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REFINEMENT OF SOLUTIONS TO THE

LINEAR COMPI,EMENTARITY PROBLEM

S. R. Mohan and A. J. J. Talman

Abatract

In this paper we study the notion of refinement of solutions to a linear

complementazity problem analogous to such a notion in the theory of

noncooperative games. We give sutficient conditions under whích these

refinements exist. In particular we show that if the underlying matrix

of the linear complementarity problem is a 2 x 2 P-matrix, the unique

solution to it must be a proper solution. The concept of pertectness is

much weaker. We prove that if the underlying matrix is a Q-matrix the

problem has at least one períect solution although not all solutions to it

may be perfect. The notion of weak properness is between perfectness and

properness and e~tistence of such a solution is guaranteed if the underlying

matrix is a P-matrix. We also show that if the underlying matrix of the

linear complementazity problem is induced by a bimatrix game as in the

formulation similar to the one given by Miller and Zucker for finding an

equlibrium of a polymatrix game, at least one of its solutions must be

proper corresponding to a proper Naah equilibrium for the game itself. In

general this matrix is not a P-matrix.

Key worda. Linear complementarity problem, perfectness, properness, weak proper-

ness, P-matrices, Q-matrices.



1 Introduction

The notion of a Nash equilibrium point as a solution concept in noncooperative

game theory has been refined in various ways mainly to eliminate certain un-

desirable properties of a Nash equilibrium. Selten ( [8]) introduced the concept

of a perfect equilibrium while Myerson ( [5]) developed the stronger notion of a

proper equilibrium. The concept of a weakly proper equilibrium also has been

introduced, see [9].

Since the problem of computing a Nash equilibrium point for a bimatrix game

(see Lemke and Howson [3]) and for a polymatrix game ( see Howson [2]) have

been formulated as linear complementarity problems, one question that naturally

arises is whether the notion of a perfect or proper equilibrium can be reformulated

to refine the solution of a linear complementarity problem. The refinement for

properness has already been introduced for stationary points of continuous maps

over polytopes. If f: S-~ R" where S is a polytope in R", the existence of a

robust stationary point and its computation have been studied by van der Laan.

Talman and Yang [10], where robust stationarity is the refinement for properness

of stationarity. Note that given a square matrix M of order n, and a vector

q E R", since a stationary point of the map j: R~ -~ R" where f ( x) - Mx -~ q,

is a solution to the linear complementarity problem GCP(q, M), refinement of

solutions to LCP for properness generalizes also the notion of robust stationarity

to maps defined on unbounded polyhedral sets. 5uch refinements have not yet

been considered.

In this paper we study the notions of perfect, proper and weakly proper solu-

tions for a linear complementazity problem. We present some sufficient conditions

for various refinements to exist. In particular we show that if the matrix M is a

2 x 2 P-matrix, the unique solution to the LCP(q, M) is a proper solution. This

result is presented in Section 4. A weaker concept is the concept of perfectness
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which we define in Section 3. We derive a necessary and sufficient condition for

the LCP(q, M) to have a perfect solution. Further, we show that if the matrix

M is a Q-matrix, then for each q E R". the LCP(q, M) has a perfect solution,

although every solution to it may not be perfect. These results are presented in

Section 3. The notion of weak properness is between perfectness and properness.

This notion is also studied in Section 4. Finally, in Section 5 we show that the

LCP(q, M) arising from the Miller-Zucker [4] type formulation of the problem of

finding a Nash equilibrium point of a given bimatrix game always has a proper

solution corresponding to a proper equilibrium point of the game. It may be

noted that this matrix is not a P-matrix.

2 Mathemetical Preliminaries

Let R" denote the n-dimensional Euclidean space over the reals and let A be a

matrix of order m x n containing m rows and n columns. We use the notation

A.~ to denote the jth column of A, for j - 1, 2, ..., n and A;., to denote the ith

row of A, for i - 1, 2, ..., m. In particular we consider matrices of order n x n,

also called square matrices. Let M be a square matrix of order n. For J and

K, being nonempty subsets of the set {1,2,...,n}, the symbol M~K is used to

denote the submatrix of M containing only those rows and columns of M whose

indices are in the sets J and K, respectiively, arranged in their natural order.

In particular, the symbol M~J denotes the principal submatrix of M containing

only those rows and columns whose indices are in the set J. Given a matrix A,

the set of all nonnegative linear combinations of the columns of A is denoted by

Pos(A). Note that this set is a polyhedral convex cone.

Given a square matrix M of order n, the linear complementarity problem is

the problem of determining vectors w E R" and z E R" such that

w-Mz-q,w~0,z 10
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and

w`z - 0,

where w' is the transpose of the vector w. This problem is denoted as LCP(q, M).

The class of all square matrices M of order n for which the LCP(q, M) has

a solution for each q E R" is called a Q-matrix. A square matrix M all of whose

principal minors are positive is called a P-matrix. A matrix M all of whose

principal minors are nonzero is called a nondegenerate matrix. Note that a P-

matrix is a nondegenerate matrix. A Q-matrix need not be nondegenerate. A

well known theorem in linear complementarity theory states that for a square

matrix M, the LCP(q, iLl } has a uniyue ~~lutioii for each q E It" if and only if

it is a P-matrix. See [1~.

Suppose (w, z) is a solution to LCP(q, M). Let C be an n x n submatrix of

(I, -M) containing for each j either L~ or -M.~, such that it contains the columns

!,~ of I corresponding to w~ ~ 0 and the columns -M.~ of -M corresponding to

z~ ~ 0. Such a matrix is called a complementary matríx induced 6y the solution

(w, z). The cone generated by a complementary matrix is called a complementary

cone. A complementary matrix or cone induced by a solution (w,i) need not be

unique.

Let M be a given square matrix of order n. We say that M is a copositive

matrix if x`Mx ~ 0. `dx ? 0. A copositive matrix M is called copositéve plus if

x`Mx - 0,x 1 0~ (M } M`)x - 0. A square matrix M is called a Qo-matrex

if LCP(q, M) has a solution for each q E Pos((1, -M)) or, equivalently, if the

union of all complementary cones of (I, -M) is convex. We also note here that

if M is a Q-matrix, then the union of all nondegenerate complementary cones of

(I, -M) covers R".
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3 Perfectness

Associated with a given LCP(q, M) we consider the following perturbed proble,m

P(E), where E~ 0 is a given vector in R". The perturbed problem is: Find

(iii(E),z(E)) such that

tv(E) - Mi(E) - q f ME

(w(E), z(E)) 1 0

w(E)~i(E) - 0.

Definition 3.1 Let ( w, z) be a solution to the LCP(q, M). Then (w, i) is a

perfect solution to the LCP(q, M) if there exists a sequence {Eh,h - 1,2,...}

with Eh E R", E~ 1 0, Eh -~ 0 as h-~ oo and a solution (w(E"),z(Eh)) to the

perturbed problem P(Eh) jor each h- 1,2,... such that as h--~ oo, z(E") --~ z.

Note that the problem P(E) is equivalent to the following problem: Find

(w'(E),z"(E)) satisfying

w'(E) - Mz'(E) - 9

Z'(E) ~ E, w'(E) i Q

w~ (E) i 0 ~ Z~ (E) - Ei.

We may call the latter problem the E-complementarity problem associated with

the LCP(q, M). We note that for the perfectness of a Nash equilibrium in a

noncooperative game, the definition given by Selten [8) also requires that the

sequence of optimal solutions to a perturbed problem converges to the given

equilibrium.

The following example shows that there may be matrices M and vectors q

such that no solution to LCP(q, M) is perfect.
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-1 -1
EXAMPLE 3.1 Get M- . This is a matrix all of whose entries are

-1 -2

f 0
negative. Let q- I . Note that GCP(q, M) has the unique solution (w. z) -

LO
(0, 0). This solution is not perfect since for any E ) 0, E E R2, LCP(q f ME, M)

does not have a solution.

Let Post(M) denote the cone {b~b - My, for some y E R", y~ 0}. In case M

is nonsingular. Posf(M) is an open cone. We now have the following theorem.

Txr;vn~M 3.i The LCP(q,M) has a perfect solution if and only if there exists

a complementary cone Pos(C) containing q such that

({q} f Post(M)) fl Pos(C) ~ 0.

Proof: First suppose that there is a complementary cone Pos(C) associated

with (I,-M) and containing the vector q such that

({q} ~- Post(M)) n Pos(C) ~ 0.

Since q E Pos(C) there exists a Q E R", Q? 0, such that

q-Cp.

Further there exists an E E R", E~ 0, such that q f ME E Pos(C). Hence there

exists an a E R", a~ 0, such that

qfME-Ca.

Multiplying ( 3.1) by 1 - a and ( 3.2) by .1 we obtain for any a E(0, 1)

q t MaE - C((1 - a)Q f aa).
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Taking ~- k and Ek - k, we obtain

q t MEk - CI(1 - k)A f k], k- 2, 3, ....

Note that it is now easy to construct a solution (wk, zk) to the perturbed problem

LCP(q -~ MEk, M) that corresponds to the complementary matrix C and as

k-~ oo this solution sequence {(wk, zk)} converges to (w, á) where (w, z) is a

solution to LCP(q, M) that induces the complementary cone Pos(C). Thus we

have a perfect solution to LCP(q, M).

Conversely suppose LCP(q, M) has a perfect solution (w, z). By definition

there exists a sequ~nce {E"}, E" E R", E" ~ 0 b' h- 1, 2, ..., Eh -~ 0 as h-~ oo,

and a corresponding sequence of solutions {(w(Eh), i(Eh)} to LCP(q ~- MEh, M)

such that w(Eh) --~ w and i(Eh) ~ z as h-~ oo. Let Pos(Ch) be a complementary

cone induced by the solution (tu(Eh),i(Eh)). This cone contains q f MEh. Since

there are only finitely many (2") complementary cones, it follows that there

is a subsequence {Eh~} of {Eh} such that q f MEh~ E Pos(C), d v, for some

complementary cone C. By the closure property of complementary cones and

by the fact that {zv(Eh~),z(Eh~)} -~ (w,i) it follows that q E Pos(C). Thus

({q} f Post(M)) fl Pos(C) ~ 0 and q E Pos(C). This concludes the proof of

the theorem. ~

CoRO[.LnRY 3.1 Civen an LCP(q, M), suppose q is contained in the interior of

a nondegenerate complementary cone Pos(C) of (1, -M). Then there is a perfect

solution to LCP(q, M).

Proof: If q E int(Pos(C)), it follows that there exists a ó~ 0 such that

q f ME E int(Pos(C)) d E 1 O,E E R" with ~~ E ~~G ó.
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Thus it follows that

({q} } Post(M)) fl Pos(C) ~ 0.

The next theorem shows that if M is a Q-matrix and q E R" then the

LCP(q, M) has a perfect solution.

THEOREM 3.2 Get M 6e a Q-matrix. Then given any q E R", there is a perfect

solution to LCP(q, M).

Proof: Since M is a Q- matrix, for any q E R" and E E R", E 1 0, LCP(q f ME, M)

has a solution. Take any sequence {Eh},En E R",Eh ~ 0 V h- 1,2..., such that

Eh ~ 0 as h -ti oo. Let Pos(Ch) be a complementary cone induced by a solu-

tion to LCP(q f MEh, M). Since there are only finitely many complementary

cones of (I,-M), it follows that there is a subsequence {E~~} of {Eh} such that

Pos(Ch~) - Pos(C), d v, for some complementary cone C of (I,-M). By a

result of Murty ( Exercise 3.85 in (6]) we can assume without loss of general-

ity that int(Pos(C)) ~~l. Thus for each Eh~ there exists a(3s~ ? 0 satisfying

q f MEh~ - CQh~. Since C is nonsingular it follows that as h„ ~ oo, Qh~ ~ Q for

some p~ 0, and hence q E Pos(C). This concludes the proof. ~

Since a P-matrix is a Q-matrix we have the following corollary.

COROLLARY 3.2 Get M 6e a P-matrix. The unique soJution to LCP(q, M), for

any q E R", fs perfect.

The following theorem presents two other equivalent formulations for the notion

of perfectness of a solution to the LCP. In what follows let e denote the n-

dimensional vector of ones.
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THEOREM 3.3 Let the LCP(q, M) 6e given. The jollowing assertions are equiv-

alent: (iJ (w,i) is a perfect solution for LCP(q,M);

(ii~ z is a limit point of a sequence of positive vectors {z(a)} for positive real

numbers a going to zero where, with w(a) - q f Mz(a), w(a) ~ 0, w;(a) ~ 0~

z;(a) C a, for all i- 1,2...n;

(iiiJ i is a limtit point of a sequence of positive vectors {z(a)} jor positáve real

numóers a going to zem, where, with w(a) - q f Mz(a), w(a) ~ 0 and z`w(a) -

0.

Proof:. (i) ~(ii): There exists a sequence {Eh}, Eh E R", Eh 1 0, Eh ~ 0 as

h ~ oo, and a sequence {i(Eh)} such that with iÓ(Eh) - Q-} MEh ~- M2(Eh),

we have z(Eh) ~ O,w(Eh) ~ 0, w(Eh)`z(Eti) - 0 and {z(Eh)} -~ z. Now take

ati - maxl~; ~„[E;']. Also take z(ah) - i(Eti) f Eh ~ 0. This sequence satisfies all

the conditions of (ii).

(ii) ~(iii): Suppose (ii) holds. Then there is a sequence {z(a)} with limit z as

a-~ 0 such that, z(a) ~ O,w(a) - q t Mz(a) ~ 0 and w;(a) ~ 0~ z;(a) C a.

Let uw - lima,~o w(a) - lima~o[q f Mz(a)] - q-F Mi. If w; ~ 0, then w;(a) ~ 0

for all sufliciently small a and hence z;(a) C a for all sufficiently small a. This

implies that i; - 0. Thus we can obtain a subsequence of {z(a)} that satisfies

the requirement of (iii).

(iii)~ (i): Given a sequence {z(a)} as in (iii) define the sequence of vectors

{E(a)}Q~o in R" as follows:

Ei(a) -
z;(a) if á; - 0

a IfZ;iO.

Define the vector z(E(a)) by i(E(a)) - z(a)-E(a). Note that as a-~ 0, E(a) ~

0, and that for a sufficiently small z(E(a)) is nonnegative. Further {z(E(a))}

tends to i. Note also that by the complementarity condition of (iii) it is easy to
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verify that with

w(a) - 4 f Mz(a) - 4 t M(z(E(a)) -~ E(a)),

(w(a), i(e(a))) solves the LCP(q f Me(a), M), for a sequence of vectors e(a)

going to zero. Thus ( i) follows. This completes the proof of the theorem. ~

The next example shows that Theorem 3.2 does not hold for the class of

copositive plus matrices.

ExnMPLE 3.2 Let M- I 0 1 J andq-( 0 1. Then (w, z) with z -(0, a)`
l 1 0 `0 J

and eu - ( a, 0)t is a solution to LCP(q, M), for each a~ 0, none of them being

perfect, whereas M is a copositáve plus matrix.

REMARK 3.1 The notion of perfectness of solution to a linear complementarity

problem is also related to the weak upper Lípchitzian property of the solution map.

It is known that given an LCP(q,M) if S(q) denotes the set of solutions to the

GCP(q, M) then

S(q) C S(4) f c~~9 - 4~~g

where c is a positive real constant and !3 denotes the unit ball of radtius 1 in R".

This holds for all q in R". See (1~ for a proof. In particular if M is a Q-matria

this implies that for any q E R" there is a perfect solution.

4 Properness

In this section we develop the concept of properness of a solution to a linear

complementarity problem. Properness is a much stronger refinement of solutions

than perfectness as defined in the previous section. We also introduce weak

properness being a weaker concept than properness but stronger than perfectness.
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We discuss some classes of LCPs satisfying the condition that for every q there

is a proper or weakly proper solution.

Properness of a solution to an LCP is motivated by a strategy being a proper

Nash equilibrium in a noncooperative game. See Myerson [5].

To define properness we introduce the concept of an a-proper solution to a

linear complementarity problem for some positive number a.

Definition 4.1 Let the LCP(q, M) be given. Then fora ~ 0, a E R, (z(a), w(a))

is an a- proper solution to LCP(q, M) if (i) z;(a) ~ 0 t1 i- 1, 2, ... n, (ii)

w(a) - 9-~ Mz(a) ~ 0, (iiiJ w;(a) ~ 0~ z;(a) C a, (iv) w;(a) c w~(a) ~

z,(cti) G az~(a).

Definition 4.2 Let the LCP(q, M) be given and let ( w, z) 6e a solution to

it. Then (w, i) is a proper solution to LCP(q, M) ij there exists a sequence

{ah},an E R,an 1 0, and a sequence {(z(ah),w(ah))} of ah- proper solutáons

to LCP(q, M) such that (i) limh~~ah - 0 and (iiJ limh-.~z(ah) - z.

THEOREM 4.1 Let ( w, z) be a solution to LCP(q, M). Then ( w, z) is a proper

solution if the following conditions hold:

(iJ The solution ( w, i) is nondegenemte; (iiJ The complementary matrix C in-

duced by the solution is nonsingular; (iiiJ The postitive coordinates oj w are dis-

tinct (i.e., w; ~ 0~ vw; ~ w~ for any i~ j).

Proof. Let (w, z) be a solution to the LCP(q, M) satisfying (i), (ii) and (iii).

Now we construct a sequence (w(a), z(a)) of a-proper solutions for sufficiently

small a as follows. Let (rr(1), ~r(2), ..., a(n)) be a permutation of the elements

of the set { 1, 2, ..., n} such that

wx~;l - 0, f or

12



where 1 G 2 G n is the number of zero coordinates of w, and

0 G wx(;~ G wx(i~, f or Q G i G j.

Take
- 1,2...,Q

and

zx(~)(a) - (C-r(9 t ~ M.n(i)~))x(~)~ for
i-eti

zx(;)(a) - a` for i - 2 f 1, 2 f 2, ... , n.

For sufficiently small a it is clear that zi(a) ~ 0, d j - 1, 2, ... n, and

w(a) - q f Mz(a) 1 0. Also note that w„(;~(a) - 0, á- 1,2...P,z;(a) G a if

w;(a) ~ 0, and that

w;(a) G wi(a) ~ zi(a) G az;(a).

Therefore (w(a), z(a)) is a-proper for small enough a. Moreover z(a) converges

to z as a-~ 0, since the matrix C is nonsingular. ~

In our next theorem we show that the unique solution to an LCP(q, M) when

the matrix M is a 2 x 2 P-matrix is a proper solution. At present we do not

have a proof to show that a general P-matrix induces a proper solution.

THEOREM 4.2 Let LCP(q, M) 6e given. Suppose M is a 2 x 2 P-matráa. Then

the unáque solution ( w, z) to the LCP(q, M) is proper.

Proof: In case wl ~ w2 and (w, z) is a nondegenerate solution, the result follows

from Theorem 4.1. Suppose now that wl ~ wZ and (w, z) is a degenerate solution.

Without loss of generality, assume that wl ~ 0. This implies that w2 - 0; i~ -

z2 - 0. Choose z(a) -(a2,a)t and let w(a) - q.} Mz(a). Then

wl(a) - 91 f- mlia2 f m~za and w2(a) - 42 ~- mna~ f m2aa.
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Since mZZ ~ 0, for suf~iciently small a we have that wt(a) ~ w2(a) 1 0,

x~(a) c az2(a) and z2(a) G a. Hence (w(a),z(a)) is an a-proper solution for a

sufficiently small. Clearly, {z(a)} converges to z as a goes to zero.

Next suppose that w~ - wz ~ 0. In this case i - 0 and q- (c, c)` for some

real number c~ 0. Let z(E) -(El, EZ) for any E-(El, Ez) ~ 0. We have

w1ÍE) - c f miiEl -} misEs

w2(E) - c f mxiEi i- mssES.

If ma~ G ml~ and mlz c m~2 or if m21 ~ ml~ and mlz 1 mz2, then choose E~ and

EZ such that

Es - (mii - m2i)Eillmzs - miz).

For suf~iciently small El we have w1(E) - w~(E) 7 0, and therefore (w(E),z(E)) is

an a-proper solution with a- max{El, Ez} when suíficiently small. If mz~ C m~l

and m12 ~ m2a then choose z~(a) - a' and zz(a) - a. Note that

w~(a) - c f m~la~ -h m~za and wx(a) - c-~ mz1a2 ~ m~za.

For sufficiently small a we have wt(a) ~ wz(a) ~ 0 and therefore ( w(a), z(a))

is an a-proper solution. If m21 ~ mll and mlz c m~~, choose z~(a) - a and

zz(a) - a2. Then for sufficiently small a we have again that ( w(a),z(a)) is an

a-proper solution.

Finally suppose that wt - wz - 0. Without loss of generality assume that

iz - 0. If i~ ~ 0, we have q-(-ml~z~,-m~lzl)'. Let us consider the se-

quence {z(a)} where zZ(a) - a and z~(a) is such that w~(a) - 0. Since

wt(a) - mll(-il ~ zl(a)) f ml~a it follows that z~(a) - zr -~. Then we

get

wa(a) -
a(miim2s - mism2i) ) 0

mti
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as a~ 0 and M is a P-matrix. Hence (w(a),z(a)) is an a-proper solution for

sufficiently small a and z(a) converges to z as a goes to zero. If zl - 0 we have

q-(0,0)`. Let z(e) -(e~,ez) for any c-(el,cz). Then

wi(E) - miiEi f mizEz

wz(E) - mziEi ~- mzzEZ.

If mz~ G mt~ and mlz e mzz then choose e~ and ez such that

(mii - m2i)Ei
Ez - .

mzz - miz

For sufficiently small e~ we have that wl(e) 1 wz(e) ~ 0 and therefore (w(e), z(e))

is an a-proper solution with a- e~. The case mz~ ? m~~ and m~z ~ mzz cannot

arise because M is a P-matrix. If mzl G mt~ and mlz ~ mzz then choose el - az

and ez - a, so that (w(e), z(e)) is an a-proper solution for a sufficiently small. If

mz~ 1 m~l and m~z G mzz, but M,~ ~ M.z, then choose el - a and ez - az, so

that (w(e),z(e)) is an a-proper solution for a sufficiently small. This concludes

the proof. ~

Condition (ii) of properness seems to be too strong a requirement in case

eu; - w~ ~ 0 for some indices i and j. To relax this condition we introduce a

weaker concept, to be called weak properness. See Van Damme [9].

Definition 4.3 A solution ( w, i) to a given LCP(q, M) ís weakly proper éJ there

exists n sequence {z(ah)} Jor some sequence {ah}, ati E R, ah 1 0, H h such that

(ii z(an) ~ 0 `d h and limhyeoz(an) - z:

(ii) i`w(ah) - 0 where w(ah) - q f Mz(ati) ? 0 b h;

(iii) tu; G fv~ ~ z~(ah) G ahz;(ah) b' h.

The next theorem relates the various refinements introduced.
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THEOREM 4.3 Every proper solutíon to a gíven GCP(q, M) is weakly proper and

every weakly proper solution to át is perfect.

Proof: Suppose (uw, z) is a proper solution to LCP(q, M). Then there exists a

sequence {z(ah)} with z(ah) ~ 0 such that limahyoz(ati) - i,

w(an) - 9 f Mz(an) ? 0, w~(ah) 1 0~ z~(ah) C an, and wt(ah) C wi(an) ~

z~(an) c ahz;(ah), d h 1 0. Suppose now that there is a subsequence {ah„}

of {ah} such that w;(ah„) ~ 0 H v. Then it follows that z;(ah„) G ah,,, b' v,

and hence that z; - limeh-,oz;(ah) - 0. So for h sufficiently large it holds that

i`w(ah) - 0. Thus it follows that the solution (vi,z) is weakly proper.

Suppose now (iu, z) is a weakly proper solution to LCP(q, M). It follows that

there is a sequence {z(ah)} with z(ati) ~ 0 such that limahyoz(an) - z~ w(ah) -

q f Mz(ah) ~ 0, w; G wá ~ z~(an) C ahz;(an), and z`w(ah) - 0`d h ~ 0. It

follows now, that if w;(ah) 1 0 then z; - 0 and hence z;(ah) -~ 0. Thus we

can find a sequence Bh going to zero such that z;(ah) C Bh, if w;(ah) ~ 0. Thus

(w(ah), z(an)) is a Bh-perfect solution converging to (w, z). It follows that (w, z)

is a perfect solution. ~

As in the case of perfectness of a solution, weak properness can be character-

ized in terms of the nonempty intersection of two cones. From this characteri-

zation also it follows immediately that weak properness implies perfectness. Let

(w, i) be a solution to LCP(q, M). Then define the cone Pos(M, w) by

Pos(M,w)-{yER"~y-Mz,z~O,vw;Cw~~z~Gaz;di,jfora~0}

and let E be the ~natrix, of which the columns are 1.~ for j such that z~ - 0.

THEOREM 4.4 Let (w, z) 6e a solution to LCP(q, M) and let Pos(M, w) and

the matrix E be as defined above. Then (w, z) is a weakly pmper solution to
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LCP(q, M) ij and onty iJ

({q} f Pos(M,v~)) n Pos(E) ~ 0.

Proof: Suppose ( ui, i) is a weakly proper solution to LCP(q, M). Then there

exists a sequence {z(a)} with a tending to 0 and z(a) ~ i such that w(a) -

g f Mz(a) ~ 0, z`w(a) - 0, and w; G w~ ~ z~(a) G az;(a). For any a~ 0 we

have that w(a) E ({q} f Pos(M, w)) fl Pos(E).

Now suppose that ( {q} ~ Pos(M, w)) fl Pos(E) ~ 0 and let w' be a point in

this cone. Then there exists a real number ~ 1 0 such that

w~ - 9 f Mz(aT )

for some z(a') for which w; G w~ ~ z~(a') G cz z;(a'),z;(a') 1 0 `d i, and

z`w' - 0, because w' E Pos(E). For 0 G a G 1, take z(a) - (1 - a)z -f az(a').

Clearly, z(a) 1 0!1 a, 0 G a G 1, w; G w~ ~ z~(a) G az;(a), and w(a) -

q~- Mz(a) 1 0. Further, i`w(a) - 0 b'a, 0 G a G 1, and z(a) ~ i. This

concludes the proof. ~

In case M is a P-matrix, the solution to LCP(q, M) is weakly proper.

THEOREM 4.5 Get the LCP(q, M) 6e given. !J the matrix M is a P-matrix then

the unique solution to GCP(q, M) is weakly proper.

Proof: Let (w, á) be the unique solution to LCP(q, M). Let

L - {I E {1,2,...n}~z~ ~ 0}

and J-{ j E { 1, 2, ..., n} ~w~ - i~ - 0}. From the proof of Theorem 4.1 and

Theorem 4.3 it follows that (w, z) is weakly proper if J- 0. Suppose therefore

that J ~ 0. Since M is a P-matrix, the matrix Mrr - MrLMLiMLr is also a

P-matrix. Hence there exists a vector d E R~r~, d~ 0, such that

(Mrr - MrtMiiMcr)d ~ 0.
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Now we construct a sequence {z(a)}o~o by choosing z~(a) - ad. For the coordi-

nates of z j(a) we proceed as follows. First we arrange the elements of G U J in in-

creasing order of the coordinates of -vi. Let n(L U J) - (a(1), ~r(2), ... a(~L U J~))

be such an order. Then we define z„~kl(a) - ak, f or k- 1, 2, .. . ~L U J~. Finally,

for L we define zL(a) --Mii(qL f MLLzL(a)). Clearly, z(a) 1 0 for sufficiently

small a 1 0. Moreover z~(a) converges to 0 for j E L and zL(a) converges to

zL if a goes to 0. Hence limalo z(a) - i.

Next we show that w(a) - q f Mz(a) 1 0 and z`w(a) - 0 for sufficiently

small a. For the set L we obtain

wL(a) - 9L f MLLZL(a) t MLLZLIa),

so wL(a) - 9L f MLL(-Mu(qL f MLLzL(a))) f MLLzL(a) - 0. For suffi-

ciently small a we also have that vrL~~(a) 1 0 because -uy ~ 0. To prove

that w~(a) ~ 0, note that

wJ(a) -(qJ - MJLMLL9L) ~(MJJMJLMLLMLJ)(ad) f terril3 Of O(a2).

The first term is w~ and therefore equal to 0. The second term is strictly positive

by the choice of d and dominates the third term which only contains terms of

order higher than or equal to a2, for sufficiently small a. Thereïore for small

enough a we have w~(a) ~ 0. Moreover, since wL(a) - 0 for all a and iL - 0 we

also have z`w(a) - 0 for any a. This concludes the proof that ( w, z) is a weakly

proper solution to LCP(q, M). ~

5 The bimatrix case

In this section we consider the LCP arising from the problem of computing a Nash

equilibrium for a bimatrix game. A bimatrix game is specified by (nl, n2, A, B)

where nl is the number of actions available to Player 1 and n2 is the number of
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actions available to Player 2. The n~ x nz matrix A(B) is the pay-off matrix for

Player 1(Player 2) i.e., a;~ (b;~) is the payoff for Player 1(Player 2) if Player 1

chooses his i-th action and Player 2 chooses his j-th action. See Van Damme (9].

Let Sl -{x E R"' ~x ? 0, ~;'~ x; - 1}. Any x E S~ is called a mixed strategy

for Player 1. Similarly let S2 - {x E R"' ~x ~ 0, ~,"' 1 x; - 1} be the set of mixed

strategies for Player 2. We say that (x', y' ) is a Nash equilibrium strategy for the

bimatrix game (n~, n2, A, B) if x' E S', y' E S2, (x')`Ay' 1 x'Ay' b' x E S',

and (x')'By' 1(x')`By `d y E S2. The problem of finding a Nash equilibrium

strategy and the corresponding equilibrium payoffs has been formulated as a

linear complementarity problem by Lemke and Howson. See [3]. There have also

been other formulations of this problem as a linear complementarity problem. In

what follows we shall use the following formulation which is similar to the one

presented by Miller and Zucker [4]. We have the following result.

LF.MMA 5.1 Given a óimatrix game (n~, n2, A, B) with A 1 0, B) 0, (x', y') is

a Nash equilibrium with equilibrium pay-offs (ii -(x')`Ay' and (j~ -(x')`By' if

and only if (x', y', Qi f 1, Q~ f 1) is a solution to the LCP(q, M) with

M- ,4-

where Et is a n~ x n~ matrix whose entries are all equa! to 1 and Ez is a matrix

oj order n2 x nz whose entries are all equal to 1.

THEOREM 5.1 The LCP(q, M) as introduced in Theorem 5.1 induced by a bi-

matrix game ( nl, nz, A, B) has a proper solution which yields a proper Nash equi-

librium to that game.
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Proof: Let k- n~ ~- nz. Let a be a real number such that 0 G a G 1. Let

e E Rk be defined by taking its ith coordinate as E; - ak, l G i C k.

ul
Let S(a) - {u E Rk~u - ,u' E St,uz E Sz,u ~ e}. Note that S(a)uz -

is a nonempty compact convex subset of Rk. Define a point to set function F on

( u'
S(a) as follows: Given u- I E S(a), let

` uz

Qi - m,inrt;~n~[1 f (Auz);] (5.1)

Ll - {i~,Ci~ - 1 .}- (Auz);} (5.2)

and let

Rz - rnznl~~c,,,[1 } ( B`u')~] (5.3)

Lz - {i~~iz - 1 f (B`ul);}. (5.4)

u

Let ~ E Rk}z be defined as the vector Ql . Note that w(~) - q f M~ ? 0.

Qz
Further notethat theset L-{i~w;(~) - 0} equals LtU({nt}fLz)U{kfl,kf2}.

The image set F(u) is defined as

{z E S(a)~w;(~) ~ 0~ z; G a, w;(~) G wi(~) ~ z~ G az;, 1 C i, j G k}.

Note that this is a convex and compact subset of S(a). To show that the set is

nonempty for all a sufficiently small, we note that the point z' defined as follows

is contained in F(u). For any i, I G i C k, first let

r; -~{j~w~(~) C w;(~), 1 C j C k}. Then let

(z''); - a'~ if r; 1 1, 1 C i C nl (5.5)

~-L~gL1 ~s" )J- ~1~ 1 if i E Ll (5.6)

(z"z); - a'~~t~ if r,,,t; 1 1,1 G i C nz (5.7)

- 1-~'a`'l~~'1' if i E Lz. (5.8)- !k(Lz)
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Now take z' - I ,~ J . Note that z' E S(a) for all a suf6ciently small and
`.z

that w;(~) 1 0~ z; c a. For 1 G i, j C k if w~(~) C w;(~), then note that

i~ L and that r~ G r;. Hence it follows that z; c az~. Thus z' E F(u). We now

claim that the map F is a closed map. To see this, suppose we have a sequence

{u"}, where u" E S(a) which converges to some u E S(a). Also suppose that

z" E F(u") and the sequence {z"} converges to some z. Given u", let (ii and (iz

be defined as in (5.1) and (5.3), respectively. It is clear that ~ converges to Q~

where

and ~ converges to

z
Ql - mini~;~",[1 f (Au );]

e
Qz - mini~;~",[1 ~- (B ut);].

un u

Let ~" be defined as ~ . Note that ~- fim„y~~" is given by Qr

pZ ?z
Suppose now w;(~) G w~(~). It follows that for all n sufficiently large,

w;(~") G w~(~"). Hence it follows that z~ C az" and hence á~ C az;. Similarly

it is easy to verify that w;(t;) 1 0~ z; C a. Thus z E F(u) and hence F

is closed. We now appeal to Kakutani's fixed point theorem (see p.67 in [7])

to conclude that there ís a v(a) E S(a) such that v(a) E F(v(a)). In other

words, given any a sufficiently small, there is a v(a) E S(a) such that with

Ql(v(a)) and Qz(v(a)) as defined in (5.1) and (5.3), respectively, and with q(a) -

v(a)

Q~(v(a)) ,~(a) is an a- proper solution. As a goea to zero, since v(a)

Qz(v(a))
and hence also p~(v(a)) and (iz(v(a)) are bounded, it follows that there is a

subsequence {a„} for which v(a„) converges to a limit v' and (31(v(a„)) and
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v'

3Z(v(a~) converge to some Q~ and ~i2, respectively. Let p' - ~~ . Let w(rt' )-

~2
q f Mrt'. Since For 1 G i G k, w;(p(a)) ~ 0-~ v;(a) C a, it follows that

w;(rl') ~ 0-~ rl; - 0, b i- 1,2...k. Thus ( w(q'),p') is a solution to the

LCP(q, M) which is proper. Moreover, for smal! enough a, v(a) is an a-proper

Nash equilibrium and v" itself is a proper Nash equilibrium to the game.

REMARK 5.1 Theorem 5.2 can also be stated and proved in a similar manner

for a polymatrix game ~see ~2~ and ~.{~ for a discussion on polymatnx gamesJ.

References

[1] Cottle, R. W., Pang and J-S, Stone, R. E. (1992), The Linear Complemen-

tarity Problem, Academic Press, New York.

[2] Howson, J. T. (1972), Equilibria of polymatrix games, Management Science

18, pp 312-318.

[3] Lemke, C. E. and Howson, J. T. (1964), Equilibrium points of bimatrix

games, J. Soc. Indust. Appl. Math. 12, pp 413-423.

[4] Miller, D. A. and Zucket S. W. (1991), Copositive plus Lemke algorithm

solves polymatrix games, Operations Research Letters 10, pp 285-290.

[5] Myerson, R. B. (1978), Refinements of the Nash equilibrium concept, Inter-

national Journal of Game Theory 7, 73-80.

[6] Murty, K. G. (1988), Linear Complementarity, Linear and Nonlinear Pro-

gramming, Heldermann, Berlin.

22



[7] Nikaido, H. (1968), C,onvex Structures and Econmic Theory, Academic

Press, New York.

[8] Selten, R. (1975), Reexamination of the perfectness concept for equilibrium

points in extensive games, International Journal of Game Theory, 3, pp

141-201.

[9] Van Damme, E. E. C. (1983), Reftnements of the Nash Equilibrium Concept,

Springer, Berlin.

[10] van der Laan, G. Talman, A. J. J. and Yang, Z. (1996), Existence and

approximation o[ robusL stationary points an polytapes, Discussion paper

TI96-145~8, Tinbergen Institute, Amsterdam.

23



No. Author(s)

971 l4 X. Gong and A. van Soest

97115 A. Blume, D.V. DeJong,
Y.-G. Kim and G.B. Sprinkle

97116 1.P.C. Kleijnen and
R.G. Sargent

97l 17 J. Boone

97118 A. Prat

9801 H. Gersbach and H. Uhlig

9802 P. Peretto and S. Smulders

Title

Family Structure and Female Labour Supply in Mexico City

Evolution of Communication with Partial Common Interest

A Methodology for Fitting and Validating Metamodels in
Simulation

Technological Progress and Unemployment

Campaign Advertising and Voter Welfare

Debt Contracts, Collapse and Regulation as Competition
Phenomena

Spccialization, Knowledge Dilution, and Scale Effects in an 10-
based Growth Model

9803 K.J.M. Huisman and P.M. Kort A Furthcr Analysis on Strategic Timing nf Adnption of New
Technologies under Uncertainty

9804 P.J.-1. Herings and
A. van den Elzen

9805 P.].-J. Herings and
J.H. Drèze

9806 M. Koster

9807 F.A. de Roon, Th.E. Nijman
and B.I.M. Werker

9808 R.M.W.J. Beetsma and
P.C. Schotman

9809 M. Biitler

9810 L. Bettendorf and F. Verboven

9811 E. Schaling, M. Hceberichts
and S. Eijffinger

9812 M. Slikker

9813 T. van de Klundert a~
S. Smulders

9814 A.Belke and D. Gros

Computation of [he Nash Equilibrium Selected by the Tracing
Procedure in N-Person Games

Continua of Underemployment Equilibria

Multi-Scrvice Scrial Cost Sharing: A Characterization of the
Moulin-Shenker Rule

Testing for Mean-Variance Spanning with Short Sales
Constraints and Transaction Costs: The Case of Emerging
Markets

Measuring Risk Attitudes in a Natural Experiment: Data from
the Television Game Show Lingo

The Choice between Pension Reform Options

Competition on the Dutch Coffee Mazket

Incentive Contracts for Central Bankers under Uncertainty:
Walsh-Svensson non-Equivalence Revisited

Average Convexity in Communication Situations

Capital Mobility and Catching Up in a Two-Country,
Two-Sector Model of Endogenous Growth

Evidence on the Costs of Intra-European Exchange Rate
Variability

9815 J.P.C. Kleijtten and 0. Pala Maximizing the Simulation Output: a Competition



No. Author(s) Title

9816 C. Dustmann, N. Rajah and School Quality, Exam Performance, and Career Choice
A. van Scest

9817 H. Hamers, F. Klijn and 1. Suijs On the Balancedness of m-Sequencing Games

9818 S.J. Koopman and J. Durbin Fast Filtering and Smoothing for Multivariate State Space
Models

9819 E. Droste, M. Kosfeld and Regret Equilibria in Games
M. Voomeveld

9820 M. Slikker A Note on Link Formation

9821 M. Koster, E. Molina, Core Representations of the Standard Fixed Tree Game
Y. Sprumont and S. Tijs

9822 LP.C. Kleijnen Validation of Simulation, With and Without Real Data

9823 M. Kosfeld Rumours and Markets

9824 F. Karaesmen, F. van der Duyn Dedication versus Flexibility in Field Service Operations
Schouten and L.N. van Wassen-
hove

9825 J. Suijs, A. De Waegenaere and Optimal Design of Pension Funds: A Mission Impossible
P. Borm

9826 U.Gneery and W. Guth On Competing Rewards Standards -An Experimental Study of
Ultimatum Bargaining-

9827 M. Dufwenberg and U. Gneery Price Competition and Market Concentration: An Experimental
Study

9828 A. Blume, D.V. De Jong and Learning in Sender-Receiver Games
G.R. Neumann

9829 B.G.C. Dellaert, J.D. Brazell
and J.J. Louviere

9830 B.G.C. Dellaert, A.W.J.
Borgers, J.J. Louviere
and H.].P. Timmermans

9831 E.G.A. Gaury, H. Pierreval
and J.P.C. Kleijnen

9832 S.J. Koopman and H.N. Lai

9833 F. Klijn, M. Slikker, S. Tijs
and 1. Zarzuelo

Variations in Consumer Choice Consistency: The Case of
Attribute-Level Driven Shifts in Consistency

Consumer Choice of Modularized Products: A Conjoint choicc
Experiment Approach

New Species ofHybrid Pull Systems

Modelling Bid-Ask Spreads in Competitive Dealership Markets

Characteri7ations of the Egalitarian Solution for Convex
Games

9834 C. Fershtman, N. Gandal and Estimating the Effect of Tax Reform in Differentiated Product
S. Markovich Oligopolis[ic Markets



No. Author(s) Title

9835 M. Zeclenberg, W.W. van Dijk, Emotional Reactions to the Outcomes of Decisions: The Role
J. van der Pligt, A.S.R. of Counterfactual Thought in the Experience of Regret and
Manstead, P. van Empelen Disappointment
and D. Reindemian

9836 M. Zeelenberg, W.W. van Dijk Reconsidering the Relation between Regret and Responsibility
and A.S.R. Manstead

9837 M. Dufwenberg and A Theory of Sequential Reciprocity
G. Kirchsteiger

9838 A. Xepapadeas and Environmental Policy and Competitiveness: The Porter Hypo-
A. de Zeeuw thesis and the Composition of Capital

9839 M. Lubyova and J.C. van Ours Unemployment Durations of Job Losers in a Labor Market in
Transition

9840 P. Bolton and X. Freixas

9841 A. Rustichini

9842 J. Boone

9843 H.L.F. de Groot

9844 U. Gneery, W. Giith and
F. Verboven

9845 A. Prat

9846 P. Borm and H. Hamers

9847 A.J. Hoogstrate and T. Osang

9848 H. Degryse and A. Irmen

9849 l. Bouckaert and H. Degryse

9850 J.R. ter Horst, Th. E. Nijman
and F.A. de Roon

9851 J.R. ter Horst, Th. E. Nijman
and F.A. de Roon

9852 F. Klaassen

9853 F.J.G.M. Klaassen and
J.R. Magnus

A Dilution Cost Approach to Financial Intermediation and
Sceuritics Mnrkets

Minimizing Regret: The General Case

Competitive Pressure, Selection and Investments in
Development and Fundamental Research

Macroeconomic Consequences of Outsourcing. An Analysis of
Growth, Welfare, and Product Varíety

Presents or Investments? An Experimental Analysis

How Homogeneous Should a Team Be?

A Note on Games Corresponding to Sequencing Situations with
Due Dates

Saving, Openness, and Growth

On the Incentives to Provide Fuel-Efficient Automobiles

Price Competition Between an Expert and a Non-Expert

Sryle Analysis and Performance Evaluation of Dutch Mutual
Funds

Perfonnance Analysis of Intemational Mutual Funds
Incorporatíng Market Frictions

Improving GARCH Volatility Forecasts

On the Independence and [dentical Distribution of Points in
Tennis



No. Author(s)

9854 1. de Haan, F. Amtenbrink
and S.C.W. Eijffinger

9855 J.R. ter Horst, Th.E. Nijman
and M. Verbcek

9856 G.J. van den Berg, B. van der
Klaauw and 1.C. van Ours

9857 U. Gneery and A. Rustichini

9858 C. Fershtman

9859 M. Kaneko

9860 M. Kaneko

9861 H. Huizinga and S.B. Nielsen

9862 M. Voomeveld and A. van den
Nouweland

9863 E.W. van Luijk and 1.C. van
Ours

Title

Accountability of Central Banks: Aspects and Quantification

Eliminating Biases in Evaluating Mutual Fund Perforrnance
from a Survivorship Frce Sample

Punitive Sanctions and the Transition Rate from Welfare to
Work

Pay Enough-Or pon't Pay at All

A Note on Multi-Issue Two-Sided Bargaining: Bilateral
Procedures

Evolution of Thoughts: Deductive Game Theories in the
Inductive Game Situation. Part 1

Evolution of Thoughts: Deductive Game Theories in the
Ind~ctive Camc Situation. Pnrt II

Is Coordination of Fiscal Deficits Necessary?

Cooperative Multicriteria Games with Public and Private
Criteria; An Investigation of Core Concepts

On the Determinants of Opium Consumption; An Empirical
Analvsis of Historical Data

9864 B.G.C. Dellaert and B.E. Kahn How Tolerable is Delay? Consumers' Evaluations of Intemet
Web Sites after Waiting

9865 E.W. van Luijk and J.C. van How Govemment Policy Affects the Consumption of Hard
Ours Drugs: The Case of Opium in Java, 1873-1907

9866 G. van der Laan and R. van A Banzhaf Share Fundion for Cooperative Games in Coalition
den Brink Structure

9867 G. Kirchsteiger, M. Niederle The Endogenous Evolution of Market Institutions An
and J. Potters Experimental Investigation

9868 E. van Damme and S. Hurkens Endogenous Price Leadership

9869 R. Pieters and L. Warlop Visual Attention During Brand Choice: The Impact of Time
Pressure and Task Motivation

9870 LP.C. Kleijnen and Short-Term Robustness of Production Management Systems
E.G.A. Gaury

9871 U. Hege Bank Dept and Publicly Traded Debt in Repeated Oligopolies

9872 L. Brcersma and 1.C. van Ours ]ob Searchers, Job Matches and the Elasticity of Matching

9873 M. Burda, W. Guth, Employment Duration and Resistance to Wage Reductions:



No. Author(s) Title

G. Kirchsteiger and H. Uhlig Experimental Evidence

9874 J. Fidrmuc and 1. Horváth Stability of Monetary Unions: Lessons from the Break-up of
Czechoslovakia

9875 P. Borm, D. Vermeulen The Structure of the Set of Equilibria for Two Person Multi-
and M. Voomeveld criteria Games

9876 1. Timmer, P. Borm and J. Suijs Linear Transformation of Products: Games and Economies

9877 T. Lensberg and E. van der A Cross-Cultural Study of Reciprocity, Trust and Altruism
Heijden in a Gift Exchange Experiment

9878 S.R. Mohan and A.I.J. Talman Refinement of Solutions to the Linear Complementarity
Problem



I I I I WIIII IIII II II III IIYII


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

