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I. INTRODUCI'ION

It has long been recognized that there is a distinction between risk, where probabilities are

known, and uncertainty, whece probabilities aze unknown (Keynes, 1921; Knight, 1921).

In a seminal work, Savage (1954) argued that for a rational agent such a distinction is not

relevant. In his framework, probabilities measure the likelihood of events. A key idea in

Savage's theory is that probabilities are revealed from preferences rather than from

introspection or verbal reports.

There is, however, a large body of empirical evidence that contradicts Savage's

subjective expected utility model (Camerer 8c Weber, 1992). In particular, Ellsberg (1961)

showed that Savagés method for revealing probability leads to inconsistencies, i.e.

probabilities cannot be assigned to events. In the absence of probability the question arises

what, if any, meaning can be given to likelihood.

In this paper, we propose a notion of revealed likelihood that is derived from preferences

and that is consistent with Ellsberg's findings. Otu measure of revealed likelihood resolves

a duality paradox in nonexpected utility and clarifies the definition of null events that are

relevant for Nash equilibria. It leads to a new rule for updating that resolves some

ambiguities in rules proposed in the literature, such as the Dempster-Shafer update rule.

Finally, our measure gives a natural description for several phenomena regarding decision

under uncertainty, such as ambiguiry aversion (pessimism) and the simultaneous buying of

insurance and gambling.

Our analysis is based on rank-dependent ("nonadditive") expected utility for uncertainty,

hereafter called Choquet expected utility (CEU) (Schmeidler, 1989; Gilboa, 1987). For the

context of risk, similar models were proposed by Quiggin (1982) and Allais (1988). The

primary motivation for the development of CEU was to model the distinction between risk

and uncertainty that was suggested by Keynes and Knight. CEU is able to accommodate

the preference patterns of the Ellsberg examples.



Our results also apply to cumulative prospect theory (Tversky 8c Kahneman, 1992).

Cumulative prospect theory generalizes CEU by permitting decision weights for gains to be

diffcrent than decision weights for losses, and has a number ofempirical advantages. For

example, Benartzi 8r Thaler ( I995) explain the equity premium puzzle by loss aversion.

Our measure of tevealed likelihood can be applied to gains and losses separately, and thus

can elicit decision weights in cumulative prospect theory.

In Section ll, we review the notion of likelihood in subjective expected utility theory.

Section III discusses the discrepancy between likelihood revcaled from bets on and bets

against events that is commonly found in the Ellsberg examples. In Section IV, we argue

that in CEU, one needs to distinguish revealed likelihoods derived from bets on events

from revealed likelihoods derived from bets against events. Section V shows that in the

derivation of CEU one may use preference conditions in a consistent way so long as one

employs the appropriate notion of revealed likelihood. This solves a duality paradox noted

in the literature. In Section VI, we generalize revealed likelihood to the multiple

consequences case. We argue that, if revealed likelihood should "tell you where to put your

money," then decision weights are the proper measure of revealed likelihood under CEU.

Section VI sheds new light on axiom P2 of Gilboa (1987). It shows how that axiom can be

used to empirically elicit orderings of decision weights.

An attractive property ofexpected utility is independence of beliefs from tastes. In

Section VII, we argue that to some degree independence of revealed likelihood from

consequences can be maintained in CEU so long as one specifies a"dominating event." In

Section VIII, we argue that decision weights have some distinct advantages over capacities

in measuring revealed likelihood. Section IX illustrates an application of our measure of

revealed likelihood in defining null events which is an important issue for updating and for

the definition ofNash equilibrium in game theory. Several other properties ofdecision

weights as measure of revealed likelihood are discussed. For example, a new interpretation

is provided for the case of probabilistic sophistication (Machina 8c Schmeidler, 1992).
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Section X discusses updating if new information is gathered. Several proposals for

updating in the literature are explained as different choices of the dominating events

introduced in Section VII. In Section XI, we discuss the interpretation of revealed

likelihood as a measure of belief. Revealed likelihood may depend both on beliefs and on

decision attitudes. Finally, Section XlI presents conclusions. Proofs are presented in the

appendix.

II. SUBJECTIVE EXPGCTED UT[LITY

In subjective expected utili[y (SEU), the likelihood of an event is measured by its

subjective probability. Thus,

Event A is more likely than event B

if and only if

the probability ofA is grcater than the probability of B.

In the above statement the likelihoodjudgments are quantified by a probability measure.

Thus, we write

(1) A r B if and only if P(A) ~ P(B).

Subjective probabilities are often interpreted as a measure ofdegree ofbelief, reflecting the

state of information of the decision maker. It is however en oneous to assume that directly

elicited probability through verbal report (e.g. my probability that it will rain tomorrow is

0.4) will necessarily coincide with the subjec[ive probability that is based on preferences

over bets. Savage rejects the approach of eliciting likelihood from d'uect interrogation. He

anticipates "Perhaps the first way that suggests itself to find out whích of two events is
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more probable is simply to ask him." He then gces on to provide counter-arguments for

such an approach. Instead, he strongly argues for inferring the Iikelihood comparison from

decision behavior. As an illustration of the latter approach he uses an example "If under

these circumstances the person stakes his chance for the dollar on the brown egg, it scems

to me to correspond well with ordinary usage to say that it is more probable to him that the

brown one is a better one than the white one is." To Savage the theory of personal

probability is "a code ofconsistency for the person applying it, not a system of predictions

about the world around him." Thus Savage takes preferences over bets as the observable

primitive, and subjective probabilities represent preferences. Any other interpretation of

subjective probabilities is speculative. This approach is in line with the revealed preference

approach ofSamuelson (1938) and others for inferring utilities from choices. For empirical

studies ofproblems for likelihood elicitation under SEU, see Erev, Bomstein, ~r Wallsten

(1992) and Liberman Bc Tversky (1993).

For the two consequence case, the likelihood relation can be operationalized in either of

the following two equivalent ways:

A is more likely than B if one prefers a bet on A to a bet on B(Figure 1 a).

A is more likely than B if one disprefers a bet against A to a bet against B(Figure 1 b).

A 1 g t

r

A` 0 B` 0

Figure la

A 0 B 0

-~

A` I B` I

Figure lb

Thus, "more likely than" judgments are not elicited through verbal statements; instead

they are revealed through preference comparisons between various "win - lose" bets.
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Implicit in the betting method for revealing likelihood is the assumption that the likelihood

comparison ofevents A and B is independent of the pairs of consequences used. This

independence is ensured through Savage's axiom P4.

It is easy to verify that for an SEU maximizer either preferences in Figure la or Figure

Ib would reveal the same likelihood relation. The preferences in Figure la reveal P(A)~

P(B) and those in Figure lb reveal P(A~) - l-P(A) ~ P(B~) - I-P(B), each leading to the

conclusion that A is revealed to be more likely than B. Figure la illustrates that one prefers

to win on the more likely event A, and Figure I b illustrates that one disprefers to lose on

the more likely event A. An example of a bet against an event is as follows. If one dces not

like (disprefers) radiation therapy as compared to surgery then this may reveal that the

likelihood ofrecurrence is higher under radiation than under surgery.

The desirability of eliciting likelihoods using bets on events or bets against events

depends on the decision context. In theoretical analyses, likelihoods have mostly been

inferred using bets on events, as in Figure I a. They can, however, just as well be elicited

using bets against even[s as in Figure Ib. There is no prior reason to prefer one method

over the other, though in practical applications one of the two methods may be more

convenient. A large part of our risky decisions concerns avoidance ofunfavorable events,

in which case it is natural to think in terms of bets against events. Examples are health care,

safety measures, and insurance. In the next section the choice of inethod will be more than

a matter of practical convenience and will lead to conceptual differences.

III. REVEALED QUALITATIVE LIKELIHOOD

Ellsberg (1961) showed that empirically the two ways of operationalizing likelihood as

in Figure I do not lead to the same result for some events. To illustrate this violation of

SEU, consider two urns, one containing 50 white and 50 black balls, and the other
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containing a total of 100 white and black balls in unknown proportion (see Figure 2). From

each of the two ums a ball is randomly drawn. People often prcfer a bet on event K(white

from known urn) to a bet on event U(white from unknown urn), while preferring a bet on

K~ (black from known urn) to a bet on U~ (black from unknown urn). In the same issue of

the Quarterly Journal of Economics where Ellsberg published his classic article, Fellner

( I961) and Raiffa (1961) provided their reactions to Ellsberg's observations. Raiffa (1961)

gave normative arguments against Ellsberg's finding, while acknowledging its descriptive

validity. Fellner (1961) agreed with Ellsberg and suggested that people distort probabilities

when dealing with decisions under uncertainty. Earlier, Keynes (1921) and Knight (1921)

had also made a distinction between situations where probabilities are known and where

they are unknown. It was precisely this distinction that motivated Schmeidler to propose

CEU theory as an altemative to SEU.

K !00 U !00

?-

K` 0 U` 0
Fi ure 2a

K 0 U 0

r

K` 100 U` 100
Figure 2b

The above pattern of preference implies that even[ K is reveuled more likely than event U

when one derives the likelihood relation from bets on events (Figure 2a). Such an inference

is guided by the intuition that one should prefer the more likely gain. Event K is revealed

less likely than event U when one derives it from bets against events (Figure 2b). In Figure
2b, one loses on events K and U and the inference that K is less likely than U is guided by
the intuition that one should prefer to lose on the less likely event.

The above example demonstrates that a revealed likelihood relation derived from bets on
events may differ from that derived from bets against events. To distinguish these two



notions of revealed likelihood we introduce the following notation. We write ~T for

revealed likelihood derived from bets on events. That is, A~T B if there exist

consequences x ~ y such that

(2) (A,x; A~,y) ~ ( B,x; B~,y)

where A denotes weak preference and (A,x; A~,y) denotes the act yielding x if A occurs

and y otherwise. We write rT instead of FT if (A,x; A~,y) r( B,x; B~,y), i.e. the

preference in (2) is strict.

Similarly, we write ~~ for revealed likelihood derived from bets again.rtevents. That is,

A~~ B if there exist consequences x ~ y such that

(A`.x; A,Y) ~ ( B`,x; B.Y)

where ~ denotes reversed preference ( f~ g meaning g~ f). Again, r~ denotes strict

preference. Note that ~T and ~~ coincide for SEU. In the elicitation of ~T a superior

consequence is associated with events A and B, that is, A and B play the role of "good-

news events." [n contrast, in the elicita[ion of ~~ an inferior consequence is associated

with events A and B, hence these events play the role of "bad-news events." The

preference pattem observed in the Ellsberg pazadox implies K~T U but U rl K and thus

constitutes a violation of SEU.

In K aT U, one wins if events K or U occur. A penon who is pessimistic with respect

to unknown probabilities ( ambiguity averse) considers winning on the unknown urn less

likely. In U r~ K, one loses if events U and K occur. Now, a pessimist considers losing

on the unknown urn more Iikely.Thus, for a pessimist the bad news looms larger than the

good news. Suppose for simplicity that in the known urn, the probability of winning or

losing is 0.5 each. A pessimist behaves as if in the unknown urn the probability of winning

is less than 0.5 and the probability of losing is more than 0.5. Thus a pessimist downplays

the likelihood of winning and exaggerates the likelihood of losing. This behavior is
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highlighted in Murphy's law: "If something bad can happen, it will." Of course, there may

be reasons other than optimism or pessimism for the above preferences.

It is useful to note the following duality between ~? and ~~:

(3) A~T B a B~ ~~ A~.

The left-hand side says that a bet on A is preferred to a bet on B. As a bet on A is a bet

against A~ and a bet on B is a bet against B~, this means that a bet against B~ is dispreferred

to a bet against A~, which is the right-hand side. In other words, both the left-hand side and
the right-hand side describe the preference in Figure la. Hence, one relation can be inferred
from the other, and they both describe the same information.

IV. CHOQUET-EXPECi'ED UTILITY

To distinguish Knightian uncertainty from risk and to accommodate the Ellsberg

paradox, Schmeidler (1989) proposed nonadditive capacities defined on events. We

assume that consequences are amounts of money and that preferences satisfy monotonicity,
i.e. higher amounts are preferred to lower amounts. Events A, B, etc. are subsets of the
state space S that can be infinite. We do restrict our attention to simple acts (i.e., acts that
take only finitely many different consequences) throughout the paper. In Choquet-expected

utility, a"capacity" v is u.~ed instead of the additive probability measure P of SEU. It is
assumed that v assigns value 0 to the impossible event, value 1 to the universal event S,
and A~B implies v(A)?v(B). Then theCEU value of an act (A~,xt;--.;A,,,x„) where xi ?
...?x,,, is given by

n
(4j ~niU(xi)

i-1
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where U is the utility function as in SEU, and the n; denote decision weights, defined by

(5) rz; - v(A 1 v... v A;) - v(A 1 v... v A;-1).

Similar formulas are used for cumulative prospect theory, except that the capacity for gains

can be different than the capacity for losses. CEU permits the preference patterns observed

in the Ellsberg paradox by setting v(K)~v(U) and v(Kc)~v(U~). Under CEU the

following results hold:

(i) A~T B if and only if v(A)? v(B).

(ii) A~~ B if and only if 1-v(A~) ? I-v(B~).

Thus v(A) represents the yT ordering, derived from bets on events, and its dual l-v(Ac)

represents the ;:~ ordering, derived from bets against events. For this reason, we write

v?(A) for v(A), and v~(A) for 1-v(Ae). vT is the capacity for events in the role of good-

news events, and vl is the capacity for events in the role of bad-news events. In SEU, vT -

v1- P. In CEU, however, vT and v~ need not be identical.

The discussion above is based on a duality between good- and bad-news events. As

there has been confusion about this duality, and it is central for our measure of likelihood,

we discuss it in some detail. The duality has also been discussed for Choquet integration.

In the literature, an alternative way for defining Choquet integrals that is dual to Formula

(5) has been used. This dual Choquet integral is obtained by defining

(6) Ri - v(Ai v... V An) - v(Ait 1 V..- V An)

instead of ( 5) in Fotmula (4).t Note that the decision weight nl in (6) now is equal to 1-

v(AZ U... vAn) instead of v(A ~) in (5). The method of integration through (6) is called

tEquivalendy, one can order consequences alternatively by xt S... S xn and then use Formula ( 5). Reversing thc

rank-ordering of conseyucnces and using Formula ( 5) gives the same results as keeping the rank-ordering of this

paper and using Formula (6).
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the [ower Choyuet integral, and similazly the method of integration through ( 5) is called the

upper Choquet integral. Clearly, these may yield different orderings of acts. Thus the

question arises which formula for computing CEU is the "right" one, and how the seeming

inconsistency between ( 5) and ( 6) can be resolved. There is no inconsistency, however,

between ( 5) and ( 6) if the relevance of the role of events is recognized. That is, (5) entails
good-news events At U...vA; ( receive x; or more) and therefore vT should be used there.
Formula ( 6) entails bad-news events A; u... V A~ (receive x; or less) and therefore v~

should be used. In this manner, the two methods for computing CEU yield identical
results. Note that this consistency is obtained in general and it does not impose restrictions
on capacities such as symmetry.

Imagine now that a penon uses the capacity vT, elicited from beas on events, bu[ uses

Formula ( tí) to calculate CEU. Note that in [his ca.ce thc capacity vT for good-news events

is applied to bad-news events in (6). For synmretric capacities (v(A)- I- v(A~), i.e. vT-

v~), the above scheme results in the correct CEU values after all. For non-symmetric

capacities, this mis-matching ofcapacity and integration will produce wrong results

(Gilboa, 1989a). The question of which capacity to use, vT or v~, and the question of

which mcthod of integration to use, (5) or (6), in isolation are not meaningful. They must

be considered jointly and applied consistently.

The following linguistic example may illustrate the idea of mis-ma[ching. It is now well-
accepted that an author may use male-specific pronouns ( he~hisltum) or female-specific
pronouns (shelher) to designate an abstract person (decision maker, agent, defendant).
There is no reason to prefer a choice of "he" to a choice of "she," and there is no reason to
prefer a choice of "hím" to a choice of "her." These two choices, however, are intertwined
and cannot be made independendy. An argument to the effect that "he" could be replaced by
"she" without necognizing the interdependence of the helshe choice with the his~her choice
would lead to anomalies such as "he maximizes her utility." Clearly a mis-match of the
pronouns along the way yields an unintended implication of altruism. The sentences "he
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maximizes his utility" and "she maximizes her utility" are wly dual to each other and either

one is acceptable.

Our main point in the above discussion has been that the revealed likelihood ordering

(~? or ~~), the capacity (vT or v~), and the manner of integration ( upper or lower) should

be consistent with the role of events. For the good-news events ~T, vT and upper

integratíon should be used, and for the bad-news events ~~, v~, and lower integration

should be used. Good-news or bad-news events are dual in the same way as the male or

female gender are in the linguistic example. There is a complete freedom to choose the role

of events in CEU and the gender in the linguistic example, as long as consistency is

maintained throughout.

V. CUMULATIVE DOMINANCE

In Sazin 8r Wakker (1992), CEU is characterized by using a cumulative dominance

condition. Cumulative dominance states that act f is weakly preferred to act g whenever, for

all consequences x, the good-news event of receiving x or more under f is revealed at least

as likely as the good-news event of receiving x or more under g. As this formulation

employs good-news events, the revealed likelihood for good-news events (~T) should be

adopted. We display the condition:

(~) f~ g whenever, for all consequences x, [f?x] yT [g? x].

An equivalent dual formulation is given in the observation below. The dual formulation is

in terms of bad-news events. Because the proof illustrates the duality between good- and

bad-news event, it is presented in the main text.
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OBSERVATION I. Cumulative dominance holds if and only if

(8) f~ g whenever, for all consequences x, [g 5 x) y~ [f 5 x].

PROOF. In the dual formulation, for every consequence x a bet against event [g S x] is

dispreferced to a bet against event [f5x]. Thus, [f5x]~ ~r [g5x)~ for all x, which

implies, similarly to (3), that [f?y] A? [g?y] for all consequences y(let )z: z? y) -(z: z

~ x], using finite ranges of f and g). p

The condition in the observation states that act f is weakly preferred to act g whenever,
for all consequences x, the bad-news event of receiving x or less under g is revealed at least
as likely as the bad-news event of receiving x or less under f. As this formulation employs
bad-news events, the revealed likelihood relation for bad-news events (~~) is adopted.
Thus cumulative dominance can be formulated in two equivalent dual ways: either it is
formulated in terms of good-news events, or in terms of bad-news events. In the former
case, the revealed likelihood-relation ~? for good-news events is to be employed, and in
the latter case the revealed likelihood relation ~~ for bad-news events. The two statements
of the cumulative dominance are then truly dual, i.e. describe the same empirical restriction.
and result in the same CEU representation. The important point to note is that the revealed
likelihood relation should be consistent with the role of the events.

Cumulative dominance has a resemblance to stochastic dominance when probabilities are
given. Although this resemblance makes this condition transparent, it should be understood
that cumulative dominance dces not have the normative appeal of stochastic dominance.
This is because, unlike stochastic dominance, cumulative dominance cannot be derived
from a statewise monotonicity condition.

We next study the implications of a variation of the cumulative dominance axiom where
the preference condi[ion involves bad-news events, but the revealed likelihood-relation
adopted is the one for good-news events. In other words:
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(9) f~ g whenever, for all consequences x, [g 5 x] ~? [f 5 x].

Consider two-consequence acts f-(A,x; A~,y) and g-(B,x; Bc,y), x~y. Clearly, f~g

if and only if A~T B. Condition (9), however, would require that f~ g if B~ ~T A~, i.e.

(by Formula 3) if A~~ B. Thus, A~~ B would imply A~T B which was precisely the

restriction we wished to relax to accommodate the Ellsberg paradox. In other words, the

mismatch of (bad-news) events and the (good-news) likelihood relation in (9) leads to

unwarranted implications.

Next we demonstrate that cumulative dominance and dual cumulative dominance are

necessary conditions for CEU. We present the result here because the, elementary, proof

(given in the appendix) further clarifies the duality between the above two dominance

conditions, and shows that this duality is the qualitative analog of the duality between upper

and lower Choquet integration.

OBSERVAT7oN 2. Cumulative dominance and dual cumulative dominance are necessary

conditions for CEU. L]

We have emphasized above that the ~T relation refers to events in the role of good-news

events, and the ~l relation refers to events in the role of bad-news events. Therefore we

used ~? in (7) and ~1 in (8) to avoid mixing and we obtained a consistent characterization

of CEU. In (9), the ~r relation for good-news events is applied to a preference condition

defined in terms of bad-news events. This constitutes the same mis-matching as described

at the end of Section IV, and illustrated there by the linguistic example. In SEU, ( 9) will

not produce a contradiction because the revealed likelihood relation is independent of the

role of events, i.e. ~T -~~. In CEU, however, such an identity imposes an unwarranted

symmetry of the capacity, i.e. vT-vy (Nehring, 1994). The following example illustrates

our point further.
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Ew~MP~E 3. Assume that there is a"known" urn that contains red (Rk), yellow (Yk), and

white (Wk) balls in equal proportion. There is ano[her, "unknown," urn that also contains

red (R„), yellow (Y„), and white (W„) balls, but in an unknown proportion. A ball will be

drawn at random from each um. Consider the acts f-(Rk,100; Yk,50; Wk,O) and g-

(R,,,100; Y,,,50; W,,,O). Thus f is related to the known urn, and g to the unknown urn. We

assume the most commonly found preference for betting on known ums. Thus (Rk,100;

Yk.O; Wk,O) ~(Ru.100; Yu,O: Wu,O), i.e. Rk AT R,,, and (Rk,100: Yk,100: Wk,O) ~

(Ru.1~; Yu.1~: Wu.O), i.e. Rk v Yk ~T R„v Y,,. Of course, we trivially have Rk v Yk v

Wk ~T Ru v Y„ v W,,. Thus all good-news events under f arc at Ieast as likcly (by the ~T

relation) as under g, and by cumulative dominance, f~ g. This agrees with what is

commonly observed.

Next we consider the implications of condition (9). We have (Rk,O; Yk,O; Wk,100) ~

(Ru,O: YuA; Wu.100), i.e. Wk ~TWu, and (Rk,O: Yk.100: Wk,100) ~(Ru,O: Y,,.100:
Wu,100), i.e. Yk v Wk AT Y„ v W,,, and, trivially, Rk v Yk vWk ~T R„ v Y„ U W,,.

Thus all bad-news events under f are at IeaSt as likely (by the ~T relation) as under g, and
by condition (9) (with g and f interchanged), g~ f. The implied preference, however,
disagrees with wha[ is commonly observed. This counterinwitive prediction of (9) occurs
becau.tie the events for which likelihood orderings are elicited are bad-news cvents (yielding
consequence x or less) for the acts. In the likelihood elicitations, however, these events
play the role ofgood-news events. Therefore the elicited likelihood orderings give

misleading informa[ion conceming the preference between the acts f and g. Such a mis-
match of roles of events does not occur in cumulalivc duminance (7). I I

Let us summarize the discussion in Sections Ilí, IV, and V. Section III discusses the
duality between "good-news" and "bad-news" events in CEU. In a quantitative setting, this
duality was discussed by Gilboa (1989a), and in a qualitative set[ing it was discussed by
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Nehring (1994). Our discussion starts in the qualitative context of revealed likelihood

orderings, on the issue whether these orderings should be inferred from bets on or bets

agains[ events. In Section IV, the same issue is discussed in its quantitative version, i.e.

whether a capacity or its dual should be used to measure revealed Iikelihood. The same

duality also underlies the discussion whether one should do Choquet-integration in the

"uppei' version or in the dual, "fower," version. In Section V, we present a preference

condition, cumulative dominance, that was used to characterize CEU by Sarin á Wakker

(1992). The distinction between cumulative dominance and its dual is analogous to the

distinction between upper and lower integration. Again, the good-news likelihood ordering

should be used for cumulative dominance and the bad-news likelihood ordering should be

used for dual cumulative dominance. Our approach developed in Sections III, IV, and V

boils down to a simple prescription: When defining revealed likelihood and capacities and

applying these to preference coaditions and Choquet integra[:on, one should be consistent

regarding the role of events.

VL EVENTS WITH INTERMEDIATE CONSEQUENCES

So far we have discussed revealed likelihood of events when they are associated with

best or worst consequences. In the more general multiple-consequence case, some events

have intermediate consequences. We examine revealed likelihoods for such events. From

now on, in the rest of the paper, we assume CEU.

It has been empirically observed that intertnediate consequences have less impact than

extreme (best or worst) consequences. Thus the revealed likelihood of an event is lower

when it is associated with intermediate consequences than when it is associated with

extreme consequences. This phenomenon is described by "bounded subadditivity" for the

uncertainty case (Tversky 8c Kahneman, 1992; Tversky á Fox, 1995; Tversky á Wakker,



1995), and by S-shaped probability transformation for the risk case (Karni 8c Safra, 1990;

Kachelmeier 8r. Shehata, 1992; Tversky 8c Kahneman, 1992; Bcrnasconi, 1994; Camerer 8c

Ho, 1994; Wu 8r Gonzalez, 1994; Tversky 8t Fox, 1995). Bounded subadditivity

underlies the ccexistence of insurance and gambling.

This section considers "connected" events. An event is cunnec~ed if each state outside

the event either is lower in rank-ordering than all states of the event, or higher in rank-

ordering than all states of the eveni, but never in between the states of the event. For

example, for a given act f the event { s E S: x 5 f(s) Sy] is connected. Every event that has a

constant consequence is connected.

To illustrate the general idea of revealing likelihood for intermediate events, assume an

indifference

(A t,10; A2,2; A;, l)-(B i,12; BZ,2; 63,0).

In this case, events A2 and B2 are associated with an intermediate consequence and our

interest is in comparing the revealed likelihoods of A2 and BZ . Suppose we ask the

question what is prefetred, receiving an additional dollar under Az or under B~. That is,

what is the preference between

(A i,10; A2,3; A3,1) and (B ~ , I 2; B2,3; Bg,O)?

An intuitive reply may be that the additional dollar is preferred for the "more likely" event.

Thus, if the left act is preferred then A2 is "more likely" than B2. In this context, A~ and B~

are neither good-news events nor bad-news events as they are associated with intermediate

consequences. An SEU maximizer wiJl prefer the left act if and only if P(A2) ~ P(B2). The

initial indifference and the preference for the left act together imply that the SEU increment

for the left act, P(A2)(U(3)-U(2)), is higher than P(B2)(U(3)-U(2)), the SEU inerement

for the righ[ act. A CEU maximizer will prefer the left act if and only ifn(AZ) ~n(B~),

where n(AZ) denotes the decision weight of Az and n(BZ) the decision weight of B~. This
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is because the CEU increment for the lefr act, n(AZ)(U(3) - U(2)) is higher than

rz(Bz)(U(3) - U(2)), the CEU increment for the right act. Since decision weights reflect

where one would stake the bet, they can be a plausible measure of revealed likelihood. We

further discuss the issue of interpretation after stating a preference condition for compazing

revealed likelihoods through decision weights. The condition is based on Gilboás(1987)

condition P2' (see also Gilboa, 1989a)Z that contains an in[uitive and empirically valuable

idea for CEU: It shows a way for comparing decision weights.

Suppose that (3 ~ a and

(Al,xl; : Ai-I,Xi-I: Ai,a; Aitl, xifl; ; Aroxn)

(Bl,yl; ...~ Bj-I.yj-I: B~,a; Bjtl.yjtl; .... Bm,Ym)

wherexl~...~xi-i?R~a~xitl~...~xnandyl~...~yj-1?R~a?Yjtl~...~

Ym.

Then under CEU,

(At,xl: : Ai-I,xi-I; AirR; Aiil, xitl: : An,xn)

~

(Bl.yl; ... ; Bj-I,Yj-l: Bj.R; Bjtl,yjtl; .. .; Bm.ym)

if and only if the decision weights satisfy n(A;)?rz(Bj).

In the above condition, the incremental impact of A; is equal to n(A;)(U((3)-U(a))

whereas the incremental impact of Bj is n(Bj)(U(R)-U(a)). One therefore prefers to stake

an additional amount ofmoney on the event with the higher decision weight. It is in this

sense that one could interpret that the revealed likelihood of A; is higher than that of Bj in

ZThis condition was callcd ~o our attcntion by Alain Cha[cauncuf (1991, pcrsonal communication).
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this decision contexL In the next two sections we elaborate on meusuring revealed

likelihood through decision weights.

VII. INDEPENDENCE OF BELtEFS FROM TASTES

A well-known property of SEU is the "independence of beliefs from tastes." [t means

that the likelihood of an event, i.e. the probability, is independent of the consequences that

are associated with the event, thus is independent of the partícular acts. If one defines

revealed likelihood of an event through its decision weight, as we propose, then the

revealed likelihood of the event depends on the acts. More precisely, a revealed likelihood

is only relevant in the evaluation of acts that generate, through their consequences, a given

rank-ordering over the state space. Such a subse[ of the act space is called cnmonntonic.

Some degree of independence from tastes is achieved here because the decision weights do

not depend on the exact magnitudes of consequences so long as the rank-ordering of the

consequences remains constant. In particular, we note that CEU satisfies Savage's P4.

That is, if A~T B is revealed through (x,A; y,Ac) ~(x,B; y,B~) for some x~ y, then for all

x' ~ y', (x',A; y',A~) ~(x',B; y',Bc), confirming A~T B. Nevertheless, dependence of

decision weights on the rank-ordering of consequences may be considered excessively

flexible. It entails a considerable degree of dependence on tastes, and makes it hard to think

of revealed likelihood as a property of events.

We now illustrate how the dependence of the revealed likelihood of events on the rank-

order of the consequences can be reduced to such a degree that it becomes possible to

consider revealed likelihood as a property ofevents. To do so, we introduce the following

defini[ion. We catl an event D a dominating event for event A if, loosely speacing, the

consequences under D are superior to the consequences under A, and the remaining

consequences under events outside D and A are inferioc More precisely, given an act f,
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event D is a dominating event for even[ A if An D- P~ and f(t) ?f(s)? f(t') for all t e D, s

e A, and t' e(A ~ D)~. Because the rank-ordering of siates with equivalent consequences

can be chosen arbitrarily, we can choose a rank-ordering of states tha[ is compatible wi[h f

and is such that the states in D are ranked higher than the states in A, and the latter are

ranked higher than those in (A v D)e. As we shall see, for a large class of events, the

revealed likelihood of A only depends on what the dominating event D of A is. That is, the

revealed likelihood is relevant for the subset of all acts for which D is a dominating event

for A.3 For simplicity, first think of the case where A describes the receipt ofa single

consequence. Then the decision weight for A is given by

(10) v(A v D) - v(D),

where D denotes the dominating event. D is disjoint from A. The dependence of the

decision weigtit of an even[ A on the dotriinating event D can be expressed in notation by

writing 7C(A,D)? Implicit in this notation is that A and D aze disjoint. The decision weight

of an event A can vary depending on whether the dominating event D is Q), Ae, or some

other intermediate event. Thus decision weight, as a measure of revealed likelihood, is a

two-argument-function, depending on two events - the event itself and the dominating

event. Interpreted thus, decision weights aze to a high degree independent of consequences.

For more general, nonconnected events, decision weights can still be used as an index of

revealed likelihood, but their dependency on the rank-ordering of the other events is more

complex and cannot be described merely by one dominating event. Of course, the decision

weight of a nonconnected event can be derived from the decision weights of the separate

connected components through summation. We restrict most of the discussion of revealed

likelihood in this paper to the class of connected events. The class is rich enough to cover

30f course one could just as well express this dependence in terms of the dominated, "inferior," event I, i.e. the

event yielding inferior consequences, by substituting D-(A~I)c.

4When no confusion can arise, the even[ D is sometimes suppressed.
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the majority of cases where likelihood is relevant. We think that a desirable feature of rank-

dependent theories is that it achieves this degree of independence of revealed likelihood

from consequences.

Let us next explain the Ellsberg paradox in terms of the dependence of revealed

likelihood on a dominating event. Note that in the Ellsberg example presented in Section

111, n(K,D)~n(U,D) when D-(d, and n(K,D')~n(U,D") whcn D' and D" represent

complementary events K~ and U~ respectively. The following example explains a variation

of the Ellsberg paradox in terms of dependence of revealed likelihood on dominating

events.

ExAMPt.E 4. Consider an urn containing 30 red (R) balls, and 60 yellow (Y) and white

(W) balls in unknown proportion. Two pairs of bets are illustrated in the table.

R Y W
bet I 9 0 0 I 00
bet 2 0 90 100
bet 3 90 0 0
bet4 0 90 0

One may prefer bet 2 over bet 1 and bet 3 over bet 4. The first preference shows that Y is

revealed more likely than R when the dominating event is W(i.e., rz(Y,W)~n(R,W)). The

second preference reveals the reverse ordering, i.e. R is revealed more likely than Y when

the dominating event is null (i.e., n(R,(7~)~n(Y,(d)). (]
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FIGURE 3. Decision weight of an event E as a function of the
dominating event.

Figure 3 depicts the decision weight of an event E as a function of the dominating event,

for the case of bounded subadditivity. For illustration, the dominating events are depicted

as if they lie on one line. The decision weight of an event E is large when the dominating

event is maximal (E~), i.e. all other events aze dominating. Then E is associated with the

worst consequences and has a salient role as compared to the other events. Similarly, the

decision weight ofE is also large when the dominating event is minimal (0), i.e. no other

events aze dominating and E is associated with the best consequences. Then again E has a

saGent role. The decision weight of E is smaller when the dominating event is neither

maximal nor minimal, i.e. when E is associated with intermediate consequences. In this

case the role of E in comparison to the other events is less salient.

We concede that decision weights as measures of revealed likelihood in the CEU model

are not as elegant as probabilities in the SEU model. For a comonotic class (fixed rank-

ordering), however, decision weights shaze some common features with probabili[ies. For
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example, decision weights sum to one. As a result, if in an n-fold partition of the universal

event all decision weights are the same then one immediately concludes they aze all lln. For

a subset of acts for which the domina[ing event D associated with an event A remains the

same, the decision weigh[ for A dces not change. Cleazly, in comparison to SEU, where

the probability of A is independent ofwhat gces on outside of A, revealed likelihood in

CEU is moce complicated. In CEU willingness to be[ on an event A depends on the

dominating event. Since revealed likelihood is elicited from preferences, there seems to be

no escape from revealed likelihood to depend on the dominating event as well.

VIII. CAPACITIES VERSUS DECISION WEIGHTS

In this section we argue that decision weights have some distinct advantages over

capacities in measuring revealed likelihood. We begin with a simple Ellsberg example given

in Section III to illustrate our viewpoin[.

ExAMP[.E 5. The capacity-interpretation and the decision-weight interpretation agree that

the preference in Figure 2a suggests a higher revealed likelihood for K than for U.

However, the conclusion that K be revealed more likely than U cannot be made in general,

and is not appropriate in Figure 26. The preference in Figure 2b illustra[es tha[ one prefers

to lose on event K rather than on event U. Therefore, event K is revealed less likely than

even[ U. The decision weight for K in Figure 2b is indeed smaller than the decision weight

for U. The capacity for K is, however, lazger [han the capacity for U. Therefore the

decision weight seems a better measure of revealed likelihood than the capacity. From our

perspective, capacities measure revealed likelihood only for events in the role ofgood-news

events. O
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In Figure 2b one could use the dual capacity to compare the revealed likelihood of K and

U because it so turns out that the dual capacity is indeed the decision weight. In the

multiple-consequence case, however, neither the capacity nor its dual will suffice as an

index of revealed likelihood. This is illustrated by the following example.

EXAMPLE 6.

A~ AZ A3 B~ BZ B3

pref. 1 l0 2 1 - 12 2 0

pref.2 l0 3 1 ~ 12 3 0

pref.3 0 I 0 ~ 0 1 0

Consider the preferences in the table. Suppose in the first indifference situation the person

is asked if he prefe;s to receive an additional dollar on cvent AZ or on event BZ. Suppose

the person prefers the extra dollar on B2, as shown in preference 2. Such a preference

reveals that the person considers B2 to be more likely than A2. Indeed, the decision weight

for BZ is higher than that for AZ. The capacity, however, produces the reverse ordering of

revealed likelihood as shown in preference 3. If the decision situations in preferences l and

2 are relevant ro us, where A2 and B2 play the role of intermediate event, then we think that

BZ is revealed more likely than A2. For such multiple-consequence cases the capacity is not

an appropriate index of revealed likelihood. It may be noted that in this example the dual

capacity may not be an appropriate index of revealed likelihood either. This would be the

case, for example, if (At,10; A2,1; A3,10) ~(B~,10; B2,1; B3,10). Then one disprefers

losing on AZ to losing on Bz which implies that AZ is revealed more likely than BZ when

they are both bad-news events.

Preferences as above are commonly found when the phenomenon of overestimating low

likelihoods and underestimating high likelihoods is more pronounced for the A-even[s than

for the B-events. Then the A~vents receive relatively more decision weights than the B-
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events when they aze associated with highest or lowest consequences, and they receive

relatively less decision weights when they are associated with intermediate consequences.

This phenomenon was characterized by Tversky 8c Wacker (1995), empirically found by

Tversky 8c Fox (1995), and it becomes salient by the finding of Fox 8c Tversky (1995). O

The next examplc considers null events.

EXAMPLE 7.

R Y W R Y W

pref. 1 0 1 0 - 0 0 0

pref.2 0 1 10 r 0 0 10

Here [he capacity-interpretation of revealed likelihood suggests, according to the first

indifference, that Y is null, which agrees with the decision-weight interpretation for good-
news events. We think, however, that the c(aim that Y be null cannot be accepted in the

second preference, where the person strictly prefers receiving an additional dollaz on Y if it

is an intermediate event. The decision weight for Y is indeed larger in this case. The

preferences in the table above result from the example in Gilboa á Schmeidler (1993,

introduction). p

Capacities resemble probabilities because they preserve independence of beliefs from
tastes. In CEU, however, using capacities as a measure of likelihood introduces

arbitrariness. From our perspective, it means that events are implicitly assumed to be good-
news events. The capacity has a seductive appeal as a measure of likelihood since it does
not depend on the rank-ordering of consequences. [n CEU, insisting on a measure of
revealed likelihood that is entirely independent of the rank-ordering of consequences (or a
dominating event) is akin to throwing out the baby with the bath water. This is because, in
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CEU, preferences depend on the rank-ordering ofconsequences and if the revealed

likelihood is derived solely through preferences, there seems to be no escape from revealed

likelihood to depend on the rank-ordering as well. Our three examples have demonstrated

this dependence of revealed likelihood on the dominating event.

To further underscore the analogy between decision weights and probabilities, consider

an act (Al,xt; ...; A,,,x„) with xl ~... ~x„ and define U(x;)-u;. Then the act can be

represented as (A I,u I;...; A,,,u„), u I ~... ~ u,,. In SEU, SU~Su; - p; - P(A;), where U is

the SEU value of an act. In a similar manner, in CEU, SUISu; -n; -n(A;), where U

represents the CEU value ofan act. This observation illustrates once more that in many

respects decision weights are the analogs of probabilities in CEU.

Capacities measure revealed likelihood ofcumulative events (x or more), whereas

decision weights measure revealed likelihoods of separate events. Thus, capacities are

special cases of decision weights in the same way as cumulative probabïlities are special

cases of probabilities.

IX. RESTRICTIONS ON DECISION WEIGHTS

We have observed that, under CEU, revealed likelihood of an event measured by its

decision weight depends on the dominating event, whereas under SEU, the revealed

likelihood of an event is entirely independent of the dominating event. This section

describes a number of cases that are intermediate between CEU and SEU in restricting the

dependence of revealed likelihood on the dominating event.

We first demonstrate the application of decision weights as measure of revealed

likelihood in defining null events. Loosely speaking, a null event is equally likely as the

impossible event. In our interpretation it means that an event is null if its decision weight is

0. Null events are important for updating (Gilboa, 1989a) and for the definition of [he
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support of a distribution, which is central in some problems in game thcory (Dow 8r

Werlang, 1994; Eichberger á Kelsey, 1994; Hendon, Jacobsen, Sloth, 8c Tranaes, 1995 );

Haller (1995) proposed three different definitions of support, depending on how null

events are interpreted.

Whether an event is null can be inferred from pretèrences as follows.

Suppose that a~(3. Then

( I 1) rz(A,D) - 0 if and only if (D,a; A,a; I,~3) -(D,a; A,p; [,(i),

where I-(AvD)~. Substitution of CEU shows that the above indifference holds if and

only if

(Al,xl; : Ai-I,xi-I: Ai,a: Aitl,xitl; ; An.xn) -

(Al,xl: : Ai-I,xi-I; A;.Q; Aitl,xitl: . : An,xn)

for any a~ p, A;- A, D- A t v... v A;-~, 1- A;t ~ v... v An, and where x~?... ? x;-t ?

a~(i ? x;t t?... ? xn. We use the simpler condition ( l 1) in the analysis below.

Under general CEU, the above conditions depend on the event D, and A can be null for

some dominating event D but nonnull for another. As an example, for maximin behavior

(v(A)-0 whenever A is not the universal event), rz(A,D) is 1 if D-A~ and A is nonempty,

but t[(A,D) is 0 whenever D~A~. Therefore we call an event A Datull if n(A,D)-0. We

next discuss invariance ofnull events with respect to the dominating event D. [n order to

ensure that an event is null regardless of its rank-ordering we need an additional preference

condition that, under CEU, tums out to be equivalent to Savage's (1954) P3.

If one assumes that events should be null only if they are logically impossible, then it is

unsatisfactory that the logical ( im)possibility of an event would depend on which other

event were to yield better consequences in an act. One will want to ensure that an event A is

null regardless of the domina[ing event. [t must then be required that the decision weight
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rz(A,D) be zero for all dominating events D as soon as it is for one, i.e. rz(A,D)-0 for one

event D if and only if rz(A,D)-0 for all events D. In terms of preferences, this means that

(12) (D,a; A,a; L(3) -(D.a: A,p: I,(3) ~(D'.a; A.a: 1'.(3) -(D'.a; A,p; I'.(3)

for all a~ R, I, D, I', D'. We call [his condition invariance of impossible events. It rules

out phenomena such as in Example 7. Next we demonstrate that invariance of impossible

events is equivalent to Savagé s P3 condition. To define Savage's P3, first we define his

notion of null events. We use here a somewhat simplified formulation, that is motivated in

Lemma 12 in the appendix. An event A is S-null if f-g whenever f and g coincide outside

of A; here "S" abbreviates Savage.

P3. If A is S-nonnull, acts f and g coincide outside of A, and f- a on A, g- p on A, then f

~ g if and only if a~ p.

THEOREM 8. Under CEU, invariance of impossible events holds if and only if Savagé s

postulate P3 holds. O

The fotmulation in terms of dependence of decision weigh[s on dominating events gives

clarifying altemative interpretations of several properties of capacities that have been

studied in the literature. We list a number of them, leaving the proofs to the reader.

(13) v is symmetric if and only if n(A,~) -rz(A,Ae) for all events A.

( l4) v is convex (v(A) t v(B) S v(A UB) t v(A n B)) if and only if

rz(A,D) is increasing in D.

(15) v is concave (v(A) t v(B) ? v(A v B) t v(An B)) if and only if

n(A,D) is decreasing in D.



Condition ( t4) illustrates pessimism, where a higher decision weight is assigned to an

event as the event is lower in the rank-ordering. Similarly, condition ( IS) illustrates

optimism. Condition (14) and ( I S) are reminiscent of the characterization of convex

functions through increasing derivatives and concave tLnctions through dccreasing

derivatives. Note here that the decision weight n(A,D) describes thc increase of v if A is

addedto D.

Tversky á Wakker (1995) proposed the following conditions to reflect bounded

subadditivity, s[ated here in a somewhat informal manner. v satisfies bo~uided subuddrrivih~

if

(i) n(A,fd)?n(A,B) whenever AvB is "sufficiently remote" from certainty.

(ii) n(A,A~)?n(A,B) whenever B is "sufficiently remote" from impossibility.

The conditions imply that decision weights with respect to intermediate dominating events
are less than with respect to the extreme dominating events and have been illustrated in

Figure 3.

We finally tum to the characterization of probabilistic sophistication for the context of

CEU. In a general setting, probabilistic sophistication was characterized by Machina 8c

Schmeidler (1992); they argued for a normative status of probabilistic sophistication. In the
case of probabilistic sophistication, the ordering of revealed likelihoods ofevents remains
invariant with the dominating event D. The characterizing condition for probabilistic
sophistication is:

(16) ~(A~D) ~ n(B~D) ~ n(A,D') ? tt(B,D')

for all events A, B, D, D'. In the theorem below, solvubilirv of v(introduced by Gilboa
(1987) under the name convex-rangedness) means that for all events A c C and v(A) 5p S
v(C) there exists an event B such that A e B e C and v(B )- p. We now state a theorem that

uses condition (16) to relate capacities to probabilities.
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THEOREM 9. Let the collection of events be a sigma-algebra, and let CEU hold. There

exists a countably additive atomless probability measure P and a strictly increa.eing

continuous transformation ~ such that v-~P if and only if the following conditions hold:

(i) v satisfies solvability;

(ii) (set-continuity) If An TA(i.e., A„~~ ~ Aa and vAn - A)

then limj~~v(Aj)-v(A).

(iii) Condition ( l6) holds.

O

X. UPDATING REVEALED LIKELIHOOD

In the approach proposed in this paper, decision weights are taken as indices of revealed

likelihood. Then the definition of revealed conditional likelihood is straightforward.

Consider two events A and B, and assume that the rank-ordering of the state space has

been fixed. The revealed conditional likelihood of A given B is simply defined by

(17) a(AlB)-n~AnB) .
n(B)

Obviously, the resulting number is always between 0 and 1. The above definition of

revealed conditional likelihood essentially requires a complete rank-ordering of states. This

is in line with the observation of Eichberger á Kelsey (1993), that with CEU preferences it

is not possible to update beliefs independently of consequences. For two cases, [hat are

sufficiently general to cover most cases of interest, revealed conditional likelihood requires

only partial information on the ranking of events. In the first case, A n B and B are

connected events; this case is discussed in most of this section. In the end we briefly

discuss a second case, where A nB and B`A are connected.
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Let us consider now the first case, where A n B and B are connected. In contrast to the

additive probability case, we require the specification of a dominating event D for AnB

and D' for B. Thus revealed conditional likelihood is written as r[(A.DIB.D'). For

consistency of rank-ordering, D~D'. We propose the following detinitíon of revealed

con d i t ional I i ke 1 i hood.

n(AnB,D) v((AnB)vD)-v(D)
(l8) rz(A,DIB.D') - ~(B.D') - v(B~D')-v(D')

In this definition we assume further tha[ n(B,D') ~0. Note that consequcnces outside the

conditioning event B are relevant in this formula becuuse the dominating events depend on

them. This relevance of foregone consequences is the price one has to pay for giving up

separability of disjoint events that is charactcristic for SEU (Machina, 1989). Some

definitions of revealed conditional likelihood have been proposed in the literature. Gilboa

(1989a) proposed the following rule.

v(AnB) tt(AnB,f~)(l9) n(AIB) - v(B) - - .n(B,fZS)

Gilboa 8r Schmeidler (1993) pointed out that this tule corresponds with the optimistic

decision maker who assumes that the event B, of which sltte has been infomied.

corresponds with the "best of all possible worlds," which in our terminology means that B

is taken as a good-news event. In addition, given the information B, A nB is in turn

treated as a good-news event. That is, both D'-f~ and D-fZS. In updating, the case of

null-conditioning events is usually excluded. The conditioning event here is taken as a

good-news event, i.e. the dominating event D' is empty. Therefore it seems appropriate

that the conditioning event should not be D'-null fur D'-(d. This was indecd thc definition

adopted by Gilboa (1989a).

The following updating rule was proposed by Dempster (1967) and Shafer (1976) for

belief functions (a special case of capacities). It was characterized and advocated by Gilboa
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8c Schmeidler (1993), and used by Dow 8r Werlang (1992). This rule was ulso used by

Gilboa (1989b) for nonadditive measures that are not directly related to decisions.

(20) rz(AIB) -
v((An B)v B~)-v(B~) - n(A n B,B~)

1-v(B~) rt(B,B~)

As pointed out by Gilboa 8r Schmeidler (1993), this mle corresponds to a pessimistic

decision maker. Indeed, it results from our proposal if D'-B~ is [aken. Thus the received

information is taken as bad news. In addition, A n B is assigned the highest-possible rank-

ordering within B. Thus, D is also taken as B~. The following example was discussed by

Gilboa 8c Schmeidler (1993).

ExAMPLE 10. Assume the Ellsberg example with an urn containing 90 balls, 30 of which

aze red and 60 aze either white or yellow. A ball is drawn and R describes the event that red

is drawn, and W and Y designate white and yellow. A person who deviates from SEU

because of unknown probabilities and who is maximally pessimistic regarding unknown

probabili[ies, can be modeled through CEU with a capacity v(P7) -Q v(R) -113, v(W) -

v(Y) -0, v(Rv W) - v(R v Y) -113, v(W v Y) - 213, v(R vW v Y) - 1. Assume now that

the information is obtained that the color is not Y, i.e. the conditioning event is B-RvW.

What would then be a reasonable revealed likelihood for event R, given this information?

Our reply is that first dominating events D for R and D' for RvW should be specified.

Assume D-Y-D'. In this situation, event W is rank-ordered lowes[ and the pessimist

assigns decision weight 213 to W. Then

n(R,YIR V W,Y) -~(R(RW)Y) - 1~3 - ll3

follows. As R u Y is the dominating event for W, we have

n(W,RyY) 2l3n(W,RvYIRvW,Y)- - i - 213.
rz(RvW,Y)
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!f the dominating events D and D' are Só, then it first of all follows that the infonnation

was good news. Now the pessimist assigns decision weight 0 to W, and

rz(R,PJIRvW,fd) - rz(R.fd) - V3 - I
rz(R v W,~d)

follows. Here R is the dominating event for W so that

t[(W.RIR U W.(d) - rz(W~R) - ~ - p.
rz(RvW,PS) - Í~3

These two methods of calculating the revealed conditional likelihoods given Rv W agree

with the optimistic and pessimistic methods considered by Gilboa 8c Schmeidler (1993).

Let us next consider rz(R,WIR v W,f~), where W is lakcn us dominating evcnt for R and R

v W is a good-news event. Then again the pessimist assigns decision weight 0 to W, so

that

rz(R,W) ll3rz(R,WIRv W,QS) - - IÍ3 - I.
rz(R u W,m)

ExAMPLE I I. Assume that a die with six numbered sides yields j if side j shows up, j- I,

..-, 6. Our interest is in computing the revealed conditional likelihood of receiving 5 given

the information that the prize is 3 or more. Note that the dominating event D for (5 } is {6),

and the dominating event D' for 3 or more is the empty set. Then

rz({5},(6}Ij?3,~5) - rz((5},{6}) ~ v(5,6) - v(6)
rz(13.4,5.6},iZ3) v(3.4,5.6)

This is an example where the event for which the revealed conditional likelihood is to be

determined is neither the best nor the worst event given [he conditioning event, which is a

case that has not been considered in the literature yet.

We assume that v(A) depends only on the number ofelements in A, and is given by

Table 1 below.
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IIAII 0 1 2 3 4 S 6

v 0 0.25 0.40 0.50 0.60 0.75 1

TABLE 1

Thus, for example, v( l)-..- - v(6) - 0.25, v(1,2) - v(5,6) - 0.40, v(1,2,5) - O.SO,

v(3,4,5,6) - 0.60, etc. A singleton event has decision weight 0.25 if it is extreme in the

rank-ordering (0.25 - 0.25-0 if it is best, 0.25 - 1-0.75 if it is worst), decision weight

O.1S if it is second-best (O.IS - 0.40-0.25) or second-worst (O.1S - 0.75-0.60), and

decision weight 0.10 if it has a middle position (0.10 - O.SO-0.40 if it is third in ranking,

0.10 - 0.60-O.SO if it is fourth in ranking). This capacity v is symmetric and satisfies

bounded subadditivity.

Formula (19) gives

rz({S}Ij?3) - v(3V455,6) - 0.60 - 0.42,

and the Dempster-Shafer update ru(e (20) gives

n((S},11,2)) 0.10
n({S}ij?3) - ~({3,4,5,6},{ 1,2}) - 0.60 - 0.17.

Our update rule (18) gives

rt({S},(6}) O.IS
tt((S}Ij?3) - n({S),{6}Ij?3,lt7) -

~((3,4,5,6},m) - 0.60 - 0.25.

Note that the dominating event for { S} is { 6} and our update rule (18) assigns the weight

v{S,6} -v{6) - 0.40-0.25 - O.IS to event (S}. Formula (19) assumes that no event

dominates ( S} and thus it overweighs ( S} by assigning a decision weight v{ S}-0.25.

The Dempster-Shafer Formula (20) treats { 1,2 ] as the dominating event for { S} and

thereby undetweighs it by assigning a decision weight v(1,2,5) -v(S) - O.SO-0.2S -
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0.25 to [ 5}. Both (18) and ( 19) treat { 3,4,5,6 } as a good-news event, i.e. take an empty

dominating even[ and assign decision weight 0.60 to ( 3,4,5,6 }. Formula (20) takes

[3,4,5,6} as a bad-news event, which differs from our interpretation but, by symmetry,
assigns the same decision weight 0.60 as our method does. O

The central aspect of Bayes theorem is to derive the probability of B given A from the
probability ofA given B. That is, in our case, rz(A,D~B,D') is to be related to n(B,D~A,Í7),

where [he dominating events are discussed next. There cannot be expected to be a simple
relation between the two conditional likelihoods if D~ D, i.e. if in one case the event A n B
has a different dominating event than in the other. However, as soon as D- D, then we

obtain the following extension of Bayesian calculation:

n(A,DIB,D')~rt(B,D') - n(AnB,D) - rc(AnB,D) - n(B,DIA,D')rz(A,D')

whenever ic(B,D') and n(A,D') are nonzero. This analysis shows that the inverse relation

for revealed conditional likelihood also holds for (19), because here all dominating events

in the conditionalization are chosen empty, but the inverse relation will not hold for the

Dempster-Shafer update rule (20) because in rz(A}B) the dominating event for A n B is B~,

in rc(B~A) it is A~.

We briefly mention a second case in which Formula (17) also yields a tractable result
that requires only a partial specification of the rank-ordering of many events. It concerns
the case where A n B and B`A are connected. Then again we only need to specify two
dominating events, D for A n B and D' for B`A, and we obtain

(21) n(A~B) - n(A n B,D)
.n(A n B,D) t rz(B~A,D')

The case where D-QJ and D' -(BW)~ has received much attention in the literature
(Jaffray, 1992; Denneberg, 1994). In this case, A n B is a good-news event but the other
part of the conditioning event, BW, is a bad-news event, and B is not connected. B~ is
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connected and contains the intermediate sta[es. If the capacity is convex ("pessimism"), for

instance if it is a Dempster-Shafer belief function, then the decision weight of A n B is

minimal if the event is good news, and the decision weight of BW is maximul if it is bad

news. Hence these choices of D and D' then minimize tt(AIB). The formula also results if

one identifies the capacity with the set of dominating probability distributions, and applies

conditionalization to each dominating probability measure separately.

The alternative notions of revealed conditional likelihood that have been discussed can be

tested empirically. Some work along this line has begun (Cohen, Gilboa, Jaffray, 8c

Schmeidler, in preparation). Specifically, it will be interesting to examine the role of

dominating events in the revision of beliefs.

XI. REVF,ALED LIKELIHOOD AND BELIEFS

In SEU, revealed likelihood can be interpreted as a measure ofbelief. This interpretation

is appealing because in this model probabilities that measure revealed likelihoods are

independent of tastes. In nonadditive models, decision weights measure revealed

likelihoods. Decision weights are, however, not independent of the rank-ordering of

consequences. Therefore, if decision weights aze interpreted as measures of belief then

independence of beliefs from tastes cannot be entirely maintained. It is quite possible that

capacities and decision weights reflect not only beliefs, but also decision attitudes (e.g.,

ambiguity aversion).

Capacities and decision weights may be different than likelihood elicited through

introspecuon. Some may regazd that beliefs are best captured by an extraneous notion

(introspection, verbal report) of likelihood that precedes preferences. in this view, beliefs

depend only on the degree and extent of information that a decision maker possesses. For

example, Kadane 8L Winkler (1988) and Karni (1995) note [hat even under SEU, revealed



3G

likelihood through bets may not represent beliefs. Shafer's (1976) belief functions provide

an example of beliefs that precede preferences. Future studies may be able to disentangle

beliefs and decision attitudes in the analysis of decision weights. A step toward this

direction has been provided by (Jaffray, 1989; Hendon, Jacobsen, Sloth, 8c Tranaes, 1994;

Tversky 8c Fox, 1995).

XII. SUMMARY AND CONCLUSION

In decision under uncertainty, there is often a difficulty in assigning probabilities to
events. Ellsbergs examples demonstrated these difficulties convíncingly. In recent years,
Choquet expected utility (CEU) has been introduced to describe the observed violations of
expected utility as in the Ellsberg examples. In the context ofCEU, we propose that
decision weights be interpreted as a measure of revealed likelihood. Under this

interpretation, the revealed likelihood of an event depends on the dominating event.

Several apptications of our measure of revealed likelihood are illustrated. The definition
of null events and supports is clarified, new interpretations are given for convexity,

concavity, bounded subadditivity, and probabilistic sophistication. We define revealed

conditional likelihood in the context of CEU and show several implications for existing
rules for updating if new information is gathered.

In CEU, capacities resemble probabilities and therefore are often treated as measures of
belieE Two objec[ions can be raised against this customary interpretation of capacities.
First, this interpretation, arbitrarily, considers events only in the role ofgood-news events.
Events may as well play the role of bad-news events, in which case the dual capacity
should be considered. Indeed, a number of papers have pointed out thal the dual capacity is
just as valid a measures of belief as the capacity or, similarly but in qualitutive terms, that
bets against events provide as valid an ordering of likelihood as bets on events (Gilboa,
1989; Nehring, 1994). We have argued that, more generally, events may also play the role
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of intermediate events and that in many respects (such as the study of bounded

subadditivity) decision weights are relevant, rather than capacities or their duals. In our

framework, capacities measure revealed likelihoods of cumulative events (receive x or

more), of course because for such events capacities coincide with decision weights.

Second, capacities, their duals, and decision weights, all may comprise not only a belief

component, but may also be affected by decision attitudes. To avoid commitment to a pure

belief-interpretation, we used the term revealed likelihood rather than likelihood throughout

the paper.

We realize that our interpretations are subject to counter viewpoints and that better

arguments for (or against) defining revealed likelihood in CEU may yet emerge.

APPENDIx. PROOFS

PROOF OF OBSERVAT[ON 2. First we derive cumulative dominance for CEU. To do so, we

use the following formula, where we writc vT for v.

CEU(f) - JvT[Uof?t]]dt ~ J(vT[Uof?t]]-1)dt
IItt II2-

It is well-known, and can be derived by partial integration, that this formula provides an

alternative manner for writing the upper Choquet integral of Uof with respect to the capacity

vT, i.e. for calculating CEU(f). To prove cumulative dominance, assume that [f?x] ~T [g

?x] for all x. Because vT represen[s ~T, for all t the integrand in the above formula is at

least as large as the integrand when g is substituted for f. Therefore the CEU value of f

exceeds that of g, and f~ g follows. That is, cumulative dominance has been shown.

The derivation of dual cumulative dominance from Formula 3.3 is perfectly duaL We

use the following formula, where v~ denotes the dual of v.
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CEU(f) - j(1-v~[UofSt]])dt - Jv~[UofSt]dt
1R} IR-

It is also wcll-known, and can be derived by partial integration, that this formula provides

an altemative manner for writing the lower integral of Uof with respect to the capacity v~;

this also yields CEU(f) ( Gilboa, 1989a). To prove à ual cumulative dominance, assume that

[fSxJ 4~ [g5x] forall x. Because v~ represents ~~, v~[UofSt] in the above formula is

less than or equal to v~[Uog ~ t], for all t. Therefore the CEU value of f exceeds that of g,

and f~ g follows. That is, dual cumulative dominance has been shown.

To further clarify the duality between good-news and bad-news events in the two

displayed formulas, that can result by simply replacing events by their complements, we

note that the lower formula is eyual to

CEU(f) - f(1-v~[UofGt)])dt - Jv~[UofGtJdt .
f

The reason is that the nondecreasing integrands in the last two fonnulas can have at most
countable many discontinuities, and therefore differ at countably many t at most. Those t
provide a Lebesgue 0 set and do not contribute to the integrals. (]

The following lemma prepares for the proof of Theorem 8.

LEMMA I2. B is null by Savage's (1954) definition if and only if f-g whenever f and g

coincide outside of B.

PROOF. Savage mentions, withou[ proof, that his definition ofa null event is equivalent to
our formulation in his Theorem 1 in Section 2.7. There, however, the sure-thing principle
is assumed in the presence ofwhich the claim is trivial indeed. We show now that the result
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holds as soon as weak ordering holds, and dces not need the sure-thing principle. The case

is somewhat subtle as in the second edition of his book, Savage changed one definition.

fgh denotes the act that agrees with f on B and with h outside of B. In the second edition

of his book, Savage defines f~ g given B as meaning that fgh ~ ggh for all h and either

ggh ~ fgh for all h or for none. The last clause, concerning ggh and fgh, was not there in

the first edition. In each edition, Savage defines an event B as null if and only if f~ g given

B for every f,g.

First assume that B is null by any of Savage's definitions. Then surely fgh ~ ggh for all

f,g,h. This implies that fgh - ggh for all f,g,h, proving one direction of the lemma. For [he

other direction, assume that fgh - ggh for all f,g,h. Then, first, for every pair f,g, fgh ~

ggh for all h, second, ggh ~ fgh must hold for all h. This implies that B is a null event in

each edition of Savage's book. O

PROOF OF THEOREM 8. First assume that P3 holds. Then the antecedent in (12) implies

that A must be S-null. From that the consequent indifferent in ( l2) follows. Next assume

that invaziance of impossible events holds. To derive P3, Iet A be S-nonnull.

LEMMA 13. A is D-nonnull for some D.

PROOF. For event A to be S-nonnull, there exist acts that coincide outside of A and are

nonindifferent. We may assume that these acts are constant in A. (Reptace all consequences

of the preferred act in A by their maximum and all consequences of the dispreferred act by

their minimum. The maximum and minimum exist because all acts in this paper are simple;

in CEU the preferred act becomes better and the disprefetred act becomes worse by these

replacements.) Assume now that the acts are

(Al,xl: : Ai-l,xi-I; Ai,a; Aitl.xitl: ; An.xn) T

(Al,xl; ; Ai-I,xi-1; Ai,Q; Aitl,xitl: ' ; An,xn)
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for any a~ (3, and A; - A. We can write aqf for the first act and (3qf for the second (e.g.,

define f as the first act). We may assume that the consequences in the second act are rank-
ordered, i.e. x t?... ? x;-t ? p? x;t t?.-. ? xn. If now i- n or a 5 x;t ~ then the two acts
are comonotonic, we define D-At v... vA;-~, and it follows that A; -A is D-nonnull.
The general case where i~n and a~x;t~ is possible, is more complicated. Therefore,

consider the set of nt2 acts containing the above two acts and all acts of the form (xj)qf for
j- 1,..-n. This set of acts can be ordered so [hat every consecutive pair is comonotonic. To
this end, aqf is between (x;-t)qf and (x;)qf, and if xk-i SaSxt; then aqf is between

(xk-t )qf and (xk)qf. In this nt2 tuple of acts, there must be a consecutive pair of acts that
are nonindifferent. This pair of acts shows that A is D-nonnull, where D is the set of
dominating consequences for the two comonotonic acts. QED

Consider now aqf and ~iqf for a~ (3. We must prove that aqf r~3qf. The reasoning is
similar to the above proof as again comonotonicity complications must be dealt with. Again
we write

(At.xl: ; Ai-I,xi-I: A;,a: Aitl,xlfl: ~: An,xn) - aqf and

(Al,xl; ; Ai-I,xi-I; A;,p: Aitl.xitl; ~: An.xn) - pAf

for A; - A, and x ~ ?... ? x;-t ? R? x;t i?... ? xn. If i- n or a 5x;~ ~, then the two acts
are comonotonic, and the CEU difference between the two acts is n(A,D)(U(a)-U((3))
where D - At ~...vA;-~. By invariance of impossible events, tt(A,D)~0, and as the
utility difference is also positive, this CEU difference is positive. Hence a strict preference
follows. Assume next that a~x;tt. As for identical consequences [he rank-ordering is
azbitrary, we can, by renumbering the events and consequences if necesxary, take the index
i maximal so that either x;tt ~(3 or i-n. The case i-n was dealt with before, hence
assume x;t ~~ a. Then aqf ~(x;t t)qf r ~qf, where the first preference follows from
substitution of CEU and a~x;t~ and the second strict preference follows because x;t~ ~~3,
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the two acts are comonotonic, and rz(A,D)~0 with D- A~ v-.. vA;-i. This proves again

that apf r ~3pf. p

PROOF OF THEOREM 9. First assume that the conditions ( i), (ii), and ( iii) hold. We prove

the existence of P and ~ as described in the theorem. We write A~ B for events A, B

whenever v(A)?v(B). No confusion with the preference relation ~ on acts will arise. First

we derive the properties of a qualitative probability ordering for ~.

Obviously ~ is a weak order, the notation r is as usual. We have S~ A A QS for all

events A, and S r m. Finally, assume that event D is disjoint from events A,B. Then the

following six statements are equivalent: ( I) A A B; (2) v(A)?v(B); (3) rz(A,Q))?rz(B,~d);

(4) rz(A,D) ? tt(B,D); (5) v(A v D) ? v(B v D); (6) A v D~ B ~ D. Here the equivalence

between ( 3) and (4) holds because of ( l6). The equivalence of ( I) and ( 6) is the well-

known additivity condition of qualitative probability theory.

Thus ~ is a qualitative probability ordering ( see Villegas, 1964). Solvability of v implies

that no atoms exist, and Condition ( ii) implies monotone continuity of Villegas ( 1964).

Therefore, by Villegas' Theorem 4.3, there exists a unique countably additive atomless

probability measure P on the sigma algebra of events that represents the qualitative

probability ordering ~. Hence there exists a strictly increasing [ransformation ~ such that v

-~oP. By solvability of v, the range of ~ is [0,1], hence tp must be continuous.

For the reversed implication, solvability of v is implied because P is atomless and tp is

continuous, Condition ( ii) is implied by sigma-additivity of P and continuity of ~, and (16)

follows from additivi[y of P.

Our proof has been based on the qualitative probability result of Villegas ( 1964), which

concems countably additivity measures. Altetnatively, one can consider finite additivity and

use results such as Savage's ( 1954). This approach is, however, more complicated, mainly

because the fineness condition now is complicated; see Gilboa ( 1985). O
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