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Abstract 
What role does labor play in a firm’s market value? We explore this question using a production-based asset 
pricing model with frictions in the adjustment of both capital and labor. We posit that hiring of labor is akin to 
investment in capital and that the two interact, with the interaction being a crucial determinant of the time series 
behavior of market value. We use aggregate U.S. corporate sector data to estimate firms' optimal hiring and 
investment decisions and the consequences for firms' value. The model generates a good fit of the data. We 
decompose the estimated market value, thereby quantifying the link between firms' value and gross hiring flows, 
employment, gross investment flows, and physical capital. We find that a conventional specification -- quadratic 
adjustment costs for capital and no hiring costs -- performs poorly. Hiring and investment flows, unlike 
employment and capital stocks, are volatile and both are essential to account for market value volatility. A key 
result is that firms' value embodies the value of hiring and investment over and above the capital stock. 
 
Keywords: production-based asset pricing, labor market frictions, gross flows, Q-model, GMM  
JEL Classifications: E22, E23, E24,G12 
Data: U.S NIPA and BLS data 
 
 
This paper was produced as part of the Centre’s Technology and Growth Programme.  The Centre for Economic 
Performance is financed by the Economic and Social Research Council. 
 
 
 
Acknowledgements 
We thank two anonymous referees and seminar participants at Princeton, NYU, Maryland, Minneapolis Fed, 
NY Fed, the 2003 AEA meetings, the 2003 SED meetings in Paris, the 2002 NBER Summer Institute, Rice, 
University College London, the London School of Economics, London Business School, Imperial College, Tel 
Aviv (Eitan Berglas School of Economics and Recanati School of Business), the CentER in Tilburg, ECARE, 
the Norwegian School of Business, the University of Oslo, the June 2002 CEPR conference on dynamic aspects 
of unemployment at CREST, Paris, the 2002 annual meeting of the EEA in Venice, and the December 2001 
conference on finance and labor market frictions at the University of Bonn for comments on previous versions 
of the paper. We are grateful to Andy Abel, Michael Burda, Craig Burnside, Zvi Eckstein, Peter Hartley, Zvi 
Hercowitz, Urban Jermann, Martin Lettau, Masao Ogaki, Harald Uhlig and Itzhak Zilcha for useful suggestions, 
to Hoyt Bleakley, Ann Ferris, Jeff Fuhrer and Elizabeth Walat for their worker flows series, to Bob Hall for 
market value data, to Flint Brayton for tax and depreciation series, and to Michael Ornstein and, in particular, 
Darina Vaissman for excellent research assistance. Any errors are our own. 
 Monika Merz is a Professor of Economics at the University of Bonn. Email: mmerz@uni-bonn.de  
Web page: http://www.iiw.uni-bonn.de/merz/ Eran Yashiv is a Visiting Professor to the Department of 
Economics, London School of Economics from Tel Aviv University. Email: yashiv@post.tau.ac.il  
Web page: http://www.tau.ac.il/~yashiv  
 
 
 
 
 
Published by 
Centre for Economic Performance 
London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system or transmitted in 
any form or by any means without the prior permission in writing of the publisher nor be issued to the public or 
circulated in any form other than that in which it is published. 
 
Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the 
above address. 
 
© M. Merz and E. Yashiv, submitted 2005 
 
ISBN 0 7530 1870 5 



Labor and the Market Value of the Firm

1. Introduction

What role does labor play in the market value of firms? According to the frictionless neoclassical

model — a benchmark for our exploration — labor is not a part of this value, because it is costlessly

adjusted and hence receives its share in output. In this frictionless environment the firm’s market

value equals its stock of physical capital. When combining this setup with adjustment costs of

physical capital as in Tobin (1969) or Tobin and Brainard (1977), the well-known Tobin’s Q-model

results. Adjustment costs of capital involve implementation costs, the learning of new technologies,

or the fact that production is temporarily interrupted. The standard Q-model still assigns no

explicit role for labor, as determination of the firm’s value only requires correction for the value of

the capital adjustment technology. Labor explicitly enters the picture whenever there are frictions

in the labor market [see the discussion in Danthine and Donaldson (2002a)]. With frictional labor

markets, labor is a quasi-fixed factor from which a firm extracts rents. These rents compensate it

for the costs associated with adjusting the work force. The firm’s value needs to take these rents

into account.
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In this paper we build on the production-based model for firms’ market value proposed by

Cochrane (1991, 1996) and insert frictional labor markets and capital adjustment costs as crucial

ingredients. We represent labor market frictions by trade frictions between searching firms and

workers, and by advertising, screening, and training costs [Mortensen and Pissarides (1999) survey

the relevant search and matching literature]. We let the adjustment costs for labor interact with

those for capital, with all adjustment costs relating to gross rather than to net changes. This

specification allows us to simultaneously study the dynamic behavior of variables which hitherto

have been explored separately. In particular, we qualitatively illustrate how firms’ market value is

linked to the flows of gross hiring and gross investment and to the stocks of employment and physical

capital. This link results from the following economic mechanism. Firms decide on the number

of vacancies to post in order to hire workers and on the size of the investment in physical capital

to undertake in their effort to maximize their market value. Doing so they face labor market

frictions interacting with adjustment costs for capital. Optimal hiring and investing determines

firms’ profits — including rents from employment — and consequently their value, as well as the time

path of employment and capital.

We quantify this link by structurally estimating the model using aggregate time-series data

for the U.S. corporate sector. Our data set has a number of distinctive features. It makes use of gross

rather than net hiring flow series, the former exhibiting considerable volatility; data on output, gross

investment and the capital stock, as well as market value data, pertain to the non-financial corporate

business sector rather than to broader, but inappropriate measures of the U.S. economy; alternative,

time-varying discount rates are examined; and key elements of the corporate tax structure are

explicitly taken into account. We use alternative convex adjustment costs specifications and a non-

linear, structural estimation procedure in order to allow for a more general framework than the

traditional quadratic cost formulation that dominates most of the related literature.

The main goal of our empirical work is to explain firms’ joint hiring and investment behavior

and its implications for market values. Towards this end we estimate the firms’ adjustment costs

function. Our results suggest that this exploration is worthwhile. With a reasonable magnitude for
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adjustment costs, we can characterize optimal hiring and investment. The implied value of hiring

and that of investment account fairly well for the predicted component of firms’ value, over and

above the size of the physical capital stock. We decompose firms’ value in terms of both mean and

volatility. We find that factor adjustment costs play a role in explaining the mean of market values,

and that volatility cannot be explained without both capital and labor adjustment costs.

Our paper makes several contributions. First, the model qualitatively derives the link

between firms’ market value and gross hires, employment, gross investment and physical capital,

thereby showing that, in addition to capital, labor matters. The empirical results lend quantitative

support to this link. The reason for the relative success here — comparing to previous formulations

which have failed — lies in the examination of investment and hiring costs jointly and in terms of

gross flows. Note that much of the literature either focused on one and ignored the other, or dealt

with net changes rather than with gross flows. Second, the paper puts the Q-model on a much

more solid empirical footing, thereby explaining the weakness of previous results and demonstrates

the role of labor market frictions for the behavior of investment and firms’ market value. Finally,

the paper generates a structural specification of a production-based asset pricing model, linking

financial variables to macroeconomic ones.

The paper proceeds as follows. Section 2 presents the model. Section 3 discusses the data

and the empirical methodology. Section 4 presents the results. Section 5 derives the implications

with respect to the adjustment costs function, to the performance of the estimated optimality

equations, and to the joint behavior of hiring and investment. Section 6 discusses the implications

for market values. Section 7 summarizes the key results and concludes. Technical derivations, data

definitions, and robustness checks are elaborated in appendices.
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2. The Model

We delineate the partial equilibrium model which serves as the basis for estimation.2

2.1. The Economic Environment

The economy is populated by identical workers and identical firms. All agents live forever and

have rational expectations. Workers and firms interact in the markets for goods, labor, capital, and

financial assets. This setup deviates from the standard neoclassical framework. That is, it takes

time and resources for firms to adjust their capital stock, or to hire new workers. All variables are

expressed in terms of the output price level.

2.2. Hiring and Investment

Firms make investment and hiring decisions. They own the physical capital stock k and decide

each period how much to invest in capital, i. In order to attract new workers, a firm needs to

post a job-vacancy v. For each vacancy posted, the firm takes as given the rate q at which this

vacancy is filled with a non-employed worker. Hence, in every period, a firm’s gross hires are given

by qv.3 Once a new worker is hired, the firm pays her a per-period gross compensation rate w.

Firms use physical capital and labor as inputs in order to produce output goods y according to a

constant-returns-to-scale production function f with productivity shock z:

yt = f(zt,nt, kt), (2.1)

Gross hiring and gross investment are costly activities. Hiring costs include advertising,

screening, and training. In addition to the purchase costs, investment involves capital installation

costs, learning the use of new equipment, etc. Adjusting labor or capital involves disruptions to

2The parts concerned with the labor market follow the prototypical search and matching model within a stochastic

framework. See Pissarides (2000) and Yashiv (2000).
3 In the standard matching model, those gross hires are labeled new job-matches, and the transition rate q for a

vacancy equals the ratio of job-matches to vacancies posted.
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production, and potentially also the implementation of new organizational structure within the firm

and new production practices. All of these costs reduce the firm’s profits. We represent these costs

by an adjustment costs function g[it, kt, qtvt, nt] which is convex in the firm’s decision variables and

exhibits constant returns-to-scale. We allow hiring costs and capital adjustment costs to interact.

We specify the functional form of g in the empirical work below.

In every period t, the capital stock depreciates at the rate δt and is augmented by new

investment it. The capital stock’s law of motion equals:

kt+1 = (1− δt)kt + it, 0 ≤ δt ≤ 1. (2.2)

Similarly, the number of a firm’s employees decreases at the rate ψt. It is augmented by new hires

qtvt:

nt+1 = (1− ψt)nt + qtvt, 0 ≤ ψt ≤ 1. (2.3)

Firms’ profits before tax, π, equal the difference between revenues net of adjustment costs

and total labor compensation, wn:

πt = [f(zt,nt, kt)− g (it, kt, qtvt, nt)]− wtnt . (2.4)

Every period, firms make after-tax cash flow payments cf to the stock owners and bond holders

of the firm. These cash flow payments equal profits after tax minus purchases of investment goods

plus investment tax credits and depreciation allowances for new investment goods:

cft = (1− τ t)πt − (1− χt − τ tDt) epIt it (2.5)

where τ t is the corporate income tax rate, χt the investment tax credit, Dt the present discounted

value of capital depreciation allowances, p̃It the real pre-tax price of investment goods.

The representative firm’s ex dividend market value in period t, st, is defined as follows:

st = Et

£
βt+1 (st+1 + cft+1)

¤
. (2.6)
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Solving equation (2.6) forward, we can alternatively define the firm’s market value in period t as

the present discounted value of future cash flows:

st = Et

⎧⎨⎩
∞X
j=1

Ã
jY

i=1

βt+i

!
cft+j

⎫⎬⎭ , (2.7)

where Et denotes the expectational operator conditional on information available in period t. The

discount factor between periods t+ j − 1 and t+ j for j ∈ {1, 2, ...} is given by:

βt+j =
1

1 + rt+j−1,t+j

where rt+j−1,t+j denotes the time-varying discount rate between periods t+j−1 and t+j. Appendix

B contains a detailed description of how alternative values of the discount rate r are computed in

the empirical work.

The representative firm chooses sequences of it and vt in order to maximize its cum dividend

market value cft+ st :

max
{it+j ,vt+j}

Et

⎧⎨⎩
∞X
j=0

Ã
jY

i=0

βt+i

!
cft+j

⎫⎬⎭ (2.8)

subject to the definition of cft+j in equation (2.5) and the constraints (2.2) and (2.3). The firm

takes the variables q,w, pI , δ, ψ, and β as given. The Lagrange multipliers associated with these

two constraints are QK
t+j and QN

t+j , respectively. These Lagrange multipliers can be interpreted as

marginal Q for physical capital, and marginal Q for employment, respectively.

The accompanying first-order necessary conditions for dynamic optimality are the same for

any two consecutive periods t + j and t + j + 1, j ∈ {0, 1, 2, ...}. We denote by fx the marginal

product of factor x, and by gx the marginal cost of raising variable x. For the sake of notational
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simplicity, we drop the subscript j from the respective equations to follow:

QK
t = Et

©
βt+1

£
(1− τ t+1)

¡
fkt+1 − gkt+1

¢
+ (1− δt+1)Q

K
t+1

¤ª
(2.9)

QK
t = (1− τ t)

¡
git + pIt

¢
(2.10)

QN
t = Et

©
βt+1

£
(1− τ t+1)

¡
fnt+1 − gnt+1 − wt+1

¢
+
¡
1− ψt+1

¢
QN
t+1

¤ª
(2.11)

QN
t = (1− τ t)

gvt
qt

(2.12)

where we use the real after-tax price of investment goods, given by:

pIt+j =
1− χt+j − τ t+jDt+j

1− τ t+j
epIt+j . (2.13)

Dynamic optimality requires the following two transversality conditions to be fulfilled

lim
T→∞

ET

¡
βT QK

T kT+1
¢
= 0 (2.14)

lim
T →∞

ET

¡
βT Q

N
T nT+1

¢
= 0.

We can summarize the firm’s first-order necessary conditions from equations (2.9)-(2.12) by the

following two expressions:

F1 : (1− τ t)
¡
git + pIt

¢
= Et

©
βt+1 (1− τ t+1)

£
fkt+1 − gkt+1 + (1− δt+1)(git+1 + pIt+1)

¤ª
F2 : (1− τ t)

gvt
qt
= Et

½
βt+1 (1− τ t+1)

∙
fnt+1 − gnt+1 − wt+1 + (1− ψt+1)

gvt+1
qt+1

¸¾
.

Solving equation (2.9) forward and using the law of iterated expectations expresses QK
t as

the expected present value of future marginal products of physical capital net of marginal capital

adjustment costs:

QK
t = Et

⎧⎨⎩
∞X
j=0

Ã
jY

i=0

βt+1+i

!Ã
jY

i=0

(1− δt+1+i)

!
(1− τ t+1+j)

¡
fkt+1+j − gkt+1+j

¢⎫⎬⎭ . (2.15)

It is straightforward to show that in the special case of time-invariant discount factor, depreciation

rate and price of investment goods, no adjustment costs, no taxes, and a perfectly competitive

market for capital, QK
t equals the price of investment goods pI . Similarly, solving equation (2.11)
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forward and using the law of iterated expectations expresses QN
t as the expected present value of

the future stream of surpluses arising to the firm from an additional hire of a new worker:

QN
t = Et

⎧⎨⎩
∞X
j=0

Ã
jY

i=0

βt+1+i

!Ã
jY

i=0

¡
1− ψt+1+i

¢!
(1− τ t+1+j)

¡
fnt+1+j − gnt+1+j −wt+1+j

¢⎫⎬⎭ .

(2.16)

In the special case of a perfectly competitive labor market and no hiring costs, QN
t equals zero.

2.3. Implications For Asset Values

We use standard asset-pricing theory to derive the implications of the model for the links between

the market value of the firm and the asset value of a new hire. As stated in equation (2.6), the

firm’s period t market value is defined as the expected discounted pre-dividend market value of the

following period:

st = Et

£
βt+1 (st+1 + cft+1)

¤
. (2.17)

The firm’s market value can be decomposed into the sum of the value due to physical capital, ϑkt ,

and the value due to the stock of employment, ϑnt . We label the latter fraction of the firm’s market

value the asset value of a new hire and express st as

st = ϑkt + ϑnt = Et

h
βt+1

³
ϑkt+1 + cfkt+1

´i
+Et

£
βt+1

¡
ϑnt+1 + cfnt+1

¢¤
, (2.18)

Using the constant returns-to-scale properties of the production function f and of the adjustment

cost function, g, we rely on equation (2.5) when decomposing the stream of maximized cash flow

payments as follows:

cft = (1− τ t)
¡
fktkt + fntnt − wtnt − pIt it − gktkt − gitit − gntnt − gvtvt

¢
= (1− τ t)

£¡
fktkt − pIt it − gktkt − gitit

¢
+ (fntnt − wtnt − gntnt − gvtvt)

¤
≡ cfkt + cfnt .

In order to establish a link between the firm’s market value and its stock of capital and employment

using the first-order necessary condition (FONC) we manipulate the latter equation to obtain (see
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Appendix A for the full derivation) the central asset pricing equation relying on the afore-cited

CRS properties of f and g :

st = ϑkt + ϑnt = kt+1Q
K
t + nt+1Q

N
t , (2.19)

where QK
t and QN

t are defined in equations (2.15) and (2.16), respectively.

Equation (2.19) summarizes an important qualitative result. With frictional labor markets,

the shadow value of employment typically is non-zero. Hence in such settings, the level of employ-

ment, multiplied by the respective shadow value, enters the firm’s market value. Put differently,

equation (2.19) illustrates the fact that the current model generalizes the neoclassical formulation,

whereby the firm’s market value equals its physical capital stock, to an environment with capital

adjustment costs and labor market frictions. Note that, using the expressions (2.9)-(2.12) we can

alternatively express the firm’s market value in period t as follows:

st = kt+1Et

©
βt+1 (1− τ t+1)

£
fkt+1 − gkt+1 + (1− δt+1)(p

I
t+1 + git+1)

¤ª
(2.20)

+nt+1Et

½
βt+1 (1− τ t+1)

µ
fnt+1 − gnt+1 − wt+1 + (1− ψt+1)

gvt+1
qt+1

¶¾
Next we turn to explore the empirical implications of the model. One of them shall be the estimation

of the asset values of investment (QK) and hiring (QN). Thus, while these are not priced on the

market, we shall obtain estimates of the market value of investment and of hiring, which — were

they to be priced on the market — would be akin to the stock price of investment and the stock

price of hiring.

3. Data and Methodology

The adjustment cost function g is the main object of structural estimation.We present the parame-

terization of this function as well as of the production function, and the econometric methodology.

This presentation includes a discussion of data and econometric issues and the resulting alternative

specifications.
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3.1. Parameterization

To quantify the model we need to parameterize the relevant functions. For the production function

we use a standard Cobb-Douglas:

f(zt,nt, kt) = eztnt
αk1−αt , 0 < α < 1. (3.1)

For the adjustment costs function g, following the results of structural estimation of the

aggregate search and matching model in Yashiv (2000) and some experimentation, we adopt the

following generalized convex function:

g(·) =
∙
f1

it
kt
+ f2

qtvt
nt

+
e1
η1
(
it
kt
)η1 +

e2
η2
(
qtvt
nt
)η2 +

e3
η3
(
it
kt

qtvt
nt
)η3
¸
f(zz, nt, kt). (3.2)

This function is linearly homogenous in its four arguments i, v, k and n. The function

postulates that costs are proportional to output, and that they increase in investment and hiring

rates. Recent work by Cooper andWillis (2003) and Cooper and Haltiwanger (2005, see in particular

pp. 23-24) gives empirical support to the use of a convex adjustment costs function. They showed

that while non-convexities may matter at the micro level, a convex formulation is appropriate at

the aggregate, macroeconomic level. The above specification captures the idea that the disruption

in the production process increases with the extent of the factor adjustment relative to the size of

the firm, where a firm’s size is measured by its physical capital stock, or its level of employment.

The last term in square brackets expresses the interaction of capital and labor adjustment costs.

The parameters f1, f2 and e1 through e3 express scale, and η1through η3 express the elasticity of

adjustment costs with respect to the different arguments. The function encompasses the widely

used quadratic case for which η1 = η2 = 2. The estimates of these parameters will allow the

quantification of the derivatives git and gvt and, hence, the marginal adjustment cost of investment

and hiring, respectively, that appear in the firms’ FONC.
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3.2. The Data

Our data sample is quarterly, corporate sector data for the U.S. economy from 1976:1 to 2002:4.

The beginning of the sample period is constrained by the availability of consistent gross worker flow

data, and its end by the availability of consistent investment and capital data. In what follows we

briefly describe the data set and emphasize its distinctive features; for full definitions and sources

see Appendix B. Table 1 presents summary statistics of the series used.

See Table 1 (p.xviii)

For output f , capital k, investment i, and depreciation δ we use a new data set on the non-

financial corporate business (NFCB) sector recently published by the Bureau of Economic Analysis

(BEA) of the U.S. Department of Commerce4 and quarterly investment series from the Federal

Reserve Board. This data set leaves out variables that are often used in the literature but that are

not consistent with the above model, such as residential or government investment.

For gross hiring flows qv and for the separation rate ψ we use series based on adjusted

Current Population Survey (CPS) data as computed by Bleakely et al. (1999), adjusted to repre-

sent the NFCB sector. Two aspects of the data merit attention: (i) We use gross flows between

employment and both unemployment and out of the labor force;5 the latter flows (out of the labor

force to employment) are sizeable, and in terms of the model are not different from unemployment

— employment flows. (ii) The gross worker flows are adjusted to cater for misclassification and

measurement error.6 For the labor share of income wn
f we use the compensation of employees, i.e.,

4See www.bea.doc.gov/bea/ARTICLES/NATIONAL/NIPAREL/2000/0400fxacdg.pdf The investment rate series
it
kt
for this sector is very similar to the private sector non-residential series with roughly the same mean, a slightly

higher variance and a correlation of 0.94; the average output series f
k
is also very similar, with slightly lower mean

and variance and a correlation of 0.92 with the private sector non-residential series.
5The difference in size between gross and net worker flows is noteable. Gross flows per quarter amount to 9

percent of employment, whereas net flows equal 0.5 percent only.
6See Bleakely et al. (1999) for a discussion of the adjustment methodology. The construction of the series used

here is explained in Appendix B.
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the sum of wage and salary accruals and supplements to wages and salaries as a fraction of the

gross product of the non-financial corporate sector. We take the latter variable from the National

Income and Product Accounts (NIPA).

We measure firms’ market value s using the market value of all non-farm, non-financial

corporate businesses. This value equals the sum of financial liabilities and equity less financial

assets. The data are taken from Hall (2001) based on the Federal Reserve’s Flow of Funds accounts.

This series in a detrended version is highly correlated with stock market measures such as the total

market value reported by the Center for Research in Security Prices (CRSP) at the University of

Chicago, or the SP500 index. For the discount rate r we use a weighted average of the returns to

debt (using a commercial paper rate) and to equity (using CRSP returns), with changing weights

reflecting actual debt and equity finance shares. We also test two alternatives for r, the SP500 rate

of change, and the rate of non-durable consumption growth, which serves as the discount rate in

many dynamic stochastic general equilibrium models featuring log utility.

3.3. Methodology

We structurally estimate the firms’ first-order necessary conditions (F1) and (F2), and the asset

pricing equation (2.20) using Hansen’s (1982) generalized method of moments (GMM). The moment

conditions estimated are those obtained under rational expectations. That is, the firms’ expecta-

tional errors are orthogonal to any variable in their information set at the time of the investment

and hiring decisions. The moment conditions are derived by replacing expected values with actual

ones plus expectational errors j and specifying that the errors are orthogonal to the instruments

Z, i.e., E(jt ⊗ Zt) = 0. We formulate the equations in stationary terms by dividing the FONC for

capital by ft
kt
, the FONC for labor by ft

nt
, and the asset pricing equation throughout by the level of

output, ft. We elaborate on the estimation methodology in Appendix C.

We explore a number of alternative specifications:

1) The degree of convexity of the g function. A major issue proves to be the degree of
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convexity of the g function. The literature has for the most part assumed quadratic adjustment

costs. We examine more general convex functions, either by estimating the power parameters

(η1,η2,η3) or by constraining them to take different values.

2) Instrument sets. We use alternative instrument sets in terms of variables and number of

lags. The instrument sets include lags of variables that appear in the equations.

3) Variables’ formulation. We check the effect of using alternative time series for some of

the variables, which have multiple representations. These include qv
n , ψ, δ and β.

We check whether the estimated g function is reasonable in that it fulfills not only the con-

vexity requirement but also implies total and marginal adjustment costs that lie within a plausible

range. We discuss what such a range might be below.

4. Estimation Results

The focal point of the empirical work is estimation of the parameters of the adjustment costs

function g. These estimates allow us to generate time series for the costs of hiring and investing, and

for firms’ market values, thereby quantifying the links between these three series. The literature has

typically used a quadratic specification for capital adjustment costs and ignored possible interactions

between hiring and investment costs.7 Our results suggest that modifying this specification is

essential.

Table 2 reports the results of the joint GMM estimation of the firms’ first-order conditions

7Nadiri and Rosen (1969) examined both capital and labor adjustment costs, and since then a number of papers

have done so. The most notable contribution in the current context is Shapiro (1986), who used structural estimation.

Our paper differs along several dimensions:(i) labor adjustment costs here pertain to gross costs and therefore are a

function of gross worker flows into employment; in Shapiro (and other work) they pertain to net costs and relate to

changes in the employment stock, which are considerably smaller; (ii) the current paper uses the market values of

firms in estimation while no such information is used in Shapiro; (iii) the latter paper uses linear-quadratic adjustment

costs, a formulation found to be too restrictive here; (iv) Shapiro’s uses data on manufacturing while here non-financial

corporate business data are used; (v) the discount rate in Shapiro is a T-bill rate plus a risk premium, while here

alternative time-varying rates are used.
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(F1) and (F2), and the asset pricing equation (2.20). We present the point estimates of the power

parameters η1 through η3, the scale parameters f1, f2 and e1 through e3, the employment elasticity

of output, α, the standard errors of the estimates (except where constrained), and the J statistics.

Throughout, the labor elasticity parameter α is estimated at 0.68 or 0.69, with low standard

errors. This conforms with standard estimates and serves as a validity check on our estimation

procedure.

Column (1) is the most general, with all parameters freely estimated. This means that the

shape and degree of convexity of the g function are left for estimation and allowed to vary across

the different arguments of the function. The results point to an approximately cubic specification

for investment and hiring (η1 = 2.8, η2 = 3.4) and to a quadratic interaction term (η3 = 2). Except

for the estimates of the parameters of the linear terms (f1 and f2), which exhibit large standard

errors, all parameters are relatively precisely estimated. The other columns impose more structure.

Column (2), (3), and (4) allow one power parameter to be free, constraining the other two to the

values estimated in column (1). In these three columns the standard errors of the scale parameters

estimates go down, but the point estimates of all parameters remain very close to those of column

(1). Columns (5), (6) and (7) impose a further restriction, by setting the coefficients of the linear

terms at the levels estimated in columns (1)-(4), i.e., setting f1 = 2, f2 = −2. This leads to some

further reduction in the standard errors, but, again, the point estimates hardly change. In those

last three columns, all parameters are very precisely estimated.

Hence, across all seven columns, the point estimates lie in a narrow range. The differences

across columns are mainly in the precision (standard errors) of the estimates. Appendix C (see

Tables C-2, C-3 and C-4) looks at further variations to check for robustness.

Table 3 attempts to gauge the value added of the different components of our specification

by imposing restrictions.
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Column 1 reports the traditional equation estimated in the Q-literature, i.e., quadratic

adjustment costs of capital only. This means that we impose f1 = f2 = e2 = e3 = 0 and η1 = 2.

The results are a precisely estimated scale parameter e1 but the production function parameter α

is estimated at a particularly high level and the J-statistic indicates rejection. Indeed, we show

below that the fit of this specification is poor. Column 2 re-introduces the linear terms and takes a

cubic for the power specification of η1 and η2. In other words it improves on the standard quadratic

by postulating a linear-cubic formulation and by taking into account hiring costs. But it does not

allow for any interaction between capital adjustment costs and hiring costs, i.e., e3 = 0 is imposed.

This restriction yields point estimates that are different from those of Table 2, a particularly low

level of α, and the J-statistic indicates rejection. As we show below, the fit of this specification

turns out to be mediocre at best. In column 3 we replicate the basic specification of Table 2 but

estimate only the investment optimality equation (F1) and the asset pricing equation (2.20), i.e.,

we drop the hiring optimality (F2) equation. We get point estimates that are close to those of

Table 2 but less precise.

We turn now to examine the implications of these estimates for the adjustment costs function

and for the time series behavior of hiring, investment and asset values. Doing so we shall evaluate

the model-data fit. As the results of Table 2 (and those reported in Tables C-2, C-3, and C-4

in Appendix C below) are very similar in terms of point estimates across specifications, we shall

report one representative specification — that of column (7) in Table 2 — in what follows. Whenever

relevant, we shall also look at the results of Table 3, columns 1 and 2.

5. The Value of Hiring and Investment

In this section we look at the implications for hiring and for investment of the results using the

point estimates reported in Tables 2 and 3. We begin by looking at the implied adjustment costs

function (section 5.1); we then examine the performance of the estimating optimality equations for
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hiring and investment (section 5.2); finally, we study the joint behavior of hiring and investment

(section 5.3).

5.1. Adjustment Costs and the Value of Hiring and Investment

The results allow us to construct time series for total and marginal adjustment costs by using the

point estimates of the parameters of the g function. Knowing these is important, as they are also

the asset values of investment (QK) and hiring (QN) , or put differently, these are the “stock prices”

of investment and hiring.

In Table 4 we report the moments for total and marginal adjustment costs using the point

estimates reported in Table 2 (column 7) and in Table 3 (column 1). The table reports the value

of each expression at the sample mean and the precision of the estimates.8

See Table 4 (p.xxiii)

First, we shall refer only to the estimates based on the representative specification of Table

2 (column 7). The first row reports total costs as a fraction of GDP (i.e. g
f ) to be 2.3% of output.

This appears to be reasonable, as will be discussed below.

The second row reports the marginal costs of hiring (i.e. gv) in terms of average output per

worker ( fn). The reported value, 1.48 (value at sample mean point), is roughly equivalent to two

quarters of wage payments, as wages are 0.66 of output per worker on average (see Table 1). How

does one evaluate this estimate? There is little empirical evidence on the quantitative importance

of such adjustment costs. There are, however, a few surveys of broad groups of employers on some

of the costs of hiring. According to Hamermesh (1993, pp. 207-209), the findings are as diverse

as are the groups studied or the concepts underlying the measurement. Thus, expressed in 1990
8Each adjustment cost term — g

f
, gv
f/n

, gi
f/k

— is some function of it
kt
and qtvt

nt
. The first reported expression is the

cost evaluated at mean it
kt
and mean qtvt

nt
. The second is the standard deviation, with the variables evaluated at the

same mean point; this is computed using the variance-covariance matrix of the estimators.
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US dollars, the gross costs range from $680 for hiring a secretary by a large employer in 1979

to $13,790 for hiring and training salaried workers in Los Angeles in 1980. Similarly, for a large

pharmaceutical company the costs of training and career development range from 1.5 to 2.5 times

the annual salary. Note that none of those surveys attempts to account for the costs of disruption

to the flow of output. Note too, that almost all other studies on labor adjustment costs typically

pertain to costs of net employment changes (i.e. nt − nt−1, as distinct from gross hiring qtvt).

Hence, there is no solid benchmark against which to compare the current estimates, and what can

be said is that the above estimate appears plausible.

The third row reports the marginal costs of investment (i.e. gi) in terms of average output

per unit of capital (fk ).
9 The estimate is 1.31 for marginal costs at the the mean point.

How reasonable are these estimates? There is no simple comparison that can be made,

once some modelling and computational issues are recognized. The most natural place to look for

comparisons is the Q-literature. Table 5 shows some estimates of the investment equation from

this literature. The equation links the investment-to-capital ratio to a measure of Tobin’s Q. Note

that these studies differ from each other and from the current study on many dimensions: the

data sample used, the functional form assumed for marginal adjustment costs (MC), additional

variables included in MC, treatment of tax issues, and reduced form vs. structural estimation.

Estimates of the curvature of the marginal cost function may be conditional on additional variables

included in the analysis; reduced form estimates may be consistent with several alternative under-

lying structural models. The studies often came in response to previous estimates, each trying to

introduce changes so as to improve on the previous ones; some of these changes were substantial.

Hence, Table 5 cannot give more than a very rough idea as to the “neighborhood” of adjustment

costs estimates.

9The units of measurement — in terms of output per unit of capital — were chosen so as to facilitate comparison

with existing studies, as discussed below.
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Panel (a) of the table shows large variation across studies: it ranges from marginal costs as

low as 0.02 to as high as 9.5 or, put differently, estimates of the adjustment cost parameter in a

linear formulation (i.e. γ in γ I
K ) ranging from 0.15 to 53. It should be noted that the differences

in marginal cost estimates are usually due to differences in the parameter estimates, and not just

due to the diversity in the rate of investment used.

Panel (b) takes key values from panel (a) and computes total adjustment costs as a fraction

of output (TCF ) and marginal costs as a fraction of output per unit of capital (
MC
F
K

). It takes the

quadratic specification used in most studies (i.e. TC = γ
2

¡
I
K

¢2
K) and evaluates these measures of

costs at the two values of I
K — 0.10 or 0.20 — that feature prominently in panel (a). It computes

the relevant value of F
K assuming either I

F = 0.15 or
I
F = 0.20 which are standard values, in line

with macroeconomic data. The panel presents these computations within three sets:

(i) Very high adjustment costs, as in studies 1,2, 5a, and 6a, where γ lies mostly between 20

and 50. Total costs thus range between 15% to 100% of output and marginal costs range between

3 to 10 in terms of average output per unit of capital. This set characterizes the earlier studies

(ii) Moderate adjustment costs, as in studies 3, 4, 5b, 6b, 7a, 7b and 8, where γ lies mostly

between 0.7 and 3. Total costs range between 0.5% to 6% of output and marginal costs are 0.1 to

0.6 average output per unit of capital.

(iii) Low adjustment costs, as in studies 9 and 10, where γ is between 0.1 and 0.3. Panel (b)

takes the value of γ = 0.2 for which total costs range between 0.1% to 0.2% of output and marginal

costs are 0.03 to 0.04 of average output per unit of capital.

Coming back to the initial question of comparing these estimates to our findings, two

conclusions emerge:

(i) The specification that we run that is closest to the one used in most studies of Table

5 is the one reported in Table 3. Column 1 reports the results with essentially the same

specification, i.e., positing a quadratic function and ignoring labor. Using the terminology of panel

(b) of Table 5, and referring back to Table 4, the implied total costs are 4.2% of output, as in studies

of the moderate adjustment costs set. The implied marginal costs are 3.55 of average output per
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unit of capital, as in the low part of the high adjustment costs results.

(ii) Our GMM results of the full model, i.e., the results reported in Table 2, cannot be

directly compared to the results of Table 5, as they take into account hiring costs through the

interaction between hiring and investment costs and have a convex specification. In formal terms

our marginal investment costs are specified by gi
f
k

=
h
f1 + e1

¡
i
k

¢η1−1 + e3
¡ qv
n

¢η3 ¡ i
k

¢η3−1i while
most specifications of Table 5 posit gi = γ i

k . In particular, our expression depends on
qv
n in a

substantial way. Nevertheless we can calculate total adjustment costs as a fraction of output (TCF )

and marginal costs as a fraction of output per unit of capital (MC
F
K

) as in panel (b) of Table 5. This

computation is shown in the first and third rows of Table 4. The implied total costs are 2.3% of

output, which lies within the low part of the moderate adjustment costs set. The implied marginal

costs are 1.31 of average output per unit of capital, somewhat higher than the moderate adjustment

costs range.

We thus conclude that while the quadratic specification (with no hiring costs) yields high

marginal adjustment costs, the preferred specification, with hiring costs and interaction of invest-

ment and hiring, yields relatively moderate adjustment costs.

Note, too, in Table 4 that adjustment costs — both total and marginal — are estimated

relatively precisely (compare the standard deviation to the value at the mean point).

5.2. Performance of the Estimated Optimality Equations

The estimated equations (F1) and (F2) determine the firms’ optimal investment and hiring behav-

ior. In the preceding sub-section we have seen that the point estimates imply reasonable values for

the adjustment costs function, which is the object of estimation in these equations. To further eval-

uate the performance of the estimated equations, Figure 1 provides a plot of the equations errors

(see equations 10.2 and 10.3 in Appendix C below) and some statistics testing for auto-correlation.

20



The graphs and statistics point to a relatively good fit; in F1 there is some small negative

auto-correlation, and in F2 there is no autocorrelation.

5.3. Joint Behavior of Hiring and Investment

Across all specifications, the estimate of the coefficient of the interaction term, e3, is negative.

This negative point estimate implies a negative value for gvi and, therefore, a positive sign for

∂ qtvt
nt

/∂Qk and for ∂ it
kt
/∂Qn (for the full derivation see Appendix D.) Note that evidently ∂ it

kt
/∂Qk

and ∂ qtvt
nt

/∂Qn are positive due to convexity. Hence, when the marginal value of investment QK

rises, both the investment rate i
k and the hiring rate

qv
n rise. A similar argument shows that when

the marginal value of hiring QN rises, both i
k and

qv
n rise. Put differently, this result states that

for given levels of investment, total and marginal costs of investment decline as hiring increases.

Similarly, for given levels of hiring, total and marginal costs of hiring decline as investment increases.

This finding is to be expected as it implies simultaneous hiring and investment. One interpretation

of this result is that simultaneous hiring and investment is less costly than sequential hiring and

investment of the same magnitude. This may be due to the fact that simultaneous action by the

firm is less disruptive to production than sequential action.

The following distinction, however, is important. The afore-going argument favors simulta-

neous hiring and investment, i.e., positive levels of both ( ik ,
qv
n > 0). Thus the representative firm

is hiring and investing at the same time. But it does not necessarily imply positive co-movement

or correlation between hiring and investment (i.e. ρ( ik ,
qv
n ) ≶ 0). In other words investment and

hiring take place at the same time, but it is possible to have one rise while the other declines.

When will that happen? Using (11.1) below, one can see that if QK rises and QN declines at the

same time, then the rise in QK will lead to higher investment and higher hiring, while the fall in

QN will lead to lower investment and lower hiring. If the effect of QK on investment and the effect

of QN on hiring are dominant (respectively), then investment would rise and hiring would fall. In

other words this may be a case of negative correlation between hiring and investment. Thus, hiring
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and investment may move in opposite directions even when e3 is negative.

Table 6 reports the sample correlation between hiring and investment, between the esti-

mated QK and QN , using the results of Table 2, and other correlations between these variables.
a

The main features standing out from the table are that in the sample period investment and

hiring rates were negatively correlated, as were QK
t and Q

N
t ; Q

K
t was positively correlated with the

investment rate it
kt
and negatively correlated with the hiring rate qtvt

nt
; similarly QN

t was positively

correlated with hiring rate qtvt
nt
and negatively correlated with the investment rate it

kt
. These results

are consistent with the above explanation and the idea that the effect of QK on investment and

the effect of QN on hiring are dominant. This implies that driving factors pushed asset values (QK
t

and QN
t ) in different directions and, consequently, the investment rate

it
kt
and the hiring rate qtvt

nt
,

while simultaneously positive, moved in different directions.

6. Explaining Asset Values

In this section we derive the implications of the estimates for market asset values. We look at the

model’s fit of the data (6.1), decompose the estimated market value into components due to capital

and investment and due to labor and hiring (6.2), and give an interpretation of the results (6.3).

6.1. The Model’s Fit

The estimates allow us to generate predicted time series of asset values.10 We use the formulation

of the asset pricing equation using only time t variables (see Appendix C for a full derivation):
10This can be done in two ways. One is described in the text below. The other uses the RHS of equation (2.20)

without the expectation error, i.e.:

st
ft

− j3t =
ft+1
ft

⎡⎢⎢⎣
1

ft+1
kt+1

βt+1 (1− τ t+1) fkt+1 − gkt+1 + (1− δt+1)(p
I
t+1 + git+1)

+ 1
ft+1
nt+1

βt+1 (1− τ t+1) fnt+1 − gnt+1 −wt+1 + (1− ψt+1)
gvt+1
qt+1

⎤⎥⎥⎦
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st
ft

= [(1− δt) +
it
kt
]

"
(1− τ t)

Ã"
f1 + e1

µ
it
kt

¶η1−1
+ e3

µ
qtvt
nt

¶η3
µ
it
kt

¶η3−1
#
+

pIt
ft
kt

!#
(6.1)

+[(1− ψt) +
qtvt
nt
]

"
(1− τ t)

"
f2 + e2

µ
qtvt
nt

¶η2−1
+ e3

µ
it
kt

¶η3
µ
qtvt
nt

¶η3−1
##
+ ξt

We denote the entire expression on the RHS except for the error by
]³ st
ft

´t
[i.e. st

ft
=
]³ st
ft

´t
+

ξt].

Figure 2 shows the actual series and the predicted
³̂
st
ft

´t
. Table 7 reports the sample mo-

ments of the actual series and the predicted series and the correlations between them. The figure

and table do this for the specification representative of Table 2 (column 7) as well as for the

specifications of columns 1 and 2 of Table 3.

The key result is that the preferred specification, using the full model, performs well; the

widely-used quadratic with no hiring performs poorly; and the convex specification that does not

allow for interaction between hiring and investment costs has mediocre performance. This can

be seen on all dimensions of the analysis: the correlation statistics, the comparison of actual and

predicted moments, and the graphs.

More specifically, all the moments of the predicted series based on the results of Table 2 are

very close to the actual series, typically slightly lower. This applies to the first four moments, to

the median, and to the autocorrelation. The correlation between the actual and predicted series is

high.

How do these results compare with existing formulations in the literature? One way to

gauge this is to compare to the specification of column 1 in Table 3. This is the standard quadratic

It turns out that there is very little difference between the two predicted series, so we report the one described

below in (6.1).
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formulation, without hiring, prevalent in the literature. This specification does badly: it is un-

correlated with the actual series, is much less volatile, less persistent, and its skewness does not

resemble the positive skewness of the actual series. These results are in line with the discussion

in the literature, which has reported a low fit with Q measures and substantial serial correlation

remaining in the error term.

Another way to evaluate the results is to turn to the literature itself. The main paper that

is comparable is Cochrane (1991), that is essentially the above model with no labor and with no

structural estimation of the relevant parameters. It is thus a Q-type model geared to explain asset

prices rather than investment. Cochrane (1991) discusses returns rather than price levels and gets

the following key results for U.S. data in the period 1947-1987 (see his discussion on pages 223-225

and in particular Table I and Figure 2):

(i) A correlation of 0.24 between investment returns and stock returns.

(ii) With the same mean return, investment returns have a standard deviation of 3.42; stock

returns have a standard deviation of 7.24; thus stock returns are twice as volatile as investment

returns.

(iii) The first auto-correlation of investment returns is 0.45 compared to 0.11 autocorrelation

of stock returns, i.e. investment returns are much more persistent.

These results are not directly comparable, but they suggest a weaker fit, in particular in

matching the volatility and persistence of the actual series. Note, though, that our results do

strengthen the basic approach suggested by Cochrane (1991), in the sense that market value is well

explained by a production-based asset pricing model.

One key point of the current analysis is the incorporation of hiring costs and their interaction

with investment costs. What is the contribution of this element to the fit? One indication was given

by the above analysis of the poor performance of the specification that ignores hiring. Another

indication is obtained by comparing the results to those of column 2 in Table 3; this specification

does allow for hiring costs and does posit a more convex function (relative to the quadratic) but it

does not allow for any interaction between the two kinds of costs. Table 7 and Figure 2 indicate
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that it performs better than the quadratic with no hiring costs, but it does not provide for a very

good fit: its correlation is lower and it is much less volatile. This demonstrates the important role

played by the interaction between the two types of costs.

6.2. Decomposing Asset Values

We turn to decompose asset values in order to examine the relative role played by capital and by

labor, as follows:

µ̂
st
ft

¶t

=

µ
st
ft

¶1
+

µ
st
ft

¶2
+

µ
st
ft

¶3
µ
st
ft

¶1
= [(1− δt) +

it
kt
]

"
(1− τ t)

pIt
ft
kt

#
µ
st
ft

¶2
= [(1− δt) +

it
kt
]

"
(1− τ t)

git
ft
kt

#
µ
st
ft

¶3
= [(1− ψt) +

qtvt
nt
]

"
(1− τ t)

gvt
qt
ft
nt

#

The first part
³
st
ft

´1
reflects value without any adjustment costs. The other two parts

represent the present value of investing
³
st
ft

´2
and of hiring

³
st
ft

´3
. While they are not priced on

the market, the structural estimates allow for their quantification.

We present the decomposition in Table 8, using the point estimates of the specification

representative of Table 2.

See Table 8 (p.xxx)

Panel (a) presents the sample average value of the different terms in the above decompo-

sition. In terms of parameters, the purely neoclassical part,
³
st
ft

´1
depends only on the estimate

of α (the labor coefficient in the production function) and on pI . Hence, we can get an idea as to
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its magnitude even without the estimates of the g function. Panel (b) computes this value out of

actual
³
st
ft

´
for various plausible values of α and pI . The results of panel (b) are consistent with

the estimates of panel (a): over the whole sample the estimated share [in panel (a)] is 0.67, while

the computed share in panel (b) lies between 0.50 and 0.75. Hence, even with no estimates of the g

function, the above analysis implies that the value due to adjustment costs is about 33%. In order

to break down the latter into
³
st
ft

´2
and

³
st
ft

´3
we need to rely on the point estimates of Table 2

(column 7). The larger part turns out to be due to the value of hiring,
³
st
ft

´3
, at 22% of total asset

value, while the value of investment
³
st
ft

´3
accounts for 11% of total asset value on average.

Panel (c) shows the sample variance decomposition of
]³ st
ft

´
. Each term is divided by the

total variance so the elements of the matrix sum up to 1. Once more it does not require estimates of

the g function to determine the relative share of the neoclassical part,
³
st
ft

´1
. Its share in the actual

variance of stft is only 0.059. Thus, the traditional part
³
st
ft

´1
plays a very small role. Taken together

with the fact, highlighted by Christiano and Fisher (2003), that pI was negatively correlated with

s in the sample period, this means that the traditional, neoclassical model cannot explain the time

series behavior of asset values.

By far the biggest role in explaining the variance is played by the value of investment in

capital. In fact, the value of investment in capital
³
st
ft

´2
over-explains asset volatility, and so

important contributions are the negative co-variation between the investment and hiring values

(
³
st
ft

´2
and

³
st
ft

´3
) and between the neoclassical term and the investment value term (

³
st
ft

´1
and³

st
ft

´2
). Note that the hiring value term

³
st
ft

´3
exhibits substantial volatility, too. Thus, both

adjustment costs are essential to account for market value volatility. The role played by hiring

rates here is threefold: via the interaction term in
³
st
ft

´2
, via the hiring value term

³
st
ft

´3
, and via

the covariance between
³
st
ft

´2
and

³
st
ft

´3
.
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6.3. Interpretation

To gain some intuition with respect to these results in relation to standard formulations, consider

again the asset pricing equation:

st = kt+1Q
K
t + nt+1Q

N
t .

In stationary form this can be re-written:

st
ft
=

ft+1
ft

"
QK
t

ft+1
kt+1

+
QN
t

ft+1
nt+1

#
.

The basic problem in the literature has been to explain the behavior of s
f which is highly

auto-correlated (AR coefficient of 0.97) and highly volatile (coefficient of variation is 0.35). In the

neoclassical model QK = pI , QN = 0. This implies that st
ft
= ft+1

ft

kt+1pIt
ft+1

=
kt+1pIt
ft

. The RHS of

the latter is negatively correlated at -0.81 with actual s
f and has much lower volatility — the

coefficient of variation is 0.07.

In the standard quadratic formulation of Tobin’s Q, the expression on the RHS becomes

ft+1
ft

"
QK
t

ft+1
kt+1

#
, where QK

t is linear in it
kt
. This is the specification of Table 3, column 1. As seen

in Table 7, it is basically uncorrelated with st
ft
. The fitted series in this case too has a very low

coefficient of variation (0.04).

The current formulation performs much better as it has four new ingredients: first, it

includes the labor term nt+1Q
N
t ; second, the present value expressions Q

K
t and QN

t are convex

functions of gross investment and gross hiring ( itkt and
qtvt
nt
) with a sufficiently high degree of

convexity; third, gross hiring qtvt
nt

is a volatile series (much more than net hiring nt+1−nt
nt

); fourth,

there is a negative interaction between hiring and investment. These features generate the fit both

in terms of correlation and in terms of volatility. Taking into account the value of labor, using the

appropriate convexity, using gross rather than net flows, and taking into account the interaction

between hiring and investment are thus crucial for explaining the dynamics of asset values.
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7. Conclusions

The paper embeds frictional labor markets and capital adjustment costs in a production-based

asset pricing model, focusing on the relationship between labor and the market value of the firm.

The model is corroborated using structural estimation with aggregate time-series data for the U.S.

non-financial corporate business sector. Estimation, focusing on frictions and adjustment costs

parameters, yields reasonable values for these costs. We find that the conventional specification —

quadratic adjustment costs for capital and no hiring costs — performs poorly. Rather, the interaction

between capital and labor adjustment costs is important and non-linearities matter.

More specifically, the main empirical results can be summarized as follows:

(i) A convex adjustment costs function is able to account for the data, as evidenced by the

F1 and F2 errors analysis and by the measures of fit of the predicted s
f . The latter performs much

better than the prevalent quadratic specification.

(ii) Restricting the same equations to standard formulations (quadratic, ignoring hiring, or

ignoring the investment-hiring interaction) yields poor performance.

(iii) The estimates imply adjustment costs of reasonable magnitude, both when compared

to known estimates and when evaluated in terms of the breakdown of s
f into components.

(iv) The present value of hiring QN plays an important role both in terms of mean asset

values and in terms of explaining asset value volatility.

(v) The fit of the model and its improvement over the existing literature is due to the

use of gross flows for both investment and hiring, the joint consideration of hiring and investment

including their interaction, and the sufficient convexity of the adjustment costs function.

The key implication of the results is that firms’ market value embodies the value of hiring

and investment over and above the capital stock. Investment and hiring asset values are forward-

looking, expected present value expressions. Consequently they exhibit relatively high volatility,

similar to the behavior of financial variables with an asset value nature. The paper’s key theme is

to link a major financial variable — the market value of firms — to these asset values. The standard
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neoclassical model links this market value with a stock — namely capital — that does not have

such properties. This difference explains the fact that the current model is able to account for the

high volatility of firms’ market value and to provide an empirically credible link between financial

markets and the markets for physical capital and labor.

This paper does not attempt to characterize the driving impulses affecting hiring, investment

and firms’ market values. Further exploration of these forces, such as changes in productivity, is

a natural next step. Such an investigation will require a general equilibrium setup.11 As shown in

previous studies, this involves dealing with the consumption side and all the associated empirical

difficulties. Another potential exploration is a micro study using firm-level data. Such a study could

allow for firm or worker heterogeneity and the examination of issues such as fixed costs. However,

a serious empirical difficulty lies in the (non) existence of appropriate data on gross worker flows

in conjunction with consistent data on investment flows and firms’ market value. Given that the

interaction of hiring and investment rates has been shown to be important, this data problem needs

to be resolved before any empirical exploration at the firm-level can be accomplished.

11The standard set-up will need to be changed to account for investment and hiring decisions of the type examined

here; see, for example the discussion in Danthine and Donaldson (2002b).
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8. Appendix A: Derivation of the Firms’ Market Value Equation

The following derivations are based on Hayashi (1982). First we multiply throughout the FONC

with respect to investment (2.10) by it, the FONC with respect to capital (2.9) by kt+1, the FONC

with respect to vacancies (2.12) by vt, and the one with respect to employment (2.11) by nt+1 to

get

0 = − (1− τ t)
¡
pIt + git

¢
it + itQ

K
t (8.1)

0 = − (1− τ t) gvtvt + vtqtQ
N
t (8.2)

kt+1Q
K
t = kt+1Et

©
βt+1[(1− τ t+1)

¡
fkt+1 − gkt+1

¢
+ (1− δt+1)Q

K
t+1]

ª
(8.3)

nt+1Q
N
t = nt+1Et

©
βt+1

£
(1− τ t+1)

¡
fnt+1 − gnt+1 − wt+1

¢
+ (1− ψt+1)Q

N
t+1

¤ª
(8.4)

We then insert the law of motion for capital (2.2) into equation (8.1), roll forward all expressions

one period, multiply both sides by βt+1 and take conditional expectations on both sides:

Et

£
βt+1 (1− τ t+1)

¡
pIt+1 + git+1

¢
it+1

¤
= Et

©
βt+1 [kt+2 − (1− δt+1)kt+1]Q

K
t+1

ª
. (8.5)

and so:

Et

£
βt+1(1− δt+1)

¡
kt+1Q

K
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¢¤
= Et

©
βt+1

£¡
kt+2Q

K
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¡
pIt+1 + git+1

¢
it+1

¢¤ª
Combining the last expression with equation (8.3) we get

kt+1Q
K
t = Et

³
βt+1

³
cfkt+1 + kt+2Q

K
t+1

´´
(8.6)

or

Et

³
βt+1cf

k
t+1

´
= kt+1Q

K
t −Et

¡
βt+1kt+2Q

K
t+1

¢
. (8.7)

It follows from the definition of the firm’s market value in equation (2.18) that

ϑkt −Et

³
βt+1ϑ

k
t+1

´
= Et

³
βt+1cf

k
t+1

´
. (8.8)
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Thus,

ϑkt −Et

³
βt+1ϑ

k
t+1

´
= kt+1Q

K
t −Et

¡
βt+1kt+2Q

K
t+1

¢
, (8.9)

which implies

ϑkt = kt+1Q
K
t .

We derive a similar expression for the case of labor. Inserting the law of motion for labor

from equation (2.3) into equation (8.2), multiplying both sides by βt, rolling forward all expressions

by one period, taking conditional expectations, and combining with equation (8.4) we get

Et

¡
βt+1cf

n
t+1

¢
= nt+1Q

N
t −Et

¡
βt+1nt+2Q

N
t+1

¢
. (8.10)

The definition of the firm’s value in equation (2.6) implies that

ϑnt −Et

¡
βt+1ϑ

n
t+1

¢
= Et

¡
βt+1cf

n
t+1

¢
. (8.11)

Thus,

ϑnt −Et

¡
βt+1ϑ

n
t+1

¢
= nt+1Q

N
t −Et

¡
βt+1nt+2Q

N
t+1

¢
. (8.12)

This implies the following expression for the asset value of employment:

ϑnt = nt+1Q
N
t .

Hence, the total market value of a firm, st, equals:

st = ϑkt + ϑnt = kt+1Q
K
t + nt+1Q

N
t . (8.13)

where QK
t and QN

t are defined in equations (2.15) and (2.16), respectively.
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9. Appendix B: The Data

The data are quarterly and cover the period from 1976:1 to 2002:4. They pertain to the U.S.

non-financial corporate business (NFCB) sector unless noted otherwise.

9.1. Output and Price Deflator

Output, f and its price deflator pf pertain to the NFCB sector. They originate from the NIPA

accounts published by the BEA of the Department of Commerce.12

9.2. Investment, Capital, Depreciation and the Price of Investment

We generate quarterly series by combining data series from the BEA and from the Flow of Funds

Accounts of the Board of Governors. We depart from quarterly data whenever they are available.

Our procedure to generate the quarterly series consists of two steps. Since we require all quarterly

series to be consistent with the respective annual series, we start by putting together the annual

series against which to compare the quarterly series.

9.2.1. Step 1: Generating quarterly investment and depreciation series.

a. We use the end-of-year stock of real physical capital k from the BEA’s fixed assets tables 4.1

and 4.2 and the annual real capital depreciation kdepr from the fixed assets table 4.4 in order to

compute an implied annual investment series i against which we later compare the quarterly series

for consistency.13

it = kt − kt−1 + kdeprt

12See www.bea.doc.gov/bea/dn/st-tabs.htm
13Note that we use the implied annual investment series, rather than the annual series from the BEA’s Fixed Assets

Tables (4.7 and 4.8), since the latter series systematically falls short of the implied series, and, therefore, cannot be

used to replicate the annual capital stock data.
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The timing results from the fact that k is an end-of-year stock, whereas kdepr is a flow variable,

so that the following link to the annual depreciation rate δ holds:

kdeprt = δt · kt−1

We compute the real quarterly investment series using the nominal quarterly investment

series from table F.6 of the Flow of Funds Accounts of the Board of Governors of the Federal

Reserve, deflating it by the price index of nonresidential private fixed investment (NIPA table

1.1.5).14

Since the implied annual real investment series i from BEA is typically different than the

time-aggregate of the quarterly real investment series from the Flow of Funds Accounts, we use

Denton’s (1971) method in order to equally spread the discrepancy between these two series across

the quarterly entries of any given year.15

b. To generate quarterly real depreciation rates, δq, we divide the quarterly real series on

capital depreciation in NFCB from NIPA table 1.14 by a quarterly real series on physical capital

which we simulate by log-linearly interpolating the annual figures on physical capital from the fixed

assets tables 4.1 and 4.2.

We can show that for the simulated quarterly capital series to be compatible with the annual

capital series, the implied annual investment series i needs to equal the following expression

i1 (1− δq,1) (1− δq,2) (1− δq,3) + i2 (1− δq,2) (1− δq,3) + i3 (1− δq,3) + i4, (9.1)

where it, t = 1, 2, 3, 4 denotes investment in quarter t.

With quarterly capital depreciation, expression (9.1) typically falls short of the annual investment

14We built an alternative investment deflator using annual real and nominal data on investment in NFCB from

the BEA’s fixed assets tables 4.7 and 4.8 and log-linearly interpolated it. The correlation coefficient between the two

alternative deflators equals 0.994 between 1973:1 and 2001:4. Since the latter deflator is not available beyond 2001,

we work with the deflator based on nonresidential private fixed investment.
15This spread can be uniform, or it can follow a more involved pattern. We used a more involved pattern, but the

results were very similar when we used the most simple distributive scheme.
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i, and hence, the aggregated quarterly capital series falls short of its annual pendant. We therefore

equally spread any discrepancy between the implied annual investment series i and expression (9.1)

across the respective quarters by applying Denton’s (1971) method again.

9.2.2. Step 2: Generating quarterly capital stock series.

We use the twice adjusted quarterly real investment series, the quarterly real depreciation rate, a

starting value for the real physical capital stock and simulate the desired quarterly series of real

physical capital with the help of the well-known capital accumulation equation:

kt+1 = kt(1− δt) + it.

The end-of-year values of the quarterly series are very close to the corresponding values of the

annual series from the fixed assets tables 4.1 and 4.2.

9.2.3. Real Price of New Capital Goods

In order to compute the real price of new capital goods, pI , we determine the price indices for

output and for investment goods. The price index for output, pf , equals the ratio of nominal to

real GDP in NFCB. We know that investment in NFCB Inv consists of the components equipment

Eq and structures St. We define the time-t price-indices for good j = Inv,Eq, St as pjt respectively

and their change between t-1 and t by ∆pjt , j = Inv,Eq, St. These price indices are chain-weighted.

Thus, we know that
∆pInvt

pInvt−1
= ωt

∆pEqt

pEqt−1
+ (1− ωt)

∆pStt
pStt−1

where

ωt =
(nominal expenditure share of Eq in Inv)t−1 + (nominal expenditure share of Eq in Inv)t

2
.
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We start from an arbitrary value pInv0 and construct the sequence of prices indices
©
pInvt

ªT
t=0

by

adding the percentage changes computed from the equations above. Finally, we divide the series

by the price index for output, pFt , to obtain the relative price of new capital goods, p
I .

Note that the price indices pEq and pSt and therefore pI are actually adjusted for taxes.

Let the parameter τ denotes the statutory corporate income tax rate as reported by the U.S. Tax

Foundation. Let ITC denote the investment tax credit on equipment and public utility structures,

ZPDE the present discounted value of capital depreciation allowances, and χ the percentage of the

cost of equipment that cannot be depreciated if the firm takes the investment tax credit.16 Then

pEq = epEq (1− τEq) , p
St = epSt (1− τSt) ,

τEq =
(1− τ ZPDE)

1− τ

τS =
1− ITC − τZPDE (1− χITC)

1− τ

Finally, as pIt is an index, we multiply it by a positive scaling constant e
A where we either

impose or estimate A.

9.3. Employment, Matches and Separations

Employment n is defined as wage and salary workers in non-agricultural industries less government

workers less workers in private households less self-employed workers less unpaid family workers.

All series originate from the BLS.

For matches (qv) and separation (ψ) we use data on gross worker flows as computed by

Bleakely et al. (1999). These data are adjusted, including seasonal adjustment, in ways explained

16The last three series are the ones compiled for the macro model of the Board of Governors of the U.S. Federal

Reserve System. Flint Brayton kindly provided us with these series.
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in the latter reference. They pertain to flows between the employment pool on the one hand and

the unemployment and out of the labor force pools on the other hand.

This data set pertains to the entire economy. In most specifications we wish to consider

flows pertaining to the non-financial corporate sector. We thus proceed as follows:

a. Denoting variables for the entire economy by TOT we solve for ψTOT period by period

from the labor force dynamics equation:

nTOTt+1 = nTOTt (1− ψTOT
t ) + (qv)TOTt

b. We then use the dynamic equation to solve for (qv)NFCB (where NFCB = non financial

corporate business) period by period as follows:

nNFCB
t+1 = nNFCB

t (1− ψTOT
t ) + (qv)NFCB

t

In estimation we use (qv)
NFCB
t

nNFCB
t

and ψTOT
t . Thus we are implicitly assuming — for lack of data

— that ψTOT
t = ψNFCB

t but we are not imposing such restrictions on (qv)NFCB
t on which we do not

have data directly.

In Table C-3 we use two alternatives. Column 6 solves (qv)NFCB
t from the following equa-

tion:

nNFCB
t+1 = nNFCB

t (1− ψTOT,actual
t ) + (qv)NFCB

t

Here we use the actual separation rate for the entire economy ψTOT,actual
t .

In column 7 of that table we use (qv)
TOT
t

nTOTt
and ψTOT

t i.e. values for the entire economy rather

than just the corporate sector.

9.4. The Labor Share

For the labor share of income wn
f we use compensation of employees (the sum of wage and salary

accruals and supplements to wages and salaries) as a fraction of the gross product of the non-
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financial corporate business sector.17

9.5. Market Value Data

We use the market value of non-farm, non-financial business. The data originate from Hall (2001).18

They are based on the Fed Flow of Funds accounts and are defined as follows.

Source: Flow of Funds data and interest rate data from www.federalreserve.gov/releases.

The data are for non-farm, non-financial business. Stock data were taken from ltabs.zip.19

Definition: The value of all securities is the sum of financial liabilities and equity less

financial assets, adjusted for the difference between market and book values for bonds.20

9.6. Discount Rate and Discount Factor

We use four alternatives for the firms’ discount rate rt, which generates the discount factor given

by βt = [1/ (1 + rt)]:

a. The main series used, following the weighted average cost of capital approach in corporate

finance, is a weighted average of the returns to debt, rbt , and equity, r
e
t :

rt = ωtr
b
t + (1− ωt) r

e
t ,

with

rbt = (1− τ t) r
CP
t − θt

ret =
fcf test + ebst − θt

where:

(i) ωt is the share of debt finance as reported in Fama and French (1999).

17The data are taken from NIPA Table 1.16, lines 19 and 24.
18See www.stanford.edu/~rehall/Procedure.htm for a full description and www.stanford.edu/~rehall/page3.html.
19Downloaded at www.federalreserve.gov/releases/z1/Current/data.htm.
20The subcategories unidentified miscellaneous assets and liabilities were omitted from all of the calculations. These

are residual values that do not correspond to any financial assets or liabilities.
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(ii) The definition of rbt reflects the fact that nominal interest payments on debt are tax

deductible. rCPt is Moody’s seasoned Aaa commercial paper rate. The commercial paper rate for

the first month of each quarter represents the entire quarter. The tax rate is τ as discussed above.

(iii) θ denotes inflation and is measured by the GDP-deflator of pf discussed above.

(iv) For equity return we use the CRSP Value Weighted NYSE, Nasdaq and Amex nominal

returns ( cf tst +
ebst in terms of the model, using tildes to indicate nominal variables) deflated by the

inflation rate θ.

The above is computed quarterly using monthly returns of a given quarter. As an alternative

we compute the quarterly returns using the monthly returns of months 2 and 3 within the same

quarter and month 1 in the following quarter.

We experiment with two other series to see their effect on the results:

b. The rate of change of the SP500 index computed as follows:

rQt =

h
S3
S0

S4
S1

S5
S2

i 1
3

1 + ϑ
− 1

where Sj is the level of the stock index at the end of month l, the current quarter has

months 4 and 5, the preceding quarter has months 1, 2, 3 and the quarter preceding that has month

0.

c. Non-durable consumption growth, which corresponds to the discount rate in a DSGE

model with logarithmic utility. If utility is given by:

U(ct) = ln ct

Then in general equilibrium:

U 0(ct) = U 0(ct+1) (1 + rt,t+1)

Hence:

rt,t+1 =
ct+1
ct
− 1
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10. Appendix C: Estimation Methodology and Robustness Checks

10.1. GMM

We use the GMM methodology proposed by Hansen (1982).21 The three equations to be estimated

– the firms’ first-order necessary conditions (F1) and (F2), and the asset pricing equation (2.20)

– include the parameters of the adjustment costs function g and the production function f . These

parameters are estimated by using the property of rational expectations whereby the firm’s expec-

tational errors are uncorrelated with any variable in the firms’ information set. Formally there is a

set of orthogonality conditions involving the expectational error jt and a vector of instruments Z:

Et[Zt ⊗ jt(xt+1,Θ0)] = 0 (10.1)

where x is a vector of variables, Θ0 is a vector of parameters to be estimated, ⊗ is the Kronecker

product operator and Zt is a vector of elements in the firms’ information set Ωt.

10.2. Estimating Equations

Taking equations (F1) divided throughout by ft
kt
, (F2) divided throughout by ft

nt
and (2.20) divided

throughout by ft (to induce stationarity), and replacing expected values by actual ones, the errors

jt are derived as follows:

j1t =
(1− τ t)

¡
git + pIt

¢
ft
kt

−
( ft+1

kt+1
ft
kt

βt+1 (1− τ t+1)
ft+1
kt+1

£
fkt+1 − gkt+1 + (1− δt+1)(git+1 + pIt+1)

¤)
(10.2)

j2t =
(1− τ t)

gvt
qt

ft
nt

−
( ft+1

nt+1
ft
nt

βt+1 (1− τ t+1)
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(10.3)

j3t =
st
ft
− ft+1

ft
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1

ft+1
kt+1

©
βt+1 (1− τ t+1)

£
fkt+1 − gkt+1 + (1− δt+1)(p

I
t+1 + git+1)
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+ 1
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βt+1 (1− τ t+1)

³
fnt+1 − gnt+1 − wt+1 + (1− ψt+1)

gvt+1
qt+1

´o
⎤⎥⎥⎦ (10.4)

21For elaboration on the methodology see Ogaki et al (2005).
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The functions and their derivatives are given by:

f(zt,nt, kt) = eztnt
αk1−αt (10.5)

fkt = (1− α)
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kt
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nt
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10.3. Instruments.

For the instruments used in Zt we undertake instrument relevance tests. We consider a number of

instrument sets, which include lags of variables appearing in the equations. Table C-1 reports the

instruments sets and the relevance tests: first, the F statistics from first stage regressions of each

endogenous variable on the instrument set. As these statistics consider each endogenous variable

in isolation, the table goes on to consider a measure that takes into account joint relevance of the

instruments. This is the adjusted partial R2p suggested by Shea (1997): for any given endogenous

variable Xi it is the squared correlation between (i) the component of Xi orthogonal to the other

endogenous variables Xj 6=i and (ii) the component of Xi’s projection on the instruments orthogonal

to the projection of the other endogenous variables Xj 6=i on the instruments. This statistic R2p is

corrected for degrees of freedom as follows:
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R
2
p = 1−

T − 1
T − n

(1−R2p)

where T is sample size and n is the number of instruments.

See Table C-1 (p.xxxii)

The main findings are as follows:

(i) The set {cst, it−jkt−j
,
qt−jvt−j
nt−j

,
st−j
ft−j

} — i.e. the set of lagged values of the endogenous control

variables and the asset value — is highly relevant. This is so both according to the F statistics and

to the adjusted partial R2p statistics. However individually these variables are not relevant, when

the endogenous variables are considered jointly (i.e. the R2p values are low).

(ii) Another set which is relevant to a large extent, though less than the afore mentioned one,

is the set of the model’s exogenous variables {cst, βt−j , τ t−j , ψt−j , δt−j ,
wt−jnt−j

ft−j
,
ft−j
kt−j

}; individually

or in pairs the instruments are not very relevant.

(iii) The number of lags does not matter much.

The reasons why sub-sets of instruments are not as relevant as the full set are two fold:

one is straightforward — there may be lower explanatory power for the sub-set relative to the full

set (taking into account degrees of freedom), as can be seen in the first-stage F statistics. The

second reason appears to play a bigger role here and is due to multi-collinearity of the “fitted”

endogenous variables i.e. the multi-collinearity of the parts of the endogenous variables explained

by the instruments. This multi-collinearity was found to be bigger in the sub-sets than in the full

set.

10.4. An alternative specification

We can also estimate the relevant parameters using just the asset pricing equation at time t. This

can be derived as follows. Start from the asset pricing equation (2.19) and insert the laws of motion
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of the state variables (2.2) and (2.3):

st = kt+1Q
K
t + nt+1Q

N
t

= [(1− δt)kt + it]Q
K
t + [(1− ψt)nt + qtvt]Q

N
t

Use the F.O.C (2.10) and (2.12) to replace QK
t and QN

t as follows:
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After some manipulation this equation can be expressed in the following stationary form:
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+[(1− ψt) +
qtvt
nt
]

"
(1− τ t)

gvt
qt
ft
nt

#

In order to be meaningful for estimation an error process needs to be specified. One way

is to postulate that there is a stochastic element in asset values — to be denoted by ξt. Hence the

period t estimating equation is:

st
ft

= [(1− δt) +
it
kt
]

"
(1− τ t)

Ã"
f1 + e1

µ
it
kt

¶η1−1
+ e3

µ
qtvt
nt

¶η3
µ
it
kt

¶η3−1
#
+

pIt
ft
kt

!#
(10.6)

+[(1− ψt) +
qtvt
nt
]

"
(1− τ t)

"
f2 + e2

µ
qtvt
nt

¶η2−1
+ e3

µ
it
kt

¶η3
µ
qtvt
nt

¶η3−1
##
+ ξt

The results are reported in Table C-2. They follow the same logic of constraining parameters

as in Table 2.
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There are two main conclusions from the table:

a. The point estimates are very similar to those of Table 2.

b. The estimates are not precise: standard errors are large and the J statistics indicate

rejection.

The first conclusion is due to the fact that essentially this is the same model, just re-

formulated, estimated on the same data set. The second conclusion is probably due to the fact

that less restrictions are imposed on the data and less data are used (e.g., productivity and wage

data are not used) relative to the three equation specification estimated in Table 2 (and in all other

estimation tables).

10.5. Robustness Checks

We report variations on the basic specification to check for robustness. The variations pertain to

the instrument set (the instruments used and their lags) and to alternative formulations of certain

variables. These are reported in Tables C-3 and C-4. All variations are outlined in the notes to the

tables.

The point estimates, and thus the implied cost function, are very similar across specifica-

tions. The major difference across columns pertains to the standard errors. Note that Table C-4

looks at alternative formulations of certain variables, using the instrument set of Table 2. Column

1 uses the sample averages for the depreciation rate δ and for the separation rate ψ. Columns 2

to 5 examine variations in β. Column 2 uses a discount factor based on the rate of growth of non-

durable consumption, column 3 uses a discount factor based on the SP500 rate of change, column

4 uses a fixed discount factor β = 0.98, and column 5 uses an alternative method of computing
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the basic specification (see Appendix B for exact formulations). Columns 6 and 7 use alternative

formulations of qv
n and ψ as explained in Appendix B. The estimates are robust to the use of these

alternative formulations.
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11. Appendix D: The Interaction between Investment and Hiring

In order to understand the significance of the e3-estimates, it is useful to see how hiring depends

on the value of investment and how investment depends on the value of hiring. First, consider the

former case (hiring). The FONC may be re-written as follows:

F1 :

µegit( itkt , qtvtnt
) + pIt

¶
= Qk

t

F2 :
1

qt
egvt( itkt , qtvtnt

) = QN
t .

Differentiate both equations with respect to QK yields:

∂egit
∂ it
kt

∂ it
kt

∂Qk
+

∂egit
∂ qtvt

nt

∂ qtvt
nt

∂Qk
= 1

1

qt

"
∂egvt
∂ it
kt

∂ it
kt

∂Qk
+

∂egvt
∂ qtvt

nt

∂ qtvt
nt

∂Qk

#
= 0

where we use the following notation:

gii =
∂egit
∂ it
kt

giv =
∂egit
∂ qtvt

nt

gvi =
1

q

∂egvt
∂ it
kt

gvv =
1

q

∂egvt
∂ qtvt

nt

Then:

gii
∂ it
kt

∂Qk
+ giv

∂ qtvt
nt

∂Qk
= 1 (11.1)

gvi
∂ it
kt

∂Qk
+ gvv

∂ qtvt
nt

∂Qk
= 0

Solving for the marginal effect of QK on investment and on hiring yields:

∂ it
kt

∂Qk
=

gvv
giigvv − givgvi

> 0

∂ qtvt
nt

∂Qk
= − gvi

giigvv − givgvi
.
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With a convex adjustment costs function g, the denominator is positive. Evidently investment rates

rise with QK ; its effect on hiring (
∂
qtvt
nt

∂Qk ) depends on the sign of gvi. A negative point estimate of

e3 implies a negative value for gvi and, therefore, a positive sign for ∂
qtvt
nt

/∂Qk. Hence, when QK

rises both i
k and

qv
n rise.

Using a similar argument we can show that i
k and

qv
n rise with an increase in QN .
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12. Tables

Table 1

Descriptive Sample Statistics

Variable Mean Standard Deviation

i
k 0.023 0.004

f
k 0.17 0.01

τ 0.39 0.06

δ 0.016 0.003

wn
f 0.66 0.01

qv
n 0.089 0.009

ψ 0.086 0.009

s
f 6.0 2.1

β 0.989 0.006

Note: The sample size contains 108 quarterly observations from 1976:1 to 2002:4. For data

definitions see Appendix B.
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Table 2

GMM Estimates of (F1), (F2) and (2.20)

1 2 3 4

constrained powers all free η2, η3 η1, η3 η1, η2

η1 2.80 2.80 2.80 2.80

(0.04) (0.03) - -

η2 3.40 3.40 3.41 3.40

(0.15) - (0.10) -

η3 2.00 2.00 2.00 2.00

(0.002) - - (0.001)

e1 16,123 16,144 15,929 15,851

(4,784) (3,919) (772) (1,460)

e2 2,772 2,851 2,936 2,849

(1,364) (306) (992) (312)

e3 -102,291 -102,229 -102,475 -101,529

(25,266) (6,873) (6,975) (18,553)

f1 1.98 2.08 2.12 1.99

(15.89) (6.87) (0.99) ( 6.21)

f2 -2.02 -2.01 -1.91 -2.00

(2.78) (0.72) (2.08) (0.82)

α 0.69 0.69 0.69 0.69

(0.10) (0.06) (0.09) (0.08)

J-Statistic 60.1 58.3 56.9 58.0

p-Value 0.11 0.20 0.23 0.21
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5 6 7

constrained scale f1 = 2; , f2 = −2

constrained powers η2, η3 η1, η3 η1, η2

η1 2.80 2.80 2.80

(0.003) - -

η2 3.40 3.40 3.40

- (0.02) -

η3 2.00 2.00 2.00

- - (0.0001)

e1 16,197 16,024 16,049

(847) (742) (636)

e2 2,830 2,976 2,828

(229) (508) (247)

e3 -103,334 -103,352 -103,859

(5,382) (6,303) (5,609)

α 0.68 0.68 0.69

(0.02) (0.03) (0.02)

J-Statistic 62.2 58.2 63.1

p-value 0.16 0.26 0.14

Notes:

1. The table reports the point estimates of the parameters and standard errors in paren-

theses (except where constrained).

2. Instruments used are a constant and 6 lags of { it−jkt−j
,
qt−jvt−j
nt−j

,
st−j
ft−j

}.

3. The top rows delineate which parameters are constrained.
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Table 3

GMM Estimates of (F1), (F2) and (2.20)

Alternative Specifications

1 2 3

quadratic η1 = η2 = 3 no hiring equation

constraints f1 = f2 = e2 = e3 = 0 e3 = 0; f1 = 2; f2 = −2 η1, η3; f1 = 2; f2 = −2

η1 2 3 2.80

- - -

η2 - 3 3.40

- - (0.06)

η3 - - 2

- - -

e1 152 7,497 15,786

(7.8) (213) (1,537)

e2 0 116 2,774

- (12) (1251)

e3 0 0 -100,914

- - (14,623)

α 0.81 0.59 0.71

(0.04) (0.01) (0.16)

J-Statistic 66.0 74.3 46.4

p-Value 0.002 0.04 0.06

Notes:

1. The table reports the point estimates of the parameters and standard errors in paren-
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theses.

2. Instruments used are a constant and 6 lags of { it−jkt−j
,
qt−jvt−j
nt−j

,
st−j
ft−j

}.

3. The third row delineates which parameters are constrained.
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Table 4

Estimated Total and Marginal Adjustment Costs

Table 2, column 7 Table 3, column 1

value estimates value estimates

at mean std. at mean std.

total g
f 0.023 0.018 0.042 0.002

marginal hiring gv
f/n 1.48 0.57

marginal investment gi
f/k 1.31 0.54 3.55 0.18

Notes:

1. The ‘value at mean’ statistics refer to the relevant expression evaluated at the sample

mean of it
kt
and qtvt

nt

2. Estimates standard deviation statistics refer to the root of the variance of the relevant

cost expression, computed using the variance-co-variance matrix of the estimated parameters. The

variables are evaluated at their sample mean.

3. All moments use the point estimates of the parameters estimated in the specification

given in the first row.
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Table 5

Estimates of Marginal Installation Costs (MC) for Capital

A. Summary of Selected Studies for the U.S. Economy

MC = γ I
K (unless noted otherwise)

Study Sample γ Mean I
K Mean MC

1 Summers 1981 BEA, 1932-1978 32.26 0.13 4.29

2 Hayashi 1982 Corp. Sector, 1953-1976 23.64 0.14 3.31

3 Shapiro 1986 Manufacturing, 1955-1980 2. 35 0.08 0.19

4 Hubbard et al. 1995 Compustat, 1976-1987 0.91 0.23 0.21

5a Cummins et al. 1994 Compustat 1953-1988 17.54− 52.6 0.18 3.19− 9.47

5b Tax adjusted 3.34− 5.06 0.18 0.60− 0.91

6a Gilchrist Compustat, 1985-1989 30.30 0.17 5.15

6b and Himmelberg 1995 Fundamental Q 4.13 0.17 0.70

7a Gilchrist Compustat, 1980-1993 0.79 0.23 0.18

7b and Himmelberg 1998 High vs. Low Dividend 0.54− 4.65 0.23 0.12− 1.07

8 Barnett, Sakellaris 1999 Compustat, 1960-1987 γ2 = 1.44 0.20 0.27

γ3 = −.36

γ4 = .023

9 Cooper, Ejarque 2003 simulated based on LRD 0.15 0.17 0.025

10 Cooper, Haltiwanger 2005 LRD panel, 1972-1988 0.195 0.12 0.023

Notes:

1. Investment rates i
k and marginal costs are expressed in annual terms.

2. All studies use annual data, except Shapiro (1986) who uses quarterly data. For the

latter study, i.e. study (3), Shapiro (1986) uses the formulationMC = gkk · it ·yt.We represent this
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marginal installation cost alternatively asMC = gkk·y·k
4 · ik ≡ γ · ik .With an estimate of gkk = 0.0014

and his data averages, we get γ = 9.38 in quarterly data and γ = 2.35 in annual data.

3. In study (8) MC = γ2
I
K + γ3

¡
I
K

¢2
+ γ4

¡
I
K

¢3
.

4. The parameter estimates in Hubbard et al (1995) pertain to their full sample. Those of

Gilchrist and Himmelberg (1995) relate to the full sample, and the estimation with Tobin’s Q (6a)

and a fundamental Q (6b), respectively. The estimates in Gilchrist and Himmelberg (1998) relate

to the sales-based measure of Tobin’s Q. Line 7a reports full-sample results, and line 7b reports

the range of estimates for firms with a low vs. high dividend payout. The estimate of Cooper and

Haltiwanger (2005) is based on the following procedure: “...searched over quadratic adjustment

costs models to find the value of γ to maximize the R2 between the series created by the best fit

model and that created by the quadratic model. A value of γ = 0.195 solved this maximization

problem and the R2 measure was 0.859.” (page 23)

5. The studies cited are:
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B. Implications of the Estimates

Total and Marginal Costs

γ TC
F =

γ
2 (

I
K )

2

F
K

MC
F
K

=
γ I
K
F
K

= γ I
F

I
K = 0.10 I

K = 0.20 I
F = 0.15

I
F = 0.20

high 50 0.37, 0.50 0.77, 1 7.5 10

20 0.15, 0.20 0.31, 0.40 3 4

moderate 3 0.02, 0.03 0.05, 0.06 0.45 0.60

0.7 0.005, 0.007 0.01, 0.014 0.11 0.14

low 0.2 0.001, 0.002 0.003, 0.004 0.03 0.04

Notes:

1. The two values in the TC
F column are based on computations which use alternative values

of F
K . These are computed using F

K =
I
K
I
F

as follows:

I/F

0.15 0.20

I/K 0.10 0.67 0.5

0.20 1. 3 1

Hence for every I/K value there are two alternative F
K values, as two values of I

F are used.
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Table 6

Hiring and Investment Co-Movement

Correlations

ρ( itkt ,
qtvt
nt
) -0.63

ρ(
QK
t
ft
kt

,
QN
t )
ft
nt

-0.98

ρ(
QK
t
ft
kt

, itkt ) 0.87

ρ(
QK
t
ft
kt

, qtvtnt
) -0.92

ρ(
QN
t
ft
nt

, qtvtnt
) 0.88

ρ(
QN
t
ft
nt

, itkt ) -0.92

Notes:

1. The estimated asset values are given by:

QK

ft
kt

= (1− τ t)

¡
git + pIt

¢
ft
kt

QN
t
ft
nt

= (1− τ t)

gvt
qt
ft
nt

2. Point estimates used are those of Table 2, column 7.
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Table 7

Actual vs. Predicted Asset Value s
f

Goodness of Fit

A. Moments

actual st
ft

predicted
³
st
ft

´t
full model quadratic no interaction

mean 6.15 5.97 5.80 6.79

median 5.66 5.63 5.85 6.64

standard deviation 2.16 1.82 0.22 0.60

auto-correlation 0.97 0.92 0.89 0.97

skewness 0.94 0.78 -0.54 0.78

kurtosis 3.10 2.92 2.78 3.13

B. Correlations ρ(
³est
ft

´t
, stft )

full model quadratic no interaction

0.89 0.14 0.71

Notes:

1. Moments are based on the following specifications for predicted values:

µfst
ft

¶t

= [(1− δt) +
it
kt
]

"
(1− τ t)

¡
git + pIt

¢
ft
kt

#
+ [(1− ψt) +

qtvt
nt
]

"
(1− τ t)

gvt
qt
ft
nt

#
2. The predicted values use the point estimates of the following:

a. Full model use the results of Table 2, column 7.

b. Quadratic use the results of Table 3, column 1.

c. No interaction use the results of Table 3, column 2.
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Table 8

Decomposition of Predicted Market Values
]³ st
ft

´t
a. Decomposition of the Mean

Share of
³
st
ft

´1
0.67

Share of
³
st
ft

´2
0.11

Share of
³
st
ft

´3
0.22

b. Simulated Share of Neoclassical Part
³
st
ft

´1
variables β 0.989154

τ 0.394444
ft+1
ft

1.009012

δ 0.015784

f
k 0.165408

s
f 6.039669

calibrated parameters {pI , α}A 1,0.68

{pI , α}B 1.2, 0.64

{pI , α}C 0.8,0.72

resulting share
s
f

1

s
f

A

0.63

s
f

1

s
f

B

0.75

s
f

1

s
f

C

0.50
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c. Variance Decomposition³
st
ft

´1 ³
st
ft

´2 ³
st
ft

´3³
st
ft

´1
0.059 -0.45 0.20³

st
ft

´2
-0.45 4.45 -1.94³

st
ft

´3
0.20 -1.94 0.87

Notes:

1. Moments are based on the following specifications for predicted values:

µfst
ft

¶t

= [(1− δt) +
it
kt
]

"
(1− τ t)

¡
git + pIt

¢
ft
kt

#
+ [(1− ψt) +

qtvt
nt
]

"
(1− τ t)

gvt
qt
ft
nt

#
µ
st
ft

¶1
= [(1− δt) +

it
kt
]

"
(1− τ t)

pIt
ft
kt

#
µ
st
ft

¶2
= [(1− δt) +

it
kt
]

"
(1− τ t)

git
ft
kt

#
µ
st
ft

¶3
= [(1− ψt) +

qtvt
nt
]

"
(1− τ t)

gvt
qt
ft
nt

#

2. The predicted values use the point estimates of Table 2, column 7.
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Table C-1

Instruments Relevance Tests

instrument set lags 1st stage F stat Adjusted Partial R2p
i
k

qv
n

s
f

i
k

qv
n

s
f

it−j
kt−j

1-8 712.5 7.7 12.5 0.05 0.15 0.00
qt−jvt−j
nt−j

1-8 8.2 58.9 30.0 -0.03 0.05 0.13
st−j
ft−j

1-8 19.6 23.4 189.6 0.02 0.10 0.32
it−j
kt−j

,
qt−jvt−j
nt−j

,
st−j
ft−j

1-8 263.2 22.9 65.7 0.92 0.62 0.71
it−j
kt−j

,
qt−jvt−j
nt−j

,
st−j
ft−j

1-4 501.9 55.9 144.4 0.92 0.64 0.71

wt−jnt−j
ft−j

,
ft−j
kt−j

1-8 14.0 24.7 17.5 0.12 0.12 0.22

βt−j , τ t−j 1-8 1.6 12.3 8.0 0.08 0.20 0.16

ψt−j , δt−j 1-8 11.5 43.4 19.3 0.15 0.27 0.09

βt−j , τ t−j , ψt−j , δt−j ,
wt−jnt−j

ft−j
,
ft−j
kt−j

1-4 36.1 36.1 21.6 0.75 0.48 0.42

βt−j , τ t−j , ψt−j , δt−j ,
wt−jnt−j

ft−j
,
ft−j
kt−j

1-8 25.4 17.3 11.7 0.80 0.51 0.43

Notes:

1. F statistics are taken from regressions of each endogenous variable on the instrument

set.

2. The adjusted R2p statistic is constructed according to the methodology in Shea (1997).

xxxii



Table C-2

GMM Estimates of (10.6)

1 2 3 4

constrained powers all free η2, η3 η1, η3 η1, η2

η1 2.80 2.80 2.80 2.80

(0.53) (0.18) - -

η2 3.40 3.40 3.41 3.40

(17.7) - (2.53) -

η3 2.00 2.00 2.00 2.00

(0.21) - - (0.04)

e1 16,107 16,201 16,140 16,206

(41,545) (18,544) (9,740) (5,001)

e2 2,800 2,834 2,861 2,851

(36,933) (4,945) (19,425) (17,798)

e3 -102,141 -103,379 -103,094 -103,166

(314,005) (93,116) (83,317) (149,623)

f1 2.10 2.00 -4.27 1.42

(790) (154) (158) (140)

f2 -2.03 -2.02 4.65 -1.22

(527) (127) (202) (160)

J-Statistic 31.4 32.3 31.9 31.9

p-Value 0.001 0.002 0.002 0.002
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5 6 7

constrained powers η2, η3 η1, η3 η1, η2

constrained scale f1 = 2; f2 = −2

η1 2.80 2.80 2.80

(0.01) - -

η2 3.40 3.40 3.40

- (0.09) -

η3 2 2 2.00

- - (0.001)

e1 16,357 16,324 16,284

(3,976) (3,112) (3,375)

e2 2,887 2,916 2,874

(1,391) (2,298) (1,830)

e3 -104,384 -104,436 -104,013

(25,814) (27,965) (27,773)

J-Statistic 32.6 32.6 32.7

p-Value 0.01 0.01 0.01

Notes:

1. The table reports the point estimates of the parameters and standard errors in paren-

theses (except where constrained).

2. Instruments used are a constant and 6 lags of { it−jkt−j
,
qt−jvt−j
nt−j

,
st−j
ft−j

}.

3. The top rows delineate which parameters are constrained.
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Table C-3

GMM Estimates of (F1), (F2) and (2.20)

Alternative Specifications — Variations on the Instrument Set

1 2 3

instrument set it−j
kt−j

,
qt−jvt−j
nt−j

,
st−j
ft−j

it−j
kt−j

,
qt−jvt−j
nt−j

,
st−j
ft−j

βt−j , τ t−j , ψt−j ,

δt−j ,
wt−jnt−j

ft−j
,
ft−j
kt−j

lags 4 8 4

η1 2.8 2.8 2.8

- - -

η2 3.4 3.4 3.4

- - -

η3 2.00 2.00 2.00

(0.0001) (0.0001) (0.0001)

e1 16,072 16,145 17,378

(756) (457) (378)

e2 2,850 2,892 3,633

(292) (164) (103)

e3 -103,896 -104,015 -121,723

(7,401) (4,519) (2,852)

α 0.69 0.69 0.76

(0.03) (0.02) (0.02)

J-Statistic 52.6 74.4 76.6

p-Value 0.02 0.34 0.28

Notes:
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1. The table reports the point estimates of the parameters and standard errors in paren-

theses.

2. Instruments used are reported in the second row.

3. Constrained parameters are reported in the table without standard errors. In addition

f1 = 2, f2 = −2.
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Table C-4

GMM Estimates of (F1), (F2) and (2.20)

Alternative Specifications — Variations on Variables

1 2 3 4 5 6 7

variable changed δ, ψ β β β β ψ, qvn ψ, qvn

η1 2.8 2.8 2.8 2.8 2.8 2.8 2.8

- - - - - - -

η2 3.4 3.4 3.4 3.4 3.4 3.4 3.4

- - - - - - -

η3 2.00 2.00 2.00 2.00 2.00 2.00 2.00

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

e1 16,070 16,091 16,065 16,020 16,072 15,914 15,930

(627) (602) (646) (508) (677) (746) (538)

e2 2,842 2,845 2,847 2,847 2,846 2,877 2,181

(253) (212) (259) (194) (257) (258) (129)

e3 -104,270 -105,083 -103,410 -102,497 -103,829 -102,846 -92,976

(5,586) (4,958) (5,637) (4,572) (5,849) (7,189) (5,204)

f1 2 2 2 2 2 2 2

- - - - - - -

f2 -2 -2 -2 -2 -2 -2 -2

- - - - - - -

α 0.69 0.68 0.69 0.69 0.69 0.71 0.67

(0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02)

J-Statistic 64.3 69.2 61.2 65.4 60.1 55.7 60.7

p-Value 0.12 0.06 0.18 0.10 0.21 0.34 0.19
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Notes:

1. The table reports the point estimates of the parameters and standard errors in paren-

theses.

2. Instruments used are a constant and 6 lags of { it−jkt−j
,
qt−jvt−j
nt−j

,
st−j
ft−j

}.

3. Constrained parameters are reported in the table without standard errors.

4. Column 1 has δ = 0.016 and ψ = 0.086. In column 2, β is based on non-durable

consumption rate of growth , in column 3 on the SP500 rate of change , in column 4 β = 0.98 and

in column 5, β is based on an alternative computation of the benchmark β. In columns 6 and 7

alternative definitions of ψ and qv
n are used. See the discussion in Appendix B for exact definitions.
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13. Figures
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Figure 1: F1 and F2 residuals

F1 F2

AR -0.25 -0.12

Ljung-Box Q test 1st lag— p value 0.01 0.23

Ljung-Box Q test 2nd lag— p value 0.03 0.13

Ljung-Box Q test 3rd lag— p value 0.06 0.24

Ljung-Box Q test 4th lag— p value 0.08 0.22

Breusch-Godfrey LM test — p value 0.07 0.21
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Figure 2a: Actual and predicted (preferred and quadratic) s
f
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Figure 2b: Actual and predicted (preferred and no interaction) s
f
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