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Nonadditive expected utility models were developed for explaining preferences in settings
where probabilities cannot be assigned to events. In the absence of probabilities, difficulties
arise in the interpretation of likelihoods of events. In this paper we introduce a notion of
revealed likelihood that is defined entirely in terms of preferences and that does not require
the existence of (subjective) probabilities. Our proposal is that decision weights rather than
capacities are more suitable measures of revealed likelihood in rank-dependent expected
utility models and prospect theory. Applications of our proposal to the updating of beliefs,
to the description of attitudes towards ambiguity, and to game theory are presented.
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I. INTRODUCTION

It has long been recognized that there is a distinction between risk, where probabilities are
known, and uncertainty, where probabilities are unknown (Keynes, 1921; Knight, 1921).
In a seminal work, Savage (1954) argued that for a rational agent such a distinction is not
relevant. In his framework, probabilities measure the likelihood of events. A key idea in
Savage's theory is that probabilities are revealed from preferences rather than from
introspection or verbal reports.

There is, however, a large body of empirical evidence that contradicts Savage's
subjective expected utility model (Camerer & Weber, 1992). In particular, Ellsberg (1961)
showed that Savage's method for revealing probability leads to inconsistencies, i.e.
probabilities cannot be assigned to events. In the absence of probability the question arises
what, if any, meaning can be given to likelihood.

In this paper, we propose a notion of revealed likelihood that is derived from preferences
and that is consistent with Ellsberg's findings. Our measure of revealed likelihood resolves
a duality paradox in nonexpected utility and clarifies the definition of null events that are
relevant for Nash equilibria. It leads to a new rule for updating that resolves some
ambiguities in rules proposed in the literature, such as the Dempster-Shafer update rule.
Finally, our measure gives a natural description for several phenomena regarding decision
under uncertainty, such as ambiguity aversion (pessimism) and the simultaneous buying of
insurance and gambling.

Our analysis is based on rank-dependent ("nonadditive") expected utility for uncertainty,
hereafter called Choquet expected utility (CEU) (Schmeidler, 1989; Gilboa, 1987). For the
context of risk, similar models were proposed by Quiggin (1982) and Allais (1988). The
primary motivation for the development of CEU was to model the distinction between risk
and uncertainty that was suggested by Keynes and Knight. CEU is able to accommodate

the preference patterns of the Ellsberg examples.



Our results also apply to cumulative prospect theory (Tversky & Kahneman, 1992).
Cumulative prospect theory generalizes CEU by permitting decision weights for gains to be
different than decision weights for losses, and has a number of empirical advantages. For
example, Benartzi & Thaler (1995) explain the equity premium puzzle by loss aversion.
Our measure of revealed likelihood can be applied to gains and losses separately, and thus
can elicit decision weights in cumulative prospect theory.

In Section II, we review the notion of likelihood in subjective expected utility theory.
Section III discusses the discrepancy between likelihood revealed from bets on and bets
against events that is commonly found in the Ellsberg examples. In Section IV, we argue
that in CEU, one needs to distinguish revealed likelihoods derived from bets on events
from revealed likelihoods derived from bets against events. Section V shows that in the
derivation of CEU one may use preference conditions in a consistent way so long as one
employs the appropriate notion of revealed likelihood. This solves a duality paradox noted
in the literature. In Section VI, we generalize revealed likelihood to the multiple
consequences case. We argue that, if revealed likelihood should "tell you where to put your
money," then decision weights are the proper measure of revealed likelihood under CEU.
Section VI sheds new light on axiom P2 of Gilboa (1987). It shows how that axiom can be
used to empirically elicit orderings of decision weights.

An attractive property of expected utility is independence of beliefs from tastes. In
Section VII, we argue that to some degree independence of revealed likelihood from
consequences can be maintained in CEU so long as one specifies a "dominating event." In
Section VIII, we argue that decision weights have some distinct advantages over capacities
in measuring revealed likelihood. Section IX illustrates an application of our measure of
revealed likelihood in defining null events which is an important issue for updating and for
the definition of Nash equilibrium in game theory. Several other properties of decision
weights as measure of revealed likelihood are discussed. For example, a new interpretation

is provided for the case of probabilistic sophistication (Machina & Schmeidler, 1992).



Section X discusses updating if new information is gathered. Several proposals for
updating in the literature are explained as different choices of the dominating events
introduced in Section VII. In Section XI, we discuss the interpretation of revealed
likelihood as a measure of belief. Revealed likelihood may depend both on beliefs and on
decision attitudes. Finally, Section XII presents conclusions. Proofs are presented in the

appendix.

II. SUBJECTIVE EXPECTED UTILITY

In subjective expected utility (SEU), the likelihood of an event is measured by its

subjective probability. Thus,

Event A is more likely than event B
if and only if
the probability of A is greater than the probability of B.

In the above statement the likelihood judgments are quantified by a probability measure.

Thus, we write
(1) A > B if and only if P(A) > P(B).

Subjective probabilities are often interpreted as a measure of degree of belief, reflecting the
state of information of the decision maker. It is however erroneous to assume that directly
elicited probability through verbal report (e.g. my probability that it will rain tomorrow is
0.4) will necessarily coincide with the subjective probability that is based on preferences
over bets. Savage rejects the approach of eliciting likelihood from direct interrogation. He

anticipates "Perhaps the first way that suggests itself to find out which of two events is



more probable is simply to ask him." He then goes on to provide counter-arguments for
such an approach. Instead, he strongly argues for inferring the likelihood comparison from
decision behavior. As an illustration of the latter approach he uses an example "If under
these circumstances the person stakes his chance for the dollar on the brown egg, it seems
to me to correspond well with ordinary usage to say that it is more probable to him that the
brown one is a better one than the white one is." To Savage the theory of personal
probability is "a code of consistency for the person applying it, not a system of predictions
about the world around him." Thus Savage takes preferences over bets as the observable
primitive, and subjective probabilities represent preferences. Any other interpretation of
subjective probabilities is speculative. This approach is in line with the revealed preference
approach of Samuelson (1938) and others for inferring utilities from choices. For empirical
studies of problems for likelihood elicitation under SEU, see Erev, Bornstein, & Wallsten
(1992) and Liberman & Tversky (1993).

For the two consequence case, the likelihood relation can be operationalized in either of

the following two equivalent ways:

A is more likely than B if one prefers a bet on A to a bet on B (Figure 1a).

A is more likely than B if one disprefers a bet against A to a bet against B (Figure 1b).

0 0
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Figure la Figure 1b

Thus, "more likely than" judgments are not elicited through verbal statements; instead

they are revealed through preference comparisons between various "win - lose" bets.



Implicit in the betting method for revealing likelihood is the assumption that the likelihood
comparison of events A and B is independent of the pairs of consequences used. This
independence is ensured through Savage's axiom P4.

It is easy to verify that for an SEU maximizer either preferences in Figure 1a or Figure
1b would reveal the same likelihood relation. The preferences in Figure la reveal P(A)>
P(B) and those in Figure 1b reveal P(A¢) = 1-P(A) < P(B¢) = 1-P(B), each leading to the
conclusion that A is revealed to be more likely than B. Figure 1a illustrates that one prefers
to win on the more likely event A, and Figure 1b illustrates that one disprefers to lose on
the more likely event A. An example of a bet against an event is as follows. If one does not
like (disprefers) radiation therapy as compared to surgery then this may reveal that the
likelihood of recurrence is higher under radiation than under surgery.

The desirability of eliciting likelihoods using bets on events or bets against events
depends on the decision context. In theoretical analyses, likelihoods have mostly been
inferred using bets on events, as in Figure 1a. They can, however, just as well be elicited
using bets against events as in Figure 1b. There is no prior reason to prefer one method
over the other, though in practical applications one of the two methods may be more
convenient. A large part of our risky decisions concerns avoidance of unfavorable events,
in which case it is natural to think in terms of bets against events. Examples are health care,
safety measures, and insurance. In the next section the choice of method will be more than

a matter of practical convenience and will lead to conceptual differences.

III. REVEALED QUALITATIVE LIKELIHOOD

Ellsberg (1961) showed that empirically the two ways of operationalizing likelihood as

in Figure 1 do not lead to the same result for some events. To illustrate this violation of

SEU, consider two urns, one containing 50 white and 50 black balls, and the other



containing a total of 100 white and black balls in unknown proportion (see Figure 2). From
each of the two urns a ball is randomly drawn. People often prefer a bet on event K (white
from known urn) to a bet on event U (white from unknown urn), while preferring a bet on
K¢ (black from known urn) to a bet on U€ (black from unknown urn). In the same issue of
the Quarterly Journal of Economics where Ellsberg published his classic article, Fellner
(1961) and Raiffa (1961) provided their reactions to Ellsberg's observations. Raiffa (1961)
gave normative arguments against Ellsberg’s finding, while acknowledging its descriptive
validity. Fellner (1961) agreed with Ellsberg and suggested that people distort probabilities
when dealing with decisions under uncertainty. Earlier, Keynes (1921) and Knight (1921)
had also made a distinction between situations where probabilities are known and where
they are unknown. It was precisely this distinction that motivated Schmeidler to propose

CEU theory as an alternative to SEU.

K 100 v 100 - &
Ko *~o K 100 U 100

Figure 2a Figure 2b

The above pattern of preference implies that event K is revealed more likely than event U
when one derives the likelihood relation from bets on events (Figure 2a). Such an inference
is guided by the intuition that one should prefer the more likely gain. Event K is revealed
less likely than event U when one derives it from bets against events (Figure 2b). In Figure
2b, one loses on events K and U and the inference that K is less likely than U is guided by
the intuition that one should prefer to lose on the less likely event.

The above example demonstrates that a revealed likelihood relation derived from bets on

events may differ from that derived from bets against events. To distinguish these two



notions of revealed likelihood we introduce the following notation. We write =" for
revealed likelihood derived from bets on events. That is, A =T B if there exist

consequences x >y such that
2) (A.x; A%y) = (B,x; BSy)

where > denotes weak preference and (A x; AC,y) denotes the act yielding x if A occurs
and y otherwise. We write > instead of =T if (A x; Acy) > (B,x; B¢y), i.e. the
preference in (2) is strict.

Similarly, we write = for revealed likelihood derived from bets against events. That is,

A =!B if there exist consequences x >y such that
(ASx; Ayy) < (B¢x; By)

where < denotes reversed preference (f < g meaning g = f). Again, > denotes strict
preference. Note that =T and = coincide for SEU. In the elicitation of =T a superior
consequence is associated with events A and B, that is, A and B play the role of "good-
news events." In contrast, in the elicitation of = an inferior consequence is associated
with events A and B, hence these events play the role of "bad-news events." The
preference pattern observed in the Ellsberg paradox implies K=" U but U >4 K and thus
constitutes a violation of SEU.

In K >T U, one wins if events K or U occur. A person who is pessimistic with respect
to unknown probabilities (ambiguity averse) considers winning on the unknown urn less
likely. In U =4 K, one loses if events U and K occur. Now, a pessimist considers losing
on the unknown urn more likely.Thus, for a pessimist the bad news looms larger than the
good news. Suppose for simplicity that in the known urn, the probability of winning or
losing is 0.5 each. A pessimist behaves as if in the unknown urn the probability of winning
is less than 0.5 and the probability of losing is more than 0.5. Thus a pessimist downplays

the likelihood of winning and exaggerates the likelihood of losing. This behavior is



highlighted in Murphy's law: "If something bad can happen, it will." Of course, there may
be reasons other than optimism or pessimism for the above preferences.

It is useful to note the following duality between =T and =*:
3) A="B & BezlAc

The left-hand side says that a bet on A is preferred to a bet on B. As a bet on A is a bet

against A€ and a bet on B is a bet against B¢, this means that a bet against B¢ is dispreferred
to a bet against A€, which is the right-hand side. In other words, both the left-hand side and
the right-hand side describe the preference in Figure 1a. Hence, one relation can be inferred

from the other, and they both describe the same information.

IV. CHOQUET-EXPECTED UTILITY

To distinguish Knightian uncertainty from risk and to accommodate the Ellsberg
paradox, Schmeidler (1989) proposed nonadditive capacities defined on events. We
assume that consequences are amounts of money and that preferences satisfy monotonicity,
i.e. higher amounts are preferred to lower amounts. Events A, B, etc. are subsets of the
state space S that can be infinite. We do restrict our attention to simple acts (i.e., acts that
take only finitely many different consequences) throughout the paper. In Choquet-expected
utility, a "capacity” v is used instead of the additive probability measure P of SEU. It is
assumed that v assigns value O to the impossible event, value 1 to the universal event S,
and A>B implies v(A)>v(B). Then the CEU value of an act (A1,x1:+;Ap,Xp) where x; >

-2 Xp, is given by

1=

n
) Zﬂ:iU(xi)
1



where U is the utility function as in SEU, and the 7; denote decision weights, defined by
5) i = V(A|U--UAj) — V(A|U - UA_)).

Similar formulas are used for cumulative prospect theory, except that the capacity for gains
can be different than the capacity for losses. CEU permits the preference patterns observed
in the Ellsberg paradox by setting v(K) >v(U) and v(K¢) > v(U¢). Under CEU the

following results hold:
@i A =B ifand only if v(A)2v(B).
(i) A=VB if and only if 1 —v(A®) > 1 —v(BC).

Thus v(A) represents the =1 ordering, derived from bets on events, and its dual 1-v(A€)
represents the > ordering, derived from bets against events. For this reason, we write
vT(A) for v(A), and v¥(A) for 1-v(AS). v is the capacity for events in the role of good-
news events, and v is the capacity for events in the role of bad-news events. In SEU, vi=
v!=P. In CEU, however, v! and v! need not be identical.

The discussion above is based on a duality between good- and bad-news events. As
there has been confusion about this duality, and it is central for our measure of likelihood,
we discuss it in some detail. The duality has also been discussed for Choquet integration.
In the literature, an alternative way for defining Choquet integrals that is dual to Formula

(5) has been used. This dual Choquet integral is obtained by defining
(6) i = V(AU U Ap) = V(Aj41 U U Ap)

instead of (5) in Formula (4).! Note that the decision weight m; in (6) now is equal to 1 —

V(AU - UA,) instead of v(A}) in (5). The method of integration through (6) is called

1Equivalently, one can order consequences alternatively by x| < - < x, and then use Formula (5). Reversing the
rank-ordering of consequences and using Formula (5) gives the same results as keeping the rank-ordering of this

paper and using Formula (6).
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the lower Choquet integral, and similarly the method of integration through (5) is called the
upper Choquet integral. Clearly, these may yield different orderings of acts. Thus the
question arises which formula for computing CEU is the "right" one, and how the seeming
inconsistency between (5) and (6) can be resolved. There is no inconsistency, however,
between (5) and (6) if the relevance of the role of events is recognized. That is, (5) entails
good-news events A| U - U A; (receive X;j or more) and therefore vl should be used there.
Formula (6) entails bad-news events A; U - U A, (receive xj or less) and therefore v'L
should be used. In this manner, the two methods for computing CEU yield identical
results. Note that this consistency is obtained in general and it does not impose restrictions
on capacities such as symmetry.

Imagine now that a person uses the capacity v, elicited from bets on events, but uses
Formula (6) to calculate CEU. Note that in this case the capacity vT for good-news events
is applied to bad-news events in (6). For symmetric capacities (V(A)=1 — v(A°), i.e. vT=
V‘L), the above scheme results in the correct CEU values after all. For non-symmetric
capacities, this mis-matching of capacity and integration will produce wrong results
(Gilboa, 1989a). The question of which capacity to use, vlor V’L. and the question of
which method of integration to use, (5) or (6), in isolation are not meaningful. They must
be considered jointly and applied consistently.

The following linguistic example may illustrate the idea of mis-matching. It is now well-
accepted that an author may use male-specific pronouns (he/his/him) or female-specific
pronouns (she/her) to designate an abstract person (decision maker, agent, defendant).
There is no reason to prefer a choice of "he" to a choice of "she," and there is no reason to
prefer a choice of "him" to a choice of "her." These two choices, however, are intertwined
and cannot be made independently. An argument to the effect that "he" could be replaced by
"she" without recognizing the interdependence of the he/she choice with the his/her choice
would lead to anomalies such as "he maximizes her utility.” Clearly a mis-match of the

pronouns along the way yields an unintended implication of altruism. The sentences "he
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maximizes his utility" and "she maximizes her utility" are truly dual to each other and either
one is acceptable.

Our main point in the above discussion has been that the revealed likelihood ordering
=Tor z=l'), the capacity T or V’L), and the manner of integration (upper or lower) should
be consistent with the role of events. For the good-news events =T, vT and upper
integration should be used, and for the bad-news events >J’, vJ', and lower integration
should be used. Good-news or bad-news events are dual in the same way as the male or
female gender are in the linguistic example. There is a complete freedom to choose the role
of events in CEU and the gender in the linguistic example, as long as consistency is

maintained throughout.

V. CUMULATIVE DOMINANCE

In Sarin & Wakker (1992), CEU is characterized by using a cumulative dominance
condition. Cumulative dominance states that act f is weakly preferred to act g whenever, for
all consequences x, the good-news event of receiving x or more under f is revealed at least
as likely as the good-news event of receiving x or more under g. As this formulation
employs good-news events, the revealed likelihood for good-news events (=") should be

adopted. We display the condition:
(@) f = g whenever, for all consequences x, [f=x] =T [g=x].

An equivalent dual formulation is given in the observation below. The dual formulation is
in terms of bad-news events. Because the proof illustrates the duality between good- and

bad-news event, it is presented in the main text.
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OBSERVATION 1. Cumulative dominance holds if and only if
(8) f = g whenever, for all consequences X, [g<x] =1 [f<x].

PROOF. In the dual formulation, for every consequence x a bet against event: [g<x] is
dispreferred to a bet against event [f<x]. Thus, [f< x]Je =T [g<x]¢ for all x, which
implies, similarly to (3), that [f>y] =T [g2y] for all consequences y (let {z: z > Yy} ={z:%

> x}, using finite ranges of f and g). O

The condition in the observation states that act f is weakly preferred to act g whenever,
for all consequences x, the bad-news event of receiving x or less under g is revealed at least
as likely as the bad-news event of receiving x or less under f. As this formulation employs
bad-news events, the revealed likelihood relation for bad-news events =Y is adopted.
Thus cumulative dominance can be formulated in two equivalent dual ways: either it is
formulated in terms of good-news events, or in terms of bad-news events. In the former
case, the revealed likelihood-relation =T for good-news events is to be employed, and in
the latter case the revealed likelihood relation = for bad-news events. The two statements
of the cumulative dominance are then truly dual, i.e. describe the same empirical restriction,
and result in the same CEU representation. The important point to note is that the revealed
likelihood relation should be consistent with the role of the events.

Cumulative dominance has a resemblance to stochastic dominance when probabilities are
given. Although this resemblance makes this condition transparent, it should be understood
that cumulative dominance does not have the normative appeal of stochastic dominance.
This is because, unlike stochastic dominance, cumulative dominance cannot be derived
from a statewise monotonicity condition.

We next study the implications of a variation of the cumulative dominance axiom where
the preference condition involves bad-news events, but the revealed likelihood-relation

adopted is the one for good-news events. In other words:



) f = g whenever, for all consequences x, [g<x] =T [f<£x].

Consider two-consequence acts f=(A,x; A%y) and g=(B,x; B¢y), x>y. Clearly, f=g
if and only if A =" B. Condition (9), however, would require that f = g if B¢ =TAc ie.
(by Formula 3) if A =¥ B. Thus, A =*B would imply A =B which was precisely the
restriction we wished to relax to accommodate the Ellsberg paradox. In other words, the
mismatch of (bad-news) events and the (good-news) likelihood relation in (9) leads to
unwarranted implications.

Next we demonstrate that cumulative dominance and dual cumulative dominance are
necessary conditions for CEU. We present the result here because the, elementary, proof
(given in the appendix) further clarifies the duality between the above two dominance
conditions, and shows that this duality is the qualitative analog of the duality between upper

and lower Choquet integration.

OBSERVATION 2. Cumulative dominance and dual cumulative dominance are necessary

conditions for CEU. O

We have emphasized above that the =T relation refers to events in the role of good-news
events, and the =4 relation refers to events in the role of bad-news events. Therefore we
used =T in (7) and =tin (8) to avoid mixing and we obtained a consistent characterization
of CEU. In (9), the =T relation for good-news events is applied to a preference condition
defined in terms of bad-news events. This constitutes the same mis-matching as described
at the end of Section IV, and illustrated there by the linguistic example. In SEU, (9) will
not produce a contradiction because the revealed likelihood relation is independent of the
role of events, i.e. =T=x=ln CEU, however, such an identity imposes an unwarranted
symmetry of the capacity, i.e. vl =v! (Nehring, 1994). The following example illustrates
our point further.



EXAMPLE 3. Assume that there is a "known" urn that contains red (Ry), yellow (Yy), and
white (W) balls in equal proportion. There is another, "unknown," urn that also contains
red (Ry), yellow (Y,), and white (W) balls, but in an unknown proportion. A ball will be
drawn at random from each urn. Consider the acts f = (R, 100; Yg,50; Wi,0) and g =
(Ry,100; Y,50; W,0). Thus f is related to the known urn, and g to the unknown urn. We
assume the most commonly found preference for betting on known urns. Thus (Rg,100;
Y,0; Wk,0) = (Ry,100; Y,,,0; Wy,0), ie. R =T Ry, and (R, 100; Yi,100; Wy,0) =
(Ry,100; Y,,100; W,,0), ie. Rg U Yy =T RyU Yy Of course, we trivially have Ry U Yiw
Wi =T Ry U Yy U W, Thus all good-news events under f are at least as likely (by the =T
relation) as under g, and by cumulative dominance, f &= g. This agrees with what is
commonly observed.

Next we consider the implications of condition (9). We have (Rk,0; Yi,0; Wy,100) =
(Ry,0; Yy,0; Wy, 100), ie. Wy ,«‘:TWU, and (Rg,0; Yi,100; Wi,100) = (Ry,0; Yy, 100:
W, 100), i.e. Yk U Wi =T Y, UW,, and, trivially, Ry U Y U Wi =T Ry U Yy U W,
Thus all bad-news events under f are at least as likely (by the =T relation) as under g, and
by condition (9) (with g and f interchanged), g = f. The implied preference, however,
disagrees with what is commonly observed. This counterintuitive prediction of (9) occurs
because the events for which likelihood orderings are elicited are bad-news events (yielding
consequence x or less) for the acts. In the likelihood elicitations, however, these events
play the role of good-news events. Therefore the elicited likelihood orderings give
misleading information concerning the preference between the acts f and g. Such a mis-

match of roles of events does not occur in cumulative dominance (7). 1)

Let us summarize the discussion in Sections IIL, IV, and V. Section III discusses the
duality between "good-news" and "bad-news" events in CEU. In a quantitative setting, this

duality was discussed by Gilboa (1989a), and in a qualitative setting it was discussed by
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Nehring (1994). Our discussion starts in the qualitative context of revealed likelihood
orderings, on the issue whether these orderings should be inferred from bets on or bets
against events. In Section IV, the same issue is discussed in its quantitative version, i.e.
whether a capacity or its dual should be used to measure revealed likelihood. The same
duality also underlies the discussion whether one should do Choquet-integration in the
"upper" version or in the dual, “lower," version. In Section V, we present a preference
condition, cumulative dominance, that was used to characterize CEU by Sarin & Wakker
(1992). The distinction between cumulative dominance and its dual is analogous to the
distinction between upper and lower integration. Again, the good-news likelihood ordering
should be used for cumulative dominance and the bad-news likelihood ordering should be
used for dual cumulative dominance. Our approach developed in Sections III, IV, and V
boils down to a simple prescription: When defining revealed likelihood and capacities and
applying these to preference conditions and Choquet integration, one should be consistent

regarding the role of events.

VI. EVENTS WITH INTERMEDIATE CONSEQUENCES

So far we have discussed revealed likelihood of events when they are associated with
best or worst consequences. In the more general multiple-consequence case, some events
have intermediate consequences. We examine revealed likelihoods for such events. From
now on, in the rest of the paper, we assume CEU.

It has been empirically observed that intermediate consequences have less impact than
extreme (best or worst) consequences. Thus the revealed likelihood of an event is lower
when it is associated with intermediate consequences than when it is associated with
extreme consequences. This phenomenon is described by "bounded subadditivity" for the

uncertainty case (Tversky & Kahneman, 1992; Tversky & Fox, 1995; Tversky & Wakker,
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1995), and by S-shaped probability transformation for the risk case (Karni & Safra, 1990;
Kachelmeier & Shehata, 1992; Tversky & Kahneman, 1992; Bernasconi, 1994; Camerer &
Ho, 1994; Wu & Gonzalez, 1994; Tversky & Fox, 1995). Bounded subadditivity
underlies the coexistence of insurance and gambling.

This section considers "connected" events. An event is connected if each state outside
the event either is lower in rank-ordering than all states of the event, or higher in rank-
ordering than all states of the event, but never in between the states of the event. For
example, for a given act f the event {se S: x<f(s)<y] is connected. Every event that has a
constant consequence is connected.

To illustrate the general idea of revealing likelihood for intermediate events, assume an

indifference
(A1,10; Az,2; A3, 1) ~ (B},12; B2,2; B3,0).

In this case, events Aj and B are associated with an intermediate consequence and our
interest is in comparing the revealed likelihoods of A; and B3 . Suppose we ask the
question what is preferred, receiving an additional dollar under A or under By. That is,

what is the preference between
(A1,10; A2,3; A3,1) and (B,12; B2,3; B3,0)?

An intuitive reply may be that the additional dollar is preferred for the "more likely" event.
Thus, if the left act is preferred then A3 is "more likely" than B>. In this context, A, and B>
are neither good-news events nor bad-news events as they are associated with intermediate
consequences. An SEU maximizer will prefer the left act if and only if P(A2)>P(B2). The
initial indifference and the preference for the left act together imply that the SEU increment
for the left act, P(A2)(U(3)-U(2)), is higher than P(B;)(U(3)-U(2)), the SEU increment
for the right act. A CEU maximizer will prefer the left act if and only if (A7) >n(B>),

where (A7) denotes the decision weight of Az and m(B3) the decision weight of B;. This



17

is because the CEU increment for the left act, ©(A2)(U(3) — U(2)) is higher than
n(B2)(U(3) — U(2)), the CEU increment for the right act. Since decision weights reflect
where one would stake the bet, they can be a plausible measure of revealed likelihood. We
further discuss the issue of interpretation after stating a preference condition for comparing
revealed likelihoods through decision weights. The condition is based on Gilboa's (1987)
condition P2* (see also Gilboa, 1989a)? that contains an intuitive and empirically valuable

idea for CEU: It shows a way for comparing decision weights.
Suppose that B> and

(A1LX15 5 A= 1,Xi=15 AR A, Xisls =+ An,Xp)

(Bry1; = Bi-1,¥j-15 Bj,0; Bj+1,¥j+15 5 Bm,Ym)

where xj 2 2 Xj—] ZP> 02 Xjy1 2 ZXpand y) 2 2yjo 2P > 2 yjyp 2 2

Ym-

Then under CEU,

(ALX1; 5 Aic1Xi-15 ApBs Aitl, Xit1s - AnXn)
=

(B1,y1; -5 Bj=1,Yj-15 BjsB; Bj+1,¥j+15 =3 Bm,Ym)

if and only if the decision weights satisfy T(Aj) 27(B;).

In the above condition, the incremental impact of A; is equal to 7(A;)(U(B)-U(x))
whereas the incremental impact of B; is 1(Bj)(U(B)-U(a)). One therefore prefers to stake
an additional amount of money on the event with the higher decision weight. It is in this

sense that one could interpret that the revealed likelihood of A, is higher than that of Bj in

2This condition was called to our attention by Alain Chatcauneuf (1991, personal communication).
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this decision context. In the next two sections we elaborate on measuring revealed

likelihood through decision weights.

VII. INDEPENDENCE OF BELIEFS FROM TASTES

A well-known property of SEU is the "independence of beliefs from tastes." It means
that the likelihood of an event, i.e. the probability, is independent of the consequences that
are associated with the event, thus is independent of the particular acts. If one defines
revealed likelihood of an event through its decision weight, as we propose, then the
revealed likelihood of the event depends on the acts. More precisely, a revealed likelihood
is only relevant in the evaluation of acts that generate, through their consequences, a given
rank-ordering over the state space. Such a subset of the act space is called comonotonic.
Some degree of independence from tastes is achieved here because the decision weights do
not depend on the exact magnitudes of consequences so long as the rank-ordering of the
consequences remains constant. In particular, we note that CEU satisfies Savage's P4.
That is, if A ="B is revealed through (x,A; y,A€) = (x,B; y,B¢) for some x>y, then for all
x'>y', (x\A; y'A°) = (x',B; y',B€), confirming A =TB. Nevertheless, dependence of
decision weights on the rank-ordering of consequences may be considered excessively
flexible. It entails a considerable degree of dependence on tastes, and makes it hard to think
of revealed likelihood as a property of events.

We now illustrate how the dependence of the revealed likelihood of events on the rank-
order of the consequences can be reduced to such a degree that it becomes possible to
consider revealed likelihood as a property of events. To do so, we introduce the followin g
definition. We call an event D a dominating event for event A if, loosely speaking, the
consequences under D are superior to the consequences under A, and the remaining

consequences under events outside D and A are inferior. More precisely, given an act f,
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event D is a dominating event for event A if AND = @ and f(t) > f(s) > f(t') for all te D, s
€ A, and t'e (A UD)°. Because the rank-ordering of states with equivalent consequences
can be chosen arbitrarily, we can choose a rank-ordering of states that is compatible with f
and is such that the states in D are ranked higher than the states in A, and the latter are
ranked higher than those in (A UD)C. As we shall see, for a large class of events, the
revealed likelihood of A only depends on what the dominating event D of A is. That is, the
revealed likelihood is relevant for the subset of all acts for which D is a dominating event
for A.3 For simplicity, first think of the case where A describes the receipt of a single

consequence. Then the decision weight for A is given by
(10) v(AUD) - v(D),

where D denotes the dominating event. D is disjoint from A. The dependence of the
decision weight of an event A on the dominating event D can be expressed in notation by
writing T(A,D).4 Implicit in this notation is that A and D are disjoint. The decision weight
of an event A can vary depending on whether the dominating event D is &, A€, or some
other intermediate event. Thus decision weight, as a measure of revealed likelihood, is a
two-argument-function, depending on two events — the event itself and the dominating
event. Interpreted thus, decision weights are to a high degree independent of consequences.
For more general, nonconnected events, decision weights can still be used as an index of
revealed likelihood, but their dependency on the rank-ordering of the other events is more
complex and cannot be described merely by one dominating event. Of course, the decision
weight of a nonconnected event can be derived from the decision weights of the separate
connected components through summation. We restrict most of the discussion of revealed

likelihood in this paper to the class of connected events. The class is rich enough to cover

30f course one could just as well express this dependence in terms of the dominated, “inferior,” event I, i.e. the
event yielding inferior consequences, by substituting D = (AUI)¢.

4When no confusion can arise, the event D is sometimes suppressed.
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the majority of cases where likelihood is relevant. We think that a desirable feature of rank-
dependent theories is that it achieves this degree of independence of revealed likelihood
from consequences.

Let us next explain the Ellsberg paradox in terms of the dependence of revealed
likelihood on a dominating event. Note that in the Ellsberg example presented in Section
11, n(K,D)>n(U,D) when D=, and n(K,D') <m(U,D") when D' and D" represent
complementary events K¢ and U¢ respectively. The following example explains a variation
of the Ellsberg paradox in terms of dependence of revealed likelihood on dominating

events.

EXAMPLE 4. Consider an urn containing 30 red (R) balls, and 60 yellow (Y) and white

(W) balls in unknown proportion. Two pairs of bets are illustrated in the table.

R Y w
betl 90 O 100
bet2 0 90 100
bet3 90 0 0
bet4 0 90 o

One may prefer bet 2 over bet 1 and bet 3 over bet 4. The first preference shows that Y is
revealed more likely than R when the dominating event is W (i.e., n(Y,W) >1(R,W)). The
second preference reveals the reverse ordering, i.e. R is revealed more likely than Y when

the dominating event is null (i.e., T(R,@)>n(Y,D)). O
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FIGURE 3. Decision weight of an event E as a function of the
dominating event.

Figure 3 depicts the decision weight of an event E as a function of the dominating event,
for the case of bounded subadditivity. For illustration, the dominating events are depicted
as if they lie on one line. The decision weight of an event E is large when the dominating
event is maximal (EC), i.e. all other events are dominating. Then E is associated with the
worst consequences and has a salient role as compared to the other events. Similarly, the
decision weight of E is also large when the dominating event is minimal (&), i.e. no other
events are dominating and E is associated with the best consequences. Then again E has a
salient role. The decision weight of E is smaller when the dominating event is neither
maximal nor minimal, i.e. when E is associated with intermediate consequences. In this
case the role of E in comparison to the other events is less salient.

We concede that decision weights as measures of revealed likelihood in the CEU model
are not as elegant as probabilities in the SEU model. For a comonotic class (fixed rank-

ordering), however, decision weights share some common features with probabilities. For
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example, decision weights sum to one. As a result, if in an n-fold partition of the universal
event all decision weights are the same then one immediately concludes they are all 1/n. For
a subset of acts for which the dominating event D associated with an event A remains the
same, the decision weight for A does not change. Clearly, in comparison to SEU, where
the probability of A is independent of what goes on outside of A, revealed likelihood in
CEU is more complicated. In CEU willingness to bet on an event A depends on the
dominating event. Since revealed likelihood is elicited from preferences, there seems to be

no escape from revealed likelihood to depend on the dominating event as well.

VIII. CAPACITIES VERSUS DECISION WEIGHTS

In this section we argue that decision weights have some distinct advantages over
capacities in measuring revealed likelihood. We begin with a simple Ellsberg example given

in Section III to illustrate our viewpoint.

EXAMPLE 5. The capacity-interpretation and the decision-weight interpretation agree that
the preference in Figure 2a suggests a higher revealed likelihood for K than for U.
However, the conclusion that K be revealed more likely than U cannot be made in general,
and is not appropriate in Figure 2b. The preference in Figure 2b illustrates that one prefers
to lose on event K rather than on event U. Therefore, event K is revealed less likely than
event U. The decision weight for K in Figure 2b is indeed smaller than the decision weight
for U. The capacity for K is, however, larger than the capacity for U. Therefore the
decision weight seems a better measure of revealed likelihood than the capacity. From our
perspective, capacities measure revealed likelihood only for events in the role of good-news

events. [J
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In Figure 2b one could use the dual capacity to compare the revealed likelihood of K and
U because it so turns out that the dual capacity is indeed the decision weight. In the
multiple-consequence case, however, neither the capacity nor its dual will suffice as an

index of revealed likelihood. This is illustrated by the following example.

EXAMPLE 6.
Al A2z Az B B2 B3
pref. 1 10 2 1 ~ 12 2 0
pref. 2 10 3 1 < 12 3 0
pref. 3 0 1 0 > 0 1 0

Consider the preferences in the table. Suppose in the first indifference situation the person
is asked if he prefers to receive an additional dollar on event A3 or on event B,. Suppose
the person prefers the extra dollar on By, as shown in preference 2. Such a preference
reveals that the person considers B to be more likely than Aj. Indeed, the decision weight
for B3 is higher than that for Aj. The capacity, however, produces the reverse ordering of
revealed likelihood as shown in preference 3. If the decision situations in preferences 1 and
2 are relevant to us, where A and B play the role of intermediate event, then we think that
By is revealed more likely than Aj. For such multiple-consequence cases the capacity is not
an appropriate index of revealed likelihood. It may be noted that in this example the dual
capacity may not be an appropriate index of revealed likelihood either. This would be the
case, for example, if (A1,10; Az,1; A3,10) < (B,10; B2,1; B3,10). Then one disprefers
losing on A to losing on B which implies that A; is revealed more likely than B, when
they are both bad-news events.

Preferences as above are commonly found when the phenomenon of overestimating low
likelihoods and underestimating high likelihoods is more pronounced for the A-events than

for the B-events. Then the A-events receive relatively more decision weights than the B-
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events when they are associated with highest or lowest consequences, and they receive
relatively less decision weights when they are associated with intermediate consequences.
This phenomenon was characterized by Tversky & Wakker (1995), empirically found by
Tversky & Fox (1995), and it becomes salient by the finding of Fox & Tversky (1995). [

The next example considers null events.

EXAMPLE 7.
R Y w R Y W
pref. 1 0 1 0 ~ 0 0 0
pref. 2 0 1 10 > 0 0 10

Here the capacity-interpretation of revealed likelihood suggests, according to the first
indifference, that Y is null, which agrees with the decision-weight interpretation for good-
news events. We think, however, that the claim that Y be null cannot be accepted in the
second preference, where the person strictly prefers receiving an additional dollar on Y if it
is an intermediate event. The decision weight for Y is indeed larger in this case. The
preferences in the table above result from the example in Gilboa & Schmeidler (1993,

introduction). [J

Capacities resemble probabilities because they preserve independence of beliefs from
tastes. In CEU, however, using capacities as a measure of likelihood introduces
arbitrariness. From our perspective, it means that events are implicitly assumed to be good-
news events. The capacity has a seductive appeal as a measure of likelihood since it does
not depend on the rank-ordering of consequences. In CEU, insisting on a measure of
revealed likelihood that is entirely independent of the rank-ordering of consequences (or a

dominating event) is akin to throwing out the baby with the bath water. This is because, in
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CEU, preferences depend on the rank-ordering of consequences and if the revealed
likelihood is derived solely through preferences, there seems to be no escape from revealed
likelihood to depend on the rank-ordering as well. Our three examples have demonstrated
this dependence of revealed likelihood on the dominating event.

To further underscore the analogy between decision weights and probabilities, consider
an act (Ay,x1; +; Ap,Xp) With x| >--->x,, and define U(x;) =u;. Then the act can be
represented as (Aj,ug; -; Ap,Up), Uy >-->uy. In SEU, 8U/8u;=p;=P(A;), where U is
the SEU value of an act. In a similar manner, in CEU, 8U/8u; =t;=nt(A;), where U
represents the CEU value of an act. This observation illustrates once more that in many
respects decision weights are the analogs of probabilities in CEU.

Capacities measure revealed likelihood of cumulative events (x or more), whereas
decision weights measure revealed likelihoods of separate events. Thus, capacities are
special cases of decision weights in the same way as cumulative probabilities are special

cases of probabilities.

IX. RESTRICTIONS ON DECISION WEIGHTS

We have observed that, under CEU, revealed likelihood of an event measured by its
decision weight depends on the dominating event, whereas under SEU, the revealed
likelihood of an event is entirely independent of the dominating event. This section
describes a number of cases that are intermediate between CEU and SEU in restricting the
dependence of revealed likelihood on the dominating event.

We first demonstrate the application of decision weights as measure of revealed
likelihood in defining null events. Loosely speaking, a null event is equally likely as the
impossible event. In our interpretation it means that an event is null if its decision weight is

0. Null events are important for updating (Gilboa, 1989a) and for the definition of the
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support of a distribution, which is central in some problems in game theory (Dow &
Werlang, 1994; Eichberger & Kelsey, 1994; Hendon, Jacobsen, Sloth, & Tranaes, 1995);
Haller (1995) proposed three different definitions of support, depending on how null
events are interpreted.

Whether an event is null can be inferred from preferences as follows.

Suppose that > f. Then
(11) n(A,D) =0 if and only if (D,o; A,ct: IB) ~ (D,o; A,B; LB),

where I=(A UD)¢. Substitution of CEU shows that the above indifference holds if and

only if

(ALX]5 5 A= Xi=15 A0 Aje1,Xi+15 5 AnsXp) ~

(A1,X[; =45 AimtuXi=15 AisB; Ais1:Xis15 -3 AnsXn)

for any a>B, Aj=A, D=AjU--UA_|, I=Aj4|U--UA,, and where x| > ... 2 x;_| >
o> B > xj4| 2 - 2 x,. We use the simpler condition (11) in the analysis below.

Under general CEU, the above conditions depend on the event D, and A can be null for
some dominating event D but nonnull for another. As an example, for maximin behavior
(v(A)=0 whenever A is not the universal event), T(A,D) is 1 if D=A¢ and A is nonempty,
but (A,D) is 0 whenever D# A¢. Therefore we call an event A D-null if T( AD)=0. We
next discuss invariance of null events with respect to the dominating event D. In order to
ensure that an event is null regardless of its rank-ordering we need an additional preference
condition that, under CEU, turns out to be equivalent to Savage's (1954) P3.

If one assumes that events should be null only if they are logically impossible, then it is
unsatisfactory that the logical (im)possibility of an event would depend on which other
event were to yield better consequences in an act. One will want to ensure that an event A is

null regardless of the dominating event. It must then be required that the decision weight
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n(A,D) be zero for all dominating events D as soon as it is for one, i.e. w(A,D)=0 for one

event D if and only if m(A,D)=0 for all events D. In terms of preferences, this means that
(12) (D,o; A, L) ~ (Dyo; AB; LB) = (Do Aj; I,B) ~ (D',ax; AB; I',B)

for all o>, I, D, I', D'. We call this condition invariance of impossible events. It rules
out phenomena such as in Example 7. Next we demonstrate that invariance of impossible
events is equivalent to Savage's P3 condition. To define Savage's P3, first we define his
notion of null events. We use here a somewhat simplified formulation, that is motivated in
Lemma 12 in the appendix. An event A is S-null if f ~g whenever f and g coincide outside

of A; here "S" abbreviates Savage.

P3. If A is S-nonnull, acts f and g coincide outside of A, and f=aon A, g=p on A, then f

# g if and only if ot = B.

THEOREM 8. Under CEU, invariance of impossible events holds if and only if Savage's

postulate P3 holds. O

The formulation in terms of dependence of decision weights on dominating events gives
clarifying alternative interpretations of several properties of capacities that have been

studied in the literature. We list a number of them, leaving the proofs to the reader.

(13) v is symmetric if and only if (A,J)=m(A,AC) for all events A.

(14) v is convex (V(A) + v(B) £ v(AUB) + v(ANB)) if and only if
n(A,D) is increasing in D.

(15) v is concave (v(A) + v(B) = v(AUB) + v(A N B)) if and only if

1(A,D) is decreasing in D.
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Condition (14) illustrates pessimism, where a higher decision weight is assigned to an
event as the event is lower in the rank-ordering. Similarly, condition (15) illustrates
optimism. Condition (14) and (15) are reminiscent of the characterization of convex
functions through increasing derivatives and concave functions through decreasing
derivatives. Note here that the decision weight (A,D) describes the increase of v if A is
added to D.

Tversky & Wakker (1995) proposed the following conditions to reflect bounded
subadditivity, stated here in a somewhat informal manner. v satisfies bounded subadditiviry

if
(i) (A, D) 271(A,B) whenever AUB is “sufficiently remote" from certainty.
(ii) T(A,A¢)21(A,B) whenever B is "sufficiently remote" from impossibility.

The conditions imply that decision weights with respect to intermediate dominating events
are less than with respect to the extreme dominating events and have been illustrated in
Figure 3.

We finally turn to the characterization of probabilistic sophistication for the context of
CEU. In a general setting, probabilistic sophistication was characterized by Machina &
Schmeidler (1992); they argued for a normative status of probabilistic sophistication. In the
case of probabilistic sophistication, the ordering of revealed likelihoods of events remains
invariant with the dominating event D. The characterizing condition for probabilistic

sophistication is:
(16) n(A,D) 2 n(B,D) = m(A,D") = n(B,D")

for all events A, B, D, D'. In the theorem below, solvability of v (introduced by Gilboa
(1987) under the name convex-rangedness) means that for all events A = C and V(A)<B<
v(C) there exists an event B such that Ac B C and v( B)=P. We now state a theorem that

uses condition (16) to relate capacities to probabilities.
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THEOREM 9. Let the collection of events be a sigma-algebra, and let CEU hold. There
exists a countably additive atomless probability measure P and a strictly increasing
continuous transformation ¢ such that v=¢oP if and only if the following conditions hold:
(i) v satisfies solvability;
(i)  (set-continuity) If Ay TA (i.e., Aps1 D Ap and UAL=A)

then limj—eov(Aj)=V(A).

(iii)  Condition (16) holds.

X. UPDATING REVEALED LIKELIHOOD

In the approach proposed in this paper, decision weights are taken as indices of revealed
likelihood. Then the definition of revealed conditional likelihood is straightforward.
Consider two events A and B, and assume that the rank-ordering of the state space has

been fixed. The revealed conditional likelihood of A given B is simply defined by

(AN B)
17 AlB)=————
(17) n(AlB) (B)

Obviously, the resulting number is always between 0 and 1. The above definition of
revealed conditional likelihood essentially requires a complete rank-ordering of states. This
is in line with the observation of Eichberger & Kelsey (1993), that with CEU preferences it
is not possible to update beliefs independently of consequences. For two cases, that are
sufficiently general to cover most cases of interest, revealed conditional likelihood requires
only partial information on the ranking of events. In the first case, AN B and B are
connected events; this case is discussed in most of this section. In the end we briefly

discuss a second case, where A NB and B\A are connected.
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Let us consider now the first case, where AN B and B are connected. In contrast to the
additive probability case, we require the specification of a dominating event D for ANB
and D' for B. Thus revealed conditional likelihood is written as T(A,DIB.D". For
consistency of rank-ordering, D> D'. We propose the following definition of revealed

conditional likelihood.

n(ANB,D) _ v((An B)u D) - v(D)

(18) n(A,DIB,D") = =
n(B,D") v(BuD')-v(D")

In this definition we assume further that m(B,D")#0. Note that consequences outside the
conditioning event B are relevant in this formula because the dominating events depend on
them. This relevance of foregone consequences is the price one has to pay for giving up
separability of disjoint events that is characteristic for SEU (Machina, 1989). Some
definitions of revealed conditional likelihood have been proposed in the literature. Gilboa
(1989a) proposed the following rule.

vV(AnB) _ m(ANnB,D)

S MAB) = TN®) < T ae.2)

Gilboa & Schmeidler (1993) pointed out that this rule corresponds with the optimistic
decision maker who assumes that the event B, of which s/he has been informed,
corresponds with the "best of all possible worlds," which in our terminology means that B
is taken as a good-news event. In addition, given the information B, AN B is in turn
treated as a good-news event. That is, both D'=@ and D=(J. In updating, the case of
null-conditioning events is usually excluded. The conditioning event here is taken as a
good-news event, i.e. the dominating event D' is empty. Therefore it seems appropriate
that the conditioning event should not be D'-null for D'=@. This was indeed the definition
adopted by Gilboa (1989a).

The following updating rule was proposed by Dempster (1967) and Shafer (1976) for

belief functions (a special case of capacities). It was characterized and advocated by Gilboa
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& Schmeidler (1993), and used by Dow & Werlang (1992). This rule was also used by

Gilboa (1989b) for nonadditive measures that are not directly related to decisions.

(20) r(AlB) = WANBIUB)-v(B) _ mANB.BY)
1-v(B¢) n(B,B¢)

As pointed out by Gilboa & Schmeidler (1993), this rule corresponds to a pessimistic
decision maker. Indeed, it results from our proposal if D'=B¢ is taken. Thus the received
information is taken as bad news. In addition, AN B is assigned the highest-possible rank-
ordering within B. Thus, D is also taken as B¢. The following example was discussed by

Gilboa & Schmeidler (1993).

EXAMPLE 10. Assume the Ellsberg example with an urn containing 90 balls, 30 of which
are red and 60 are either white or yellow. A ball is drawn and R describes the event that red
is drawn, and W and Y designate white and yellow. A person who deviates from SEU
because of unknown probabilities and who is maximally pessimistic regarding unknown
probabilities, can be modeled through CEU with a capacity v(&)=0, v(R)=1/3, v(W) =
v(Y)=0, v(RUW)=v(RUY)=1/3, v(WUY)=2/3, vRUWUY)=1. Assume now that
the information is obtained that the color is not Y, i.e. the conditioning event is B=RUW.
What would then be a reasonable revealed likelihood for event R, given this information?
Our reply is that first dominating events D for R and D' for R U W should be specified.
Assume D=Y =D". In this situation, event W is rank-ordered lowest and the pessimist

assigns decision weight 2/3 to W. Then

RY
MRYRUW,Y)= —RY) _ _ LEY
T(RUW,Y)

follows. As RUY is the dominating event for W, we have

n(W,RUY) 23 _

1 2/3.
n(RUW.,Y)

(W, RUYIRUW,Y) =
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If the dominating events D and D' are &, then it first of all follows that the information

was good news. Now the pessimist assigns decision weight O to W, and

TRORUW,@) = —FRD) ey
n(RUW,Q)

follows. Here R is the dominating event for W so that

W,R
ROWRRUW.@) = — R _ 0 _
n(RUW, Q)
These two methods of calculating the revealed conditional likelihoods given RuUW agree
with the optimistic and pessimistic methods considered by Gilboa & Schmeidler (1993).
Let us next consider m(R,WIR U W ,@), where W is taken as dominating event for R and R

UW is a good-news event. Then again the pessimist assigns decision weight 0 to W, so

that

EXAMPLE 11. Assume that a die with six numbered sides yields j if side j shows up, j=1,
-+, 6. Our interest is in computing the revealed conditional likelihood of receiving 5 given
the information that the prize is 3 or more. Note that the dominating event D for {5} is {6},
and the dominating event D' for 3 or more is the empty set. Then

n({5).{6))  _ v(5,6) — v(6)
n({3,4,5,6},0) v(3,4,5,6)

n({5},{6}lj>3.0) =

This is an example where the event for which the revealed conditional likelihood is to be
determined is neither the best nor the worst event given the conditioning event, which is a
case that has not been considered in the literature yet.

We assume that v(A) depends only on the number of elements in A, and is given by

Table 1 below.
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LAl 0 1 2 3 4 5 6
s 0 0.25 0.40 0.50 0.60 0.75 1
TABLE 1
Thus, for example, v(1) = -+ = v(6) = 0.25, v(1,2) = v(5,6) = 0.40, v(1,2,5) = 0.50,

v(3,4,5,6) = 0.60, etc. A singleton event has decision weight 0.25 if it is extreme in the
rank-ordering (0.25 = 0.25-0 if it is best, 0.25 = 1 -0.75 if it is worst), decision weight
0.15 if it is second-best (0.15 = 0.40-0.25) or second-worst (0.15 = 0.75-0.60), and
decision weight 0.10 if it has a middle position (0.10 = 0.50—0.40 if it is third in ranking,
0.10 = 0.60—0.50 if it is fourth in ranking). This capacity v is symmetric and satisfies
bounded subadditivity.

Formuia (19) gives

n(5Hi23) = ;3456 = 060 = 042

Our update rule (18) gives

n({5},{6)) _ 0.15

7!({5”_)23) = n({S],{6}UZ3,®) = n((3,4,5.6},®) = 060 =

Note that the dominating event for {S} is {6} and our update rule (18) assigns the weight
v{5,6} —v{6} = 0.40—0.25 = 0.15 to event {5}. Formula (19) assumes that no event
dominates {5} and thus it overweighs {5} by assigning a decision weight v{5} =0.25.
The Dempster-Shafer Formula (20) treats {1,2} as the dominating event for {S} and

thereby underweighs it by assigning a decision weight v{1,2,5}-v{5} =0.50-0.25 =
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0.25 to {5}. Both (18) and (19) treat {3,4,5,6} as a good-news event, i.e. take an empty
dominating event and assign decision weight 0.60 to {3,4,5,6}. Formula (20) takes
{3.4,5,6} as a bad-news event, which differs from our interpretation but, by symmetry,

assigns the same decision weight 0.60 as our method does. (]

The central aspect of Bayes theorem is to derive the probability of B given A from the
probability of A given B. That is, in our case, T(A,DIB,D") is to be related to n(B,DIA, D),
where the dominating events are discussed next. There cannot be expected to be a simple
relation between the two conditional likelihoods if D#D, i.e. if in one case the event ANB
has a different dominating event than in the other. However, as soon as D = D, then we

obtain the following extension of Bayesian calculation:
T(A,D|B,D)n(B,D') =mn(ANB,D)=n(ANB,D)= n(B,DIA,D)n(A,D")

whenever n(B,D') and n(A,D') are nonzero. This analysis shows that the inverse relation
for revealed conditional likelihood also holds for (19), because here all dominating events
in the conditionalization are chosen empty, but the inverse relation will not hold for the
Dempster-Shafer update rule (20) because in T(AIB) the dominating event for AN\ B is B¢,
in T(BJ|A) it is AC.

We briefly mention a second case in which Formula (17) also yields a tractable result
that requires only a partial specification of the rank-ordering of many events. It concerns
the case where AN B and B\A are connected. Then again we only need to specify two
dominating events, D for ANB and D' for B\A, and we obtain

n(ANB,D)

(21 n(AIB) = .
n(ANB,D)+n(B\A,D')

The case where D= and D' = (B\A)€ has received much attention in the literature
(Jaffray, 1992; Denneberg, 1994). In this case, AN B is a good-news event but the other

part of the conditioning event, B\A, is a bad-news event, and B is not connected. B¢ is
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connected and contains the intermediate states. If the capacity is convex ("pessimism"), for
instance if it is a Dempster-Shafer belief function, then the decision weight of ANB is
minimal if the event is good news, and the decision weight of B\A is maximal if it is bad
news. Hence these choices of D and D' then minimize nt(A|B). The formula also results if
one identifies the capacity with the set of dominating probability distributions, and applies
conditionalization to each dominating probability measure separately.

The alternative notions of revealed conditional likelihood that have been discussed can be
tested empirically. Some work along this line has begun (Cohen, Gilboa, Jaffray, &
Schmeidler, in preparation). Specifically, it will be interesting to examine the role of

dominating events in the revision of beliefs.

XI. REVEALED LIKELIHOOD AND BELIEFS

In SEU, revealed likelihood can be interpreted as a measure of belief. This interpretation
is appealing because in this model probabilities that measure revealed likelihoods are
independent of tastes. In nonadditive models, decision weights measure revealed
likelihoods. Decision weights are, however, not independent of the rank-ordering of
consequences. Therefore, if decision weights are interpreted as measures of belief then
independence of beliefs from tastes cannot be entirely maintained. It is quite possible that
capacities and decision weights reflect not only beliefs, but also decision attitudes (e.g.,
ambiguity aversion).

Capacities and decision weights may be different than likelihood elicited through
introspection. Some may regard that beliefs are best captured by an extraneous notion
(introspection, verbal report) of likelihood that precedes preferences. In this view, beliefs
depend only on the degree and extent of information that a decision maker possesses. For

example, Kadane & Winkler (1988) and Karni (1995) note that even under SEU, revealed
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likelihood through bets may not represent beliefs. Shafer's (1976) belief functions provide
an example of beliefs that precede preferences. Future studies may be able to disentangle
beliefs and decision attitudes in the analysis of decision weights. A step toward this
direction has been provided by (Jaffray, 1989; Hendon, Jacobsen, Sloth, & Tranaes, 1994;
Tversky & Fox, 1995).

XII. SUMMARY AND CONCLUSION

In decision under uncertainty, there is often a difficulty in assigning probabilities to
events. Ellsbergs examples demonstrated these difficulties convincingly. In recent years,
Choquet expected utility (CEU) has been introduced to describe the observed violations of
expected utility as in the Ellsberg examples. In the context of CEU, we propose that
decision weights be interpreted as a measure of revealed likelihood. Under this
interpretation, the revealed likelihood of an event depends on the dominating event.

Several applications of our measure of revealed likelihood are illustrated. The definition
of null events and supports is clarified, new interpretations are given for convexity,
concavity, bounded subadditivity, and probabilistic sophistication. We define revealed
conditional likelihood in the context of CEU and show several implications for existing
rules for updating if new information is gathered.

In CEU, capacities resemble probabilities and therefore are often treated as measures of
belief. Two objections can be raised against this customary interpretation of capacities.
First, this interpretation, arbitrarily, considers events only in the role of good-news events.
Events may as well play the role of bad-news events, in which case the dual capacity
should be considered. Indeed, a number of papers have pointed out that the dual capacity is
just as valid a measures of belief as the capacity or, similarly but in qualitative terms, that
bets against events provide as valid an ordering of likelihood as bets on events (Gilboa,

1989; Nehring, 1994). We have argued that, more generally, events may also play the role
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of intermediate events and that in many respects (such as the study of bounded
subadditivity) decision weights are relevant, rather than capacities or their duals. In our
framework, capacities measure revealed likelihoods of cumulative events (receive x or
more), of course because for such events capacities coincide with decision weights.

Second, capacities, their duals, and decision weights, all may comprise not only a belief
component, but may also be affected by decision attitudes. To avoid commitment to a pure
belief-interpretation, we used the term revealed likelihood rather than likelihood throughout
the paper.

We realize that our interpretations are subject to counter viewpoints and that better

arguments for (or against) defining revealed likelihood in CEU may yet emerge.

APPENDIX. PROOFS

PROOF OF OBSERVATION 2. First we derive cumulative dominance for CEU. To do so, we

use the following formula, where we write vl for v.

CEU® = [vI[Uot2tldt + [(vT[Uof2t)1-1)dt
R K-

It is well-known, and can be derived by partial integration, that this formula provides an
alternative manner for writing the upper Choquet integral of Uof with respect to the capacity
vT, i.e. for calculating CEU(f). To prove cumulative dominance, assume that [f>x] =T g
2x] for all x. Because vt represents =T, for all t the integrand in the above formula is at
least as large as the integrand when g is substituted for f. Therefore the CEU value of f
exceeds that of g, and f = g follows. That is, cumulative dominance has been shown.

The derivation of dual cumulative dominance from Formula 3.3 is perfectly dual. We

use the following formula, where v¥ denotes the dual of v.
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CEU(f) = f( 1-vH[Uof<))dt - IVJ’[UofSl]dt
IR* IR~
It is also well-known, and can be derived by partial integration, that this formula provides
an alternative manner for writing the lower integral of Uof with respect to the capacity v'L;
this also yields CEU(f) (Gilboa, 1989a). To prove dual cumulative dominance, assume that
[f<x] <’L [g <x] for all x. Because vt represents >J', v‘L[UOfSt] in the above formula is
less than or equal to VJ'[UogSt], for all t. Therefore the CEU value of f exceeds that of g,
and f = g follows. That is, dual cumulative dominance has been shown.
To further clarify the duality between good-news and bad-news events in the two

displayed formulas, that can result by simply replacing events by their complements, we

note that the lower formula is equal to

CEU(f) = J-(I-V'L[UOf<t]])dt N jvi[Uof«]dt.
R K

The reason is that the nondecreasing integrands in the last two formulas can have at most
countable many discontinuities, and therefore differ at countably many t at most. Those t

provide a Lebesgue 0 set and do not contribute to the integrals. [
The following lemma prepares for the proof of Theorem 8.

LEMMA 12. B is null by Savage's (1954) definition if and only if f ~g whenever f and g

coincide outside of B.

PROOF. Savage mentions, without proof, that his definition of a null event is equivalent to
our formulation in his Theorem 1 in Section 2.7. There, however, the sure-thing principle

is assumed in the presence of which the claim is trivial indeed. We show now that the result
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holds as soon as weak ordering holds, and does not need the sure-thing principle. The case
is somewhat subtle as in the second edition of his book, Savage changed one definition.

fgh denotes the act that agrees with f on B and with h outside of B. In the second edition
of his book, Savage defines f > g given B as meaning that fgh > ggh for all h and either
ggh > fgh for all h or for none. The last clause, concerning ggh and fgh, was not there in
the first edition. In each edition, Savage defines an event B as null if and only if f = g given
B for every f,g.

First assume that B is null by any of Savage's definitions. Then surely fgh = ggh for all
f,g,h. This implies that fgh ~ ggh for all f,g,h, proving one direction of the lemma. For the
other direction, assume that fgh ~ggh for all f,g,h. Then, first, for every pair f,g, fgh =
ggh for all h, second, ggh = fgh must hold for all h. This implies that B is a null event in

each edition of Savage's book. [

PROOF OF THEOREM 8. First assume that P3 holds. Then the antecedent in (12) implies
that A must be S-null. From that the consequent indifferent in (12) follows. Next assume

that invariance of impossible events holds. To derive P3, let A be S-nonnull.

LEMMA 13. A is D-nonnull for some D.

PROOF. For event A to be S-nonnull, there exist acts that coincide outside of A and are
nonindifferent. We may assume that these acts are constant in A. (Replace all consequences
of the preferred act in A by their maximum and all consequences of the dispreferred act by
their minimum. The maximum and minimum exist because all acts in this paper are simple;
in CEU the preferred act becomes better and the dispreferred act becomes worse by these

replacements.) Assume now that the acts are

(A1X15 5 Aic1Xi=15 ApOG Ajg1,Xi+15 5 An,Xp) >

(A1X15 -5 AimLXi=1; AiBs Ais1.Xis1 5 An.Xp)
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for any o> B, and A; = A. We can write oaf for the first act and BAf for the second (e.g.,
define f as the first act). We may assume that the consequences in the second act are rank-
ordered, i.e. X| 22X 2B 2 xj4 2 - 2 Xp. If now i=n or «<xj4| then the two acts
are comonotonic, we define D=A|U-.-U A;_j, and it follows that Ai=A is D-nonnull.
The general case where i<n and a>xj, | is possible, is more complicated. Therefore,
consider the set of n+2 acts containing the above two acts and all acts of the form (xj)Af for
J= L-n. This set of acts can be ordered so that every consecutive pair is comonotonic. To
this end, BAf is between (xj—1)Af and (xj)af, and if Xk-1 S0<xg then oaf is between
(xk—1)Af and (xk)Af. In this n+2 tuple of acts, there must be a consecutive pair of acts that
are nonindifferent. This pair of acts shows that A is D-nonnull, where D is the set of

dominating consequences for the two comonotonic acts. QED

Consider now aaf and BAf for a.>B. We must prove that oiaf > BAf. The reasoning is
similar to the above proof as again comonotonicity complications must be dealt with. Again

we write

(ALXTE 5 AicXi=15 Aj0 Ajg[,Xis 15 3 AnXn) = 0Af and

(ALX1s 5 AicnXiz1; AiBs Air1,Xise15 5 ApXn) = Paf

for Aj=A, and x] 2 ... > xj_; > B2xj412>xp. Ifi=n or O <Xj4+], then the two acts
are comonotonic, and the CEU difference between the two acts is T(A,D)(U(o)-U(B))
where D= AjU--UA;_. By invariance of impossible events, T(A,D)>0, and as the
utility difference is also positive, this CEU difference is positive. Hence a strict preference
follows. Assume next that o> Xi+]. As for identical consequences the rank-ordering is
arbitrary, we can, by renumbering the events and consequences if necessary, take the index
i maximal so that either x;, | > or i=n. The case i =n was dealt with before, hence
assume Xiy| >B. Then atAf = (Xj41)Af > BAf, where the first preference follows from

substitution of CEU and o> Xi+| and the second strict preference follows because Xi+1>P,
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the two acts are comonotonic, and T(A,D)>0 with D = Aj U - U Aj_. This proves again

that aaf > Baf. O

PROOF OF THEOREM 9. First assume that the conditions (i), (ii), and (iii) hold. We prove
the existence of P and ¢ as described in the theorem. We write A = B for events A, B
whenever v(A)2=v(B). No confusion with the preference relation = on acts will arise. First
we derive the properties of a qualitative probability ordering for =.

Obviously = is a weak order; the notation > is as usual. We have S = A =@ for all
events A, and S > . Finally, assume that event D is disjoint from events A,B. Then the
following six statements are equivalent: (1) A = B; (2) v(A)2v(B); (3) ©(A,D) 2n(B,D);
(4) ©(A,D) 2n(B,D); (5) v(AuD)2v(BUD); (6) AUD = BuUD. Here the equivalence
between (3) and (4) holds because of (16). The equivalence of (1) and (6) is the well-
known additivity condition of qualitative probability theory.

Thus = is a qualitative probability ordering (see Villegas, 1964). Solvability of v implies
that no atoms exist, and Condition (ii) implies monotone continuity of Villegas (1964).
Therefore, by Villegas' Theorem 4.3, there exists a unique countably additive atomless
probability measure P on the sigma algebra of events that represents the qualitative
probability ordering >. Hence there exists a strictly increasing transformation ¢ such that v
= ¢oP. By solvability of v, the range of ¢ is [0,1], hence ¢ must be continuous.

For the reversed implication, solvability of v is implied because P is atomless and ¢ is
continuous, Condition (ii) is implied by sigma-additivity of P and continuity of ¢, and (16)
follows from additivity of P.

Our proof has been based on the qualitative probability result of Villegas (1964), which
concerns countably additivity measures. Alternatively, one can consider finite additivity and
use results such as Savage's (1954). This approach is, however, more complicated, mainly

because the fineness condition now is complicated; see Gilboa (1985). O
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