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Abstract 
The impact of R&D on growth through spillovers has been a major topic of economic research over 
the last thirty years. A central problem in the literature is that firm performance is affected by two 
countervailing “spillovers”: a positive effect from technological knowledge spillovers and negative 
business stealing effects from product market rivals. We develop a general framework incorporating 
these two types of spillovers and implement this model using measures of a firm’s position in 
technology space and product market space. Using panel data on U.S. firms we show that technology 
spillovers quantitatively dominate, so that the gross social returns to R&D are about twice as high as 
the private returns. We identify the causal effect of R&D by using Federal and state tax incentives for 
R&D. We also find that smaller firms generate lower social returns to R&D because they operate 
more in technological niches. 
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1. Introduction

Research and development (R&D) spillovers have been a major topic in the growth, productiv-

ity and industrial organization literatures for many decades. Theoretical studies have explored

the impact of R&D on the strategic interaction among firms and long run growth1. While

many empirical studies appear to support the presence of technology spillovers, there remains

a major problem at the heart of the literature. This arises from the fact that R&D generates at

1See, for example, Spence (1984), Grossman and Helpman (1991) or Aghion and Howitt (1992). Barro

and Sala-i-Martin (2003), Keller (2004), Klenow and Rodriguez-Clare (2004) and Jones (2005) all have recent

surveys of the literature.



least two distinct types of “spillover” effects. The first is technology (or knowledge) spillovers

which may increase the productivity of other firms that operate in similar technology areas.

The second type of spillover is the product market rivalry effect of R&D. Whereas technology

spillovers are beneficial to other firms, R&D by product market rivals has a negative effect on

a firm’s value due to business stealing. Despite much theoretical research on product market

rivalry effects of R&D (including patent race models), there has been little econometric work

on such effects, in large part because it is difficult to distinguish the two types of spillovers

using existing empirical strategies.

It is important to identify the empirical impact of these two types of spillovers. Econometric

estimates of technology spillovers may be severely contaminated by product market rivalry

effects, and it is difficult to ascertain the direction and magnitude of potential biases without

building a model that incorporates both types of spillovers. Furthermore, even if there is no

econometric bias, we need estimates of the impact of product market rivalry in order to asses

whether there is over-investment or under-investment in R&D. To do this, we need to compare

social and private rates of return to R&D that appropriately capture both forms of spillovers.

If product market rivalry effects dominate technology spillovers, the conventional wisdom that

there is under-investment in R&D could be overturned.

This paper develops a methodology to identify the separate effects of technology and

product market spillovers and is based on two main features. First, using a general analytical

framework we develop the implications of technology and product market spillovers for a

range of firm performance indicators (market value, citation-weighted patents, productivity

and R&D). The predictions differ across performance indicators, thus providing identification

for the technology and product market spillover effects. Second, we empirically distinguish

a firm’s position in  space and   space using information on the

distribution of its patenting across technology fields, and its sales activity across different four-

digit industries. This allows us to construct distinct measures of the distance between firms

in the technology and product market dimensions2. We show that the significant variation

in these two dimensions allows us to distinguish empirically between technology and product

market spillovers.3 We also develop a methodology for deriving the social and private rates

2In an earlier study Jaffe (1988) assigned firms to technology and product market space, but did not examine

the distance between firms in both these spaces. In a related paper, Bransetter and Sakakibara (2002) make

an important contribution by empirically examining the effects of technology closeness and product market

overlap on patenting in Japanese research consortia.
3Examples of well-known companies in our sample that illustrate this variation include IBM, Apple, Mo-

torola and Intel, who are all close in technology space (revealed by their patenting and confirmed by their

research joint ventures), but only IBM and Apple compete in the PC market and only Intel and Motorola com-
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of return to R&D, measured in terms of the output gains generated by a marginal increase in

R&D. These reflect both the positive technology spillovers (for the social return) and negative

business stealing effects (for the private return), and thus depend on the position of the firm

in both the technology and product market spaces.

Applying this approach to a panel of U.S. firms for a twenty year period (1981-2001),

we find that both technology and product market spillovers are present and quantitatively

important, but the technology spillover effects are much larger. As a result we estimate that

the (gross) social rate of return to R&D exceeds the private return, which in our baseline

specification are (with some additional assumptions) calculated as 38% and 20%, respectively.

At the aggregate level this implies under-investment in R&D, with the socially optimal level

being two to three times higher than the level of observed R&D.

A central issue in the paper is distinguishing a spillover interpretation from the possibility

that positive interactions are just a reflection of spatially correlated technological opportuni-

ties. If new research opportunities arise exogenously in a given technological area, then all

firms in that area will do more R&D and may improve their productivity, an effect which

may be erroneously picked up by a spillover measure. This issue is an example of the classic

“reflection problem” discussed by Manski (1991). We address this by using changes in the

firm-specific tax price of R&D (exploiting Federal and State-specific rules) to construct in-

strumental variables for R&D expenditures. This allows us to estimate the causal impact of

R&D on firms own performance and those around it in product and technology space.

We also estimate our model for three high-technology industries - computers, pharmaceuti-

cals and telecommunications - and find wide variation in private and social returns. Technology

spillovers are present in all sectors, and business stealing in two of the three. We also inves-

tigate the returns to R&D for different categories of firm size, and find that smaller firms

have significantly lower social returns because they tend to operate in technological “niches”

(because few other firms operate in their technology fields, their technology spillovers are more

limited). This suggests that policy-makers should reconsider their strong support for higher

rates of R&D tax credit for smaller firms, at least on the basis of knowledge spillovers. Of

course, there may be other potential justifications for the preferential treatment of smaller

firms, such as liquidity constraints.

Our paper has its antecedents in the empirical literature on knowledge spillovers. The

dominant approach has been to construct a measure of outside R&D (the “spillover pool”)

pete in the semi-conductor market, with little product market competition between the two pairs. Appendix

D has more details on this and other examples.
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and include this as an extra term in addition to the firm’s own R&D in a production, cost

or innovation function. The simplest version is to measure the spillover pool as the stock

of knowledge generated by other firms in the industry (e.g. Bernstein and Nadiri, 1989).

This assumes that firms only benefit from R&D by other firms in their industry, and that

all such firms are weighted equally in the construction of the spillover pool. Unfortunately,

this makes identification of the strategic rivalry effect of R&D from technology spillovers

impossible because industry R&D reflects both influences4. A more sophisticated approach

recognizes that a firm is more likely to benefit from the R&D of other firms that are ‘close’

to it, and models the spillover pool (which we will label “”) available to firm

 as  = Σ 6= where  is some ‘knowledge-weighting matrix’ applied to

the R&D stocks () of other firms . All such approaches impose the assumption that the

interaction between firms  and  is proportional to the weights (distance measure) . There

are many approaches to constructing the knowledge-weighting matrix. The best practice is

probably the method first used by Jaffe (1986), exploiting firm-level data on patenting in dif-

ferent technology classes to locate firms in a multi-dimensional technology space. A weighting

matrix is constructed using the uncentered correlation coefficients between the location vectors

of different firms. We follow this idea but extend it to the product market dimension by using

line of business data for multiproduct firms to construct an analogous distance measure in

product market space5. We also develop a new Mahalanobis distance measure between firms

that exploits the co-location of patenting technology classes within firms. The idea is that

firms internally co-locate technologies that have the greatest knowledge spillovers, and using

the observed co-location of technologies within firms can help to measure technology distances

between firms. Using this Mahalanobis distance measure, we estimate even larger spillover

effects.

The paper is organized as follows. Section 2 outlines our analytical framework. Section 3

describes the data and Section 4 discusses the main econometric issues. The main empirical

findings are presented in Section 5, extensions in Section 6, robustness in Section 7 and

conclusions in the final section. We also have a series of Appendices with more details on

4The same is true for papers that use “distance to the frontier” as a proxy for the potential size of the

technological spillover. In these models the frontier is the same for all firms in a given industry (e.g. Acemoglu

et al. 2007). Other approaches include using international data and weighting domestic and foreign R&D

stocks by measures including imports, exports and FDI (see, for example, Coe et al. 2008).
5Without this additional variation between firms within industries, the degree of product market closeness

is not identified from industry dummies in the cross section. The extent of knowledge spillovers may also be

influenced by other factors like geographic proximity (e.g. Jaffe et al. 1993). Our methodology could easily

be extended to allow geographic proximity to influence both technological and product market interactions.
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the theory (Appendix A), data issues (Appendix B), calculation of the distance measures

(Appendix C), examples of firm location (Appendix D), and the methodology for calculating

the social and private rates of return to R&D (Appendix E).

2. Analytical Framework

We consider the empirical implications of a non-tournament model of R&D with technology

spillovers and strategic interaction in the product market.6 We study a two-stage game. In

stage 1 firms decide their R&D spending and this produces knowledge that is taken as pre-

determined in the second stage (in the empirical analysis we will use patents and total factor

productivity (TFP) as proxies for knowledge). There may be technology spillovers in this

first stage. In stage 2, firms compete in some variable, , conditional on knowledge levels, .

We do not restrict the form of this competition except to assume Nash equilibrium. What

matters for the analysis is whether there is strategic substitution or complementarity of the

different firms’ knowledge stocks in the reduced form profit function. Even in the absence of

technology spillovers, product market interaction would create an indirect link between the

R&D decisions of firms through the anticipated impact of R&D induced innovation on product

market competition in the second stage. There are three firms, labelled 0,  and  Firms 0

and  interact only in technology space (production of innovations, stage 1) but not in the

product market (stage 2); firms 0 and  compete only in the product market.

Although this is a highly stylized model, it makes our key comparative static predictions

very clear. Appendix A contains several extensions to the basic model. Firstly, we allow

firms to overlap simultaneously in product market and technology space and also allow for

more than three firms in the economy. Secondly, we consider a tournament model of R&D

(rather than the non-tournament model which is the focus of this section). Thirdly, we allow

patenting to be endogenously chosen by firms rather than only as an indicator of knowledge,

 The predictions of the model are shown to be generally robust to all these extensions.

Stage 2

Firm 00 profit function is given by (0  0)We assume that the function  is common

to all firms. Innovation output 0 may have a direct effect on profits, as well as an indirect

6This approach has some similarities to Jones and Williams (1998, 2000) who examine an endogeneous

growth model with business stealing, knowledge spillovers and congestion externalities. Their focus, however,

is on the biases of an aggregate regression of productivity on R&D as a measure of technological spillovers.

Our method, by contrast, seeks to inform micro estimates through separately identifying the business stealing

effect of R&D from technological spillovers. Interestingly, despite these methodological differences we find (like

Jones and Williams) social returns to R&D are about two to four times greater than private returns.
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(strategic) effect working through  For example, if 0 increases the demand for firm 0 (e.g.

product innovation), its profits would increase for any given level of price or output in the

second stage.7

The best response for firms 0 and  are given by ∗0 = argmax0 (0  0) and ∗ =

argmax ( 0 ) respectively. Solving for second stage Nash decisions yields 
∗
0 =

(0 ) and ∗ = ( 0) First stage profit for firm 0 is Π(0 ) = (0 
∗
0 

∗
), and

similarly for firm  If there is no strategic interaction in the product market, (0 
∗
0 

∗
)

does not vary with  and thusΠ
0 do not depend on We assume thatΠ(0 ) is increasing

in 0, non-increasing in  and concave
8.

Stage 1

Firm 0 produces innovations with its own R&D, possibly benefiting from spillovers from

firms that it is close to in technology space:

0 = (0 ) (2.1)

where 0 is the R&D of firm 0,  is the R&D of firm  and we assume that the knowledge

production function () is non-decreasing and concave in both arguments. This means that

if there are technology spillovers, they are necessarily positive. We assume that the function

() is common to all firms.

Firm 0 solves the following problem:

max
0

 0 = Π((0  ) )− 0 (2.2)

Note that  does not involve 0The first order condition is:

Π11 − 1 = 0

where the subscripts denote partial derivatives with respect to the different arguments.

We analyze how exogenous shifts in the R&D of technology and product market rivals (

and ) affect outcomes for firm 09 Comparative statics yield

∗0


= −{Π11 +Π111}


(2.3)

7We assume that innovation by firm  affects firm 00 profits only through . For process innovation,

this assumption is certainly plausible. With product innovation,  could also have a direct (negative) effect

on firm 00 profit. This generalization can easily be introduced without changing the predictions of the model.
8The assumption that Π(0 ) is non-increasing in  is reasonable unless innovation creates a strong

externality through a market expansion effect. Certainly at  ' 0 this derivative must be negative, as

monopoly is more profitable than duopoly.

9In the empirical work we will use instrumental variables to address the potential endogeneity of the R&D

of technology and product market rivals.
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where  = Π11
2
1 + Π111  0 by the second order conditions. If 1  0 firm 00 R&D

is positively related to the R&D done by firms in the same technology space, as long as

diminishing returns in knowledge production are not ”too strong.” On the other hand, if

1 = 0 or diminishing returns in knowledge production are strong (i.e. Π11  −Π111)
then R&D is negatively related to the R&D done by firms in the same technology space.

Consequently the marginal effect
∗0


is formally ambiguous.

In addition,
∗0


= −Π121


(2.4)

where  is the R&D of firm . Thus firm 00 R&D is an increasing (respectively, decreasing)

function of the R&D done by firms in the same product market if Π12  0 — i.e., if 0 and 

are strategic complements (respectively, substitutes).10

We also obtain
0


= 2 ≥ 0 (2.5)

and
0


= 0 (2.6)

Finally, let  ∗ = Π((∗0 ) ) − ∗0 denote the optimized value of the firm. Using the

above results and the envelope theorem, we get

 ∗


= Π1

0


≥ 0

 ∗


= Π2




≤ 0

We now discuss the intuition for the basic predictions of the model, which are summarized

in Table 1. In the case where there is neither product market rivalry nor technology spillovers,

R&D by other firms should have no influence on firm 0’s decisions or market value (column

(4) in Table 1). Now consider the effects of R&D by firms that are close in product market

space, without technology spillovers (columns (5) and (6)). First, product market rivals’ R&D

has a direct, negative influence on firm 0’s value, through the business stealing effect. This

can operate through two channels — reducing the firm’s profit margins or market shares, or

10It is worth noting that most models of patent races embed the assumption of strategic complementarity

because the outcome of the race depends on the gap in R&D spending by competing firms. This observation

applies both to single race models (e.g. Loury, 1979; Lee and Wilde, 1980) and more recent models of sequential

races (e.g. Aghion et al., 1997). There are patent race models where this is not the case, but they involve a

“discouragement effect” whereby a follower may give up if the R&D gap gets so wide that it does not pay to

invest to catch up (Harris and Vickers, 1987).
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both. The reduced form representation of profits, Π(0 ) embeds both channels. Second,

R&D by product market rivals has no effect on the firm’s production of knowledge and thus no

direct effect on patenting or TFP (see equation (2.6)). Thirdly, the relationship between the

firm’s own R&D and the R&D by product market rivals depends on how the latter affects the

marginal profitability of the firm’s R&D — i.e. it depends on the sign of Π12 (see equation (2.4)).

As expected, R&D reaction functions slope upwards if 0 and  are strategic complements

and downwards if 0 and  are strategic substitutes. The same results for R&D by product

market rivals also hold when there are technology spillovers (columns (8) and (9)).

Now suppose there are technology spillovers but no product market rivalry (column (7)).

From the knowledge production function (2.1), we see immediately that technology spillovers

() increase the stock of knowledge (patents), 0 conditional on the firm’s own R&D — i.e.

spillovers increase the average product of the firm’s own R&D. This in turn increases the flow

profit, Π(0 ) and thus the market value of the firm
11 At the same time, the increase in 0

raises the level of total factor productivity of the firm, given its R&D spending. The effect of

technology spillovers on the firm’s R&D decision, however, is ambiguous because it depends on

how such spillovers affect the marginal (not the average) product of its R&D and this cannot

be signed a priori (see equation (2.3)). The same results also hold when there is product

market rivalry, regardless of whether it takes the form of strategic complements or substitutes

(columns (8) and (9)).

Finally, we note one important caveat regarding the absence of an effect of product market

rival R&D on knowledge. Equation (2.6) will only hold if our empirical measure  purely

reflects knowledge. As we show formally in Appendix A.3, if patents are costly then they will

be endogenously chosen by a firm and equation (2.6) will not hold in general as firms will tend

to patent more (less) if knowledge is a strategic complement (substitute)12. It turns out there

is evidence for this in some of our robustness tests. We also note that if the measure of total

factor productivity is contaminated by imperfect price deflators, product market rival R&D

11In the empirical work we use a forward looking measure of firm profitability (market value) as our proxy for

 0 = Π(0 )− 0 Market value should equal the expected present value of the profit stream which, in our

static framework, is simply equal to current profit divided by the interest rate. In the empirical specification

we include year dummies that will capture movements in interest rates as well as other factors.
12The intuition is relatively simple. Suppose there is a fixed cost to filing a patent on knowledge. Firms

choose to make this investment depending on the benefits of doing so relative to these costs. In equilibrium,

with strategic complementarity, when rivals increase R&D spending (thus their stock of knowledge), this

increases the marginal profitability of firm 0’s R&D. Since we assume that patenting generates a percentage

increase in innovation rent (‘patent premium’), the profitability of patenting also increases (given the fixed

cost of patenting). Thus R&D by product market rivals raises both R&D spending and the patent propensity

of firm 0. For empirical evidence of strategic patenting behaviour, see Hall and Ziedonis (2001), and Noel and

Schankerman (2006).
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could be negatively correlated with R&D because it will depress firm 0’s prices and therefore

measured “revenue” productivity.

Three points about identification from Table 1 should be noted. First, the presence of

spillovers can in principle be identified from the R&D, patents, productivity and value equa-

tions. Using multiple outcomes thus provides a stronger test than we would have from any

single indicator. Second, business stealing is identified only from the value equation. Third,

the empirical identification of strategic complementarity or substitution comes only from the

R&D equation13.

3. Data

In this section we briefly describe the construction of our dataset. Appendix B provides details

on the data, and the data and estimation files to replicate all results is available on-line.14

3.1. Compustat and Patents Data

We use firm level accounting data (sales, employment, capital, etc.) and market value data

from U.S. Compustat 1980-2001 and match this into the U.S. Patent and Trademark Office

(USPTO) data from the NBER data archive (see Hall, Jaffe and Trajtenberg, 2001). This

contains detailed information on almost three million U.S. patents granted between January

1963 and December 1999 and all citations made to these patents between 1975 and 1999 (Jaffe

and Trajtenberg, 2002). Since our method requires information on patenting, we kept all firms

who patented at least once since 1963 (i.e. firms which had no patents at all in the 37 year

period were dropped), leaving an unbalanced panel of 715 firms with at least four observations

between 1980 and 2001. Since patents can be very heterogeneous in value, our main results

weight patents counts by their future citations so the dependent variable is “citation-weighted

patent counts”15.

13Identification cannot be obtained from the knowledge (patents and productivity) or value equations because

the predictions are the same for both forms of strategic rivalry.
14http://www.stanford.edu/~nbloom/BSV.zip
15Since later cohorts of patents are less likely to be cited than earlier cohorts it is important that we control

for time dummies. We also show all the results are robust to using simple counts of patents (see Bloom,

Schankerman and Van Reenen, 2007). Finally, the results are robust to more sophisticated normalizations of

the patent citations assuming some parametric form for the citation distribution function (e.g. Hall, Jaffe and

Trajtenberg, 2005)
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The book value of capital is the net stock of property, plant and equipment and employment

is the number of employees. R&D is used to create R&D capital stocks calculated using a

perpetual inventory method with a 15% depreciation rate (following inter alia Hall, Jaffe and

Trajtenberg, 2005). So the R&D stock, , in year  is:  = + (1− )−1 where  is the

R&D flow expenditure in year  and  = 015. We use deflated sales as our output measure but

also compare this with value added specifications. Industry price deflators were taken from

Bartelsman, Becker and Gray (2000) until 1996 and then the BEA four digit NAICS Shipment

Price Deflators thereafter. For Tobin’s Q, firm value is the sum of the values of common stock,

preferred stock and total debt net of current assets. The book value of capital includes net

plant, property and equipment, inventories, investments in unconsolidated subsidiaries and

intangibles other than R&D. Tobin’s Q was winsorized by setting it to 0.1 for values below

0.1 and at 20 for values above 20 (see Lanjouw and Schankerman, 2004).

3.2. Calculating Technological Closeness

The technology market information is provided by the allocation of all patents by the USPTO

into 426 different technology classes (labelled N-Classes). We use the average share of patents

per firm in each technology class over the period 1970 to 1999 as our measure of technological

activity, defining the vector  = (1 2 426), where  is the share of patents of firm 

in technology class  . The technology closeness measure,  ( 6= ), is also calculated

as the uncentered correlation between all firm   pairings following Jaffe (1986):

 =
(

0
 )

(
0
 )

1
2 (

0
)

1
2

(3.1)

This ranges between zero and one, depending on the degree of overlap in technology, and is

symmetric to firm ordering so that  = .
16 We construct the pool of technology

spillover R&D for firm  in year ,  as

 = Σ 6= (3.2)

where  is the stock of R&D.

16The main results pool the patent data across the entire sample period, but we also experimented with

sub-samples. Using just a pre-sample period (e.g. 1970-1980) reduces the risk of endogeneity, but increases the

measurement error due to timing mismatch if firms exogenously switch technology areas. Using a period more

closely matched to the data has the opposite problem (i.e. greater risk of endogeneity bias). In the event, the

results were reasonably similar since firms only shift technology area slowly. Using the larger 1963-2001 sample

enabled us to pin down the firm’s position more accurately, so we kept to this as the baseline assumption.
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3.3. Calculating Product Market Closeness

Our main measure of product market closeness uses the Compustat Segment Dataset on each

firm’s sales broken down into four digit industry codes (lines of business). On average each

firm reports sales in 5.2 different four digit industry codes, spanning 762 industries across the

sample. We use the average share of sales per industry code within each firm as our measure

of activity by product market, defining the vector  = (1 2 597), where  is the share

of sales of firm  in the four digit industry code .17 The product market closeness measure

for any two different firms  and , , is then calculated as the uncentered correlation

between all firms pairings in an exactly analogous way to the technology closeness measure:

 =
(

0
)

(
0
)

1
2 (

0
)

1
2

(3.3)

This ranges between zero and one, depending on the degree of product market overlap, and is

symmetric to firm ordering so that  = . We construct the pool of product-market

R&D for firm  in year  as:

 = Σ 6= (3.4)

To control for industry demand shocks, we use a firm-specific measure of industry sales

that is constructed in the same way as the  variable. We use the same distance

weighting technique, but instead of using other firms’ R&D stocks we used rivals’ sales. This

ensures that the  measure is not simply reflecting demand shocks at the industry

level. We use a firm-specific measure of industry sales.

3.4. The Mahalanobis distance metric

One drawback of the Jaffe (1986) distance metric in equations (3.1) and (3.3) is that it assumes

that spillovers only occur within the same technology class, but rules out spillovers between

different classes. This is restrictive because the patent N-classes typically used to describe dif-

ferent technology areas are rather narrow. This assumption, for example, excludes spillovers

between the computing N-classes 708 (arithmetic processing and calculating), 709 (multiple

computer or process coordinating), 710 (input/output), 711 (memory) and 712 (processing

architectures and instruction processing). To address this concern, we develop a new distance

17The breakdown by four digit industry code was unavailable prior to 1993, so we pool data 1993-2001. This

is a shorter period than for the patent data, but we perform several experiments with different assumptions

over timing of the patent technology distance measure to demonstrate robustness (see below).

11



measure which exploits the Mahalanobis norm to identify the distance between different tech-

nology classes based on the frequency that patents are taken out in different classes by the

same firm (which we refer to as co-location).18 The idea is that firms will tend to operate

across multiple technology classes when these are close to each other, in order to internalize

knowledge spillovers. By examining the frequency of co-location of patenting within firms, we

can estimate the technology distance between the different classes. Technology classes that

are frequently observed within the same firm are judged to be closer than those never ob-

served together. The Mahalanobis measure takes into account the closeness of different firms

in technology areas where they both operate, as well as the closeness of their non-overlapping

technology areas. The calculation of this Mahalanobis measure,  is nota-

tionally quite involved so it presented in Appendix C.1.

We believe this Mahalanobis distance has two advantages over the Jaffe measure. First, it

exploits information on the distribution of technology classes within firms to calculate distance

between technology classes, and thus improve our measure of the technology distance between

firms. Second, it helps to reduce the potential impact of measurement error in the allocation of

patents to technology classes. For example, if patent office examiners sometimes erroneously

allocate patents in the class “arithmetic processing calculating” to “processing architectures

and instruction processing”, then our Mahalanobis distance measure would recognize these as

closer together and take this into account when generating spillover measures.

A similar distance measure can also be constructed for the distance between firms in

product market space, which we call . However, whether this is a better or

worse measure of product market distance than the Jaffe measure is less clear. Anti-trust law,

for example, restricts the ability of firms in substitutable products to merge, so the within-firm

distribution of sales may not tell us so much in aggregate about which sectors are closer to

each other.

We present results based on both the Jaffe and Mahalanobis distance metrics in the em-

pirical section. In robustness tests, we also consider several other distance metrics that are

based on alternative approaches.

3.5. Some Issues with the Dataset

Although the Compustat/NBER database is the best publicly available dataset to implement

our framework, there are issues with using it. First, the finance literature has debated the

extent to which the breakdown of firm sales into four digit industries from the Compustat

18We wish to thank an anonymous referee for suggesting this approach.
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Segment Dataset is reliable.19 We examine this problem using BVD, an alternative firm-level

database to calculate product market closeness. Second, Compustat only contains firms listed

on the stock market, so it excludes smaller firms. This is inevitable if one is going to use

market value data. Nevertheless, R&D is concentrated in these firms, and our dataset covers

the bulk of reported R&D in the U.S. economy. Third, Thompson and Fox-Kean (2005) have

argued that the three-digit patent classification may be too crude, so we will examine the

more disaggregated patent sub-class data they use in Section 7.3.

3.6. Descriptive Statistics of  and 

In order to distinguish between the effects of technology spillovers and product market rivalry

we need variation in the distance metrics in technology and product market space. To gauge

this we do several things. First, we calculate the raw correlation between the measures 

and , which is 0.469. Further, after weighting with R&D stocks following equations

(3.2) and (3.4) the correlation between ln() and ln() is 0.422. For

estimation in logarithms with fixed effects and time dummies the relevant correlation in the

change of ln() and ln() is only 0.319 (all these correlations are

significant at the 1% level). Although these correlations are all positive they are well below

unity, implying substantial independent variation in the two measures. Second, we plot the

distance measure  against  in Figure 1, from which it is apparent that the positive

correlation we observe is caused by a dispersion across the unit box rather than a few outliers.

Finally, in Appendix D we discuss examples of well-known firms that are close in technology

but distant in product market space, and close in product market but distant in technology

space.

Table 2 provides some basic descriptive statistics. The firms in our sample are large (mean

employment is over 18,000), but with much heterogeneity in size, R&D intensity, patenting

activity and market valuation. The two distance measures also differ widely across firms.

19For example, Villalonga (2004) argues that firms engage in strategic reporting to reduce their diversification

discount. It should be noted that this is a far greater problem in the service sector due to the difficulties in

classifying service sector activity, and Villalonga (2004) in fact finds no discount in manufacturing. Since our

sample is heavily manufacturing focused, (81% of our R&D is in manufacturing), this issue is less problematic

here.
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4. Econometrics

In the theory discussion summarized in Table 1 there are four key endogenous outcome vari-

ables: market value, knowledge (measured by citation-weighted patents and total factor pro-

ductivity) and R&D expenditures.20 We first discuss the generic issues of identification with

all four equations, and then turn to specific problems with each equation.

4.1. Identification

We are interested in investigating the generic relationship:

ln = 1 ln + 2 ln + 3 ln + 4 +  (4.1)

where the outcome variable(s) for firm  at time  is , the main variables of interest are

 and ,  is a vector of controls and the error term is . There are

three issues to address in estimating equation (4.1): unobserved heterogeneity, endogeneity

and dynamics.

First, to deal with unobserved heterogeneity we will assume that the error term is composed

of a correlated firm fixed effect (), a full set of time dummies ( ) and an idiosyncratic

component ()
21. In all regressions we will control for fixed effects by including a full set

of firm specific dummies, except for the patents equation where the non-linear count process

requires a special treatment explained below. The time dimension of the company panel is

relatively long so the “within groups bias” on weakly exogenous variables (see Nickell, 1981)

is likely to be small.22

Second, we have the issue of the endogeneity due to transitory shocks. To construct

instruments we exploit supply side shocks from tax-induced changes to the user cost of R&D

capital. Details are in Appendix B.4, but we sketch the strategy here. The Hall-Jorgenson

user cost of capital,  is

 =
(1−)

(1−  )
[ +  − ∆

−1
] (4.2)

where  is the discounted value of tax credits and depreciation allowances,   is the rate of

corporation tax (which has a state as well as a Federal component),  is the real interest rate,

 the depreciation rate of R&D capital and ∆
−1

is the growth of the R&D asset price. Since

20For an example of this multiple equation approach to identify the determination of technological change,

see Griliches, Hall and Pakes (1991).
21In calculating robust standard errors we allow the 


 to be heteroskedastic and serially correlated.

22In the R&D equation, for example, the mean number of observations per firm is eighteen.
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[ +  − ∆
−1

] does not vary between firms, we focus on the tax price component of the user

cost,  =
(1−)
(1−) .

Values of  of unity are equivalent to R&D tax neutrality, while values below unity denote

net tax incentives for R&D.  will vary across firms for two reasons. First, different states

have different levels of R&D tax credits and corporation tax, which will differentially affect

firms depending on their cross-state distribution of R&D activity. We use Wilson’s (2008)

estimates of state-specific R&D tax prices, combined with our estimates of the cross-state

distribution of each firm’s R&D, to calculate the “state R&D tax price”.23 Second, we follow

Hall (1992) and construct a firm-specific user cost using the Federal rules. This has a firm-

specific component, in part because the definition of what qualifies as allowable R&D for tax

purposes depends on a firm-specific “base”.24

We use these excluded instruments (and the other exogenous variables) to predict R&D,

and then use its predicted value for both the own R&D and the two spillover variables in the

second stage equations (correcting the standard errors appropriately). Note that the spillover

terms are being instrumented by the values of other firms’ tax prices, whereas the firm’s own

R&D is instrumented by its own tax prices.

Thirdly, although our baseline models are static, we show that the empirical results are

robust to specifications that include a lagged dependent variable.

4.2. Market Value equation

We adopt a simple linearization of the value function proposed by Griliches (1981) augmented

with our spillover terms:25

ln

µ




¶


= ln

µ
1 + 1

µ




¶


¶
+2 ln+3 ln+42+


 +


 +




(4.3)

where  is the market value of the firm,  is the stock of non-R&D assets,  is the R&D

stock, and the superscript  indicates that the parameter is from the market value equation.

One reason for the deviation of  (“Tobin’s average Q”) from unity is the R&D inten-

sity of different firms. If 1() were “small” we could approximate ln
¡
1 + 1

¡



¢


¢
by

1
¡



¢

 but this will not be a good approximation for many high tech firms, so we approx-

23We use the location of a firm’s inventors, identified from the patent database, to estimate the location of

R&D (see Griffith, Harrison and Van Reenen, 2006).
24For example, from 1981 to 1989 the base was a rolling average of the previous three years’ R&D. From

1990 onwards the base was fixed to be the average of the firm’s R&D between 1984 and 1988. See Appendix

B for more details.
25See also Jaffe (1986), Lanjouw and Schankerman (2004), and Hall et. al. (2005).
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imate ln
¡
1 + 1

¡



¢


¢
by a series expansion with higher order terms (denoted by (


)).26

Empirically, we found that a sixth order series expansion was satisfactory. To mitigate endo-

geneity we lag the key right hand side variables by one year. Thus, the market value equation

is:

ln

µ




¶


= (()−1) + 2 ln−1 + 3 ln−1

+42 +  +  +  (4.4)

4.3. Patent Equation

We estimate count data models of future citation-weighted patents () using a Negative

Binomial model:

 = exp(1 ln−1+2 ln−1+3 ln−1+44+ + +)

(4.5)

We use the “pre-sample mean scaling” method of Blundell, Griffith and Van Reenen (1999)

to control for fixed effects.27 This relaxes the strict exogeneity assumption underlying the

conditional maximum likelihood approach of Hausman, Hall and Griliches (1984), but we

show that both methods yield qualitatively similar results.

4.4. Productivity Equation

We estimate a basic R&D augmented Cobb-Douglas production function ( is output):

ln = 1 ln−1 + 2 ln−1 + 3 ln−1 + 43 +  +  + 

(4.6)

The key variables in 3 are the other inputs into the production function - labor and capital.

If we measured output perfectly then the predictions of the marginal effects of 

and  in equation (4.6) would be qualitatively the same as that in the patent

equation. Technology spillovers improve TFP, whereas R&D in the product market should

26It is more computationally convenient to do the series expansion than estimate by non-linear least squares

because of the inclusion of fixed effects. We show that results are similar if we estimate by non-linear least

squares.
27Essentially, we exploit the fact that we have a long pre-sample history (from 1970 to at least 1980) of

patenting behavior to construct its pre-sample average. This can then be used as an initial condition to proxy

for unobserved heterogeneity under the assumption that the first moments of all the observables are stationary.

Although there will be some finite sample bias, Monte Carlo evidence shows that this pre-sample mean scaling

estimator performs well compared to alternative econometric estimators for dynamic panel data models with

weakly endogenous variables (see Blundell, Griffith and Windmeijer, 2002).
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have no impact on TFP (conditional on own R&D and other inputs). In practice, however,

we measure output as “real sales” - firm sales divided by an industry price index. Because we

do not have information on firm-specific prices, this induces measurement error (see Foster,

Haltiwanger and Syverson, 2008). If R&D by product market rivals depresses own prices (as we

would expect), the coefficient on  will be negative and the predictions for equation

(4.6) are the same as those of the market value equation. Controlling for industry output (see

Klette and Griliches, 1996) and fixed effects should go a long way towards dealing with the

problem of firm-specific prices, and we show that the negative coefficient on  is

essentially zero once we control for these additional factors.

4.5. R&D equation

We write the R&D intensity equation as:

ln( ) = 2 ln−1 + 3 ln−1 + 41 +  +  +  (4.7)

This R&D “factor demand” specification could arise from a CES production function with

constant returns to scale in production (see Bloom, Griffith and Van Reenen, 2002), augmented

to allow for spillovers. In this interpretation the user cost of R&D capital is absorbed in the

fixed effects and time dummies, but an alternative is to explicitly model the tax adjusted user

cost as we do when constructing instrumental variables in sub-section 6.1. We also examine

specifications that relax the constant returns assumption, using ln as the dependent variable

and including ln on the right hand side of equation (4.7).

5. Empirical Results

5.1. Market Value Equation

Table 3 summarizes the results for the market value equation. In this specification without

any firm fixed effects, the product market spillover variable, , has a positive asso-

ciation with market value and  has a negative association with market value.28

These are both contrary to the predictions of the theory. When we allow for fixed effects in

28The coefficients of the other variables in column (1) were close to those obtained from nonlinear least

squares estimation. Using OLS and just the first order term of , the coefficient on  was 0.266, as

compared to 0.420 under nonlinear least squares. This suggests that a first order approximation is not valid

since  is not “small” - the mean is close to 50% (see Table 2).
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column (2), the estimated coefficients on  and  switch signs and are

consistent with the theory.29 Conditional on technology spillovers, R&D by a firm’s product

market rivals depresses its stock market value, as investors expect that rivals will capture fu-

ture market share and/or depress price-cost margins. A ten percent increase in 

is associated with a 2.4% increase in market value and a ten percent increase in 

is associated with a 0.7% reduction in market value.

It is also worth noting that, in column (3) when  is omitted the coefficient on

 declines and becomes statistically insignificant at the 5 per cent level. The

same bias is illustrated for  - if we failed to control for technology spillovers

we would find no statistically significant impact of product market rivalry (column (4)). It is

only by allowing for both spillovers simultaneously that we are able to identify their individual

impacts.30

The bias associated with not allowing for fixed effects could arise from various sources. For

example, if high  firms are clustered in product market niches with high growth

(or expected growth) — where good prospects induce entry and thus greater competition — they

will tend to have higher market values.31 If fixed effects control for this, the true negative

effect is revealed. Another possibility is that high  firms may tend to do less

marketing, and this will mean that they have lower  (as we do not measure goodwill

capital). To the extent that goodwill capital does not change much over time, this causes a

downward bias on  in column (1) but not in column (2).

In column (5) we re-estimate our results using our Mahalanobis distance measures. We

find that the coefficient on  rises three-fold, suggesting that by more accurately

weighting distances between technology fields the Mahalanobis spillover metric has substan-

tially reduced attenuation bias. The results for the product market measure in column (5) are

also about twice as high.

In the final column we treat R&D as endogenous using R&D tax prices as instrumental

variable. The first stage is presented in Appendix Table A2 and shows that the excluded

instruments are strong with an F-test of 30. The second stage coefficients on the spillover

29The fixed effects are highly jointly significant, with a p-value  0.001. The Hausman test also rejects the

null of random effects plus three digit dummies vs. fixed effects (p-value=0.02).
30We also tried an alternative specification that introduces current (not lagged) values of the two spillover

measures, and estimate it by instrumental variables using lagged values as instruments. This produced similar

results. For example, estimating the fixed effects specification in column (2) in this manner (using instruments

from  − 1) yielded a coefficient (standard error) on  of 0.282 (0.092 ) and on  of

-0.079 (0.028 ).
31This is also indicated by the fact that when we drop both industry sales variables the coefficient on

 in column (2) falls from -0.072 to -0.044.
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terms in column (6) of Table 3 are correctly signed and significant with magnitudes larger

than the baseline column (2)32.

5.2. Patent Equation

Table 4 presents the estimates for citation-weighted patents equation. Column (1) shows

that larger firms and more R&D-intensive firms are more likely to produce highly cited

patents. More interestingly,  has a positive and highly significant associa-

tion with patenting, indicating the presence of technology spillovers. By contrast, the product

market rivalry term, , has a much smaller and statistically insignificant coefficient.

In column (2) we control for firm fixed effects by using the Blundell, Griffith and Van

Reenen (1999) method of conditioning on the pre-sample, citation-weighted patents 33. Al-

lowing for fixed effects reduces the coefficient on  but it remains positive and

significant34. In column (3) of Table 4 we include a lagged dependent variable. There is strong

persistence in patenting behavior, as the coefficient is highly significant, but 

retains a large and significant coefficient. As with Table 3, when we use the Mahalanobis

measures in column (4) the coefficient on technology spillovers increases. The final column

treats R&D as endogenous which does not much change the coefficients from column (2).

The results are also robust to using the Hausman, Hall and Griliches (1984) method of

controlling for fixed effects. Using this method on the specification in column (2), we ob-

tain a coefficient (standard error) of 0.201 (0.064) on  and 0.009 (0.006 )

on  which compares to 0.271 (0.066 ) on  and 0.081 (0.035 ) on

 for the same sample using the Blundell, Griffith and Van Reenen (1999) method.

32In the market value specification we imposed a coefficient of unity for  in the equation (4.3) to enable

the R&D stock to be included in Tobin’s Q rather than as a right hand side variable:

Tobin’s Q = ln

µ


+

¶


Without this, the regression would not be identified given the inclusion of the instruments in the second stage

because of their potential direct effect on market value, as well as the impact on R&D stock. In the OLS

results the coefficient on  was 1.14, with the test that  = 1 insignificant at the sample-mean (p-value 0.17).

Restimating the Tobin’s Q regression instead imposing the OLS coefficient of  = 114 yields similar results,

with the coefficient (standard error) on  and  as 0.404 (0.153 ) and -0.083 (0.076 )

respectively.
33The pre-sample estimator assumes we can capture all of the fixed effect bias by the long pre-sample history

of patents (back as far as 1970). To check this assumption, we also included the pre-sample averages of the

other independent variables. Since we have a shorter pre-sample history of these we conditioned on the sample

which had at least ten years of continuous time series data. Only the pre-sample sales variable was significant

at the five per cent level and including this initial condition did not change any of the main results.
34When using unweighted patent counts the coefficient (standard error) on  was 0.295(0.066 )

and 0.051(0.029 ) on 
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Note that although the coefficient on  is statistically insignificant and much

smaller than  throughout Table 4, it is positive and sometimes significant in

robustness tests (see below). In Appendix A3 we present an extended model where patents

are endogenously chosen that rationalizes such a positive effect.

5.3. Productivity Equation

Table 5 contains the results for the production function. The OLS results in column (1)

suggest that we cannot reject constant returns to scale in the firm’s own inputs (the sum of the

coefficients on capital, labor and own R&D is 0.995). The spillover terms are perversely signed,

however, with negative and significant signs on both spillover terms. Including fixed effects

in column (2) changes the results:  is positive and significant and 

becomes insignificant. This pattern is consistent with the theory and the results from the

patents equation. The negative sign on  in column (1) could be due to rival

R&D having a negative effect on prices, and depressing a firm’s revenue. In principle, these

price effects should be controlled for by the industry price deflator, but if there are firm-

specific prices then the industry deflator will be insufficient. If the deviation between firm and

industry prices is largely time invariant, however, the fixed effects should control for this bias.

This is consistent with what we observe in column (2) - when fixed effects are included, the

negative marginal effect of  disappears. The third column drops the insignificant

 term, and is our preferred specification. In column (4) we re-estimate the results

using the Mahalanobis measure, and again see a substantial increase (doubling) in the point

estimate of the coefficient on technology spillovers. This coefficient on  in the

final column which treats R&D as endogenous is similar to the basic specification of column

(2)35

One might be concerned that there is heterogeneity across industries in the production

function coefficients, so we investigated allowing all inputs (labor, capital and R&D) to have

different coefficients in each two-digit industry. In this specification,  remained

positive and significant at conventional levels.36 We also experimented with using an estimate

of value added instead of sales as the dependent variable, which led to a similar pattern of

35The coefficient on  is negative and significant which may indicate that there is still some

residual firm-specific price variation in the dependent variable. R&D by product market rivals will depress

prices and this may be reflected in the negative coefficient.
36 took a coefficient of 0.101 and a standard error of 0.046 and  remained in-

significant (coefficient of 0.008 and a standard error of 0.012). Including a full set of two digit industry time

trends also lead to the same findings. The coefficient (standard error) on  was 0.093 (0.048 ).
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results.37

5.4. R&D Equation

Table 6 presents the results for the R&D equation. In column (1) there is a large, positive and

statistically significant coefficient on  which persists when we include fixed effects.

This indicates that own and product market rivals’ R&D are strategic complements. Similar

results are obtained if we use ln(R&D) as the dependent variable and include ln(Sales) as a

right hand side variable.38 In column (3) we include a lagged dependent variable.39 Column

(4) uses the Mahalanobis distance measures and column (5) treats R&D as endogenous. In

both specifications we find that  remains positive, but it is insignificant in the

final column. This suggests that the significance of  in the OLS regressions may

be due to common R&D shocks rather than strategic complementarities. The coefficient on

 which is theoretically of ambiguous sign, is not robust. It is insignificant in

columns (2) and (3), positive and significant in columns (1) and (5), and negative and (weakly)

significant in column (4).

The evidence from Table 6 provides some evidence suggesting that R&D spending of prod-

uct market rivals is a strategic complement of own R&D, as many IO models assume but

rarely test.40 However, treating R&D as endogenous (as we do in the final column), weakens

this conclusion as it suggests that the positive covariance of own R&D and  may

be driven by common shocks.

5.5. Summary of basic empirical results

Table 7 compares our empirical findings against the predictions of the theoretical model.

Despite its simplicity, our model performs surprisingly well, with all six predictions supported

37Using value added as the dependent variable, the coefficient (standard error) on  was

0.188(0.053 ) and on  was -0.023(0.013 ). Including materials on the right hand side generated a

coefficient (standard error) on  of 0.127(0.039 ) and on  of -0.007(0.010 ).
38The coefficient (standard error) on  was 0.082(0.034 ) and on  was 0.121(0.072 ).
39We checked that the results were robust to allowing sales and lagged R&D to be endogenous by re-

estimating the R&D equation using the Blundell and Bond (1998) GMM “system” estimator. The qualitative

results were the same. We used lagged instruments dated t-2 to t-8 in the differenced equation and lagged

differences dated t-1 in the levels equations. In the most general dynamic specification of column (3) the coeffi-

cient (standard error) on  was 0.140 (0.023 ) and the coefficient (standard error) on 

was -0.026 (0.018 ). Since the lagged dependent variable took a coefficent of 0.640(0.046) this implies a larger

magnitude of the effect of  on R&D than the main within group specifications. Note that the

instruments were valid at the five per cent level according to the Hansen-Sargan test.
40We know of only two papers that empirically test for patent races, one on pharmaceuticals and the other on

disk drives (Cockburn and Henderson, 1994; and Lerner, 1997), and the evidence is mixed. However, neither

of these papers allows for both technology spillovers and product market rivalry.
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by the data. This holds true whether we use the Jaffe or Mahalanobis version of technology

and product market distance and whether or not we treat R&D as endogenous. R&D by

neighbors close in technology space is associated with higher market value, patenting and

TFP. R&D by neighbors close in product market space is associated with lower market value

and generally no effect on patents or TFP.

6. Extensions: Industry Heterogeneity and Private vs. Social Re-

turns to R&D

In this section we present two major extensions to our empirical investigations. First, we

estimate our model on three major high tech sectors to examine how the strength of technology

spillovers and product market rivalry varies across sectors. Second, we analyze the private

and social returns to R&D implied by our parameter estimates in order to shed light on the

major policy issue of whether there is under-investment in R&D.

6.1. Econometric results for three high-tech industries

We have used both the cross-firm and cross-industry variation (over time) to identify the tech-

nology spillover and product market rivalry effects. An interesting extension of the method-

ology outlined here is to examine particular industries in much greater detail. This is difficult

to do, given the size of our dataset. Nevertheless, it would be worrying if the basic theory was

contradicted in the high-tech sectors, as this would suggest our results might be due to biases

induced by pooling across heterogenous sectors. To investigate this, we examine in more detail

the three most R&D intensive sectors where we have a sufficient number of firms to estimate

our key equations: computer hardware, pharmaceuticals, and telecommunications equipment.

Table 8 summarizes the results from these experiments.

The results for computer hardware (Panel A) are qualitatively similar to the pooled results.

Despite being estimated on a much smaller sample,  has a positive and signif-

icant association with market value and  a negative and significant association.

There is also evidence of technology spillovers in the production function and the patenting

equation.  is positive in the R&D equation indicating strategic complementarity

and is not significant in patents or productivity regressions, as our model predicts.
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The pattern in pharmaceuticals is very similar, with the parameters being consistent with

the predicted signs from the theory and statistically significant. Technology spillovers are

also found in the production function and the patents equation and there is also evidence of

strategic complementarity, as indicated by the large coefficient on  in the R&D

equation.41 We find a much larger, negative coefficient on  in the market value

equation than in the pooled results, indicating substantial business stealing effects in this

sector. We will return to this finding in the next sub-section when we discuss the private and

social returns to R&D.

The results are slightly different in the telecommunications equipment industry. We also

observe significant technology spillover effects in the market value equation and citation-

weighted patents equations, but the coefficient on  is insignificant (although

positive) in the productivity equation. There is no evidence of significant business stealing or

strategic complementarity of R&D in this sector, however.

Like the pooled sample, these findings on technological spillovers and business stealing

are robust to treating R&D as endogenous. For example, the coefficients (standard error) on

 and  in the market value equation for computer hardware are 2.314

(0.668 ) and -0.512 (0.243 ) respectively.42

Overall, the qualitative results from these high-tech sectors indicate that our main results

are broadly present in those R&D intensive industries where we would expect our theory to

have most bite. Technology spillovers are found in all three sectors, with larger coefficients than

in the pooled results, as we would expect. However, there is also substantial heterogeneity

across the sectors. First, the size of the technology spillover and product market rivalry

effects vary (we use these differences in the computation of the returns to R&D in the next

sub-section). Second, we find statistically significant product market rivalry effects of R&D

on market value in two of the three industries studied. Finally, there is evidence of strategic

complementarity in R&D for computers and drugs, but not for telecommunications.

41Austin (1993) also found evidence of rivalry effects through the market value impact of pharmaceutical

patenting. See also Klock and Megna (1993) on semi-conductors.
42These same coefficients (standard errors) on  and  in the market value equation for

pharmaceuticals and telecommunications equipment are 3.139 (1.456 ) and -1.317 (1.427 ), and 2.500 (0.696 )

and -0.113 (0.540 ) respectively.
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6.2. Estimates of the Private and Social Returns to R&D

6.2.1. Methodology

In this sub-section we use our coefficient estimates to calculate the private and social rates of

return to R&D for the whole sample and for different sub-groups of firms. In doing this, we

are making the stronger assumption that the coefficients we estimated in the empirical work

have a structural interpretation and can be used for policy purposes. This goes beyond the

simple qualitative predictions of the model which we tested in the empirical work. We are

assuming here that the functional forms are correct, the distance metrics can be interpreted

quantitatively, and the estimated coefficients are causal. For all these reasons, this discussion

is inherently more speculative.

With these caveats in mind, we define the marginal social return () to R&D for firm

 as the increase in aggregate output generated by a marginal increase in firm ’s R&D stock.43

The marginal private return () is defined as the increase in firm ’s output generated

by a marginal increase in its R&D stock. Both the  and  refer to gross rates

of return, prior to netting out the depreciation of R&D knowledge. Appendix E provides a

detailed discussion of how to calculate these rates of return for individual firms within our

analytical framework. In the general case, the rates of return for individual firms depend on

the details of their linkages to other firms in both the technology and product market spaces.

Although we will use the general formulae to compute the returns presented in this sub-section,

much of the intuition can be understood by examining the special case where all firms are

fully symmetric and we abstract from the “amplification” effects arising from mechanisms like

strategic complementarity in R&D. What we mean by fully symmetric is that all firms are

the same size in sales and R&D stocks, and are identically linked with other firms in both the

technology and product market spaces.

In this special case, the marginal social return can be written as

 = (



)(1 + 2) (6.1)

where 1 and 2 are the coefficients (output elasticities) of the own R&D stock () and the

pool of technology spillovers () in the production function, respectively, and

43This is the conventional definition adopted by researchers using a production function framework. Nonethe-

less, it is worth pointing out that this definition does not fully capture consumer surplus, and thus under-

estimates the full social return from R&D. The extent of this underestimation depends on how much of the

surplus firms can capture and on the price deflators used to convert observed revenues into real output mea-

sures, which may vary across different types of firms and industries (for a thoughtful discussion of these issues,

see Griliches, 1979).
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 is the ratio of output to the R&D stock.44 In this formulation the  is simply the

marginal product of R&D, which reflects both the contribution to the firm’s own R&D stock

and to the stock of technology spillovers enjoyed by other firms. The  is larger the

stronger is the impact of the technology spillovers generated by the firm (2).

In this special case, the marginal private return is

 = (



)(1 − 3) (6.2)

In equation (6.2) 3 is the coefficient on  in the market value equation. Since

3  0 the  is larger than simply its contribution to the firm’s own R&D stock because

of the business stealing effect inherent in oligopoly models. This effect increases the private

incentive to invest in R&D by redistributing output between firms, but does not enter the

social return calculus and thus is absent from the . The 3 coefficient is multiplied by a

parameter  which represents the proportion of the fall in market value from a rival’s R&D

that comes from reduction in its level of output (this is redistributed to the rival firms) rather

than an induced decline in price (which does not benefit rival firms). For the calculations

here, we set  = 1
2
45

In this symmetric case with no amplification, the wedge between the social and private

returns depends upon the importance of technology spillovers in the production function (2)

relative to rivalry effects in the market value equation (3). The social rate return to R&D

can be either larger or smaller than the private rate of return, depending on the relative

magnitudes of 2 and |3| . In the general case, the relative returns also depend on the
position of the firm in both the technology and product market spaces.

6.2.2. Results for the Private and Social Return to R&D

Using our baseline parameter estimates, assuming symmetric firms and no amplification, and

evaluating these expressions at the median value of 

(which is 2.48) we obtain an estimate

of the  of 38.7% ( = 248 ∗ (0045 + 0111)), and an estimate of the  of 20.1%

(= 248 ∗ (0045+ 0036)) This calculation shows that, for the whole of sample of firms taken
44In computing the social returns, it is important to use the elasticity of R&D stock from the production

function, 2 rather than from the value equation, 2. The R&D elasticity in the value function should be

larger because it captures both the pure productivity shift due to R&D and the increase in the levels of other

variable inputs such as employment, whereas the production function elasticity captures only the productivity

effect. This is confirmed by our econometric estimates.
45Different oligopoly models will generate different precise values of the scaling parameter, . Most oligopoly

models we have examined, with standard isoelastic demand and constant marginal cost, generate values of 

less than 1
2
We argue in Appendix E that a value of  = 1

2
is conservative, in that it leads us to over-estimate

the private return and thus under-estimate the wedge between private and social returns to R&D.
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together, the marginal social returns are approximately double the private returns, indicating

under-investment in R&D. We can use our estimates of the private and social returns to

infer the gap between the observed and socially optimal level of R&D. To do this we need

an assumption about the price elasticity of the demand for R&D,  (i.e. let  =  where

 is the level of R&D and  is the marginal return). Our estimated coefficients on the tax

credit variables from the first stage IV regression (column (1), Table A2), evaluated at the

sample means, imply a price elasticity of -0.70 and -2.0 for the federal and state tax credits

respectively. Using these values, and the ratio of  to  of 1.92, we find that the

socially optimal level of R&D is about twice as large as the observed level (between 1.7 and

2.4) 46

The results for the full calculations of private and social returns, allowing for asymmetric

firms and amplification effects, are presented in Table 9. Several important results emerge from

this table. First, in the full calculations given in row 1, we find that the gross social returns

are estimated at 38.1% and the gross private returns at 20.0%, again indicating a substantial

divergence between social and private returns of 18.1 percentage points. This is surprisingly

similar to the results for the symmetric no amplification case discussed above, suggesting

that the simple case is not misleading when considering the aggregate effects. Second, row

2 in Table 9 shows the results from using the Mahalanobis distance metric, in which gross

social returns are shown to be 34 percentage points above private returns. Row 3 shows the

IV results which shows the smallest rates of private and social return, mainly because the

coefficient on own R&D in the production function is about half that of the OLS estimate.

Even here, however, social returns are almost twice as big as private returns.

To calculate an optimal subsidy level, we need to compare the net social and private returns,

rather than gross returns, i.e. to net out appropriate R&D depreciation. One approach is to

assume social and private returns both have the same depreciation rate, for example, the 15%

value we use to calculate the empirical R&D stock, in which case the gap between net social

and private returns is the same as the gap between gross returns. However, as Griliches (1979)

and Pakes and Schankerman (1984) argue, the social depreciation rate of R&D is likely to be

lower than the private rate because private depreciation includes the redistribution of rents

46These figures are similar to those estimated from macro data in an endogenous growth model framework

by Jones and Williams (1998). They report social returns to R&D of about 2 to 4 times private returns. Our

gross ratio of  to  is 1.92 (= 38.7/20.1) for the fully symmetric case without amplification. If we

assumed a 15% depreciation of social and private R&D stock, we would get a ratio of net  to  of

4.65 ( = (38.7-15)/(20.1-15)). Jones and Williams (1998) also estimate the social optimal level of R&D to be

about four times larger than the observed level.
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across firms, which is not a social loss. If this is so, our estimate of the gap between private

and social returns is probably a lower bound to the true gap net of depreciation.

Second, in rows 4-7 we split firms by their quartiles of size. We find that larger firms have a

larger gap between social and private returns. The reason is that larger firms tend to operate

in more populated technology fields, and thus have a higher level of connectivity with other

firms in technology space (shown by their higher average  values: 0.054 in the largest

quartile). For this reason they generate more spillovers at the margin. Smaller firms tend

to operate more in technology niches (shown by their lower average  values: 0.029 in

the lowest quartile) and so generate fewer spillovers. Taken at face value, this result would

suggest that larger firms should receive more generous R&D subsidies. Of course, technology

spillovers are not the only possible justification for government intervention. Other factors —

most notably, imperfect capital markets — may argue for a larger subsidy for smaller (or perhaps

more reasonably, younger) firms who are likely to be more severely liquidity-constrained. Our

Compustat sample has very few observations from small firms and thus cannot inform on this

important issue.47 But our finding here does, at least, suggests a reconsideration of the more

generous tax credits for smaller firms that are standard in many countries.

Third, in rows 8-10 we present the returns to R&D for the three high-tech industries

examined in sub-section 6.1. On average, the firms in all three high-tech sectors have higher

private and social returns to R&D than the sample average. These higher returns are the result

of the larger own R&D and spillover R&D coefficients which we found for these industries,

as reported in Table 8. These high private returns initially look surprising, given firms can

freely invest in R&D to drive their private returns down to their risk-adjusted cost of capital.

However, in these high-tech industries the rates of depreciation of R&D and the risks of

R&D are both likely to be higher due to more rapid rates of technological progress, and this

increases the required gross private returns to R&D. It is also true that real R&D per firm is

rising rapidly in these industries over our sample period (9.3% per year, on average), so that

short-run adjustment costs may also push up the short-run private returns to R&D.

One striking feature of our high-tech industry results is that for pharmaceutical firms the

private and social returns to R&D are roughly equal. The reason for this is the high levels

of business stealing estimated for pharmaceutical R&D. We find that more than 80% of the

private returns to R&D for pharmaceutical firms comes from the business stealing effect. Part

47In the data 13% of the observations come from firms with less than 500 employees, the formal cut-off

for smaller and medium sized enterprises. These firms of course will be a selected sample given they are all

publicly quoted.
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of this strong business stealing may reflect imitative research strategies whereby firms replicate

the therapeutic properties of a competitor’s existing, patented drug with a slightly modified

chemical entity.48 Of course, incremental research is not limited to this sector, but it may be

that such strategies are more effective in redistributing profit in pharmaceuticals than in other

industries where technologies are made up of a multitude of patented components.

One important caveat is that our estimates of the social returns are based on the increases

in output from the R&D, and thus may not fully capture the consumer surplus generated.

These gains in consumer surplus are possibly a more important component of the total social

returns (health benefits) for drugs than for other sectors.49

Overall, our results show clearly that there is substantial variation across industries in

the strength of the business stealing and technology spillover effects, and this provides some

support for thinking about more targeted R&D tax credits which our methodology helps to

identify. Of course, in any such assessment the dangers of rent-seeking behavior that often

accompanies targeted policies must be taken seriously.

7. Robustness

We have considered a wide range of robustness tests and report three of the most impor-

tant here: an alternative to the Compustat Segment Data, alternative distance metrics and

disaggregating patent classes.

7.1. An Alternative to Compustat Segment Data: the BVD Dataset

The finance literature has debated the extent to which the breakdown of firm sales into four

digit industries from the Compustat Segment Dataset is reliable. To address this concern, we

used an alternative data source, the BVD (Bureau Van Dijk ) database. This contains cross-

sectional industry and ownership information on about ten million establishments in North

America and Europe, which can be directly matched into Compustat to create a breakdown

of each firm’s activity across four digit industries. The correlation between the Compustat

48While this claim of “me-too” research is widespread among critics of this industry, we are not aware of

any systematic studies that document this phenomenon. It is also important to bear in mind that even small

changes in drug compounds can make big differences in the side effects of drugs, which of course also have

social value.

49It might be thought that the small divergence between social and private returns reflects the importance

and effectiveness of patent protection in pharmaceuticals, allowing firms to appropriate most of the social

surplus from their new drugs. But this interpretation is contradicted by the fact that we estimate large

technology spillover effects in both the production function and market value equations for pharmaceutical

firms, which should not be observed if firms fully appropriated the returns to their R&D.
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Segment and BVD Dataset measures is reasonably high. For example, the within-firm cor-

relation of ln() across the Compustat Segment and BVD datasets is 0.737 (the

within-firm variation identifies our empirical results, as we control for fixed effects). The em-

pirical results (see Appendix Table A3) are also remarkably similar to the earlier tables. In the

market value equation, the estimated impact of  is positive and 

is negative, and both are statistically significant. In the patents equation, the coefficients

on  and  are both positive and significant. In the productivity

equation,  is positive and significant, and in the R&D regression, 

is positive and significant. These results confirm the key findings of technology spillovers,

product market rivalry and strategic complementarity of R&D.

7.2. Alternative distance metrics

One unattractive feature of the Jaffe version of the distance metric,  is that the distance

measure between firm  and firm  is not invariant with respect to firm 0s sales in a third sector

where firm  does not operate. We consider an alternative distance measure, 
 = 

0


that is robust to this problem and can also be rationalized by a simple model of independent

product markets coupled with aggregation (see Appendix C.2). In this case the alternative

product market spillover measure is 
 = Σ 6=

. (The analogous measure

for technology spillovers is 
 = 

0
 and 

 = Σ 6=
 where

 is the vector of firm ’s patenting distribution across technology fields.) However, this

alternative measure also has important disadvantages compared to the Jaffe measure. Most

importantly, it is sensitive to arbitrary industry boundaries that affect overlap in sales distrib-

utions. Reassuringly, our empirical results using this alternative measure of distance are very

similar to those using our baseline measure (Panels A-C in Table A4 present the comparative

results using a consistent sample).50

7.3. Disaggregating Patent Classes

Thompson and Fox-Kean (2005) have suggested that the three digit patent class may be too

coarse and a finer disaggregation is better for measuring spillovers. As Henderson, Jaffe and

Trajtenberg (2005) point out, finer disaggregation of patents classes is not necessarily superior

50We also considered a third alternative, based on Ellison and Glaeser’s (1997) measure of “co-

agglomeration”. The empirical results were qualitatively similar to those from our baseline specification (for

details, see Bloom, Schankerman and Van Reenen, 2007).
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as the classification is subject to a greater degree of measurement error.51 Nonetheless, to

check robustness, we reconstructed the (Jaffe) distance metric using six digit patent classes,


  and then used that measure to construct a new pool of technology spillovers,


  The empirical results are robust for all four of the equations (see Panel

D in Table A).

8. Conclusions

Firm performance is affected by two countervailing R&D spillovers: positive effects from

technology spillovers and negative business stealing effects from R&D by product market

rivals. We develop a general framework showing that technology and product market spillovers

have testable implications for a range of performance indicators, and then exploit these using

distinct measures of a firm’s position in  space and   space. Using

panel data on U.S. firms over a twenty year period we show that both technology and product

market spillovers operate but, despite the business stealing effect, we calculate that the social

rate of return is about 18 percentage points larger than the the private return. So at the

aggregate level this implies under-investment in R&D, with the socially optimal level being

about twice as high as the observed level of R&D. Our findings are robust to alternative

definitions of the distance metric (including our new Mahalanobis measure) and the use of

R&D tax credits to provide exogenous variation in R&D expenditure.

Using the model and the parameter estimates, we find that the social return to R&D by

smaller firms is lower for larger firms, essentially because smaller firms tend to operate more in

technological “niches” — being less connected to other firms in technology space, they generate

smaller positive spillovers. This finding suggests that R&D policies tilted towards smaller

firms may be unwise if the objective is to redress market failures associated with technology

spillovers. Of course, there may be other reasons to support smaller firms such as liquidity

constraints or perhaps a lesser capacity to appropriate the returns from their own R&D.

Looking across different high tech industries broadly supports the main “macro” findings

when we pool across all sectors. However, we do find evidence for strategic complementarity in

computers and pharmaceuticals (but not telecommunications equipment) which is somewhat

disguised in the pooled sample. Furthermore, we also find that the business stealing effect

in the pharmaceutical sector is particularly strong, sufficient to make their private returns to

R&D roughly equal to the social returns.

51The information is only available from 1976 (compared to 1963 for all patents), has more missing values

and contains a greater degree of arbitrary allocation by the patent examiners.
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There are various extensions to this line of research. First, while we examined heterogeneity

across industries by looking at three high-tech sectors, much more could be done within our

framework to study how technology spillovers and business stealing vary across sectors and

the factors that determine them. In addition, one might exploit more detailed industry-

specific datasets to study this phenomenon in the context of a structural model. Third, the

semi-parametric approaches in Pinske, Slade and Brett (2002) could be used to construct

alternative spillover measures. Finally, it would be interesting to investigate how geographic

distance shapes both technology and product market spillovers, which could potentially be

undertaken by using data on the geographic location of subsidiaries and patenting activity

(see Lychagin et al, 2010).

Despite the need for these extensions, we believe that the methodology offered in this paper

offers a fruitful way to analyze the existence of these two distinct types of R&D spillovers that

are much discussed in the growth, productivity and industrial organization literature, but

rarely subjected to rigorous empirical testing.
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Appendices

A. Generalizations of the Model

In this Appendix we describe three generalizations of the simple model presented in Section

2. First, we allow for a more general form of interaction between firms in technology and

product market space (where there can be overlap) and also consider the -firm case (rather

than three firm case). Second, we examine tournament models of R&D (rather than the non-

tournament model in the baseline case). We show, with light modifications, that the essential

insights of our simply model carry through to these more complex settings. Third, we allow the

patenting decision to be an endogenous choice for the firm (rather than simply having patents

as simply an empirical indicator of successfully produced knowledge from R&D). Although

our main model predictions are robust, the extension to endogenous patenting implies that

the partial derivative of patenting with respect to product market rivals’ R&D ()

will be non-zero (it is zero in the basic model).

A.1. General form of interactions in technology and product market space

We begin with the general expression for flow profit

 = ∗( −) (A.1)

where − is the vector of R&D for all firms other than  In this formulation, the elements of −
captures both technology and product market spillover effects. To separate these components,

we assume that (A.1) can be expressed as

 = (  ) (A.2)

where

 =
X
 6=

 (A.3)

 =
X
 6=

 (A.4)

and the partial derivatives are 1  0 2 ≥ 0 3 ≤ 0 12 ≷ 0 13 ≷ 0and 23 ≷ 0The

technology spillover effect is 2 ≥ 0 and the business stealing effect is 3 ≤ 0 We do not
constrain the effect of technology and product market spillovers on the marginal profitability

of own R&D. Note that own R&D and product market spillovers are strategic substitutes if

13  0 and strategic complements if 13  0

Equation (A.2) imposes constraints on (A.1) by partitioning the total effect of the R&D by

each firm  6=  into technology spillovers  and product market rivalry spillovers  and by
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assuming that the marginal contribution of firm  to each pool is proportional to its ‘distance’

in technology and product market space, as summarized by  and  (i.e. we assume that
∗

can be summarized in the form 2 + 3 for each  6= )

Firm  chooses R&D to maximize net value

max


  = (  )− 

Optimal R&D ∗ satisfies the first order condition

1(
∗
   )− 1 = 0 (A.5)

We want to study how (exogenous) variations in   and  affect optimal R&D. To do

this we choose an arbitrary subset of firms,  and make compensating changes in their R&D

such that either  or  is held constant. This allows to to isolate the impact of the spillover

pool we are interested in. Consider a subset of firms denoted by  ∈  where  6= , and a set of

changes in their R&D levels, {} that satisfy the constraint  =
P

∈  = 0 These
changes imply some change in the technology spillovers  =

P
∈

, which in general will

differ from zero (it can be either positive or negative depending on the  and  weights). Now

totally differentiate the first order condition, allowing only  for  ∈  to change.52 This gives

11 + 12
P
∈

 + 13
P
∈

 = 0

But the third summation is zero by construction ( = 0) and the second summation is

just   So we get
∗


= −12
11

(A.6)

By similar derivation we obtain
∗


= −13
11

(A.7)

Equation (A.6) says that if we make compensating changes in the R&D such that the

pool of product market spillovers is constant, the effect of the resulting change in technology

spillovers has the same sign as 12This can be either positive or negative depending on how

technology spillovers affect the marginal productivity of own R&D. Equation (A.7) says that

if we make compensating changes in the R&D such that the pool of technology spillovers is

constant, the effect of the resulting change in product market spillovers has the same sign as

13− the sign depends on whether R&D by product market rivals is a strategic substitute or
complement for the firm’s own R&D.

Using the envelope theorem, the effects of  and  on the firm’s market value are




= 2 ≥ 0




= 3 ≤ 0

52We assume that the changes in R&D do not violate the restriction  ≥ 0
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These equations say that an increase in technology spillovers raises the firm’s market value,

and an increase in product market rivals’ R&D reduces it.

One remark is in order. There are multiple (infinite) different ways to change R&D in a

subset of firms so as to ensure the constraint  = 0 is satisfied. Each of the combinations

{} that do this will imply a different value of  =
P
∈

 Thus the discrete impact

of such changes will depend on the precise combination of changes made, but the marginal

impact of a change in  does not depend on that choice.

A.2. Tournament Model of R&D Competition with Technology Spillovers

In this sub-section we analyze a stochastic patent race model with spillovers. We do not

distinguish between competing firms in the technology and product markets because the dis-

tinction does not make sense in a simple patent race (where the winner alone gets profit). For

generality we assume that  firms compete for the patent.

Stage 2

Firm 0 has profit function (0 0 ) As before we allow innovation output 0 to have a

direct effect on profits, as well as an indirect (strategic) effect working through  In stage 1, 

firms compete in a patent race (i.e. there are −1 firms in the set) If firm 0 wins the patent,
0 = 1 otherwise 0 = 0. The best response function is given by 

∗
0 = argmax (0  ).

Thus second stage profit for firm 0 if it wins the patent race, is (∗0 
∗
; 0 = 1) otherwise

it is (∗0 
∗
; 0 = 0)

We can write the second stage Nash decision for firm 0 as ∗0 = (0 ) and first stage

profit as Π(0 ) = (0 
∗
0 

∗
) If there is no strategic interaction in the product market,

 does not vary with  and thus 
∗
 and Π do not depend directly on Recall that in the

context of a patent race, however, only one firm gets the patent: if  = 1 then  = 0

Thus Π depends indirectly on  in this sense. The patent race corresponds to an (extreme)

example where Π( )  0

Stage 1

We consider a symmetric patent race between  firms with a fixed prize (patent value)

 = 0((1 0) (0 1); 0 = 1)− 0((0 1) (1 0); 0 = 0) The expected value of firm 1 can

be expressed as

 0(0 ) =
(0 (− 1)) − 0

(0 (− 1)) + (− 1)( (− 1) + 0) +

where  is the interest rate,  is the R&D spending of each of firm 0
0 rivals, and (0 ) is

the probability that firm 0 gets the patent at each point of time given that it has not done so

before (hazard rate). We assume that (0 ) is increasing and concave in both arguments.

It is rising in  because of spillovers. We also assume that  −  ≥ 0 (expected benefits
per period exceed the opportunity cost of funds).

The best response is ∗0 = argmax  0(0 ).Using the shorthand 0 = (0 ( − 1))
and subscripts on  to denote partial derivatives, the first order condition for firm 0 is

(1 − 1){0 + (− 1) +}− (0 − 1){01 + (− 1)2 } = 0
Imposing symmetry and using comparative statics, we obtain



µ
0



¶
= {12( (− 1) +  −}+ {1(− 1)(1 − 1)}
−{22(− 1)( −)}− 2{(− 1)2 − 1}}
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We assume 12 ≥ 0 (spillovers do not reduce the marginal product of a firm’s R&D) and
1 − 1 ≥ 0 (expected net benefit of own R&D is non-negative). These assumptions imply
that the first three bracketed terms are positive. Thus a sufficient condition for strategic

complementarity in the R&D game ( 0


 0) is that (− 1)2 − 1 ≤ 0 This requires that
spillovers not be ‘too large’. If firm 0 increases R&D by one unit, this raises the probability

that one of its rivals wins the patent race by (− 1)2 The condition says that the expected
gain for its rivals must be less than the marginal R&D cost to firm 0.

Using the envelope theorem, we get  0


 0 The intuition is that a rise in  increases the

probability that firm  wins the patent. While it may also generate spillovers that raise the

win probability for firm 0, we assume that the direct effect is larger than the spillover effect.

For the same reason,  0


= 0 As in the non-tournament case, 0


 0 and  0


 0 The

difference is that with a simple patent race,  0


is zero rather than negative because firms

only race for a single patent.53.

A.3. Endogenizing the decision to patent

We generalize the basic non-tournament model to include an endogenous decision to patent.

We study a two-stage game. In stage 1 firms make two decisions: (1) the level of R&D

spending and (2) the ‘propensity to patent’. The firm produces knowledge with its own R&D

and the R&D by technology rivals. The firm also chooses the fraction of this knowledge that

it protects by patenting. Let  ∈ [0 1] denote this patent propensity and  ≥ 1 denote patent
effectiveness — i.e. the rents earned from a given innovation if it is patented relative to the

rents if it is not patented. Thus  − 1 represents the patent premium and  is the rent

associated with knowledge  where  = + (1− ). There is a fixed cost of patenting each

unit of knowledge, 

As in the basic model at stage 2, firms compete in some variable, , conditional on their

knowledge levels . There are three firms, labelled 0,  and  Firms 0 and  interact only in

technology space but not in the product market; firms 0 and  compete only in the product

market.

Stage 2

Firm 00 profit function is (0  00) We assume that the function  is common to

all firms. Innovation output 0 may have a direct effect on profits, as well as an indirect

(strategic) effect working through 

The best response for firms 0 and  are given by ∗0 = argmax (0  00) and ∗ =
argmax ( 0 ) respectively. Solving for second stage Nash decisions yields 

∗
0 =

(00 ) and ∗ = ( 00) First stage profit for firm 0 is Π(00 ) =

(00 
∗
0 

∗
), and similarly for firm  If there is no strategic interaction in the product

market, (00 
∗
0 

∗
) does not vary with  and thus Π0 do not depend on  We

assume that Π(00 ) is increasing in 00, decreasing in  and concave.

Stage 1

Firm 00 knowledge production function remains as

0 = (0 ) (A.8)

53In this analysis we have assumed that  = 0 initially, so ex post the winner has  = 1 and the losers  = 0

The same qualitiative results hold if we allow for positive initial 
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where we assume that () is non-decreasing and concave in both arguments and common to

all firms. Firm 0 solves the following problem:

max
00

 0 = Π(0(0 ) )− 0 − 0(0  ) (A.9)

The first order conditions are

0 : (Π010 − 0)
0
1 − 1 = 0 (A.10)

0 : Π01
0(− 1)− 0 − 1 = 0 (A.11)

where the subscripts denote partial derivatives and superscripts denote the firm. Comparative

statics on equations (A.10) and (A.11) yield the following results for comparison with the

baseline model:54

∗0


=
000 − 000

− ≷ 0 (A.12)

where 0 ≡ 2
0

etc.

As in the basic model, the sign of
∗0

depends on  {12} and the magnitude of Π11We

also obtain:

∗0


=
000 − 000

− ≷ 0 depending on {Π12} (A.13)

∗0


=
000 − 000

− ≷ 0 depending on {Π12} (A.14)

In signing the above results, we use the fact that 00  0 00  0 00  0 (provided

Π11 is ‘sufficiently small’) and  = 0000 −  2
00

 0 by the second order conditions, and

the other cross partials: 0 =
12
1
+ 20

0
1
0
2Π11;0 = 0

0
1


1 Π12 0 = 0;0 =

(− 1)001Π12;
0 = ( − 1)0002Π11;0 = ( − 1)01 Π12;0 = 0; and 0 = ( −

1)20
0
2Π12.

The basic results of the simpler model go through. First, an increase in technology spillovers

() has an ambiguous sign on own R&D spending, (equation (A.12)). Second, after some

algebra we can show that { ∗0

} = { Π12} provided that Π11 is ‘sufficiently small’.

An increase in product market rivals’ R&D raises own R&D if they are strategic complements

(conversely for strategic substitutes) [equation (A.13)]. Third, from the knowledge production

function (A.8), it follows that technology spillovers raise firm 00 knowledge stock, ∗0

≥ 0

and product market rivals’ R&D has no effect on it,
∗0


= 0 Finally, the impacts on the value

of the firm follow immediately by applying the envelope theorem to the value equation (A.9):

namely,
 ∗0

≥ 0 and ∗0


≤ 0

The new result here is that an increase in the R&D by firm 00 product market rivals
will affect the firm’s propensity to patent,

∗0


(equation (A.14). After some algebra, we can

show that 
∗0


= Π12 provided that Π11 is ‘sufficiently small’. Thus, if there is

strategic complementarity (Π12  0), an increase in product market rivals’ R&D raises the

54This is not a full list of the comparative statics results.
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firm’s propensity to patent (the opposite holds for strategic substitution). The intuition is

that, under strategic complementarity, when rivals increase R&D spending (thus their stock of

knowledge), this increases the marginal profitability of firm 0’s R&D and thus the profitability

of patenting (given the fixed cost of doing so). Thus R&D by product market rivals raises

both R&D spending and patent propensity of firm 055

B. Data Appendix

B.1. The patents and Compustat databases

The NBER patents database provides detailed patenting and citation information for around

2,500 firms (as described in Hall, Jaffe and Trajtenberg (2005) and Jaffe and Trajtenberg,

2002). We started by using the NBER’s match of the Compustat accounting data to the

USPTO data between 1970 to 199956, and kept only patenting firms leaving a sample size

of 1,865. These firms were then matched into the Compustat Segment (“line of business”)

Dataset keeping only the 795 firms with data on both sales by four digit industry and patents,

although these need not be concurrent. For example, a firm which patented in 1985, 1988 and

1989, had Segment data from 1993 to 1997, and accounting data from 1980 to 1997 would be

kept in our dataset for the period 1985 to 1997. The Compustat Segment Database allocates

firm sales into four digit industries each year using firm’s descriptions of their sales by lines of

business. See Villalonga (2004) for a more detailed description.

Finally, this dataset was cleaned to remove accounting years with extremely large jumps

in sales, employment or capital signalling merger and acquisition activity. When we removed

a year we treat the firm as a new entity and give it a new identifier (and therefore a new fixed

effect) even if the firm identifier (CUSIP reference) in Compustat remained the same. This is

more general than including a full set of firm fixed effects as we are allowing the fixed effect to

change over time. We also removed firms with less than four consecutive years of data. This

left a final sample of 715 firms to estimate the model on with accounting data for at least

some of the period 1980 to 2001 and patenting data for at least some of the period between

1970 and 1999. The panel is unbalanced as we keep new entrants and exiters in the sample.

The main variables we use are as follows (Compustat mnemonics are in parentheses).

The book value of capital is the net stock of property, plant and equipment () and

employment is the number of employees ( ). R&D () is used to create R&D capital

stocks following inter alia Hall, Jaffe and Trajtenberg (2005). This uses a perpetual inventory

method with a depreciation rate () of 15%. So the R&D stock, , in year  is:  =

 + (1 − )−1 where  is the R&D flow expenditure in year  and  = 015 For the first

year we observe a firm we assume it is in steady state so 0 = 0( + ). We use sales as

our output measure () but also compare this with value added specifications. Industry

price deflators were taken from Bartelsman, Becker and Gray (2000) until 1996 and then the

BEA four digit NAICS Shipment Price Deflators thereafter. For Tobin’s Q, firm value is

the sum of the values of common stock, preferred stock and total debt net of current assets

( and  ). The book value of capital includes net plant, property

and equipment, inventories, investments in unconsolidated subsidiaries and intangibles other

than R&D (       and ). Tobin’s Q was winsorized by

55Since product market rivals’ R&D does not affect knowledge production by firm 0 this result for the

propensity to patent also applies to the number of patents taken out by firm 0
56We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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setting it to 0.1 for values below 0.1 and at 20 for values above 20 (see Jenny Lanjouw and

Mark Schankerman, 2004).

B.2. Other variables

The construction of the spillover variables is described in Section 3 above in detail. About

80% of the variance of  and  is between firm and 20% is within

firm. When we include fixed effects we are, of course, relying on the time series variation for

identification. Industry sales were constructed from total sales of the Compustat database by

four digit industry code and year, and merged to the firm level in our panel using each firm’s

distribution of sales across four digit industry codes.

B.3. Instrumental Variables

To fix ideas, consider our basic model for firm productivity and abstract away from all other

variables except own R&D and the technology spillover term. Similar issues arise for the other

three equations, subject to additional complications noted below.

ln = 1 ln + 2 ln(Σ 6=) +  (B.1)

We are concerned that (ln) 6= 0 and (ln) 6= 0 so OLS is inconsistent, and

consider instrumental variable techniques. Note that R&D is a persistent series, is entered

lagged at least one period, and that fixed effects and other covariates are also included. Given

these considerations, the existing literature has argued that the bias on a weakly exogenous

variable is likely to be small.

We consider two candidate instrumental variables () based on R&D-specific supply side

shocks: firm and state-wide R&D tax credits. Tax-prices for R&D are natural instruments

to consider as they should effect the amount of R&D performed through the R&D factor

demand equation, but should have no direct impact on productivity conditional on R&D

itself. Intuitively, the coefficient on  is identified by variation in its own tax-price and the

coefficient on  is identified from variation in the tax-prices facing other firms.

The Hall-Jorgenson user cost of capital,  is

 =
(1−)

(1−  )
[ +  − ∆

−1
] (B.2)

where  is the discounted value of tax credits and depreciation allowances,   is the rate of

corporation tax (which has a state as well as a Federal component),  is the real interest rate,

 the depreciation rate of R&D capital and ∆
−1

is the growth of the R&D asset price. Since

[ +  − ∆
−1

] does not vary between firms, we focus on the tax price component of the user

cost,  =
(1−)
(1−) .

We decompose the variation of  into two broad channels: “firm-level”,

 , based on firm-

level interactions with the Federal tax rules, and “State level” . We use the State by year

R&D tax-price data from Wilson (2009) who quantifies the impact of State-level tax credits,

depreciation allowances and corporation taxes. The firms in our data benefit differentially

from these State-credits depending on which state their R&D is located. Tax credits are

for R&D performed within the state that can be offset against state-level corporation tax

liabilities. State-level corporation tax liabilities are calculated on total firm profits allocated

across states according to a weighted combination of the location of firm sales, employment

42



and property. Hence, any firm with an R&D lab within the state is likely to be liable both

for state corporation tax (due to its employees and property in the state) and eligible for

an offsetting R&D tax credit. Hence, inventor location appears to provide a good proxy for

eligibility for state-level R&D tax credits57.

We estimate the distribution of a firm’s inventors from the USPTO patents file. The state

component of the tax-price is therefore

 =
X






where  is the state level tax price (from ‘, 2009) and  is firm ’s 10-year moving average

share of inventors located in state .

The second component of the tax price is based solely on Federal rules () and is con-

structed following Hall (1992) and Bloom, Criscuolo, Hall and Van Reenen (2008). The “Re-

search and Experimentation” tax credit was first introduced in 1981 and has been in continuous

operation and subject to many rule changes. It has a firm-specific component for several rea-

sons. First, the amount of tax credit that can be claimed is based on the difference between

actual R&D and a firm-specific “base”. From 1981 to 1989 the base was the maximum of a

rolling average of the previous three years’ R&D. From 1990 onwards (except 1995-1996 when

the tax credit lapsed) the base was fixed to be the average of the firm’s R&D to sales ratio

between 1984 and 1988, multiplied by current sales (up to a maximum of 16%). Start-ups

were treated differently, initially with a base of 3%, but modified each year. Second, if the

credit exceeds the taxable profits of the firm it cannot be fully claimed and must be carried

forward. With discounting this leads to a lower implicit value of the credit for tax exhausted

firms. Third, these firm-specific components all interact with changes in the aggregate tax

credit rate (25% in 1981, 20% in 1990, 0% in 1995, etc.), deduction rules and corporate tax

rate (which enters the denominator of (B.2).

The instruments can all be used for the production function and patents equation. For the

R&D equation, the instruments need to be directly in the second stage. The coefficients on

the spillover variables are therefore identified from the instruments using other firms’ values

of the R&D tax price.

We implement the IV approach described here by projecting the endogenous variable

(R&D) on the instruments in the first stage (e.g. column (1) of Table A2), calculating the

predicted values and then plugging these into a second stage estimation procedure. We correct

the standard errors using 1,000 bootstrap replications over firms. The alternative approach of

straightforward two stage least squares using the distance-weighted versions of the tax-prices

as instruments for spillovers is infeasible because the panel is unbalanced. Consequently the

value of the instruments changes as new firms exit and enter the sample. This generates a

positive bias between R&D the user cost of R&D. For example, imagine a firm  enters a

market. Then for some firm  for which   0 there will be a rise in 

since there is now another firm doing R&D in its technology space. But its  weighted

R&D user cost measure will also rise since the values of  and  for firm  are zero per

entry (since they are missing) but strictly positive post entry.

57State level R&D tax credits can be generous, and vary differentially over states and time. For example,

the five-largest R&D doing states had the following tax credit histories: California introduced an 8% credit in

1987, raised to 11%, 12% and 15% in 1997, 1999 and 2000 respectively. Massachussetts, New Jersey and Texas

introduced 10%, 10% and 4% rates in 1991, 1994 and 2000 respectively. While Michigan has never introduced

an R&D tax credit.
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One might be concerned that the current values of the instruments are not exogenous so

we also conducted experiments lagging the tax-credit instruments one and two periods. These

led to qualitatively similar results.

B.4. Specific High Tech Industry Breakdown

In Table 12 the industries we consider are the following. Computer hardware in Panel A cov-

ers SIC 3570 to 3577 (Computer and Office Equipment (3570), Electronic Computers (3571),

Computer Storage Devices (3572), Computer Terminals (3575), Computer Communications

Equipment (3576)and Computer Peripheral Equipment Not Elsewhere classified (3577). Phar-

maceuticals in Panel B includes Pharmaceutical Preparations (2834) and In Vitro and In Vivo

Diagnostic Substances (2835). Telecommunications Equipment covers Telephone and Tele-

graph Apparatus (3661), Radio and TV Broadcasting and Communications Equipment (3663)

and Communications Equipment not elsewhere classified (3669).

B.5. The Bureau Van Dijk (BVD) Database

The BVD data for the US is obtained from Dun and Bradstreet (D&B), which collects the

data to provide credit ratings and to sell as a marketing database. These credit ratings

are used to open bank accounts, and are also required for corporate clients by most large

companies (e.g. Wal-Mart and General Electric) and the Government, so almost all multi-

person establishments in the US are in the D&B database. Since this data is commercially

used and sold for various financial and marketing purposes it is regularly quality checked by

D&B. In Europe the BVD data comes from the National Registries of companies (such as

Companies House in the UK), which have statutory requirements on reporting for all public

and private firms. We used the primary and secondary four digit industry classes for every

subsidiary within a Compustat firm that could be matched to BVD to calculate distribution of

employment across four digit industries (essentially summing across all the global subsidiaries)

as a proxy for sales by four digit industries.

The US data reports one primary four digit industry code and an ordered set of up to six

secondary four digit industry codes. We allocated employment across sectors for an individual

firm by assuming 75% of activity was in the primary industry code, 75% of the remainder in

the main secondary code, 75% of this remainder in the next secondary industry code and so

on, with the final secondary industry code containing 100% of the ultimate residual. In the

European data firms report one primary industry code and as many secondary industry codes

as they wish (with some firms reporting over 30) but without any ordering. Employment

was allocated assuming that 75% of employees were in the primary industry code and the

remaining 25% was split equally among the secondary industry codes. Finally, employment

was added across all industry codes in every enterprise in Europe and the US owned by the

ultimate Compustat parent to compute a four digit industry activity breakdown.

B.5.1. Matching to Compustat

We successfully matched three quarters of the Compustat firms in the original sample. The

matched firms were larger and more R&D intensive than the non-matched firms. Conse-

quently, these matched firms accounted for 84% of all employment and 95% of all R&D in the

Compustat sample, so that judged by R&D the coverage of the BVD data of the Compustat

sample was very good. The correlation between the Compustat Segment and BVD Dataset
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measures is reasonably high. The correlation between the sales share of firm  in industry 

between the two datasets is 0.503. The correlation of ln() across the two measures

is 0.592. The within-firm over-time variation of ln(), which identifies our empirical

results given that we control for fixed effects, reassuringly rises to 0.737. In terms of average

levels both measures are similar, with an average  of 0.0138 using the Compustat measure

and 0.0132 using the BVD measure. The maximum number of four digit industries for one of

our firms, General Electric, is 213.

As an example of the extent of similarity between the two measures the Compustat and

BVD  correlations for the four firms examines in the Case Study discussed in appendix

D below are presented in Table A1. As can be seen the two measures are similar, IBM and

Apple (PC manufacturers) are highly correlated on both measures and Motorola and Intel

(semi-conductor manufacturers) are also highly correlated. But the correlation across these

two pairs is low. There are also some differences, for example the BVD-based measure of

 finds that IBM is closer in sales space with Intel and Motorola ( = 0.07) then the

Compustat-based measure ( = 0.01). This is because IBM uses many of its own semi-

conductor chips in its own products so this is not included in the sales figures. The BVD

based measure picks these up because IBM’s three chip making subsidiaries are tracked in the

ICARUS data even if their products are wholly used within IBM’s vertically integrated chain.

B.5.2. Coverage

The industry coverage was broader in the BVD data than the Compustat Segment Dataset.

The mean number of distinct four digit industry codes per firm was 13.8 in the BVD data (on

average there were 29.6 enterprises, 18.2 in Europe and 11.4 in the US) compared to 4.6 in

the Compustat Segment files. This confirms Villalonga’s (2004) finding that the Compustat

Segment Dataset underestimates the number of industries that a firm operates in.

C. Alternative Distance Metrics

Some general issues regarding construction of spillover measures are discussed in section 3.

We have shown results using both the Jaffe (1986) and Mahalanobis distance metrics, but

there is obviously a host of alternatives. To highlight the issues, consider a general form of the

relationship between an outcome measure  (e.g. the market value of firm ) and product

market spillovers from other firms in the economy (for notational simplicity we abstract from

other factors, including technology spillovers, to which a similar argument applies):

 = (S ;θ) (C.1)

where  is a vector of firm ’s sales distribution across industries, S is the matrix of all other

firms’ sales distribution vectors,  is the vector of R&D for each firm , θ is a parameter

vector and () is an unknown function that maps sales distributions and R&D to firm ’s

outcome. Different assumptions over the functional form of () will define the product market

spillover relationship. The only substantive assumption we have made in equation (C.1) is

that firm sales are the relevant measure of where companies are located in product market

space. Empirically, we have to place more structure on equation (C.1) to operationalize it

in our application. Pinske, Slade and Brett (2002) discuss general issues in constructing

semi-parametric versions of equation (C.1). Our approach in this paper is to consider several

possible parametric versions.
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C.1. Mahalanobis

To explain the calculation of the Mahalanobis normed measure we need to define some no-

tation. First, the ( 426) matrix  = [ 01 
0
2

0
 ] which contains in each row firms’ patent

shares in the 426 technological classes. Second, we define a normalized ( 426) matrixe = [ 01(1 0
1)

1
2   02(2

0
2)

1
2  0(

0
)

1
2 ], in which each row is simply normalized by the

firm’s patent share dot product. Third, we define the () matrix  = e e 0. This
matrix  is just the standard Jaffe (1986) uncentered correlation measure between firms

 and , in which each element is the measure , exactly as defined in (3.1) above.

Fourth, we define a (426 ) matrix e = [ 0(:1)(
0
(:1)(:1))

1
2  0(:)(

0
(:)(:))

1
2 ] where (:)

is the  column of  . This matrix e is similar to e , except it is the normalized share of
patent class shares across firms rather than firm shares across patent classes. Finally, we can

define the (426 426) matrix Ω = e e 0 in which each element is the standard Jaffe (1986) 0 to
1 uncentered correlation measure between patent classes (rather than between firms). So, for

example, if patent classes  and  coincide frequently within the same firm, then Ω will be

close to 1 (with Ω = 1), while if they never coincide within the same firm Ω will be 0.

The Mahalanobis normed technology closeness measure is defined as  = eΩe 0.
This measure weights the overlap in patent shares between firms by how close their different

patents shares are to each other. The same patent class in different firms is given a weight of

1, and different patent classes in different firms are given a weight between 0 and 1 depending

on how frequently they overlap within firms across the whole sample. Note that if Ω = , then

 = . Thus, if no patent class overlaps with any other patent class within

the same firm, then the standard Jaffe (1986) measure is identical to the Mahalanobis norm

measure. On the other hand, if some patent classes tend to overlap frequently within firms

- suggesting they have some kind of technological spillover - then the overlap between firms

sharing these patent classes will be higher.

C.2. Model-based 

Consider a relationship between Tobin’s Q, 
 (this could be any performance outcome,

of course) for firm  which operates in industry  ( = 1,...., ). We abstract away from

other covariates (including  and the firm’s own R&D) for notational simplicity.

Strategic interaction in the product market means that 
 is affected by the R&D of other

firms in industry . Part of each rival firm’s total R&D across all the industries it operates in,

 is “assigned” to a particular industry  and will influence 

 R&D is not broken down by

industry  at the firm level in any publicly available dataset that we know of. Consider the

equation:


 = 

X
 6=


 (C.2)

where the weights 
 determine the part of firm ’s total R&D that is assigned to industry 

(we discuss what these weights might be below). Next, note that industry-specific information

does not exist for 
 (market value is a company level measure and is not industry-specific).

Consequently we have to aggregate across the industries in which firm  operates:

 ≡ 
X




 = 

X




X
 6=


 (C.3)
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where  are the appropriate aggregation weights. Substituting (C.3) into (C.2) gives

 = 
X
 6=

X




 (C.4)

We write this compactly as:

 = 
X
 6=

 (C.5)

where  is the distance metric between firm  and firm  which will depend on the weights

 and 
. Different approaches to these weights give the different empirical measures of the

distance metrics, and thus different measures of .

For the weight on  it seems natural to use the share of firm’s total sales (

) in an

industry  as the weight. Theoretically, 
 is the ratio of the firm’s market value to its capital

assets () of firm  at the industry level and we observe the weighted sum (summing

across all “industry  ’s” and “industry ’s” at the parent firm level). If we knew the firm’s

industry-specific value ( ) and capital () then we would have better weights, but these are

unobservable.

The weights, 
 are far more difficult to determine as they represent the “assignment” of

rival R&D to a specific industry. Under the baseline method in this paper we assume that 
is the uncentered correlation coefficient as in Jaffe (1986) except using the sales distribution

across four digit industries. This is  so:

 =  (C.6)

The use of the uncentered correlation could be considered ad hoc, so alternatively consider


 = , the share of firm ’s sales in industry . One justification for this procedure is that

what matters is total rival R&D in industry . If a firm’s R&D intensities across industries

are similar then using sales weights correctly estimates the R&D of firm  in industry 

An alternative justification is that firm  does not know in which industry firm ’s R&D will

generate innovations (indeed firm  may also not know). Under this assumption using equation

(C.4) we then obtain, 



 =

X
 6=

ÃX






!
 =

X
 6=


 (C.7)

Note that 
 is the numerator in the Jaffe-based measure. The results from using 




(and the analogous 
 ) as an alternative measure are contained in Table A4 Pan-

els B and C. The results are robust to this experiment.

D. Case Studies of particular firms location in technology and prod-

uct space

There are numerous case studies in the business literature of how firms can be differently placed

in technology space and product market space. Consider first firms that are close in technology

but sometimes far from each other in product market space (the bottom right hand quadrant of

Figure 1). Table A1 shows IBM, Apple, Motorola and Intel: four high highly innovative firms
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in our sample. We show results for  measured both by the Compustat Segment

Database and the BVD Database. These firms are close to each other in technology space as

revealed by their patenting. IBM, for example, has a  correlation of 0.76 with Intel,

0.64 with Apple and 0.46 with Motorola (the overall average  correlation in the whole

sample is 0.038 - see Table 9). The technologies that IBM uses for computer hardware are

closely related to those used by all these other companies. If we examine , the product

market closeness variable, however, there are major differences. IBM and Apple are product

market rivals with a  of 0.65 (the overall average  correlation in the whole sample is

0.015 - see Table 9). They both produced PC desktops and are competing head to head. Both

have presences in other product markets of course (in particular IBM’s consultancy arm is a

major segment of its business) so the product market correlation is not perfect. By contrast

IBM (and Apple) have a very low  correlation with Intel and Motorola (0.01) because

the latter firms mainly produce semi-conductor chips not computer hardware. IBM produces

relatively few semi-conductor chips so is not strongly competing with Intel and Motorola for

customers. The  correlation between Intel and Motorola is, as expected, rather high

(0.34) because they are both competitors in supplying chips. The picture is very similar when

we look at the measures of  based on BVD instead of Compustat, although there are

some small differences. For example, IBM appears closer to Intel (BVD  = 0.07) because

IBM produces semi-conductor chips for in-house use. This is largely missed in the Compustat

Segment data, but will be picked up by the BVD data (through IBM’s chip-making affiliates).

At the other end of the diagonal (top left hand corner of Figure 1) there are many firms

who are in the same product market but using quite different technologies. One example

from our dataset is Gillette and Valance Technologies who compete in batteries giving them

a product market closeness measure of 0.33. Gillette owns Duracell but does no R&D in this

area (its R&D is focused mainly personal care products such as the Mach 3 razor and Braun

electronic products). Valence Technologies uses a new phosphate technology that is radically

improving the performance of standard Lithium ion battery technologies. As a consequence

the two companies have little overlap in technology space ( = 0.01).

A third example is the high end of the hard disk market, which are sold to computer

manufacturers. Most firms base their technology on magnetic technologies, such as the market

leader, Segway. Other firms (such as Phillips) offer hard disks based on newer, holographic

technology. These firms draw their technologies from very different areas, yet compete in the

same product market. R&D done by Phillips is likely to pose a competitive threat to Segway,

but it is unlikely to generate useful knowledge spillovers for Segway.

E. Computing Private and Social Returns to R&D

E.1. Roadmap

In this Appendix we show how to compute the private and social returns to R&D in the

analytical framework developed in this paper. Sub-section E.2 provides some basic notation

and derives some “reduced forms” after substituting out all the interactions operating through

the spillover terms. The main results are in sub-section E.3. which calculates the general form

of the marginal social and private returns to R&D to an arbitrary firm. Aggregating over

all firms, we then show that much of the intuition for what drives the expression can be

seen in a special case where there is no amplification (due to the presence of spillovers in the

R&D equation) and when firms are symmetric. In this case, the wedge between the social

and private returns can be either positive or negative, as it depends upon the importance of
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technology spillovers in the production function (2) relative to product market rivalry effects

in the market value equation (3). Social returns will be larger as 2 is larger and private

returns will be larger as (the absolute value of) 3 rises. Both terms increase in the effect of

R&D on output (1).

E.2. Basic Equations

The empirical specification of the model consists of four equations: R&D, Tobin’s Q, produc-

tivity and patents. For purposes of evaluating rates of return to R&D, we do not need the

patent equation because there is no feedback from patents to these other endogenous variables

in our model. Thus for this analysis we use only the R&D, market value and productivity

equations.

We examine the long run effects in the model, setting  = −1  = −1 and  =





where  is the flow of R&D expenditures,  is output,  is the R&D stock and  is the

depreciation rate used to construct  The model can be written as

ln = 2 ln
X
 6=

 + 3 ln
X
 6=

 + 41 + ln (E.1)

ln() = 1 ln() + 2 ln
X
 6=

 + 3 ln
X
 6=

 + 42 (E.2)

ln = 1 ln + 2 ln
X
 6=

 + 3 ln
X
 6=

 + 43 (E.3)

where  is Tobin’s Q, and 1 2 and 3 are vectors of control variables (for ease of

exposition we treat them as scalars). We then solve out the cross equation links with  by

substituting equation (E.3) into equations (E.1). This yields a new equation for R&D:

ln = 02 ln
X
 6=

 + 03 ln
X
 6=

 + 041 (E.4)

where 01 =
1+1
(1−1)  

0
2 =

2+2
(1−1)  

0
3 =

3+3
(1−1) and 04 =

4+4
(1−1) . The model we use for the

calculations in this Appendix is given by equations (E.4), (E.2) and (E.3).

We take a first order expansion of ln [
P

 6= ] and ln [
P

 6= ], approxi-

mating them in terms of ln around some point, say ln0. Take first   = ln [
P

 6= ] =

ln [
P

 6=  exp(ln)] Approximating this nonlinear function of ln

  ' { ln
X
 6=


0
 −

X
 6=
(


0
P

 6= 
0


) ln0
}+

X
 6=
(


0
P

 6= 
0


) ln

≡  +
X
 6=

 ln

where  reflects the terms in large curly brackets and  captures the terms in parentheses

in the last terms.

Now consider the term  = ln [
P

 6= ]By similar steps

 ' { ln
X
 6=


0
 −

X
 6=
[


0
P

 6= 
0


] ln0
}+

X
 6=
(


0
P

 6= 
0


) ln

≡  +
X
 6=

 ln
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Using these approximations, we can write the R&D equation (E.4)as

ln =  +
X
 6=

 ln + 041

where  = 02 + 03 and  = 02 + 03 Let  ln and  be 1 vectors, and define

the  matrix  =

∙
0 
 0

¸
 Then the R&D equation in matrix form is

ln = Ω−1+ 04Ω
−11 (E.5)

where Ω =  −

By a similar derivation, we can write the production function as

ln =  + 1 ln +
X
 6=

 ln + 043

where  = 2 + 3 and  = 2 + 3 Let  be an 1 vector and define the 

matrix  =

∙
1 
 1

¸
 Then the production function in matrix form is

ln =  + ln+ 
0
43 (E.6)

Finally, the market value equation can be expressed as

ln() =  − 1 ln + 1 ln +
X
 6=

 ln + 042

where  = 2 + 3 and  = 2 + 3 Letting  be an 1 vector and defining the

 matrix Γ =

∙
1 

 1

¸
 the value equation in matrix form is:

ln = − 1 ln+ Γ ln+ 42 (E.7)

The model is summarized by equations (E.5), (E.6) and (E.7).

E.3. Deriving the Private and Social Return to R&D

E.3.1. General Case

Consider the effect of a one percent increase in the stock of R&D by firm  Since in steady

state the stock is proportional to the flow of R&D ( = 

) we set  ln = 041 = 1

and zero for  6= 58 Using the R&D equation (E.5), the absolute changes in R&D levels,

after amplification, are given by the 1 vector  = Ω
−1∗, where ∗ is an 1 vector

58Note we scale by 100 here (one percent is taken as 1). In the final calculations the change in R&D stock

must be divided by 100.
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with one in the  position and zeroes elsewhere, and  is an  matrix with  in the

 diagonal position and zeroes elsewhere. From the production function (E.6), this induces

changes in productivity (output, given the levels of labor and capital) which are given by

 = Ω−1∗ where  denotes an  matrix with  in the 
 diagonal position

( = 1  ) and zeroes elsewhere.

The marginal social return to a dollar of R&D by firm  is given by the total output gain

due to the increase in productivity divided by the total increase in the stock of R&D:

 =
 0
0

(E.8)

where 0 is a 1 vector of ones. Note that the  is a scalar.

The marginal private return to R&D consists of two parts. The first is the increase in firm

0 output, given its levels of labor and capital. This increase is given by ∗0 In addition,
the firm enjoys output gains through the business stealing effect. This will be reflected in an

increase in the level of labor and capital used by the firm (holding the level of productivity

constant). Thus we cannot compute business stealing gains directly from the effect of R&D

in the production function.

To compute these gains, we exploit the impact of business stealing in the market value

equation. To isolate the impact of business stealing () on market value, we hold the

productivity level constant by ‘turning off’ the effect of own R&D (1 = 0) and 

(2 = 0). Define the  matrix Γ∗ =

∙
0 ∗
∗ 0

¸
where ∗ = 3 ≤ 0 ( 6= ) From (E.7),

the induced percentage change in market value is

 ln ∗ = Γ∗ ln = Γ∗Ω−1∗

The change in market value associated with the business stealing effect,  ln ∗ can be
decomposed into two parts — a change in the level of output and shifts in the price-cost margin

of the firm. We assume that a fraction  of the overall change in market value is due to changes

in output (the case  = 1 corresponds to the case where the price-cost margin is constant —

in particular, not affected by ). Then we can write the absolute output changes

associated with business stealing as  ∗ =  Γ
∗Ω−1∗

Note that if there is no amplification effect in R&D (Ω = ) then all firms lose output to

firm  But when there is amplification, this need not be true, and in fact even firm  can end

up losing output to other firms whose R&D was increased by amplification. It all depends on

the pattern of amplification and firms’ positions in product space (i.e., on Ω and Γ∗)
There is a change in output due to business stealing for each firm. The change for firm

 is distributed to (or from) all other firms in general, and we need to describe what that

depends on. Consistent with the original formulation of , we assume the fraction

of the overall loss by firm  which goes to firm  call it  depends the closeness of the

two firms, , and on how much firm  changes its R&D stock, which is what induces the

redistribution,  Following our earlier derivation of the linear approximation to the system,

we use

 =
P
 6= 

As required, these weights add up to one over all recipient firms.
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Let ∗∗denote an 1 vector with +1 in the  position and − in the  6=  positions.

Then we can write the total change in firm ’s output as  0∗+ ∗0∗∗ The first is the direct
gain in output by firm , and the second component is the redistribution of output from other

firms to firm  The marginal private return to R&D is the total output gain by firm  divided

by the increase in the R&D stock by firm  :

 =
 0∗ +  ∗0∗∗

0∗
(E.9)

A comparison of the expressions for  and  in equations (E.8) and (E.9), shows

that we cannot say which is larger a priori. The social return is larger because it includes

productivity (output) gains from firms other than  due to technology spillovers, but it also

counts the full R&D costs of other firms (if there is amplification), which makes it smaller.

Moreover, the private return counts business stealing effects, which makes it larger than the

social return which excludes them.

E.3.2. Special Case: No R&D Amplification

Consider the case where there is no R&D amplification effect (Ω = ) and no 

effect on output (3 = 0). In this case the earlier formula for  reduces to:

 =

⎛⎝ 11 121 11
212 12 121
1 2 1

⎞⎠ ∗ =

⎛⎜⎜⎝
11
22
1


⎞⎟⎟⎠
It follows that  0 = 1 +

P
 6= , so the marginal social return for firm  can be

expressed as

 = 1




+ 2

X
 6=








The depends on the coefficients of own R&D and technology spillovers in the production

function, and the technology spillover linkages across firms. In the fully symmetric case where

all firms are identical both in size and technology spillover linkages ( =  and  =  for

all  ) this expressions simplifies to

 =




(1 + 2) (E.10)

We turn next to the marginal private return. Using the expression above for we get

 0∗ = 1 The second terms involves 
∗which is

 ∗ = 

⎛⎝ 1 0 0

0 2 0

0 0 

⎞⎠⎛⎝ 0 ∗12 ∗1
∗21 0 ∗2
∗1 ∗2 0

⎞⎠ ∗ = 

⎛⎝ ∗11
∗22
∗

⎞⎠
Recalling that ∗∗denotes an 1 vector with +1 in the  position and − in the  6= 

positions, we get  ∗0∗∗ = −P 6= 
∗
 Combining these results and recalling that

∗ = 3, the marginal private return for firm  can be written as
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 = 1




− 3

X
 6=








The  depends on the coefficient of own R&D in the production function and the

coefficient of business stealing in the value equation, plus the product market linkages (these

are embedded both in the  and  coefficients). In the fully symmetric case where all firms

are identical in size and product market linkages, this becomes

 =




(1 − 3) (E.11)

In this fully symmetric case, the ratio between the marginal social and private returns is




=

1 + 2
1 − 3

(E.12)

The social return is larger than the private return if the coefficient of technology spillovers in

the production function is larger than the coefficient of business stealing in the value equation

in absolute value, adjusted by  ( 2  |3|) In the general case, however, the relative
returns also depend on the position of the firm in both the technology and product market

spaces.

The empirical computations of the private returns to R&D are done using  = 1
2
 That is,

we assume that half of the percentage change in the market value of a firm is due to changes

in output and half to changes in its price-cost margin. This assumption can be micro-founded.

In particular, we analyzed an N-firm Cournot model with asymmetric costs — where firm  has

unit cost  and all other firms have unit cost 0(no cost ranking is assumed). We can show that
a marginal increase in R&D by firm  reduces the profit of all other firms, and that at most

half of this reduction is due to changes in the output levels of those firms. This implies  ≤ 1
2


The actual breakdown into changes in output and price-cost margins depends on the number

of firms and the elasticity of demand. Using the assumption  = 1
2
is conservative in the sense

that it provides an upper bound to the, and thus a lower bound to the gap between

and  when that gap is positive (as we find empirically). Further details are available on

http://cep.lse.ac.uk/textonly/_new/research/productivity/BSV_sigma_1March.pdf.
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FIGURE 1 – SIC AND TECH CORRELATIONS 

 
 

Notes: This figure plots the pairwise values of SIC (closeness in product market space between two firms) and TECH (closeness in technology 
space) for all pairs of firms in our sample. 



 55

TABLE 1 - 
THEORETICAL PREDICTIONS FOR MARKET VALUE, PATENTS AND R&D UNDER DIFFERENT ASSUMPTIONS  

 
Notes: See text for full derivation of these comparative static predictions. Note that the empirical predictions for the (total factor) productivity 
equation are identical to the patents equation 

Equation Comparative 
static prediction 

Empirical  
counterpart 

No Technology Spillovers Technology Spillovers 
No Product 

Market Rivalry 
Strategic 

Complements 
Strategic 

Substitutes 
No Product 

Market Rivalry 
Strategic 

Complements 
Strategic 

Substitutes 
         
Market value  ∂Π0/∂rτ Market value with 

SPILLTECH 
 

Zero Zero Zero Positive Positive Positive 

Market value  ∂Π0/∂rm Market value with 
SPILLSIC 
 

Zero Negative Negative Zero Negative Negative 

Patents (or 
productivity)  

∂k0/∂rτ Patents with 
SPILLTECH 
 

Zero Zero Zero Positive Positive Positive 

Patents (or 
productivity)  

∂k0/∂rm Patents with 
SPILLSIC 
 

Zero Zero Zero Zero Zero Zero 

R&D ∂r0/∂rτ  R&D with 
SPILLTECH 
 

Zero Zero Zero Ambiguous Ambiguous Ambiguous 

R&D ∂r0/∂rm R&D with 
SPILLSIC 
 

Zero Positive Negative Zero Positive Negative 
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TABLE 2 - 

 DESCRIPTIVE STATISTICS 
 
Variable Mnemonic Median Mean Standard 

deviation 
 

Tobin’s Q V/A 1.41 2.36 2.99 
Market value V 412 3,913 16,517 
R&D stock G 28.7 605 2,722 
R&D stock/fixed 
capital 

G/A 0.17 0.47 0.91 

R&D flow R 4.36 104 469 
Technological 
spillovers 

SPILLTECH 17,914 22,419 17,944 

Product market 
rivalry 

SPILLSIC 2,006.8 6,494 10,114 

Patent flow P 1 16.2 75 
Cite weighted 
patents 

 4 116 555 

Sales Y 456 2,879 8,790 
R&D weighted 
Sales/R&D stock 

Y/G 2.48 3.83 19.475 

Fixed capital A 122 1,346 4,720 
Employment N 3,839 18,379 52,826 
     
 

Notes: The means, medians and standard deviations are taken over all non-missing 
observations between 1981 and 2001; values measured in 1996 prices in $million.
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TABLE 3 - 
COEFFICIENT ESTIMATES FOR TOBIN’S Q EQUATION 

 
 (1) (2) (3) (4) (5) (6) 

R&D treated as: Exogenous Exogenous Exogenous Exogenous Exogenous Endogenous 
Distance measure: 
 

Jaffe Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECHt-1) -0.042 
(0.012) 

0.242 
(0.105) 

0.186 
(0.100) 

 0.903 
(0.105) 

0.579 
(0.124) 

Ln(SPILLSICt-1) 0.051 
(0.007) 

-0.072 
(0.032) 

 -0.050 
(0.031) 

-0.136 
(0.031) 

-0.087 
(0.033) 

Ln(R&D Stock/Capital 
Stock)t -1 

0.842 
(0.154) 

0.799 
(0.197) 

0.794 
(0.198) 

0.799 
(0.198) 

0.835 
(0.198) 

 

       
Firm fixed effects  No Yes Yes Yes Yes Yes 
No. Observations 9,944 9,944 9,944 9,944 9,944 9,926 
       
 
Notes: Dependent variable in columns (1) to (5) is Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of 
fixed capital. In column (6) the dependent variable is Tobin’s Q including R&D = (V+G)/A where G is the stock of R&D. This specification 
avoids including an endogenous right hand side variable – see Section 4 and Appendix Sub-section B4 for details. A sixth order polynomial in 
Ln(R&D Stock/Capital Stock)t -1 is included but only the first term is shown for brevity. Standard errors in brackets are robust to arbitrary 
heteroskedacity and first order serial correlation using the Newey-West correction. A dummy variable is included for observations where lagged 
R&D stock is zero. All columns include a full set of year dummies and controls for current and lagged industry sales in each firms’ output 
industry. 
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TABLE 4 -  

COEFFICIENT ESTIMATES FOR THE CITE-WEIGHTED PATENT EQUATION 

 
Notes: Estimation is conducted using the Negative Binomial model. Standard errors (in brackets) are robust to arbitrary heteroskedacity and allow 
for serial correlation through clustering by firm. A full set of time dummies, four digit industry dummies and lagged firm sales are included in all 
columns. A dummy variable is included for observations where lagged R&D stock equals zero (all columns) or where lagged patent stock equals 
zero (column (3)). The fixed effects in column (3) are estimated through the “pre-sample mean scaling approach” of Blundell, Griffith and Van 
Reenen (1999) – see text. 
 

 (1) (2) (3) (4) (5) 
R&D treated as: Exogenous Exogenous Exogenous Exogenous Endogenous 
Distance measure: 
 

Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH)t-1 0.438 
(0.085) 

0.423 
(0.071) 

0.375 
(0.050) 

0.583 
(0.100) 

0.302 
(0.071) 

Ln(SPILLSIC)t-1 0.043 
(0.042) 

0.053 
(0.036) 

0.041 
(0.026) 

0.079 
(0.050) 

0.076 
(0.049) 

Ln(R&D Stock)t-1 0.507 
(0.048) 

0.221 
(0.053) 

0.104 
(0.039) 

0.234 
(0.052) 

0.289 
(0.047) 

Ln(Patents)t-1   0.420 
(0.020) 

  

Pre-sample fixed effect  0.547 
(0.046) 

0.299 
(0.033) 

0.523 
(0.046) 

0.551 
(0.036) 

      
Firm fixed effects No Yes Yes Yes Yes 
No. Observations 9,023 9,023 9,023 9,023 8,602 
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TABLE 5 –  
COEFFICIENT ESTIMATES FOR THE PRODUCTION FUNCTION 

 
 (1) (2) (3) (4) (5) 
R&D treated as: Exogenous Exogenous Exogenous Exogenous Endogenous 
Distance measure 
 

Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH) t-1 -0.030 
(0.009) 

0.103 
(0.046) 

0.111 
(0.045) 

0.212 
(0.068) 

0.078 
(0.033) 

Ln(SPILLSIC) t-1 -0.016 
(0.004) 

0.010 
(0.012) 

 0.015 
(0.023) 

-0.017 
(0.012) 

Ln(Capital) t-1 0.286 
(0.009) 

0.161 
(0.012) 

0.161 
(0.012) 

0.163 
(0.012) 

0.156 
(0.012) 

Ln(Labor) t-1 0.650 
(0.012) 

0.631 
(0.015) 

0.631 
(0.015) 

0.634 
(0.015) 

0.648 
(0.015) 

Ln(R&D Stock) t-1 0.059 
(0.005) 

0.044 
(0.007) 

0.045 
(0.007) 

0.044 
(0.007) 

0.019 
(0.005) 

      
Firm fixed effects  No Yes Yes Yes Yes 
No. Observations 10,009 10,009 10,009 10,009 9,896 
      
 
Notes: Dependent variable if log(sales). Standard errors (in brackets) are robust to arbitrary heteroskedacity and allow for first order serial 
correlation using the Newey-West procedure. Industry price deflators are included and a dummy variable for observations where lagged R&D 
equals to zero. All columns include a full set of year dummies and controls for current and lagged industry sales in each firms’ output industry. 
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TABLE 6 – 
COEFFICIENT ESTIMATES FOR THE R&D EQUATION 

 
 (1) (2) (3) (4) (5) 

R&D treated as: Exogenous Exogenous Exogenous Exogenous Endogenous 
Distance Measure: 

 
Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH)t-1 0.092 
(0.017) 

0.117 
(0.074) 

-0.036 
(0.040) 

-0.176 
(0.101) 

0.205 
(0.093) 

Ln(SPILLSIC) t-1 0.371 
(0.013) 

0.078 
(0.035) 

0.033 
(0.019) 

0.224 
(0.048) 

0.014 
(0.047) 

Ln(R&D/Sales) t-1   0.681 
(0.015) 

  

      
Firm fixed effects No Yes No Yes Yes 
No. Observations 8,579 8,579 8,387 8,579 8,578 
      

 
Notes: Dependent variable is ln(R&D/sales). Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 
using Newey-West corrected standard errors. All columns include a full set of year dummies and controls for current and lagged industry 
sales in each firms’ output industry. 
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TABLE 7 - 
COMPARISON OF EMPIRICAL RESULTS TO MODEL WITH TECHNOLOGICAL 

SPILLOVERS AND PRODUCT MARKET RIVALRY 
 
 
(1) (2) (3) (4) (5) (6) (7) 

 Partial 
correlation 

 

Theory Empirics
Jaffe 

Empirics 
Mahalanobis

Empirics 
Jaffe, IV 

Consistency? 

∂V0/∂rτ Market value with 
SPILLTECH 

 

Positive 0.242** 0.903** 0.579*** Yes 

∂V0/∂rm Market value with 
SPILLSIC 

 

Negative -0.072** -0.136** -0.087** Yes 

∂k0/∂rτ Patents with 
SPILLTECH 

 

Positive 0.423** 0.583*** 0.302** Yes 

∂k0/∂rm Patents with 
SPILLSIC 

 

Zero 0.053 0.078 0.076 Yes 

∂y0/∂rτ Productivity with 
SPILLTECH 

 

Positive 0.103** 0.212** 0.078** Yes 

∂y0/∂rm Productivity with 
SPILLSIC 

 

Zero 0.010 0.015 -0.017 Yes 

∂r0/∂rτ  R&D with 
SPILLTECH 

 

Ambiguous 0.117 -0.176* 0.205** - 

∂r0/∂rm R&D with 
SPILLSIC 

Ambiguous 0.078** 0.224** 0.014 - 

 
 
Notes: The theoretical predictions are for the case of technological spillovers. The empirical 
results are from the static fixed effects specifications for each of the dependent variables. ** 
denotes significance at the 5% level and * denotes significance at the 10% level (note that 
coefficients are as they appear in the relevant tables, not marginal effects).  
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TABLE 8 –    

ECONOMETRIC RESULTS FOR SPECIFIC HIGH TECH INDUSTRIES 
 

A. Computer Hardware  
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cite-weighted 

patents 
Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.302 
(0.613) 

0.516 
(0.287) 

0.457 
(0.222) 

-0.263 
(0.239) 

Ln(SPILLSIC)t-1 -0.472 
(0.159) 

0.101 
(0.824) 

-0.046 
(0.116) 

0.307 
(0.112) 

Observations 358 277 343 395 
 
B. Pharmaceuticals 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cite-weighted 

patents 
Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.611 
(0.674) 

1.714 
(0.860) 

0.638 
(0.279) 

-0.683 
(0.418) 

Ln(SPILLSIC)t-1 -1.324 
(0.612) 

-0.046 
(0.309) 

-0.396 
(0.339) 

 1.234 
(0.547) 

Observations 334 265 313 381 
   
C. Telecommunication Equipment  
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cite-weighted 

patents 
Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 2.299 
(0.869) 

1.163 
(0.577) 

0.477 
(0.339) 

0.530 
(0.296) 

Ln(SPILLSIC)t-1 -0.118 
(0.456) 

-0.046 
(0.352) 

0.154 
(0.182) 

0.025 
(0.126) 

Observations 405 
 

353 390 450 

 
Notes: Each Panel (A, B, C) contains the results from estimating the model on the specified 
separate industries (see Appendix B for exact details). Each column corresponds to a separate 
equation for the industries specified. The regression specification is the most general one used in 
the pooled regressions. Tobin’s Q (column (1)) corresponds to the specification in column (2) of 
Table 3; Cite-weighted patents (column (2)) corresponds to column (2) of Table 4; real sales 
(column 3) corresponds to column (2) of Table 5; R&D/Sales (column (4)) corresponds to 
column (2) of Table 6.  
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TABLE 9 –   
PRIVATE AND SOCIAL RETURNS TO R&D 

 
 (1) (2) (3) (4) (5) (6) (7) 
Group of firms: Closeness 

measure 
Private 
return 
(%) 

Social 
return 
(%) 

Wedge 
Percentage 

points 

Median 
employees 

Avg. 
SIC 

Avg. 
TECH

Closeness Measures  
1. All Jaffe 20.0 38.1 

 
18.1 3,000 0.015 0.038 

2. All Mahalanobis 27.7 61.7 34 3,000 0.030 0.174 
3. All 

Size splits 
Jaffe, IV 15.5 26.6 

 
11.1 3,000 0.015 0.038 

4. Largest size quartile Jaffe 20.4 46.3 25.9 29,700 0.015 0.054 
5. Second size quartile Jaffe 19.8 38.0 18.2 5,900 0.012 0.037 
6. Third size quartile Jaffe 20.0 35.2 15.2 1,680 0.016 0.033 
7. Smallest size quartile 

Industry splits 
Jaffe 19.9 32.9 13 370 0.018 0.029 

8. Computer hardware Jaffe 77.8 104.6 26.8 2,140 0.019 0.032 
9. Pharmaceutical Jaffe 107.1 108.7 1.6 2,250 0.027 0.047 
10. Telecommunications  

Equipment 
Jaffe 54.4 104.6 50.2 920 0.027 0.030 

 
Notes: Numbers simulated across all firms in our sample with non-zero R&D capital stocks. We 
use our “preferred” systems of equations and coefficients as in Table 7. Details of calculations are 
in Appendix E. Columns (2) and (3) contain the private and social returns to a marginal $ of R&D 
and column (4) contains the absolute difference between columns (2) and (3). Column (5) reports 
the median number of employees in each group, and in the last two columns report the average 
closeness measure between firms in product market space (SIC) and the average closeness 
measure in technology space (TECH). The first row calculates the private and social returns for 
the baseline estimates using exogenous R&D and the Jaffe based measures of distance (column 
(4) Table 7). The second row recalculates this for firms using the Mahalanobis distance measure 
(column (5) Table 7). The third row recalculates this using the Jaffe closeness measure with the 
tax credit instruments for firm-level R&D (column (6) Table 7). The next four rows recalculate 
these figures for firms based on their position in the employment size quartiles. The last three 
rows calculate the spillovers for the three high-technology industries we estimated separately in 
Table 8. For these we used the coefficients from Table 8 and the sales/R&D stocks from the 
relevant industry. 
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APPENDIX TABLES 

 
TABLE A1 -  

AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS 
 
 Correlation IBM Apple Motorola Intel 
IBM SIC Compustat 

SIC BVD 
TECH  

1 
1 
1 

0.65 
0.55 
0.64 

0.01 
0.02 
0.46 

0.01 
0.07 
0.76 

Apple SIC Compustat 
SIC BVD 
TECH 

 1 
1 
1 

0.02 
0.01 
0.17 

0.00 
0.03 
0.47 

Motorola SIC Compustat 
SIC BVD 
TECH 

  1 
1 
1 

0.34 
0.47 
0.46 

Intel SIC Compustat 
SIC BVD 
TECH 

   1 
1 
1 

 
Notes: The cell entries are the values of SICij = (Si S’j)/[(Si Si’)1/2(Sj S’ j)1/2] (in normal script) 
using the Compustat Line of Business sales breakdown (“SIC Compustat”) and the Bureau Van 
Dijk database (“SIC BVD”), and TECHij = (Ti T’j)/[(Ti Ti’)1/2(Tj T’ j)1/2] (in bold italics) between 
these pairs of firms. 

 
 

TABLE A2 – 
TREATING R&D AS ENDOGENOUS USING TAX PRICES AS INSTRUMENTAL 

VARIABLES 
 

 (1) (2) (3) (4) 
Dependent variable: Log(R&D) Log(R&D) Log(R&D) Log(R&D) 
Second stage specification: Tobin’s Q Patents Productivity R&D 
     
     
State Tax Credit component 
 of R&R user costt 

-1.665 
(0.407) 

-2.452 
(0.435) 

-0.396 
(0.264) 

-1.665 
(0.407) 

Firm Tax Credit component 
 of R&D user costt 

-0.721 
(0.108) 

-1.080 
(0.146) 

-0.586 
(0.077) 

-0.721 
(0.108) 

     
F-test  of the two excluded 
instruments  

29.59 44.88 29.80 29.59 

No. Observations 9,271 6,012 8,806 9,271 
 

Notes: These are the first stages corresponding to the final columns of Tables 3-6 which treat 
R&D as endogenous (i.e. Table 3 column (6), Table 4 column (5), Table 5 column (5) and Table 
6 column (5). All other exogenous variables are included in these specifications. Standard errors 
(in brackets) are robust to arbitrary heteroskedacity and allow for first order serial correlation 
using the Newey-West procedure. All columns include year dummies and fixed effects. 
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TABLE A3 –  
ALTERNATIVE CONSTRUCTION OF SPILLSIC USING BVD INFORMATION 

INSTEAD OF COMPUSTAT SEGMENT DATASET 
 

 (1) (2) (3) (4) 
Dependent variable: Tobin’s Q Cite weighed 

Patents 
Ln(Real Sales) Ln(R&D/Sales)

 Fixed Effects Fixed Effects  Fixed effects  Fixed Effects 
+ Dynamics 

Ln(SPILLTECHt-1) 0.313 
(0.108) 

0.482 
(0.093) 

0.100 
(0.052) 

0.056 
(0.078) 

Ln(SPILLSICt-1) -0.063 
(0.034) 

0.057 
(0.029) 

0.000 
(0.014) 

0.142 
(0.034) 

Ln(R&D Stock) t-1  0.249 
(0.061) 

0.057 
(0.008) 

 

Ln(Capital) t-1   0.169 
(0.014) 

 

Ln(Labor) t-1   0.625 
(0.018) 

 

Ln(R&D Stock/Capital 
Stock)t -1 

0.902 
(0.221) 

   

Pre-sample fixed effect  0.591 
(0.051) 

  

     
No. Observations 7,269 6,696 7,364 6,445 
 
Notes: This table summarizes the results from the “preferred specifications” using the alternative 
method of constructing SPILLSIC based on BVD data (see Appendix B). The market value 
equation in column (1) corresponds to the specification in Table 3 column (2); the patents 
equation in column (2) corresponds to the specification in Table 4 column (2); the productivity 
equation in column (3) corresponds to the specification in Table 5 column (2) and the R&D 
equation in column (4) corresponds to the specification in Table 6 column (2). All columns 
include year dummies and fixed effects. 
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TABLE A4 – 

ALTERNATIVE CONSTRUCTION OF SPILLOVER VARIABLES 
A. Baseline (Summarized from Tables 3-6 above) 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cites  Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.242 

(0.105) 
0.423 
(0.071) 

0.103 
(0.046) 

 0.117 
(0.074) 

Ln(SPILLSIC)t-1 -0.072 
(0.032) 

 0.054 
(0.034) 

 0.010 
(0.012) 

0.078 
(0.035) 

Observations 9,944 9,023 10,009 8,579 
B. Alternative Based on SPILLSICA (and SPILLTECH unchanged) 

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cites Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.241 

(0.104) 
0.423 
(0.071) 

0.109 
(0.046) 

 0.098 
(0.075) 

Ln(SPILLSIC)t-1 -0.070 
(0.032) 

0.070 
(0.040) 

0.001 
(0.012) 

0.091 
(0.033) 

Observations 9,958 9,046 10,023 8,579 
C. Alternative Based on SPILLSICA  and SPILLTECHA   

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Cites Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.190 

(0.093) 
0.538 
(0.095) 

0.088 
(0.041) 

 0.109 
(0.066) 

Ln(SPILLSIC)t-1 -0.071 
(0.033) 

0.057 
(0.041) 

0.001 
(0.012) 

0.085 
(0.033) 

Observations 9,958 9,046 10,023 8,579 
D. Alternative Based on SPILLTECH TFK  (see Thompson and Fox-Kean, 2005) 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.105 

(0.062) 
0.434 
(0.054) 

0.059 
(0.025) 

 0.023 
(0.029) 

Ln(SPILLSIC)t-1 -0.063 
(0.033) 

 0.028 
(0.039) 

 0.002 
(0.013) 

0.021 
(0.019) 

Observations 9,848 8,932 9,913 8,386 
 

Notes: This table summarizes the results from the “preferred specifications” using the alternative 
methods of constructing the distance metrics (see text and Appendix C).  The market value 
equation in column (1) corresponds to the specification in Table 3 column (2); the patents 
equation in column (2) corresponds to the specification in Table 4 column (2); the productivity 
equation in column (4) corresponds to the specification in Table 5 column (2) and the R&D 
equation in column (3) corresponds to the specification in Table 6 column (2).  Panel A 
summarizes the results in Tables 3-6 using the standard methods where 
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' )(  (with SPILLTECHA  defined analogously). Panel E uses a 

more disaggregated version of technology classes, SPILLTECHTFK, as suggested by 
Thompson and Fox-Kean, 2005). See text for more details.  



CENTRE FOR ECONOMIC PERFORMANCE 
Recent Discussion Papers 

 
 

674 Lorraine Dearden 
Howard Reed 
John Van Reenen 

The Impact of Training on Productivity and Wages:  
Evidence from British Panel Data 

   

673 Giulia Faggio 
Stephen Nickell 

Inactivity Among Prime Age Men in the UK 

   

672 Chiara Criscuolo 
Ralf Martin 
 

Multinationals and US Productivity Leadership:  
Evidence from Great Britain 

   

671 Roberto Torrini Profit Share and Returns on Capital Stock in Italy: the 
Role of Privatisations Behind the Rise of the 1990s 

   

670 Silvia Ardagna 
Francesco Caselli 
Timothy Lane 

Fiscal Discipline and the Cost of Public Debt Service: 
Some Estimates for OECD Countries 

   

669 Alejandro Cuñat 
Marco Maffezzoli 

Can Comparative Advantage Explain the Growth of 
US Trade? 

   

668 Francesco Caselli 
Silvana Tenreyro 

Is Poland the Next Spain? 

   

667 Francesco Caselli Accounting for Cross-Country Income Differences 

   

666 Gianluca Benigno 
Pierpaolo Benigno 

Designing Target Rules for International Monetary 
Policy Cooperation 

   

665 Olmo Silva Entrepreneurship:  Can the Jack-of-All-Trades 
Attitude be Acquired? 

   

664 Maarten Goos Sinking the Blues:  the Impact of Shop Closing Hours 
on Labor and Product Markets 

   

663 Christopher A. Pissarides 
Giovanna Vallanti 

Productivity Growth and Employment:  Theory and 
Panel Estimates 

   

662 Philip R. Lane 
Gian Maria Milesi-Ferretti 

Financial Globalization and Exchange Rates 



661 Alex Bryson 
Lorenzo Cappellari 
Claudio Lucifora 

Do Job Security Guarantees Work? 

   

660 David Marsden 
Richard Belfield 

Unions, Performance-Related Pay and Procedural 
Justice:  the Case of Classroom Teachers 

   

659 Rachel Griffith 
Rupert Harrison 
John Van Reenen 

How Special is the Special Relationship?  Using the 
Impact of R&D Spillovers on UK Firms As a Test of 
Technology Sourcing 

   

658 Douglas Kruse 
Richard B. Freeman 
Joseph Blasi 
Robert Buchele 
Adria Scharf 
Loren Rodgers 
Chris Mackin 

Motivating Employee Owners in ESOP Firms:  
Human Resource Policies and Company Performance 

   

657 Christopher Crowe Inflation, Inequality and Social Conflict 

   

656 James Banks 
Richard Disney 
Alan Duncan 
John Van Reenen 

The Internationalisation of Public Welfare Policy 

   

655 Eran Yashiv The Self Selection of Migrant Workers Revisited 

   

654 Hilary Steedman 
Sheila Stoney 

Disengagement 14-16: Context and Evidence 

   

653 Ralf Martin Globalisation, ICT and the Nitty Gritty of Plant Level 
Datasets 

   

652 Jörn-Steffen Pischke Labor Market Institutions, Wages and Investment 

   

651 Anthony J. Venables Evaluating Urban Transport Improvements:  Cost 
Benefit Analysis in the Presence of Agglomeration 
and Income Taxation 

   

 
The Centre for Economic Performance Publications Unit 

Tel  020 7955 7673     Fax  020 7955 7595     Email  info@cep.lse.ac.uk 
Web site  http://cep.lse.ac.uk 


