of at least one young child thus clearly increases the reaction of men's labor supply to their wives working hours. Again we did not detect any similar spillovers for wives.

As the presence of young kids in the household is systematically related to the age of respondents, one may worry that the above estimates would be driven by age effects, rather than parenthood. To investigate this we further split the sample along the age dimension of respondents (18-29, 30-39, 40-49, 50+ years old; with or without kids aged 0-6). We find that for all age groups the cross-hour effect in the sample with children is higher than the corresponding effect estimated on the childless sample (especially in the younger age group), thus we do find evidence of genuine parenthood effects. By contrast, in the childless sample, we do not find any significant age effects (results not reported).

V Robustness checks

V. 1 Alternative Identification

The previous analysis uses two sources of identification for the cross-hour effects of the shorter workweek, and namely the fact some spouses are treated whereas others are not, and the fact that not all treated spouses are treated at the same date. In order to check the robustness of our estimates, Table 9 replicates the previous regressions using these two
sources of identification separately. Specifically, the first-stage regression is based the following specification,

$$
\begin{align*}
H_{i t}^{S}= & \alpha_{11} A_{i t}^{S}+\alpha_{12} A_{i t}^{S} *(1998 \leq t \leq 2002)+\alpha_{21} A_{i t}^{S} *(t>2002)+ \\
& +\alpha_{22} \text { APost }_{i t}^{S} *(t \leq 2002)+\alpha_{3} X_{i t}^{S}+D_{t}+u_{i t} . \tag{4}
\end{align*}
$$

The parameters of interest are α_{21} and α_{22}. The α_{21} coefficient compares differences in hours between those ever treated and the nontreated after 2002 and before 1998. By contrast, the α_{22} coefficient compares hours worked by those treated later to hours worked by those treated earlier. ${ }^{16}$

The corresponding reduced-form equation for the impact of spouse treatment on the main respondent's labor supply is thus

$$
\begin{align*}
H_{i t}= & \gamma_{11} A_{i t}^{S}+\gamma_{12} A_{i t}^{S} *(1998 \leq t \leq 2002)+\gamma_{21} A_{i t}^{S} *(t>2002) \\
& +\gamma_{22} \text { APost }_{i t}^{S} *(t \leq 2002)+\gamma_{3} A_{i t}+\gamma_{4} \text { APost }_{i t}+\gamma_{5} X_{i t}+D_{t}+\varepsilon_{i t}, \tag{5}
\end{align*}
$$

where γ_{21} and γ_{22} are the parameters of interest.
Columns 1 and 2 in Table 9 report the estimated first-stage effects on wives' hours and earnings. Reassuringly, the estimates for first-stage effects α_{21} and α_{22} are both negative, highly significant, very similar to each other and very close to the overall effect obtained with the basic specification (see Table 3). Column 3 reports reduced-form effects for their husbands. The estimates obtained for γ_{21} and γ_{22} are again negative, significant, close to each other and to the overall reduced-form effect reported in Table 3.

For females, the estimated cross effects were still negative, but very small in magnitude and not significantly different from zero at standard levels, regardless of the source of identification (results not reported).

[^11]
V. 2 Fixed-effect estimates

In this section we exploit the panel component of the French LFS to provide fixed-effect estimates of the impact of the shorter workweek on spousal labor supply. An important caveat here is that the longitudinal dimension available in the LFS is quite short, and spells of observation of respondents only rarely overlap with the adoption of the shorter workweek in their spouses' firms. Even when we focus on the 1998-2002 period, ${ }^{17}$ only about 10% of respondents surveyed are observed both before and after the implementation of the shorter workweek in their spouses' firms (see Table 10). Overall, only about 23,000 male and 29,000 female respondents can actually contribute to the identification of changes in spouses' firm regulation on respondents' labor supply.

With these caveats in mind, we replicate previous regressions controlling for individual fixed-effects. Table 11 reports estimates of reduced-form effects on employment, hours and earnings for both men and women. Employment and earnings effects of the shorter workweek are again nil. The first-stage effect on hours is negative and significant for both men (-1.22) and women (-1.21), although this is somewhat smaller than the effect detected in cross-section estimates of Table 3. As fixed-effect estimates focus by construction on shortterm effects of worktime agreements, while cross-sectional estimates exploit a longer horizon, one may think that the difference between the two may be due to some gradual implementation of the shorter workweek. Figures 2 and 5 show that this may be the case for husbands, though not for wives. Another possible interpretation is that panel estimates may be more seriously affected by measurement error in the actual date of implementation of the shorter workweek, which would generate a stronger attenuation bias in fixed-effect estimates.

[^12]The cross-hour effect for husbands is negative (-0.40), although this only becomes significant when one looks at the difference between actual and usual hours (-0.76), and again it is the amount of unworked hours that is adjusted following wives' shorter workweeks (0.80). For wives, the cross-hour effect is either positive or close to zero, but never statistically significant. Overall, our main findings are robust to the introduction of individual fixed-effects, although the significance of various effects is reduced in this smaller sample.

VI. Instrumental variable estimates of cross-hour effects

There is a long standing tradition of labor supply models in which the labor supply decisions of married couples are treated as two-person games in which the labor supply of each spouse depends not only on own potential wage or unearned income, but also on the number of hours spent at work by the other spouse (see Elroy and Horney, 1981, and Lundberg, 1988, Chiappori, 1988). These models are hard to estimate since they involve a system of two simultaneous equations in which wives' hours feature in the husbands' labor supply equation and vice versa, and good instruments for independent variation in the labor supply of one of the spouses are typically hard to find. This is precisely where the French workweek reform could help identify the effects of interest, by generating exogenous variation in the labor supply of one spouse.

While the previous sections have highlighted the reduced-form effect of workweek regulations on spousal labor supply, in this section we use workweek regulations in an individual's firm as an instrument for her working hours in her spouse's labor supply equation. As well known, both reduced form parameters and IV estimates are of interest in their own right. The former is most policy relevant, as the Government can directly control the adoption of the shorter workweek, but of course cannot directly control spousal labor supply. Also, reduced form estimates would not require as an exclusion restriction that workweek regulations affect spousal labor supply only via their effect on the labor supply of
directly treated employees. However, if one is willing to accept this (reasonable) exclusion restriction, IV estimates provide the appropriate structural parameter for measuring how labor supply responds to independent changes in labor supply of one's spouse.

In Appendix B, we develop a very simple labor supply model which embodies the main institutional features of the French workweek reform and shows that this structural cross-hour parameter can in general be interpreted as the effect of spouse hours on the marginal utility of substituting own leisure for own time spent at work. In other words, the cross-hour effect can be decomposed into the effect of spouse hours on the utility of own leisure, and its effect on the utility of time spent at work. Under the additional assumption that spouse hours have, as such, no impact on the utility of own time spent at work at constant leisure, the estimated cross-hour parameter provides a direct measure of the degree of complementarity of spouses' leisure in the utility function.

Below we report estimates of the impact of spousal hours on own hours, having instrumented spousal hours by APost S. The regression results are reported in Table 12 for both men (Panel A) and women (Panel B), using the same samples and specifications as in Tables 4, 7 and 8 . Unsurprisingly, while we detect no significant cross-hour effect for wives on either the whole sample or any of the subsamples used, for husbands the cross-hour effect is always positive and significant. Among husbands the cross-hour effect in labor supply is about twice as large for managers and professionals than for other occupations, and in particular when their wives cut their labor supply by one hour, men in high occupations respond to by cutting their own labor supply by about 20 minutes. Also, cross hour effects are three times larger when there are young children in the household, relative to childless families. The quantitative response for fathers is about 35 minutes for each extra hour spent at home by their wives, thus suggesting that worktime policy evaluations restricted to direct labor supply effects may strongly underestimate its impact on the time spent by fathers with their young children.

Overall, our estimated cross-hour effects are 0.23 for husbands and negligible for wives. These would translate into a social multiplier of labor supply of about $1+0.23 / 2=$ 1.1. To the best of our knowledge, our paper provides one of the very first micro-economic evaluation of the social multiplier in labor supply at the household level.

VII. Conclusions

This paper has investigated cross-hour effects on the labor supply of men and women using independent variation in spousal hours generated by the introduction of the shorter workweek in France in the late 1990s. We exploit independent variation in spousal hours of work, at constant monthly earnings, which allows us to abstract from income effects of changes in spousal labor supply, and focus on pure cross-hour effects.

We found that both female and male employees treated by the shorter legal workweek reduced their weekly labor supply by about 2 hours, and did not experience any reduction in their monthly earnings. While wives of treated men did not seem to adjust their working time at either the intensive or extensive margins, husbands of treated women responded by cutting their workweek by about half an hour to one hour, according to specifications and samples. Such gender differences in cross-hour effects are remarkable, especially insofar overall labor supply elasticity of women's is typically higher than men's (see, among others, Blundell and MaCurdy, 1999).

The labor supply response of men takes place by cutting actual hours below usual weekly hours, and is not associated to an earnings' loss. It seems thus that husbands cut their labor supply by adjusting unpaid work margins such as taking more paid vacation or sick leaves. These results suggest significant spousal complementarities in leisure time for husbands, and namely when a wife's workweek is reduced, the increase in her leisure time raises the value of leisure for her husband and reduces his labor supply.

Our results on cross-hour effects are noteworthy as they show that neglecting spousal labor supply reactions of spouses may give a misleading view of the overall impact of labor supply shocks. In particular, by focusing on the direct impact of policy on the targeted population, most existing evaluations of workweek reduction reforms are likely to underestimate the effect of these reforms on labor supply in general, and possibly on the time spent by parents with their young children. A simple back-of-envelope calculation suggests any policy that would neglect spousal labor supply spillover would likely underestimate the overall impact on male labor supply by about 13%. And the estimated spillovers would translate into a social multiplier around 1.1.

References

Abowd, John and Francis Kramarz, 1999, "The Analysis of Labor Markets using Matched Employer-Employee Data", in Handbook of Labor Economics, O. Ashenfelter et D. Card eds., volume 3B, North-Holland, pp. 2629-2710.

Ahmed, Meherun, 2009, "The Added Worker Effect Revisited: the Aubry's Law in France as a Natural Experiment", manuscript.

Alesina, Alberto, Edward L. Glaeser, and Bruce Sacerdote, 2005, "Work and Leisure in the U.S. and Europe: Why So Different?", NBER Macroeconomics Annual 20, pp. 1-100.

Ashenfelter, Orley and James Heckman, 1974, "The Estimation of Income and Substitution Effects in a Model of Family Labor Supply", Econometrica 42, pp. 73-85.

Askenazy, Philippe, 2008, "A Primer on the 35-Hour Reduction in France: 1997-2007", IZA DP n 3402 .

Bloch-London,Catherine, Pham Trong-Hiem, and Serge Zilberman, 2003, "La Mise en Oeuvre des 35 heures", Données Sociales 2002-2003, INSEE, pp. 309-317.

Blundell, Richard and Thomas MaCurdy, 1999. "Labor Supple: A Reviw of Alternative Approaches." In O. Ashenfelter and D. Card (eds.), Handbook of Labor Economics, vol 3A, pp. 1560-1695. Amsterdam: Elsevier.

Chemin, Matthieu, and Etienne Wasmer, 2009, "The Employment Effects of 35-Hour Workweek Regulation in France: Using Alsace-Moselle Local Laws to Build a Diff-inDiff", Journal of Labor Economics, 27(4), pp. 487-524.

Chiappori, Pierre-André, 1988. "Rational Household Labor Supply", Econometrica 56, pp. 63-90.

Crépon, Bruno, and Francis Kramarz, 2002, "Employed 40 Hours or Not Employed 39: Lessons from the 1981 Mandatory Reduction of the Weekly Working Hours", Journal of Political Economy 110, pp. 1355-1389.

Crépon, Bruno, Marie Leclair, and Sébastien Roux, 2004, "RTT, Productivité et Emploi : Nouvelles Estimations sur Données d'Entreprises", Economie et Statistique 376-377, pp. 55-89.

Cullen, Julie, and Jonathan Gruber, 2000, "Does Unemployment Insurance Crowd Out Spousal Labor Supply?", Journal of Labor Economics 18, pp. 546-572.

Elroy, Marjorie, and Marie Jean Horney, 1981, "Nash Bargained Household Decisions: Toward a Generalization of the Theory of Demand", International Economic Review 2, pp. 333-349.

Estevao, Marcello, and Filipa Sa, 2008, "Are the French Happy with the 35-Hour Workweek?", Economic Policy, 23 (55), 417-46".

Fiole, Murielle, and Muriel Roger (2002) "Les Effets sur l'Emploi de la Loi du 11 Juin 1996 sur la Réduction du Temps de Travail", Economie et Statistique 357, pp. 3-22.

Gelber, Alexander M., 2011, "Taxation and the Earnings of Husbands and Wives: Evidence from Sweden", manuscript.

Glaeser, Edward L., Bruce I. Sacerdote and Jose A. Scheinkman, 2003, "The Social Multiplier", Journal of the European Economic Association 1, pp. 345-353.

Goux, Dominique, and Eric Maurin, 1999, "The Persistence of Inter-industry Wage Differentials: a Reexamination on Matched Worker-firm Panel Data", Journal of Labor Economics 17, pp. 492-533.

Gustman, Alan, and Thomas Steinmeier, 2000, "Retirement in Dual-Career Families: A Structural Model", Journal of Labor Economics 18, pp. 503-545.

Hamermesh, Daniel S., 2002, "Timing, Togetherness and Time Windfalls", Journal of Population Economics 15, pp. 601-623.

Hamermesh, Daniel S., 2008, "Fun with Matched Firm-Employee Data: Progress and Road Maps", Labour Economics 15, pp. 662-672.

Hunt, Jennifer, 1998, "Hours Reduction as Work Sharing", Brookings Papers on Economic Activity, vol n ${ }^{\circ}$ 1, pp. 339-381.

International Labor Organisation, 2002, Key Indicators of the Labor Market: 2001-2002, Geneva.

Lee, Jungmin, Daiji Kawaguchi and Daniel S. Hamermesh, 2011, "The Gift of Time", manuscript.

Lundberg, Shelly, 1985, "The Added Worker Effect", Journal of Labor Economics 3, pp. 1137.

Lundberg, Shelly, 1988, "Labor Supply of Husbands and Wives: a Simultaneous Equation Model", The Review of Economics and Statistics 70, pp. 224-34.

Appendix A: Non-usual hours and earnings

In our sample usual hours H_{u} are defined for about 85% of individuals. For these individuals, $H=H_{u}$ in 73% of cases, $H>H_{u}$, in 11.6% of cases and $H<H_{u}$, in the remaining 15.4% of cases. Note that H and H_{u} represent weekly-aggregated measures, thus someone who works one hour longer than the typical workday for three days in a week and one hour shorter for the remaining two days would have $H>H_{u}$. For simplicity, we will refer to cases in which $H>H_{u}$ as cases of overtime work, and to cases in which $H<H_{u}$ as cases of unworked hours. Conditional on $H<H_{u}, 57 \%$ of cases correspond to workers who did not work at all during the survey week $(H=0)$, and among them the average number of unworked hours is 38 , and 43% of cases correspond to workers who worked positive hours but still below their usual workweek ($0<H<H_{u}$), and among them the average number of unworked hours is 10. Conditional on $H>H_{u}$, the average number of overtime hours is 7.4 hours.

We have shown in Section IV. 2 that cross hour effects mostly happen through variations in $H-H_{u}$ rather than variations in H_{u}, and specifically through an increase in unworked hours $\left(H-H_{u}\right)^{-}$. Here we show that $\left(H-H_{u}\right)^{-}$turns out to be the sole component of labor supply that employees may cut without earning losses. To check the latter point, Table A3 reports estimates from regressions of monthly earnings on $H_{u},\left(H-H_{u}\right)^{+}$ and $\left(H-H_{u}\right)^{-}$separately. Column 2 shows that earnings only respond significantly to usual hours H_{u} and excess overtime hours $\left(H-H_{u}\right)^{+}$, whereas unworked hours $\left(H-H_{u}\right)^{-}$have no discernible impact, and columns 3-6 show that this result holds true within both the treated and the control sample.

Appendix B: A simple theoretical framework

Consider a married worker, working H hours and enjoying l hours of leisure, where H and l satisfy the usual (normalized) constraint $H+l=1$. We assume that H can be conceptualized
as the sum of paid working hours L and unpaid hours M, where only M is chosen by the worker, whereas L is defined by a formal contract, depending on the institutional context. As a result, earnings R are constant, as the duration of paid work is exogenously set, and the only work margin under the worker's control is unpaid. These assumptions are meant to capture in the simplest form the main institutional features of the French workweek regulations.

We further assume that preferences can be represented by a well-behaved utility function $U\left(l, M, H^{S}, C\right)$, where H^{S} represents the number of hours worked by the spouse and C represents household consumption. The number of unpaid hours M may enter the utility function either because investment at work is an intrinsic source of utility for the worker or because it is expected to increase the probability of professional success in the future. Spousal labor supply H^{S} enters the utility function because the value of own leisure may depend on how many hours one's spouse spends at work or, conversely, in the household. We will not need to impose any restriction on the utility function U other than the usual concavity assumption.

Within this framework, the worker chooses M and l in order to maximize $U\left(l, M, H^{S}, C\right)$ subject to the usual budget constraints

$$
L+M+l=1 ; \quad C=R+R^{S}
$$

where R^{S} denotes spouse's income.
This problem is a special case of the more general set-up introduced by Pollak (1969) to describe "conditional demand functions", i.e. consumer's behavior when the quantity of one or more goods is rationed. In our specific case, the optimal l^{*} represents the conditional demand for leisure by a worker whose paid hours are institutionally set. Optimal choices l^{*} and M^{*} are functions of H^{S} and household income $R^{S}+R$, and optimal labor supply is simply $H^{*}=L+M^{*}$.

Using this notation, the cross-hour effect discussed in this paper corresponds to the partial derivative $\partial H^{*} / \partial H^{S}=\partial M^{*} / \partial H^{S}$. In our empirical context, the worktime regulation reform provides a source of variation in H^{S}, which is independent of households' earnings, and makes it possible to estimate this cross-hour effect.

Following Pollak (1969), it is straightforward to recover the relationship between this cross-hour effect and the partial derivatives of the utility function,

$$
\frac{\partial H^{*}}{\partial H^{S}}=\frac{\partial M^{*}}{\partial H^{S}}=\frac{1}{u^{2}} \frac{\partial\left(U_{1}-U_{2}\right)}{\partial H^{S}}=\frac{U_{23}-U_{13}}{u^{2}},
$$

where U_{i} denotes the partial derivative of the utility function with respect to the i th argument, $U_{i j}$ denotes cross-derivatives, and $u^{2}=-U_{11}+2 U_{12}-U_{22}$ is positive due to the concavity of U. Hence, one would detect positive cross-hour effects if $U_{23}>U_{13}$, i.e. if spouse working time reduces the utility of leisure time more than it raises the utility of unpaid time spent at work. Under reasonable conditions, and namely that the utility of time spent at work (at constant leisure) is roughly independent of spouse working hours, $U_{23} \cong 0$, a positive crosshour effect implies complementarity in spousal leisure time.

Note finally that in this framework we have implicitly assumed that all nonmarket time is leisure, while in reality it can include both leisure and home production. We believe, however, that allowing for home production would not substantially alter the interpretation of the estimated cross-hour effect. In this case positive cross-hour effects would imply complementarity of spousal nonmarket time (maintaining the assumption $U_{23} \cong 0$), while negative cross-hour effects would imply substitutability of nonmarket time, where complementarity would be plausibly driven by the leisure component of nonmarket time, while substitutability would be driven by the home production component. As we find positive cross-hour effects, we should conclude that complementarity of leisure dominates substitutability of home production.

Table 1

Descriptive statistics

Panel A	Men			
	Full sample		Employed	
	$\begin{aligned} & \text { Wife not } \\ & \text { treated } \end{aligned}$	Wife treated	$\begin{gathered} \text { Wife not } \\ \text { treated } \end{gathered}$	Wife treated
Years of education	12.7	12.4	12.9	12.5
Age	42.6	41.9	41.7	41.0
High-skill occupation (\%)	17.7	14.2	19.4	15.4
Private sector (\%)	57.1	66.2	64.9	74.6
Spouse's year of educ.	13.1	12.7	13.2	12.8
Spouse's age	40.5	39.7	39.7	39.0
Spouse in high-skill occ. (\%)	11.1	8.1	11.3	8.3
Spouse in private sector (\%)	54.3	90.2	54.4	90.4
No. observations	130,468	59,426	114,705	52,755

Panel B

Women

| | Full sample | | | Employed | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Husband not
 treated | Husband
 treated | | Husband not
 treated | Husband
 treated |
| | 12.6 | 12.4 | | 13.0 | 12.8 |
| Years of education | 39.4 | 39.5 | | 39.5 | 39.5 |
| Age | 7.4 | 5.7 | | 10.4 | 7.8 |
| High-skill occupation (\%) | 42.7 | 47.5 | | 63.0 | 69.9 |
| Private sector (\%) | 12.5 | 12.2 | | 12.7 | 12.4 |
| Spouse's year of educ. | 41.5 | 41.6 | | 41.4 | 41.5 |
| Spouse's age | 18.7 | 16.7 | | 19.3 | 16.6 |
| Spouse in high-skill occ. $(\%)$ | 72.4 | 93.6 | | 70.1 | 92.9 |
| Spouse in private sector (\%) | 150,371 | 86,431 | | 101,923 | 58,766 |
| No. observations | | | | | |

Notes. The full sample includes married or cohabiting respondents, whose spouse is an employee. The employed subsample is restricted to those classified as employed according to the ILO definition of employment. The interpretation of figures is as follows: The average number of years of education for men whose wife is not treated is 12.7 , and the average number of years of education for their wives is 13.1. High-skill occupations include managers, professionals, engineers or associate occupations (cadres). Source: French LFS, 1994-2009, Insee.

Table 2
Distribution of own treatment, by spouse treatment (\%).

Panel A	Employed men	
	Wife not treated	Wife treated
Own firm never adopted shorter workweek	71.0	54.2
Own firm adopted shorter workweek	29.0	45.8
- not same year as wife's firm	29.0	22.8
- same year as wife's firm	-	23.0
Total	100	100
Panel B	Employed women	
Own firm never adopted shorter workweek	73.2	Husband treated
Own firm adopted shorter workweek	26.8	58.1
- not same year as wife's firm	26.8	41.9
- same year as wife's firm	-	21.3
Total	100	20.6

Notes. Panel A : Employed subsample restricted to male respondents. Panel B: Employed subsample restricted to female respondents. The interpretation of figures is as follows: among employed males whose spouse works in a treated firm, 45.8% are working in a treated firm.

Table 3
First stage regressions Direct effects of the shorter workweek on hours and earnings.

Panel A	Men			
	Wives' hours		Wives' earnings	
	(1)	(2)	(3)	(4)
$A S$	$\begin{aligned} & 1.36^{* *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & 1.01^{* *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.088^{* *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.064^{* *} \\ & (0.005) \end{aligned}$
ASPost	$\begin{gathered} -1.81^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} -1.91^{* *} \\ (0.10) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.006) \end{gathered}$
Additional controls	no	yes	no	yes
No. Observations	189,894	189,894	160,046	160,046
Panel B				
	Husband's hours		Husband's earnings	
	(1)	(2)		(4)
AS	$\begin{aligned} & -0.28^{*} \\ & (0.12) \end{aligned}$	$\begin{aligned} & -0.34^{* *} \\ & (0.12) \end{aligned}$	$\begin{aligned} & 0.042^{* *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.013^{* *} \\ & (0.003) \end{aligned}$
ASPost	$\begin{gathered} -1.95^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} -1.92^{* *} \\ (0.14) \end{gathered}$	$\begin{aligned} & 0.017^{*} \\ & (0.008) \end{aligned}$	$\begin{gathered} 0.007 \\ (0.004) \end{gathered}$
Additional controls	no	yes	no	yes
No. Observations	236,802	236,802	201,559	201,559

Notes. Columns 1 and 2 refer to the full sample. Columns 3 and 4 refer to the subsample of respondents whose spouses have nonmissing earnings (from 2003 onwards, information on earnings is collected on one third of the LFS sample). The table shows first stage regressions for hours and earnings of spouses of main respondents. Baseline controls include 15 year dummies and a dummy indicating whether the spouse works in public sector. Additional controls include spouse's years of education, age, age squared and 16 industry dummies. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5\% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table 4
Reduced form regressions Cross-effects of the shorter workweek on employment and hours.

Panel A	Men				
	Own employment		Own hours (conditional on employment)		
	(1)	(2)	(3)	(4)	(5)
A^{S}	$\begin{aligned} & 0.0062^{* *} \\ & (0.0021) \end{aligned}$	$\begin{gathered} 0.0021 \\ (0.0018) \end{gathered}$	$\begin{gathered} -0.11 \\ (0.10) \end{gathered}$	$\begin{gathered} -0.11 \\ (0.10) \end{gathered}$	$\begin{gathered} -0.16 \\ (0.10) \end{gathered}$
APost ${ }^{\text {s }}$	$\begin{aligned} & -0.0037 \\ & (0.0027) \end{aligned}$	$\begin{gathered} -0.0028 \\ (0.0022) \end{gathered}$	$\begin{aligned} & -0.44^{* *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.45^{* *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.50^{* *} \\ & (0.09) \end{aligned}$
A	-	-	$\begin{gathered} -0.05 \\ (0.10) \end{gathered}$	$\begin{gathered} -0.09 \\ (0.12) \end{gathered}$	$\begin{gathered} -0.17 \\ (0.13) \end{gathered}$
APost	-	-	$\begin{aligned} & -1.96^{* *} \\ & (0.14) \end{aligned}$	$\begin{gathered} -1.96^{* *} \\ (0.14) \end{gathered}$	$\begin{aligned} & -2.02^{* *} \\ & (0.13) \end{aligned}$
Further controls	no	yes	No	yes	yes
No. observations	189,894	189,894	167,460	167,460	156,392
Panel B	Own employment		Women		
			Own hours (conditional on employment)		
	(1)	(2)	(3)	(4)	(5)
A^{S}	$\begin{aligned} & 0.0164^{* *} \\ & (0.0016) \end{aligned}$	$\begin{aligned} & 0.0146^{* *} \\ & (0.0016) \end{aligned}$	$\begin{gathered} -0.24^{* *} \\ (0.07) \end{gathered}$	$\begin{gathered} -0.25^{* *} \\ (0.07) \end{gathered}$	$\begin{aligned} & -0.27^{* *} \\ & (0.08) \end{aligned}$
APost ${ }^{\text {s }}$	$\begin{gathered} -0.0032 \\ (0.0023) \end{gathered}$	$\begin{gathered} -0.0041 \\ (0.0022) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.11) \end{gathered}$
A			$\begin{aligned} & 1.76^{* *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & 1.22^{* *} \\ & (0.11) \end{aligned}$	$\begin{aligned} & 1.22^{* *} \\ & (0.13) \end{aligned}$
APost			$\begin{aligned} & -1.86^{* *} \\ & (0.17) \end{aligned}$	$\begin{gathered} -1.88^{* *} \\ (0.15) \end{gathered}$	$\begin{gathered} -1.86^{* *} \\ (0.18) \end{gathered}$
Further controls	no	yes	No	yes	yes
No. observations	236,802	236,802	160,689	160,689	150,371

Notes. Columns 1 and 2 refer to the full sample. Columns 3 and 4 refer to the employed subsample. Column 5 refers to employed respondents who were not treated at the same time as their spouses. The table shows reducedform regressions for main respondents, and regresses their employment status and hours on their spouses' treatment variables $\left(A^{S}\right.$ and $\left.A P o s t^{S}\right)$, as well as on their own treatment (A and APost). Baseline controls in columns 1 and 2 include include 15 year dummies and a dummy indicating whether the spouse works in the public sector. Additional controls in column 2 are spouse's years of education, age and age square, and respondent's years of education, age and age square. Baseline controls in columns 3-5 include 15 year dummies, a public sector dummy, a wage-earner dummy and a dummy indicating whether spouse works in the public sector. Additional controls in columns 4 and 5 include spouse's years of education, age, age square and 16 industry dummies, and respondent's years of education, age, age square and 16 industry dummies. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table 5
Reduced-form regressions
Cross-effects of the shorter workweek on types of hours worked and earnings.

	Men			
	Usual Hours H_{u} (1)	Actual-usual hours $H-H_{u}$ (2)	(3)	(4)
A^{S}	$\begin{aligned} & -0.14^{* *} \\ & (0.03) \end{aligned}$	$\begin{gathered} 0.04 \\ (0.10) \end{gathered}$	$\begin{gathered} -0.018^{* *} \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.016^{* *} \\ & (0.003) \end{aligned}$
APost ${ }^{\text {S }}$	$\begin{gathered} -0.01 \\ (0.06) \end{gathered}$	$\begin{aligned} & -0.59^{* *} \\ & (0.10) \end{aligned}$	$\begin{gathered} 0.008^{*} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.004) \end{gathered}$
A	$\begin{gathered} 0.02 \\ (0.07) \end{gathered}$	$\begin{aligned} & -0.14^{*} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.008^{* *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.008^{* *} \\ & (0.003) \end{aligned}$
APost	$\begin{gathered} -1.99^{* *} \\ (0.13) \end{gathered}$	$\begin{aligned} & -0.33^{*} \\ & (0.16) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.004) \end{gathered}$
No. Observations	101139	101139	124417	101139

Notes. Columns 1, 2 and 4 refer to the employed subsample for which usual hours are defined. Columns 3 and 4 refer to the employed subsample with nonmissing earnings (from 2003 onwards, information on earnings is collected on one third of the LFS sample). Regressions include the same set of control variables as in specification (4) of Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and * denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1994 to 2002 (columns 1, 2 and 4) and 1994 to 2009 (column 3), Insee.

Table 6
Reduced-form regressions
Cross-effects of the shorter workweek on overtime hours and unworked hours.

	Men			
	Overtime hours $\left(H-H_{U}\right)^{+}$ (1)	Unworked hours $\left(H-H_{U}\right)^{-}$ (2)	Unworked weeks $H=0$ (3)	Unusually short workweeks $0<H<H_{U}$ (4)
A^{S}	$\begin{gathered} 0.00 \\ (0.02) \end{gathered}$	$\begin{aligned} & -0.04 \\ & (0.09) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.002) \end{aligned}$
APost ${ }^{\text {S }}$	$\begin{aligned} & -0.06 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.53^{* *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.012^{* *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.006^{*} \\ & (0.003) \end{aligned}$
A	$\begin{aligned} & -0.01 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.13^{*} \\ & (0.07) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$
APost	$\begin{gathered} 0.09^{*} \\ (0.05) \end{gathered}$	$\begin{aligned} & 0.43^{* *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.016^{* *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.008^{* *} \\ & (0.003) \end{aligned}$
No. Observations	101138	101138	101138	101138

Notes. The Table refers to the employed subsample for which usual hours are defined. Regressions include the same set of control variables as in specification (4) of Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5% levels, respectively.Source: French LFS, 1994 to 2002 (columns 1, 2 and 4) and 1994 to 2009 (column 3), Insee.

Table 7

Direct and cross-effects of the shorter workweek in wives' firms, by men's occupation.

Panel A	Employed men: Managers, professionals and kindred occ. First stage Reduced form		
	Wife's hours	Own hours	Own hours ≥ 45
	(1)	(2)	(3)
A^{S}	$\begin{aligned} & 1.26^{* *} \\ & (0.35) \end{aligned}$	$\begin{gathered} 0.30 \\ (0.19) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.008) \end{gathered}$
APost ${ }^{\text {S }}$	$\begin{aligned} & -2.32^{* *} \\ & (0.30) \end{aligned}$	$\begin{aligned} & -0.81^{* *} \\ & (0.27) \end{aligned}$	$\begin{aligned} & -0.033^{* *} \\ & (0.009) \end{aligned}$
A		$\begin{gathered} 0.16 \\ (0.30) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.009) \end{gathered}$
APost		$\begin{gathered} -1.66^{* *} \\ (0.38) \end{gathered}$	$\begin{aligned} & -0.042^{* *} \\ & (0.012) \end{aligned}$
No. observations	30,432	30,432	30,432
Panel B	Employed men: Other occupations		
	First stage		form
	Wife's hours	Own hours	Own hours ≥ 45
	(1)	(2)	(3)
A^{S}	$\begin{aligned} & 0.94^{* *} \\ & (0.12) \end{aligned}$	$\begin{gathered} -0.10 \\ (0.08) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$
APost ${ }^{\text {s }}$	$\begin{gathered} -1.72^{* *} \\ (0.11) \end{gathered}$	$\begin{aligned} & -0.32^{* *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.006^{* *} \\ & (0.002) \end{aligned}$
A		$\begin{gathered} -0.10 \\ (0.11) \end{gathered}$	$\begin{aligned} & -0.022^{* *} \\ & (0.002) \end{aligned}$
APost		$\begin{aligned} & -2.06^{* *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.030^{* *} \\ & (0.005) \end{aligned}$
No. observations	137,028	137,028	137,028

Notes. Panel A refers to men who are managers, professionals, engineers or associate occupations (cadres). Panel B refers to other occupations.. In column 1, control variables are as in column 4 of Table 3. In columns 2 and 3, control variables are as in column 4 of Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table 8

Direct and cross-effects of the shorter workweek in wives' firms, by family type.

Panel A	Employed men: Managers, professionals and kindred occ. First stage Reduced form		
	Wife's hours	Own hours	Own hours ≥ 45
	(1)	(2)	(3)
A^{S}	$\begin{gathered} 0.48^{*} \\ (0.19) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.007) \end{gathered}$
APost ${ }^{\text {S }}$	$\begin{gathered} -1.30^{* *} \\ (0.23) \end{gathered}$	$\begin{aligned} & -0.81^{* *} \\ & (0.28) \end{aligned}$	$\begin{aligned} & -0.022^{* *} \\ & (0.008) \end{aligned}$
A		$\begin{gathered} -0.25 \\ (0.28) \end{gathered}$	$\begin{aligned} & -0.023^{* *} \\ & (0.008) \end{aligned}$
APost		$\begin{aligned} & -2.23^{* *} \\ & (0.32) \end{aligned}$	$\begin{aligned} & -0.038^{* *} \\ & (0.011) \end{aligned}$
No. observations	39,468	39,468	39,468
Panel B	Employed men: Other occupations		
	First stage		form
	Wife's hours	Own hours	Own hours ≥ 45
	(1)	(2)	(3)
A^{S}	$\begin{aligned} & 1.17^{* *} \\ & (0.16) \end{aligned}$	$\begin{gathered} -0.14 \\ (0.11) \end{gathered}$	$\begin{aligned} & -0.010^{* *} \\ & (0.002) \end{aligned}$
APost ${ }^{\text {S }}$	$\begin{gathered} -2.08^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} -0.34^{* *} \\ (0.12) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$
A		$\begin{gathered} -0.05 \\ (0.09) \end{gathered}$	$\begin{gathered} -0.021^{* *} \\ (0.002) \end{gathered}$
APost		$\begin{gathered} -1.89^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} -0.025^{* *} \\ (0.005) \end{gathered}$
No. observations	127,992	127,992	127,992

Notes. Panel A refers to employed men in households with at least on child aged 0-6. Panel B refers to employed men in households without children aged 0-6. Control variables are the same as in Table 6. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and * denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table 9
Direct and cross-effects of the shorter workweek in wives' firms: Alternative sources of identification.

	Employed men		
	First stage		Reduced form
	Wife's hours	Wife's earnings	Own hours
	(1)	(2)	(3)
$A^{S} *(t>2002)$	$\begin{gathered} -1.87^{* *} \\ (0.17) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.47^{* *} \\ (0.14) \end{gathered}$
A Post $^{S} *(t \leq 2002)$	$\begin{gathered} -1.85^{* *} \\ (0.12) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.40^{* *} \\ (0.10) \end{gathered}$
A^{S}	$\begin{aligned} & 1.19^{* *} \\ & (0.17) \end{aligned}$	$\begin{aligned} & 0.064^{* *} \\ & (0.004) \end{aligned}$	$\begin{gathered} 0.00 \\ (0.13) \end{gathered}$
$A^{S} *(1998 \leq t \leq 2002)$	$\begin{gathered} -0.47^{* *} \\ (0.17) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.26 \\ & (0.17) \end{aligned}$
APost	-	-	$\begin{gathered} -1.96^{* *} \\ (0.14) \end{gathered}$
A	-	-	$\begin{gathered} -0.09 \\ (0.12) \end{gathered}$
No. observations	167,460	141,623	167,460

Notes. Columns 1 and 3 refer to the employed subsample, and column 2 refers to the employed subsample with nonmissing earnings (from 2003 onwards, information on earnings is collected on one third of the LFS sample). In columns 1 and 2, control variables are the same as in columns 2 and 4 of Table 3. In column 3, control variables are the same as in column 4 of Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and * denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table 10
Number of observations per respondent and proportion of switchers

	Men		
Number of obs. per respondent	Total number of respondents	Total number of observations	Proportion of changes in spouses' firms
1	26231	26231	-
2	13916	27832	11.9%
3	9073	27219	17.9%
All	49220	81282	10.1%
		Women	
Number of obs. per respondent	Total number respondents	Total number observations	Proportion of changes in spouses' firms
1	31110	31110	-
2	17292	34584	14.1%
3	11901	35703	22.6%
All	60303	101397	12.8%

Notes. Sample: Employed subsample, 1998-2002. Interpretation of figures is as follows: 13,916 male respondents are observed at two dates and 11.9% have a spouse whose firm passed an agreement between these two dates. Source: French LFS, 1998-2002, Insee.

Table 11
Reduced-form regressions
Cross-effects of the shorter workweek on employment and hours: Fixed-effect estimates

	Men						
				Type of hours			
	Employm. (1)	Hours (2)	Earnings (3)	Usual hours H_{U} (4)	$\begin{gathered} \text { Actual- } \\ \text { usual } \\ H-H_{U} \\ (5) \end{gathered}$	Overtime hours $\left(H-H_{U}\right)^{+}$ (6)	Unworked hours $\left(H-H_{U}\right)^{-}$ (7)
A^{S}	$\begin{gathered} 0.005 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.10 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.12) \end{gathered}$	$\begin{aligned} & -0.36 \\ & (0.44) \end{aligned}$
APost ${ }^{\text {S }}$	$\begin{gathered} -0.006 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.40 \\ (0.35) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.11) \end{gathered}$	$\begin{aligned} & -0.76^{*} \\ & (0.34) \end{aligned}$	$\begin{gathered} 0.04 \\ (0.09) \end{gathered}$	$\begin{gathered} 0.80^{*} \\ (0.32) \end{gathered}$
A	-	$\begin{gathered} 0.19 \\ (0.42) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.61^{* *} \\ & (0.14) \end{aligned}$	$\begin{gathered} -0.26 \\ (0.42) \end{gathered}$	$\begin{gathered} -0.17 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.39) \end{gathered}$
APost	-	$\begin{aligned} & -1.22^{* *} \\ & (0.34) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.006) \end{gathered}$	$\begin{gathered} -1.52^{* *} \\ (0.11) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.34) \end{gathered}$	$\begin{gathered} 0.19^{*} \\ (0.09) \end{gathered}$	$\begin{gathered} -0.13 \\ (0.31) \end{gathered}$
No. obs.	81,282	63,796	63,796	56,941	56,941	56,941	56,941
	Women						
				Type of hours			
	Employm. (1)	Hours (2)	Earnings (3)	Usual hours H_{U} (4)	Actualusual $H-H_{U}$ (5)	Overtime hours $\left(H-H_{U}\right)^{+}$ (6)	Unworked hours $\left(H-H_{U}\right)^{-}$ (7)
A^{S}	$\begin{aligned} & \hline-0.001 \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.24 \\ (0.41) \end{gathered}$	$\begin{aligned} & \hline-0.002 \\ & (0.009) \end{aligned}$	$\begin{gathered} -0.25 \\ (0.16) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.40) \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.09) \end{gathered}$	$\begin{gathered} \hline-0.12 \\ (0.38) \end{gathered}$
APost ${ }^{\text {s }}$	$\begin{gathered} -0.003 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.31) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.13) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.31) \end{gathered}$	$\begin{gathered} -0.07 \\ (0.07) \end{gathered}$	$\begin{gathered} -0.12 \\ (0.29) \end{gathered}$
A	-	$\begin{gathered} 0.28 \\ (0.45) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.89 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.43 \\ (0.44) \end{gathered}$	$\begin{gathered} -0.11 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.42) \end{gathered}$
APost	-	$\begin{aligned} & -1.21^{* *} \\ & (0.35) \end{aligned}$	$\begin{gathered} -0.010 \\ (0.008) \end{gathered}$	$\begin{gathered} -1.50^{* *} \\ (0.14) \end{gathered}$	$\begin{aligned} & 0.31^{* *} \\ & (0.34) \end{aligned}$	$\begin{gathered} 0.04 \\ (0.08) \end{gathered}$	$\begin{aligned} & -0.27 \\ & (0.32) \end{aligned}$
No. obs.	101,397	67,133	67,133	63,236	63,236	63,236	63,236

Notes. Column 1 refers to the full sample, Columns 2 and 3 refer to the employed subsample, and Columns 4 to 7 refer to the employed subsample for which usual hours are defined. Controls include individuals fixed effects as well as the same baseline and additional control variables as in Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5% levels, respectively. Source: French LFS, 1998-2002, Insee.

Table 12
IV estimates of cross-hour effects

Panel A	Employed men				
	Hours				
	All	High-skilled	Other Occup.	1 or more child 0-6	Other households
	(1)	(2)	(3)	(4)	(5)
Wives' hours	$\begin{aligned} & 0.23^{* *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & \hline 0.34^{* *} \\ & (0.12) \end{aligned}$	$\begin{aligned} & 0.18^{* *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.59^{* *} \\ & (0.21) \end{aligned}$	$\begin{aligned} & 0.16^{* *} \\ & (0.06) \end{aligned}$
No. observations	167,460	30,432	137,028	39,468	127,992
Panel B	Employed women				
	Hours				
	All	High-skilled	Other Occup.	1 or more child 0-6	Other households
	(1)	(2)	(3)	(4)	(5)
Husbands' hours	$\begin{gathered} -0.02 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.13) \end{gathered}$	$\begin{gathered} -0.07 \\ (0.06) \end{gathered}$	$\begin{gathered} -0.23 \\ (0.12) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.05) \end{gathered}$
No. observations	160,689	15,217	145,472	36,959	123,730

Notes. The Table refers to the employed subsample. Estimates reported show the effect of spousal labor supply on the main respondent's labor supply, using treatment of spousal firms an instrument. The corresponding reduced-form results are reported in Tables 4, 7 and 8. Controls include a dummy variable for type of spouse firm $\left(A^{S}\right), 15$ year dummies, a wage-earner dummy, a public sector dummy, spouse's years of education, age, age square, 16 spouse's industry dummies and a dummy indicating whether spouse works in public sector. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and * denote significance at the 1% and 5\% levels, respectively. Source: French LFS, 1994-2009, Insee.

Figure 1
Timing of implementation of shorter workweek: Percentage of employees treated

Figure 2
Wives' hours worked, by own firm status

Figure 3
Men's employment rates, by wife's firm status

Figure 4
Men's hours worked, by wife's firm status.

Figure 5
Husbands' hours worked, by own firm status

Figure 6
Women's employment probability, by husbands' firm status

Figure 7
Women's hours worked, by husbands' firm status

- husbands in firms who adopted the shorter workweek
------- husbands in firms who never adopted the shorter workweek

Appendix Tables and Figures

Table A1
First stage regressions.
Direct Effects of the Shorter Workweek on Hours Worked and Earnings. Subsample of employed respondents.

Panel A	Men			
	Wives' hours		Wives' earnings	
	(1)	(2)	(3)	(4)
$A S$	$\begin{aligned} & 1.34^{* *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & 0.99^{* *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & 0.086^{* *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.064^{* *} \\ & (0.005) \end{aligned}$
ASPost	$\begin{gathered} -1.80^{* *} \\ (0.15) \end{gathered}$	$\begin{gathered} -1.89^{* *} \\ (0.12) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.006) \end{gathered}$
Additional controls	no	yes	no	Yes
No. Observations	167460	167460	141623	141623
Panel B	Women			
	Husband's hours		Husband's earnings	
	(1)	(2)	(3)	(4)
$A S$	$\begin{aligned} & -0.28^{*} \\ & (0.11) \end{aligned}$	$\begin{gathered} -0.32^{* *} \\ (0.12) \end{gathered}$	$\begin{aligned} & 0.035^{* *} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.009^{*} \\ (0.004) \end{gathered}$
ASPost	$\begin{gathered} -2.12^{* *} \\ (0.11) \end{gathered}$	$\begin{gathered} -2.08^{* *} \\ (0.12) \end{gathered}$	$\begin{aligned} & 0.013^{*} \\ & (0.007) \end{aligned}$	$\begin{gathered} 0.004 \\ (0.004) \end{gathered}$
Additional controls	No	Yes	no	Yes
No. Observations	160689	160689	135729	135729

Notes. Columns 1 and 2: Employed subsample. Columns 3 and 4: Employed subsample restricted to respondents on which information on spouses' earnings is collected (from 2003 onward, information is collected on one third of the LFS sample). The table shows the results of regressing spouse's hours and earnings on the treatment status of spouse's firm $\left(A^{S}\right)$ and on whether the shorter workweek is already adopted in the spouse's firm $\left(\right.$ APost $\left.^{S}\right)$. Baseline and additional control variables are as in Table 3. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$, and ${ }^{*}$ denote significance at the 1% and 5\% levels, respectively. Source: French LFS, 1994-2009, Insee.

Table A2
Overtime hours and paid holidays.

	One or more week of paid holidays not taken $(\%)$	Positive overtime hours $(\%)$	Number of overtime hours (conditional on overtime)	Fraction of overtime hours that are paid $(\%)$		
	(1)	(2)	(3)	(4)		
All men	Men					
High-skill occupations	12.4	23.0	7 h 06 m	39.0		
Other occupations	14.0	36.6	8 h 47 m	16.4		
	11.9	20.4	6 h 31 m	46.7		
All women		Women				
High-skill occupations	15.3	16.5	5 h 16 m	26,5		
Other occupations	13.4	31.9	6 m 53 m	13.0		

Notes. Column 1: employed subsample. Columns 2, 3 and 4: employed subsample restricted to employees with usual hours. Highskill occupations include managers, professionals, engineers and associate occupations. Source: French LFS, 2003-2009, Insee.

Table A3
Usual hours, actual hours and monthly earnings.

	Men					
	Monthly earnings					
	All		Pre-Reform		Post-reform	
	(1)	(2)	(3)	(4)	(5)	(6)
Usual hours $\left(H_{u}\right)$	$\begin{aligned} & 6.48^{* *} \\ & (0.33) \end{aligned}$	$\begin{aligned} & 6.50^{* *} \\ & (0.33) \end{aligned}$	$\begin{aligned} & 6.29^{* *} \\ & (0.35) \end{aligned}$	$\begin{aligned} & 6.31^{* *} \\ & (0.35) \end{aligned}$	$\begin{aligned} & 9.16^{* *} \\ & (0.35) \end{aligned}$	$\begin{aligned} & 9.25^{* *} \\ & (0.35) \end{aligned}$
Actual-usual hours $\left(H-H_{u}\right)$	$\begin{gathered} 0.30^{*} \\ (0.18) \end{gathered}$		$\begin{gathered} 0.29 \\ (0.19) \end{gathered}$		$\begin{aligned} & 0.43^{* *} \\ & (0.11) \end{aligned}$	
Overtime hours $\left(H-H_{u}\right)^{+}$		$\begin{aligned} & 2.52^{* *} \\ & (0.39) \end{aligned}$		$\begin{aligned} & 2.36^{* *} \\ & (0.39) \end{aligned}$		$\begin{aligned} & 4.25^{* *} \\ & (0.26) \end{aligned}$
Unworked hours $\left(H-H_{u}\right)^{-}$		$\begin{gathered} -0.05 \\ (0.19) \end{gathered}$		$\begin{aligned} & -0.06 \\ & (0.21) \end{aligned}$		$\begin{gathered} 0.03 \\ (0.08) \end{gathered}$
No. Observations	101138	101138	89822	89822	11316	11316

Notes. The sample includes employed men for which usual hours are defined. Columns 3 and 4 include observations in firms that have not (yet) adopted the shorter workweek. Columns 5 and 6 include observations in that have already adopted the shorter workweek. All regressions include controls as column (4) in Table 4. Standard errors clustered at the treatment*year level are reported in brackets. ${ }^{* *}$ and ${ }^{*}$ denote significance at the 1% and 5\% levels respectively. Source: French LFS, 1994 to 2002, Insee.

Figure A1
Men's hours worked, by wife's firm status
Excluding men in firms that signed an agreement at the same date as their wife

---*--- wives in firms who never adopted the shorter workweek

Figure A2
Men's hours worked, by firm status of the wife Excluding men in firms that ever adopted the shorter workweek

—— wives in firms who adopted the shorter workweek
---*--- wives in firms who never adopted the shorter workweek

CENTRE FOR ECONOMIC PERFORMANCE
 Recent Discussion Papers

1095	Petri Böckerman Alex Bryson Pekka Ilmakunnas
1094	Olivier Marie Judit Vall Castello
1093	Claudia Olivetti Barbara Petrongolo
1092	Guy Mayraz
1091	Francesco Caselli Andrea Tesei
1090	Keyu Jin Nan Li
1089	Yu-Hsiang Lei Guy Michaels
1088	Brian Bell John Van Reenen
1087	Amparo Castelló-Climent Ana Hidalgo-Cabrillana
1086	Amparo Castelló-Climent Abhiroop Mukhopadhyay
1085	Holger Breinlich
1084	Andrew B. Bernard J. Bradford Jensen Stephen J. Redding Peter K. Schott
1083	Elisa Faraglia Albert Marcet Andrew Scott
1082	Holger Breinlich Alejandro Cuñat
1081	Francesca Cornaglia Naomi E. Feldman

Does High Involvement Management

 Improve Worker Wellbeing?Measuring the (Income) Effect of Disability Insurance Generosity on Labour Market Participation

Gender Gaps Across Countries and Skills:
Supply, Demand and the Industry Structure
Wishful Thinking

Resource Windfalls, Political Regimes, and Political Stability

Factor Proportions and International Business Cycles

Do Giant Oilfield Discoveries Fuel Internal Armed Conflicts?

Firm Performance and Wages: Evidence from Across the Corporate Hierarchy

The Role of Educational Quality and Quantity in the Process of Economic Development

Mass Education or a Minority Well Educated Elite in the Process of Development: the Case of India

Heterogeneous Firm-Level Responses to Trade Liberalisation: A Test Using Stock Price Reactions

The Empirics of Firm Heterogeneity and International Trade

In Search of a Theory of Debt Management

A Many-Country Model of Industrialization

Productivity, Wages and Marriage: The Case of Major League Baseball

1080	Nicholas Oulton	The Wealth and Poverty of Nations: True PPPs for 141 Countries
1079	Gary S. Becker Yona Rubinstein	Fear and the Response to Terrorism: An Economic Analysis
1078	Camille Landais Pascal Michaillat Emmanuel Saez	Optimal Unemployment Insurance over the Business Cycle
1077	Klaus Adam Albert Marcet Juan Pablo Nicolini	Stock Market Volatility and Learning
1076	Zsófia L. Bárány	The Minimum Wage and Inequality - The Effects of Education and Technology
1075	Joanne Lindley Stephen Machin	Rising Wage Inequality and Postgraduate Education
1074	Stephen Hansen Michael McMahon	First Impressions Matter: Signalling as a Source of Policy Dynamics
1073	Ferdinand Rauch	Advertising Expenditure and Consumer Prices
1072	Alberto Galasso Mark Schankerman Carlos J. Serrano	Trading and Enforcing Patent Rights
1071	Daniel Hale John Coleman Richard Layard	A Model for the Delivery of Evidence-Based PSHE (Personal Wellbeing) in Secondary Schools
1070	David Marsden	Individual Voice in Employment Relationships: A Comparison Under Different Forms of Workplace Representation
1069	Ross Levine Alexey Levkov Yona Rubinstein	Racial Discrimination and Competition
1068	Klaus Adam Albert Marcet	Internal Rationality, Imperfect Market Knowledge and Asset Prices
1067	Yanhui Wu	A Simple Theory of Managerial Talent, Pay Contracts and Wage Distribution
1066	Yanhui Wu	Managerial Incentives and Compensation in a Global Market
The Centre for Economic Performance Publications Unit Tel 02079557673 Fax 02079557595 Email info@cep.Ise.ac.uk Web site http://cep.Ise.ac.uk		

[^0]: © D. Goux, E. Maurin and B. Petrongolo, submitted 2011

[^1]: ${ }^{2}$ As discussed below, there are various reasons why the average effect of the shorter legal workweek on actual weekly hours is lower than the legal workweek reduction, including the fact that the shorter legal workweek may not have been binding for employees initially working below 35 hours.

[^2]: ${ }^{3}$ There were no explicit deadlines set for firms in the public sector.
 ${ }^{4}$ For workers paid at the minimum wage, the tax cut corresponds to a reduction of about 8% in total labor cost for 5 years.

[^3]: ${ }^{5}$ Furthermore, employers were no longer required to commit to maintain employment levels in order to be eligible for payroll tax cuts.

[^4]: ${ }^{6}$ Most cases with missing employer ID correspond to very small firms. For a detailed description of the coding procedure, see Abowd and Kramarz (1999) or Goux and Maurin (1999).
 ${ }^{7}$ For example, a recent contribution by Ahmed (2009) compares wives' labor market transitions before and after 1998 using the small fraction of wives whose husbands are part-timers in small firms as a control group.

[^5]: ${ }^{8}$ This specific explanation, however, would not work for men, as the proportion of part-timers among male employees is negligible.

[^6]: ${ }^{9}$ Among related work, Gelber and Mitchell (2011) study the impact of changes in US taxes and transfers on single men's and single women's own labor supply and housework, while Lee, Kawaguchi and Hamermesh (2011) look at the impact of changes in Japanese and Korean legal standard hours on individuals' own housework and leisure time.

[^7]: ${ }^{10}$ We also estimated first-stage regressions like (1) for the spouses of employed respondents, and the results are reported in Table A1 in the Appendix. The own effect of the shorter workweek is -1.8 hours for wives, and -2.1 hours for husbands, and again we find near zero effects on monthly earnings.
 ${ }^{11}$ Note that this first-stage effect is virtually identical to that estimated in first-stage regressions reported in Panel B of Table 3. However the two samples differ as Panel B of Table 3 includes male employees, and Panel A of Table 4 includes husbands of female employees.
 ${ }^{12}$ When estimating cross-hour effects, one may worry about confounding factors such as local labor demand shocks. If, say, different regions experience different labor demand trends, and these are correlated to the local proportion of treated individuals, then husbands and wives may experience correlated changes in hours of work, that would not be driven by intra-household spillovers. To check for this possibility we have estimated a specification with region-specific time effects (22 regions x 15 years) and the coefficient of interest were not affected in any appreciable way (results not reported).

[^8]: ${ }^{13}$ According to the official ILO (2002) definition, usual hours per week represent "the modal value of the number of hours actually worked per week over a long period of time". This definition is applicable to workers with regular schedules only (about 85% of cases in the LFS). It does not include irregular or unusual overtime (whether worked for a premium pay or not compensated at all) nor unusual absence or rest. As also noted by Chemin and Wasmer (2009), French labor laws require labor contracts to be explicit about hours, pay, tasks and paid leaves, and as a consequence interviewees would know precisely their normal weekly hours as well as contractual changes in these.

[^9]: ${ }^{14}$ Note that the coefficient on APost S is now positive, because the fall in labor supply is now picked up by an increase in unworked hours.

[^10]: ${ }^{15}$ The exact wording is «congé annuel, congé ou absence pour convenance personnelle, jour férié, pont, récupération».

[^11]: ${ }^{16}$ Note that APost $_{i t}^{S}=$ APost $_{i t}^{S} *(t \leq 2002)+A_{i t}^{S} *(t>2002)$, so that specifications (3) and (4) are nested. In particular, specification (3) is a special case of specification (4), in which we impose $\alpha_{11}=\alpha_{12}$ and $\alpha_{21}=$ α_{22}.

[^12]: ${ }^{17}$ Households surveyed either before 1998 or after 2002 did not experience any changes in working time regulations while in our panel, and thus cannot contribute to the identification of the effect of these changes on spousal labor supply. Our panel estimates thus focus on the 1998-2002 period.

