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Abstract

In this paper we present an axiomatic analysis of several ranking methods for
tournaments. We find that two of them exhibit a very good behaviour with respect
to the set of properties under consideration. One of them is the maximum likelihood
ranking, the most common method in statistics and psychology. The other one is a
new ranking method introduced in this paper: recursive Buchholz. One of the most
widely studied methods in social choice, the fair bets ranking, also performs quite well,
but fails to satisfy some arguably important properties.
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1 Introduction

In a world full of choices and alternatives, rankings are becoming an increasingly important
tool to help individuals and institutions make decisions. In this paper we study, from an
axiomatic point of view, the classic problem of ranking a series of alternatives when we have
information about paired comparisons between them. The set of alternatives an corespond-
ing matrix containing this information are referred to as a tournament. Tournaments and
rankings appear in a wide variety of situations such as sports, product testing, valuation of
∗We thank Miguel Brozos-Vázquez and José Carlos Díaz-Ramos for helpful discussions. Julio González-

Díaz acknowledges the financial support of the Spanish Ministry for Science and Innovation and FEDER
through project ECO2008-03484-C02-02, and from the Xunta de Galicia through project INCITE09-207-
064-PR.
†Corresponding author: julio.gonzalez@usc.es
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political candidates and policies to be chosen. Because of this, the issue of defining rankings
for tournaments has been studied in various fields and ranking methods based on different
motivations have been defined. Sport events and in particular chess motivated the seminal
work on rankings by Zermelo (1929). Later on, sparked by Arrow’s Impossibility Theorem
(see Arrow (1963)), this topic emerged in the context of social choice and voting theory.
The theory of rankings has also attracted statisticians and psychologists, who have studied
it under the name of paired comparisons analysis.

In this paper a tournament is represented by a set of alternatives N and a nonnegative
N × N matrix A with zeros on the diagonal, where Aij is the total score of alternative i
against alternative j after their (possibly many) pairwise comparisons. This approach to
tournaments is the usual one in fields such as statistics, psychology and applications to
sports. On the other hand, in voting theory, a field that has devoted considerable at-
tention to this topic, tournaments are typically defined through complete and asymmetric
binary relations, i.e., for each pair of alternatives we know which is the preferred one (and
nothing else); there is no measure of intensity of preference. These binary tournaments
are a particular case1 of our more general setting which is able to accommodate the fol-
lowing extra features: i) incomplete tournaments, in which we may not have information
about direct confrontations between pairs of alternatives (Aij +Aji may be zero), ii) tour-
naments in which alternatives may have been compared with each other more than once
(Aij + Aji > 1),2 iii) tournaments with ties (Aij = Aji), and iv) tournaments in which
intensities of preference are present.

Although ideally we would like to work with complete tournaments, there are many
situations where it is unfeasible to obtain direct information about each possible pairwise
comparison of alternatives. This may be because there is a high number of alternatives to be
ranked or just because it is costly to undergo each pairwise comparison and it is preferable
to base the ranking on an incomplete set of comparisons. From a conceptual point of
view, whether or not tournaments are restricted to be binary has important implications
in defining ranking methods. In a binary tournament all the alternatives have “faced”
each other exactly once and simple rules that look at the number of “victories” of each
alternative may have good properties. However, in more general tournaments it does not
suffice to know how well an alternative has scored. We need to take into account the quality
of the “opponents”.

Our goal in this paper is to take some of the ranking methods considered in the different
fields and compare them by looking at their performance with respect to a set of properties.
Axiomatic approaches to ranking theory have been taken before in the literature, especially
in social choice and voting theory. However, most of these contributions mainly deal with
binary tournaments. Laslier (1997) presents a deep analysis of the problem of choosing a
set of winners for a given binary tournament, discussing a wide number of solutions and

1In matrix form, a binary tournament corresponds with a binary matrix A ∈ {0, 1}N×N such that for
each pair of alternatives i and j, Aij + Aji = 1.

2This is specially important in testing objects, where each pair of objects may be tested by several
experts.
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properties.3 These properties are stated with respect to the chosen set of winners, whereas
in our setting they take into account not only the winners, but the whole ranking over the
set of alternatives. Also within the axiomatic approach, Bouyssou (2004) revisits the main
ranking methods in Laslier (1997) and studies their monotonicity properties (responsiveness
to the beating relation).4

Because of the large amount of ranking methods and properties that have been discussed
in the different fields, some selection is needed. Our analysis mainly concentrates on the
ranking methods listed below.

• Scores: A natural choice for binary tournaments (see Rubinstein (1980) for an ax-
iomatic characterisation).

• Fair bets: A ranking widely studied in social choice theory and economics (see, for
instance, Daniels (1969), Moon and Pullman (1970), Slutzki and Volij (2005) and
Slutzki and Volij (2006)).

• Maximum likelihood: The most common choice in statistics and psychology (see,
for instance, Zermelo (1929) and Bradley and Terry (1952)).

• Recursive performance and recursive Buchholz: These ranking methods are
the result of a new approach developed in Brozos-Vázquez et al. (2008).

The main contribution of this paper is to study how the above ranking methods perform
with respect to a set of properties. This analysis is important not only to get a better
understanding of the different ranking methods, but also to learn about the strength and
implications of the different properties. Interestingly, maximum likelihood stands up as
one of the ranking methods that does well with respect to the chosen properties. This is
somewhat surprising since, because of its nature, one would expect maximum likelihood
to have good statistical properties (for instance, in terms of asymptotic behaviour), but
there is no reason to expect good behaviour with respect to some of the properties we work
with. The other ranking method that stands up from our approach is recursive Buchholz,
which is defined in this paper. Therefore, not only do we conduct a detailed analysis of the
properties of several well known ranking methods, but we also define a new one, recursive
Buchholz, which performs well on the discussed properties.

The rest of the paper is structured as follows. In Section 2 we present the main definitions
and ranking methods. In Sections 3-6 we define and discuss several families of properties.
Finally, we discuss the results of our analysis in Section 7.

3Dutta and Laslier (1999) consider a more general setting where they allow for intensities, but complete-
ness is still a requirement.

4In recent years, the related issue of ranking scientific journals has received a lot of attention in economics
(see, for instance, Liebowitz and Palmer (1984) and Palacios-Huerta and Volij (2004)). In this setting, the
rankings are defined on the basis of citation matrices, which contain information regarding the number of
times each journal has been cited by any other journal. There is a fundamental difference between the two
settings. In our setting, a victory of i over j should be seen as something good for i and bad for j. However,
when looking at scientific journals, a citation from journal j to journal i should be good for journal i, but
not necessarily bad for journal j. Clearly, this cannot be ignored when defining properties of a ranking
method and, therefore, it would be inappropriate to include in our axiomatic analysis ranking methods that
are based on citation matrices.
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2 Tournaments and ranking methods

As we have already argued, our analysis applies to any situation where there is a set of
alternatives to be ranked on the basis of pairwise comparisons among them. For the sake of
exposition, in the remainder we adopt the sports’ terminology and refer to the alternatives
as players and talk about matches, victories, losses, beating, scores, etc.

A tournament is a pair (N,A), where N is a finite set of players and A ∈ RN×N is
a tournament matrix, where Aij represents the aggregate score of player i against j. We
assume Aij ≥ 0 for all i, j ∈ N and Aii = 0 for all i ∈ N .5 We say that i has scored
against j if Aij > 0 and that i has beaten j if Aij > Aji. We make the standard assumption
that the matrix A is irreducible.6 This means that for every pair of players i, j ∈ N , i 6= j,
there is a sequence of players (i = k0, k1, . . . , kn = j) such that, for each ` ∈ {0, . . . , n− 1},
k` has scored against k`+1.

To each tournament (N,A) we associate a (symmetric) matches matrix M(A) = A+A>,
where Mij(A) is interpreted as the number of matches between i and j. When no confusion
can arise, we denote M(A) by M . For each player i ∈ N , define mi =

∑
j∈N Mij to be the

total number of matches played by i, so m = Me, where e ∈ RN is the vector e = (1, . . . , 1).
For i, j ∈ N , define M̄ij = Mij/mi to be the proportion of player i’s matches that he plays
against j. A tournament is called round-robin if Mij = 1 for all i, j ∈ N, i 6= j; round-robin
tournaments are complete tournaments in which each player has played once against any
other player.7

A ranking method ϕ assigns to each tournament (N,A) a weak order on N (transitive
and complete). For i, j ∈ N , we write i RϕA j if i is ranked weakly above j according to
ranking method ϕ in tournament A; a strict ranking is denoted by i PϕA j and indifference
is denoted by i IϕA j. A ranking ϕ is called flat on A if, for each pair i, j ∈ N , i IϕA j.

Given a tournament (N,A), a vector r ∈ RN is a rating vector, where each ri is a measure
of the performance of player i ∈ N in the tournament. The ranking methods considered
in this paper are all induced by rating vectors: for each ranking method ϕ there is an
underlying rating vector rϕ such that the players are ranked according to it, i.e., i RϕA j

if and only if rϕi ≥ rϕj . Note that ratings that are used to define a ranking method are
ordinal, so for convenience sometimes a normalisation is imposed to guarantee uniqueness
of the ratings vector.

Below, we define the ranking methods considered in this paper. Two of them, the
Neustadtl and Buchholz ranking methods are mainly defined as a starting point for the fair
bets and recursive Buchholz methods, respectively.

Scores. The vector of average scores, rs, is defined by rsi =
∑
j∈N Aij/mi for all i ∈ N .

It follows from the assumption that A is irreducible that si ∈ (0, 1) for all i ∈ N . The
corresponding ranking method is denoted by ϕs. In the remainder we interchangeably use

5We do not restrict the non-zero entries in A to be natural numbers as in, e.g., Slutzki and Volij (2005).
6This ensures that all the rankings methods we discuss in this paper are well defined.
7Despite being very special, round-robin tournaments are still more general than binary tournaments,

since they allow for intensities (Aij needs not be 0 or 1) and ties (Aij may equal Aji).
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rs and s to refer to the scores.

Neustadtl. Let Â be defined, for each pair i, j ∈ N , by Âij = Aij/mi. Then, the
Neustadtl rating vector is given by rn = Âs. Neustadtl ranking, which is widely used as
a tie-breaker in round-robin tournaments, computes a weighted average of the individual
scores of each player i, where the weight of his score against player j is proportional to the
score of player j.8 Thus, the idea behind Neustadtl is to reward a win against a player with
a high score more than a win against a player with a lower score.

Fair bets. Let LA = diag(A>e). So, for every i ∈ N , (LA)i represents how much
other players have scored against player i, i.e., i’s total number of “losses”. Consider the
system of linear equations given by L−1

A Ax = x or, equivalently,
∑
j∈N Aijxj =

∑
j∈N Ajixi

for all i ∈ N . The rating vector rfb is defined to be the unique positive vector such that
(rfb)>e = 1. Fair bets is a ranking method that was originally defined for round-robin
tournaments and that has been studied in social choice and voting theory under different
names and interpretations: from the classic papers by Daniels (1969) and Moon and Pullman
(1970), to more recent references such as Slutzki and Volij (2005) and Slutzki and Volij
(2006).9 In Laslier (1992) this ranking method is called the “ping-pong winners” because
of the following interpretation in round-robin tournaments. Suppose several players are
waiting to play table tennis. The first two players i and j are randomly chosen and play.
Player i wins with probability Aij/Mij and player j with probability Aji/Mij . The winner
stays, a new opponent is randomly chosen, and the likelihood of each of them being the
winner is derived again from matrix A. If we rank the players according to the amount of
time they would play under the above rules, we would get the fair bets method.

The above interpretation suffices to uncover an important property that the fair bets
ranking shares with the Neustadtl ranking. Both reward victories against players with high
scores. Note that, in the table tennis example, when a player is chosen to play, he will most
likely face a player with a high score, and so having good results against good players is
more important than having good results against bad players.

Finally, with respect to the Neustadtl ranking, fair bets adds depth to the idea of
rewarding results against good players. It is not only important to have beaten players who
have high scores, but also that they have achieved this high scores beating players with high
scores. In the table tennis example, given two players with the same average score, it is
better to have beaten the one who has beaten stronger players. This reasoning can be given
further levels of depth and the system of equations defining the fair bets ranking method
captures them.

Maximum Likelihood. This is also a classic ranking method whose origins can be
traced as far back as Zermelo (1929). It has been studied in several fields, but it is specially
popular in statistics, through the literature on paired comparisons (see, for instance, Bradley

8This tie-breaking rule is commonly known as Sonneborn-Berger, but it was originally proposed by
Hermann Neustadtl. Actually, this ranking method was defined just for round-robin tournaments and what
we present here is a natural extension to our more general setting.

9Similar ideas have been also used in slightly different settings in papers such as Borm et al. (2002),
Herings et al. (2005) and Slikker et al. (2010).
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and Terry (1952), Moon and Pullman (1970) and David (1988)). When viewed from the
point of view of statistics, maximum likelihood looks for the ratings vector that maximise
the probability of the matrix A being realised when all the matches given in matrix M take
place.

Formally, this ranking method assumes that each player i ∈ N has a rating ri and that,
given two players i, j ∈ N , i 6= j, the probability that player i beats player j is given by
a rating function F (ri, rj). Although there are several possible choices for the function
F , here we follow the classic approach, used already in the early works by Zermelo (1929)
and rediscovered by Bradley and Terry (1952). Under this approach, F is based on the
(standard) logistic distribution FL(x) = 1/(1 + exp(−x)), so that F (ri, rj) = FL(ri − rj) =

exp(ri)/ exp(ri + rj). Under this specification, the maximum likelihood estimate of the
rating of each player i corresponds with rml

i = log(πi), where π ∈ RN is the unique positive
solution of the system of non-linear equations given by π>e = 1 and, for each i ∈ N ,10

πi =
misi∑

j∈N\{i}
Mij

(πi+πj)

.

Recursive performance. This ranking method, defined in Brozos-Vázquez et al.
(2008), also builds upon rating functions. Ideally, given a tournament (N,A), one would
like to associate with it a rating of the players that explains all the observed results, that
is, for each pair of players i, j ∈ N , i 6= j, F (ri, rj) =

Aij

Mij
. So, the observed proportion of

victories of i against j is exactly what one would predict using F and the ratings ri and rj .
Unfortunately, finding such ratings amounts to solving a system with far more equations
than variables which, for most tournaments, will have no solution. As we said above, what
maximum likelihood does is to find the ratings under which the probability of the observed
results is maximised, whereas the recursive performance finds the rating that explains the
“average” result of each player.

Given a tournament (N,A), a rating vector r ∈ RN , and a player i, the average opponent
of i in the tournament is (M̄r)i, i.e., the average rating of the opponents of i (weighted by
the number of matches played against each of them). The recursive performance looks for a
rating such that for each player i ∈ N , F (ri, (M̄r)i) =

∑
j∈N Aij/mi = si. Again, we stick

to the approach of using the logistic distribution to define F . Formally, if we let c ∈ RN

be defined, for each i ∈ N , by ci = F−1
L (si) and ĉ = c − m>c

m>e
e, the recursive performance

rating vector, rrp, is the solution of the system of linear equations given by x>e = 0 and
M̄x+ ĉ = x.

Hence, for each player i, rrpi takes into account the average strength of i’s opponents
(M̄rrp) and his own score in the tournament (ĉi is increasing in si).

Buchholz. The Buchholz rating vector is given by rb = M̄s+ s. Just as the recursive
performance, the Buchholz combines the average strength of i’s opponents (M̄s) and his
own score (s) but in a much simpler way.11

10Refer, for instance, to Ford (1957) or David (1988).
11Actually, Buchholz is commonly used as a tie-breaker in non round-robin tournaments and is computed

6



Recursive Buchholz. This is a new ranking method that combines the ideas of Buch-
holz and recursive performance by adding to the Buchholz ranking method the same kind of
depth that the fair bets added to Neustadtl. Not only the average score of your opponents
(M̄s) should be important, but also whether your opponents have achieved this average
score against weak or strong opponents. All else equal, having faced opponents with a high
score who have themselves played against strong opponents should be better than having
faced opponents with a high score who have played against weak opponents. Again, further
depth can be given to this argument and recursive Buchholz captures this idea.

The recursive Buchholz rating vector, rrb, is the unique solution of the system of linear
equations given by x>e = 0 and M̄x+ ŝ = x, where ŝ = s− e

2 .
12

In the following sections we discuss several properties and study whether the above
ranking methods satisfy them. Most of the properties we discuss have been studied before.
We will be explicit when defining properties that we have not found in the literature. For
an overview of the results, see Table 1 in Section 7.

3 Basic properties

In this section we start our analysis by presenting three elementary properties that a ranking
method ϕ should satisfy. In addition, we present a property that deals with a situation in
which one can identify two subtournaments that are connected by just a single player.

Anonymity (ano): Let i, j ∈ N and let A′ be the tournament obtained from A by per-
muting columns i and j and rows i and j. Then, the rankings ϕ(A) and ϕ(A′) are
the same but with players i and j interchanged.

Homogeneity (hom): For all k > 0, ϕ(kA) = ϕ(A). Note that homogeneity is an ordinal
property. It relates to the ordering of the players and not necessarily to the underlying
rating vector.

Symmetry (sym): ϕ is flat on any symmetric tournament (A = A>). So if everyone has
a 50% score against all opponents, not necessarily with the same number of matches,
all players end up equally ranked.

These three properties require no motivation. Further, it is readily verified that all our
ranking methods satisfy them.

For the next property we need to introduce the notion of bridge player. Given a tourna-
ment (N,A), a player b ∈ N is a bridge player if there exist N1, N2 ⊆ N with |N1| ≥ 2 and
|N2| ≥ 2 such thatN1∪N2 = N , N1∩N2 = {b} andMij = 0 for all i ∈ N1\{b}, j ∈ N2\{b}.
Since no player of N1\{b} has played against any player in N2\{b}, the connectedness of

as the average of the scores of the opponents of each player, i.e., M̄s. For players with an equal score, this
definition results in the same relative ranking as the definition we present here.

12Since the recursive Buchholz can be seen as a variation of the recursive performance where FL is taken
to be the identity, the existence and uniqueness of rrb follows from Theorem 2 in Brozos-Vázquez et al.
(2008).
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irreducible tournaments with bridge players depends crucially on them, in the sense that
the tournament obtained after removing a bridge player would not be connected. We denote
by (N1, A1) and (N2, A2) the subtournaments obtained from (N,A) by reducing A to the
player sets N1 and N2, respectively. Further, note that the irreducibility of A implies that
a bridge player has scored against at least one player in each of the subtournaments, and
that at least one player in each of the subtournaments has scored against him.

Bridge player independence (bpi): Let b be a bridge player with corresponding sub-
tournaments (N1, A1) and (N2, A2). Then iRϕAj if and only if iRϕA1j for all i, j ∈ N1.

The idea of this property is fairly intuitive. Since, regarding the bridge player, the results
in tournament (N2, A2) only convey information about how strong he is in comparison to
the players in N2, these results should be irrelevant to decide the relative ranking of the
players in N1. Think, for instance, of a player who plays a tournament (N1, A1) with a
very bad result and then goes on to play a new tournament (N2, A2) with completely new
opponents (possibly very weak) achieving an excellent result. What bpi implies is that,
when looking at the complete tournament (N,A), the second tournament should have no
impact in the relative ranking of the players in N1 (including player b).

Proposition 3.1. ϕfb, ϕml, and ϕrb satisfy bpi.

Proof. Let b be a bridge player with respect to the subtournaments (N1, A1) and (N2, A2).
We start with the proof for ϕfb.

Take x1 = rfb(N1, A1) and x2 = rfb(N2, A2) and define, for all i ∈ N ,

yi =

{
x2
b

x1
b
x1
i if i ∈ N1,

x2
i if i ∈ N2.

Since the fair bets rating vector associated with an irreducible tournament is positive, the
vector y is well defined. Then, for i ∈ N1\{b} we have that, for all j ∈ N2, Aij = Aji = 0

and hence ∑
j∈N

Aijyj =
∑
j∈N1

A1
ij

x2
b

x1
b

x1
j =

x2
b

x1
b

∑
j∈N1

A1
jix

1
i =

∑
j∈N

Ajiyi.

Similarly, for i ∈ N2\{b} we have∑
j∈N

Aijyj =
∑
j∈N2

A2
ijx

2
j =

∑
j∈N2

A2
jix

2
i =

∑
j∈N

Ajiyi.

Finally,∑
j∈N

Abjyj =
∑
j∈N1

A1
bj

x2
b

x1
b

x1
j +

∑
j∈N2

A2
bjx

2
j =

x2
b

x1
b

∑
j∈N1

A1
jbx

1
b +

∑
j∈N2

A2
jbx

2
b =

∑
j∈N

Ajbyb.

Since the system given by the
∑
j∈N Ajiyj =

∑
j∈N Aijyi equations has a unique solution

up to a positive scalar multiplication, rfb(N,A) and y induce the same rankings. From this,
bpi follows.
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The proof for ϕml is analogous, but we use the vector π that solves the system of
non-linear equations that are used to compute rml. Since rml is a strictly monotone trans-
formation of π, they induce the same ranking.

Finally, the proof for ϕrb goes along similar lines, but the vector y is defined, for all

i ∈ N , by yi =

{
x1
i + x2

b if i ∈ N1,

x1
b + x2

i if i ∈ N2.

Example 3.1. Consider the tournaments A and A′ described below:
A

0 1 20 20
1 0 20 0
20 20 0 0
20 0 0 0


rs rn rfb rml rrp rb rrb

0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0

A′
0 1 20 39
1 0 20 0
20 20 0 0
1 0 0 0


rs rn rfb rml rrp rb rrb

0.732 0.140 0.331 −1.107 0.416 1.000 0.119
0.500 0.256 0.331 −1.107 1.398 1.011 0.119
0.500 0.308 0.331 −1.107 1.170 1.116 0.119
0.025 0.018 0.008 −4.771 −2.984 0.757 −0.356

Player 1 is a bridge player in both A and A′, with N1 = {1, 4} and N2 = {1, 2, 3}. In
tournament A, all players are tied according to all ranking methods. Yet, in A′, players 1
and 3 are not tied anymore according to ϕs, ϕn, ϕrp, and ϕb. Since the only difference
between A and A′ is in the subtournament (N1, A1), these rules do not satisfy bpi.

4 Response to victories and losses

In this section we consider two types of properties for a ranking method ϕ. The first type
deals with preserving a ranking when two tournaments (N,A) and (N,A′) are combined.
The second type deals with the (a)symmetric role victories and losses play in a ranking
method.

Flatness preservation (fp): If ϕ(A) and ϕ(A′) are both flat, then so is ϕ(A+A′). This
property just says that if all players are regarded as equal in two tournaments, this
should not change when we add up the tournaments.

Order preservation (op): Let i, j ∈ N . If i PϕA j, i PϕA′ j, and mi

mj
=

m′
i

m′
j
, then i PϕA+A′ j.

If i is better than j in two tournaments, this should not change when we add them up.
The condition on m and m′ imposes some balance between the number of matches
played in tournaments A and A′. In Example 4.3 below we show that op without this
condition is not even satisfied by the scores.

Symmetry between victories and losses (svl): Let i, j ∈ N . Then i RϕA j if and only
if j Rϕ

A> i. If we reverse all the results in a tournament, then the ranking should be
reversed as well. We have not seen this property in the literature despite it being
quite natural. Note that svl trivially implies sym.
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Negative response to losses (nrl): Let λ ∈ RN , λ > 0 and define Λ = diag((λi)i∈N ).
If ϕ(A) is flat, then i RϕAΛ j if and only if λi ≤ λj . This property is introduced in
Slutzki and Volij (2005) and is the key ingredient of the characterisation they obtain
for the fair bets ranking method. In words of the authors: “Negative responsiveness to
losses concerns situations in which all players are equally ranked and the problem is
irreducible. If a new problem is obtained by multiplying each player’s losses by some
positive constant (which may be different for each player), then the players should be
ranked in the new problem in a way that is inversely related to these constants”.

It is rather straightforward that ϕs satisfies fp. The following proposition relates flatness
of ϕrp, ϕrb and ϕml to flatness of ϕs.

Proposition 4.1. ϕrp(A), ϕrb(A) and ϕml(A) are flat if and only if ϕs(A) is flat.

Proof. We provide the proof for ϕrp. The proofs for ϕrb(A) and ϕml(A) are analogous.
“⇒”: Assume that ϕrp(A) is flat, so there is k ∈ R such that rrp = ke. Recall that rrp

is a solution of (I − M̄)rrp = ĉ, where ĉi is strictly increasing in si. Then, (I − M̄)rrp =

ke− kM̄e = 0. Hence, ĉ = 0 and therefore, ϕs(A) is flat.
“⇐”: Assume that ϕs(A) is flat, so s = 1

2e. Then, c = 0 and ĉ = 0. So, a particular solution
of (I − M̄)x = ĉ is 0 and the solution set is span{e}. Hence, ϕrp(A) is flat.

By fp of ϕs we obtain the following corollary.

Corollary 4.2. ϕrp, ϕrb and ϕml satisfy fp.

Slutzki and Volij (2005) show that ϕfb satisfies fp. The following example shows that
ϕn and ϕb do not satisfy fp.

Example 4.1. Consider the tournaments A and A′ described below:
A

0 0 2 2
0 0 2 2
1 1 0 0
1 1 0 0


rs rn rfb rml rrp rb rrb

0.667 0.222 0.333 −1.099 0.347 1 0.083
0.667 0.222 0.333 −1.099 0.347 1 0.083
0.333 0.222 0.167 −1.792 −0.347 1 −0.083
0.333 0.222 0.167 −1.792 −0.347 1 −0.083

A′
0 1 2 1
1 0 2 1
1 1 0 1
1 1 1 0


rs rn rfb rml rrp rb rrb

0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0
0.5 0.25 0.25 −1.386 0 1 0

A + A′
0 1 4 3
1 0 4 3
3 3 0 1
2 2 1 0


rs rn rfb rml rrp rb rrb

0.571 0.255 0.292 −1.229 0.171 1.021 0.043
0.571 0.255 0.292 −1.229 0.171 1.021 0.043
0.438 0.240 0.217 −1.530 −0.128 0.990 −0.032
0.417 0.227 0.198 −1.617 −0.215 0.966 −0.053

Then ϕn(A), ϕn(A′), ϕb(A) and ϕb(A′) are all flat, but ϕn(A+A′) and ϕb(A+A′) are not.

Proposition 4.3. ϕs satisfies op.
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Proof. Let (N,A), (N,A′) and i, j ∈ N be such that si > sj , s′i > s′j and mi

mj
=

m′
i

m′
j
. Note

that mi+m
′
i

mi
=

mj+m′
j

mj
. Hence, mi

mi+m′
i

=
mj

mj+m′
j
and, clearly, m′

i

mi+m′
i

=
m′

j

mj+m′
j
as well. It

is straightforward to check that the score of player i in the combined tournament A + A′

equals mi

mi+m′
i
si +

m′
i

mi+m′
i
s′i. Then,

mi

mi +m′i
si +

m′i
mi +m′i

s′i =
mj

mj +m′j
si +

m′j
mj +m′j

s′i >
mj

mj +m′j
sj +

m′j
mj +m′j

s′j ,

which coincides with the score of player j in the combined tournament, so we have estab-
lished op.

The following example shows that the other ranking methods do not satisfy op.

Example 4.2. Consider the tournaments A and A′ described below:
A

0 1 60 3
0 0 4 40
1 1 0 0
2 21 1 0


rs rn rfb rml rrp rb rrb

0.955 0.053 0.520 −0.567 1.025 1.019 0.198
0.657 0.216 0.297 −1.322 0.948 0.999 0.112
0.030 0.024 0.013 −4.162 −2.383 0.954 −0.282
0.358 0.235 0.170 −1.892 0.410 1.028 −0.029

A′
0 2 5 30
3 0 55 2
0 2 0 0
27 3 5 0


rs rn rfb rml rrp rb rrb

0.552 0.263 0.347 −1.040 1.399 1.066 0.133
0.896 0.065 0.319 −1.183 0.154 1.001 0.109
0.030 0.027 0.010 −4.648 −2.888 0.872 −0.359
0.522 0.265 0.324 −1.107 1.334 1.061 0.117

A + A′
0 3 65 33
3 0 59 42
1 3 0 0
29 24 6 0


rs rn rfb rml rrp rb rrb

0.754 0.140 0.318 −1.126 0.692 1.007 0.122
0.776 0.168 0.414 −0.902 0.900 1.041 0.155
0.030 0.023 0.012 −4.522 −2.350 0.780 −0.336
0.440 0.303 0.256 −1.351 0.758 1.173 0.058

According to ϕfb, ϕml, ϕrp, ϕb, and ϕrb, player 1 is better than player 2 in both A and
A′. However, all of them rank player 2 on top of player 1 in tournament A + A′. Hence,
none of these ranking methods satisfies op. Consider now the tournament A′′ given below.
According to ϕn, player 1 is better than player 2 in both A′ and A′′. However, ϕn ranks
player 2 on top of player 1 in tournament A+A′.

A′′
0 0 12 0
25 0 0 10
8 22 0 25
22 10 0 0


rn

0.147
0.138
0.371
0.137

and

A′ + A′′
0 2 17 30
28 0 55 12
8 24 0 25
49 13 5 0


rn

0.176
0.296
0.242
0.218

.

Moreover, note that all players have played the same number of matches in A, A′, and A′′,
whereas this was not required in the definition of op. Hence, a weakening of op in this
direction would also be violated by all these ranking methods.

The following example shows that a stronger version of op without requiring the balance
between m and m′ is not even satisfied by ϕs.

Example 4.3. Consider the tournaments A and A′ described below:

11



A 0 0 1
0 0 99

0.01 1 0


rs

0.9901
0.9900
0.0100

A′ 0 0 1
0 0 0.01
99 1 0


rs

0.0100
0.0099
0.9900

A + A′ 0 0 2
0 0 99.01

99.01 2 0


rs

0.0198
0.9802
0.5000

Then, according to the score method ϕs, player 1 is ranked above player 2 in both A and A′

and yet, when adding them up, player 2 has a higher score.

The score method ϕs trivially satisfies svl. For various other ranking methods, svl can
be shown by explicitly transforming the rating vector.

Proposition 4.4. ϕml satisfies svl.

Proof. Recall that ϕml orders the players according to rml where, for each i ∈ N , rml
i =

log(πi) and vector π is such that (π)>e = 1 and, for each i ∈ N ,

πi =
misi∑

j∈N\{i}
Mij

πi+πj

.

Let x̄ be defined, for each i ∈ N , by x̄i = rml
i − 1

|N |
∑
j∈N r

ml
j . Then,

∑
i∈N x̄i = 0 and, for

each i ∈ N , πi = α exp(x̄i) with α = (
∏
j∈N πj)

1/|N |. Hence, for each i ∈ N , we have

exp(x̄i) =
misi∑

j∈N\{i}Mij
1

exp(x̄i)+exp(x̄j)

. (4.1)

Now consider the following system of equations in y ∈ RN :
∑
i∈N yi = 0 and, for each

i ∈ N ,

exp(yi) =
mi(1− si)∑

j∈N\{i}Mij
1

exp(yi)+exp(yj)

. (4.2)

If we show that y = −x̄ solves this system, then (because the transformation from π to x̄
is monotonic) we are done since player i’s score in A> is 1− si and M is the same in both
tournaments. Filling in y = −x̄ in the right hand side of (4.2) yields

mi(1− si)∑
j∈N\{i}Mij

1
exp(−x̄i)+exp(−x̄j)

=
mi(1− si)∑

j∈N\{i}Mij
exp(x̄i) exp(x̄j)

exp(x̄i)+exp(x̄j)

=
1

exp(x̄i)

mi(1− si)∑
j∈N\{i}Mij

exp(x̄j)
exp(x̄i)+exp(x̄j)

=
1

exp(x̄i)

mi(1− si)∑
j∈N\{i}Mij(1− exp(x̄i)

exp(x̄i)+exp(x̄j) )

=
1

exp(x̄i)

mi(1− si)
mi − exp(x̄i)

∑
j∈N\{i}

Mij

exp(x̄i)+exp(x̄j)

,

which, by (4.1), reduces to

1

exp(x̄i)

mi(1− si)
mi − exp(x̄i)

misi
exp(x̄i)

=
1

exp(x̄i)
= exp(yi).

So y = −x̄ solves the system for A> and therefore, ϕml satisfies SVL.
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Proposition 4.5. ϕrp, ϕrb, and ϕb satisfy svl.

Proof. To show that ϕrp satisfies svl, observe that if rrp solves M̄x + ĉ = x, then −rrp

solves the corresponding equation for A>, because M̄ = M̄> and ĉ(A>) = −ĉ(A) as a result
of F−1 being symmetric around 1

2 . The argument for ϕrb is analogous. For ϕb, observe
that s(A>) = e− s(A), from which it readily follows that rb(A>) = 2e− (M̄s(A) + s(A)) =

2e− rb(A) and so ϕb satisfies svl as well.

Not all ranking methods satisfy svl, as is shown in the following example.

Example 4.4. Consider the following tournaments:
A

0 0.5 0.2 1
0.5 0 0.3 0.8
0.8 0.7 0 0.9
0 0.2 1 0


rn rfb

0.176 0.195
0.201 0.210
0.306 0.559
0.062 0.036

and

A>
0 0.5 0.8 0

0.5 0 0.7 0.2
0.2 0.3 0 0.1
1 0.8 0.9 0


rn rfb

0.131 0.065
0.179 0.137
0.106 0.054
0.329 0.744

.

Since player 2 is ranked above player 1 in both A and A> and for both ϕn and ϕfb, these
ranking methods do not satisfy svl. Note that A is a round-robin tournament. Hence, ϕn

and ϕfb do not satisfy svl even if we restrict to round-robin tournaments.

Our analysis of nrl builds upon Slutzki and Volij (2005), though some care is needed.
On the one hand, they develop their characterisation of ϕfb for a larger class that allows
for reducible tournaments. On the other hand, they restrict to tournament matrices with
integer entries.

A tournament A is called balanced if Ae = A>e, i.e., if each player has the same number
of victories and losses. It is strongly balanced if, moreover, there is a constant k such that
Ae = ke, so the number of victories (and losses) is equal across all players. The next result
is an adaptation of Lemmas 3 and 4 in Slutzki and Volij (2005).

Lemma 4.6. Let ϕ be a ranking method satisfying ano, hom, sym and fp. Then ϕ is flat
on balanced tournaments.

Proof. First, suppose that A is strongly balanced with Ae = ke. Then by Birkhoff’s theorem
(Birkhoff (1946)), matrix A can be written as k times a convex combination of permutation
matrices. By ano, ϕ is flat on permutation matrices. By hom, ϕ is also flat on the
tournaments that result after the multiplication of the permutation matrices by positive
numbers. Finally, by fp and hom again, ϕ is flat also on matrix A.

If A is not strongly balanced, then A can be decomposed as the sum of a strongly
balanced tournament, in which we have just seen that ϕ is flat, and a symmetric tournament
(see the proof of Lemma 4 in Slutzki and Volij (2005)). By sym, ϕ is flat on the symmetric
tournament as well, and by fp it is then flat on the original tournament A.

Most of the ranking methods we consider in this paper satisfy ano, hom, sym, and
fp, and, therefore, all of them coincide (and are flat) for balanced tournaments. The next
result, which is the adaptation of the main result in Slutzki and Volij (2005) to our setting,
illustrates the strength of the nrl property.
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Proposition 4.7. The fair bets ranking method, ϕfb, is the unique ranking method satisfying
ano, hom, sym, fp, and nrl.

Proof. ϕfb was already shown to satisfy ano, hom, sym and fp. nrl follows from Slutzki
and Volij (2005).

To show the converse, let ϕ be a ranking method satisfying ano, hom, sym, fp, and
nrl. Given an irreducible tournament A and corresponding fair bets rating vector, rfb, the
tournament A′ = Adiag((rfbi )i∈N ) is a balanced (and irreducible) tournament because, by
definition, for all i ∈ N , ∑

j∈N
Aijr

fb
j =

∑
j∈N

Ajir
fb
i .

Then, A = A′(diag((rfbi )i∈N ))−1. Since ϕ satisfies ano, hom, sym, and fp, by Lemma 4.6,
ϕ(A′) is flat. Then, by nrl, i RϕA j ⇐⇒ 1/rfbi ≤ 1/rfbj ⇐⇒ i Rϕ

rb

A j.

As a result of Proposition 4.7, ϕs, ϕml, ϕrp and ϕrb do not satisfy nrl because they
satisfy all other properties in the characterisation. The following example shows that ϕn

and ϕb do not satisfy nrl either.

Example 4.5. Let λ = (0.99, 2, 1, 1) and Λ = diag((λi)i∈N ). Let A and AΛ be as follows:

A
0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0


rn rb

0.25 1
0.25 1
0.25 1
0.25 1

and

AΛ
0 4 1 1

1.98 0 1 1
0.99 2 0 2
0.99 2 2 0


rn rb

0.245 1.024
0.192 0.911
0.264 1.046
0.264 1.046

Note that both ϕn and ϕb are flat on A but, despite λ1 ≤ λ3, rn3 (AΛ) > rn1 (AΛ) and
rb3(AΛ) > rb1(AΛ).

5 Score consistency

In this section we investigate to what extent a ranking method ϕ preserve some of the
features of the score ranking method, making it appealing for round-robin tournaments.

Score consistency (scc): If A is a round-robin tournament, then ϕ(A) = ϕs(A).

Homogeneous treatment of victories (htv): Let i, j ∈ N . If Mik = Mjk for all k ∈
N\{i, j}, then i RϕA j if and only if i Rϕ

s

A j. Roughly speaking, if i and j play the same
number of matches against the other players, then they should be ranked according
to their aggregate scores. Note that htv trivially implies scc.

Note that both scc and htv relate to the ranking of the players, not necessarily to the
underlying rating vectors. It follows from the tournament A in Example 4.4 that ϕn and
ϕfb do not satisfy scc.

The remaining ranking methods all satisfy htv, and hence scc.

Proposition 5.1. ϕml satisfies htv.
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Proof. Let (N,A) and i, j ∈ N be such that Mik = Mjk for all k ∈ N\{i, j}. Rewriting the
equations used to define ϕml we have

si =
1

mi

∑
k∈N\{i}

Mik
πi

πi + πk
.

Since πi

πi+πk
is increasing in πi, the right hand side of the equation is increasing in πi. Then,

because Mik = Mjk for all k 6= i, j and therefore mi = mj , we have that si ≥ sj if and only
if πi ≥ πj . Hence, ϕml satisfies htv.

If |N | = 2 we have thatMs+s = (s1+s2, s1+s2), so ϕb is flat in two-player tournaments
and therefore satisfies neither htv nor scc.

Proposition 5.2. If |N | > 2, then ϕb satisfies htv.

Proof. Let (N,A) and i, j ∈ N be such thatMik = Mjk for all k ∈ N\{i, j}. Given i, j ∈ N ,
since Mik = Mjk for all k 6= i, j, we have that mi = mj and, hence, M̄ij = M̄ji. Then,

rbi − rbj = (M̄s+ s)i − (M̄s+ s)j = (1− M̄ij)(si − sj).

Since A is irreducible and |N | > 2, it cannot be the case that M̄ij = 1. Then, (1−M̄ij) > 0

and ϕb and ϕs produce the same ranking.

Proposition 5.3. ϕrb and ϕrp satisfy htv.

Proof. Recall that ϕrb solves (I − M̄)x = ŝ. So, in particular

xi − M̄ijxj −
∑

k∈N\{i,j}

M̄ikxk = ŝi and − M̄jixi + xj −
∑

k∈N\{i,j}

M̄jkxk = ŝj .

Substracting the two equations and using that M̄ij = M̄ji and M̄ik = M̄jk for all other k
yields

(1 + M̄ij)(xi − xj) = ŝi − ŝj .

Therefore, xi − xj and ŝi − ŝj have the same sign. Hence, ϕrb satisfies htv.
The proof for ϕrp is analogous, but with ĉ in the right hand side. Since ĉ and ŝ induce

the same ranking, the same argument works.

6 Monotonicity

In this section we present three properties that deal with changes in the tournament matrix.
If an existing result is changed or a new one is added, how should the rankings change?
The first property states that your relative ranking compared to a particular other player
cannot depend on any result involving neither of you. The other two properties state that
winning a game should always be beneficial to your ranking.

Independence of irrelevant matches (iim): We follow the definition introduced in Ru-
binstein (1980): take four different players i, j, k, ` ∈ N . Suppose that A and A′ are
identical, except for the results between k and `. Then i RϕA j if and only if i RϕA′ j.
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Positive responsiveness to the beating relation (prb): Let A be such that i RϕA j.
Let A′ be a tournament identical to A, except that there is k ∈ N\{i} such that
M ′ik = Mik and A′ik > Aik. Then, i PϕA j. Note that this should hold in particular
for k = j.

Nonnegative responsiveness to the beating relation (nnrb): Let A be such that
i RϕA j. Let A′ be a tournament identical to A, except that there is k ∈ N\{i} such
that M ′ik = Mik and A′ik > Aik. Then, i R

ϕ
A j. Of course, prb trivially implies nnrb.

Rubinstein (1980) uses ano, iim and prb to characterise ϕs on the class of round-robin
tournaments. Clearly, in our wider class of tournaments ϕs also satisfies iim and prb. We
show below that all the other ranking methods violate iim.

Example 6.1. Consider the tournaments A and A′ described below:
A

0 1 1 1
2 0 1 1
1 1 0 2
1 1 1 0


rs rn rfb rml rrp rb rrb

0.429 0.224 0.2 −1.609 −0.201 0.959 −0.05
0.571 0.265 0.3 −1.204 0.201 1.041 0.05
0.571 0.265 0.3 −1.204 0.201 1.041 0.05
0.429 0.224 0.2 −1.609 −0.201 0.959 −0.05

A′
0 1 1 2
2 0 1 1
1 1 0 2
1 1 1 0


rs rn rfb rml rrp rb rrb

0.500 0.237 0.233 −1.430 −0.015 0.998 −0.004
0.571 0.278 0.308 −1.189 0.224 1.056 0.055
0.571 0.260 0.292 −1.230 0.182 1.038 0.045
0.375 0.205 0.167 −1.807 −0.390 0.920 −0.096

In tournament A, all ranking methods rank players 2 and 3 equally. In tournament A′,
except for ϕs, all ranking methods rank player 2 on top of player 3, violating iim.

Note that whereas iim is a very natural property in round-robin tournaments, it is
questionable in our more general setting. Indeed, we argue in section 7 that when players
face different opponents, iim is a property not to be desired.

The score ranking method ϕs also turns out to be the only one satisfying prb. Consider
the tournaments A and A′ in Example 3.1. According to all methods under consideration,
players 1, 2 and 3 are equally ranked in A. In A′, player 1 has a better result against
player 4 than in A, but only rs ranks him above players 2 and 3. Hence, all of them but rs

violate prb. Moreover, ϕn, ϕrp and ϕb actually rank player 1 lower than 2 and 3 in A′, so
these three methods do not satisfy nnrb either.

In the remainder of this section we show that both ϕfb and ϕrb satisfy nnrb. Although
we conjecture that ϕml also satisfies nnrb, this is still an open question. The result for ϕfb

below extends the result in Levchenkov (1992) for round-robin tournaments (we build upon
the proof in Laslier (1997)). We start with an auxiliary result that will be crucial in the
proof for both ϕfb and ϕrb.

Lemma 6.1. Let B ∈ Rn×n be such that

(i) B is invertible,

(ii) for all i 6= j, Bij ≤ 0, and
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(iii)
∑n
j=1Bji ≥ 0 for all i ∈ {1, . . . , n}.

If γ, λ ∈ Rn are two vectors such that λ is nonnegative and Bγ = λ, then γ is nonnegative.

Proof. First note that (i)-(iii) imply that Bii > 0 for all i since invertibility precludes a zero
column. We do the proof by induction on n, the size of the square matrix B. For n = 1, the
result follows immediately from B11 > 0. If n > 1, suppose the result is true for matrices of
size n− 1 and let λ ≥ 0 be such that Bγ = λ. The last equation of Bγ = λ can be written
as

Bnnγn = λn −
n−1∑
j=1

Bnjγj . (6.1)

Now, we substitute γn in the other equations and, for each i ∈ {1, . . . , n− 1}, the equation∑n
j=1Bijγj = λi can be rewritten as

n−1∑
j=1

(BnnBij −BinBnj)γj = Bnnλi −Binλn.

Define B̄ ∈ R(n−1)×(n−1) by B̄ij = BnnBij − BinBnj for all i, j ∈ {1, . . . , n − 1}. Also,
define γ̄, λ̄ ∈ Rn−1 by γ̄i = γi and λ̄i = Bnnλi −Binλn for all i ∈ {1, . . . , n− 1}. Then the
above n− 1 equations can be expressed in matrix form as B̄γ̄ = λ̄. It is now easy to check
that λ̄ ≥ 0, B̄ is invertible, and for all i 6= j, B̄ij ≤ 0. Thus, in order to apply the induction
hypothesis we just need to show that

∑n−1
j=1 B̄ji ≥ 0:

n−1∑
j=1

B̄ji = B̄ii +

n−1∑
j=1

j 6=i

B̄ji

= BnnBii −BinBni +

n−1∑
j=1

j 6=i

(BnnBji −BjnBni)

= Bnn(Bii +

n−1∑
j=1

j 6=i

Bji)−Bni(Bin +

n−1∑
j=1

j 6=i

Bjn)

= Bnn(

n−1∑
j=1

Bji)−Bni(
n−1∑
j=1

Bjn)

(iii)

≥ Bnn(−Bni)−Bni(−Bnn)

= 0.

Therefore, we can apply the induction hypothesis to conclude that γ̄ is nonnegative. Finally,
nonnegativity of γn easily follows from (6.1), Bnn > 0 and nonnegativity of the other
components of γ.

Proposition 6.2. Let tournament A be such that i Rϕ
rb

A j. Let A′ be a tournament identical
to A, except that there is k ∈ N\{i} such that M ′ik = Mik and A′ik > Aik. Then, i Rϕ

rb

A j

and, if k = j, i Pϕ
rb

A j. In particular, ϕrb satisfies nnrb.
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Proof. Let i, j, k ∈ N be as in the statement. Below we explicitly characterise how the
recursive Buchholz ranking varies as a function of Aik and Aki, provided that Mik stays
constant. Recall that rrb is the unique solution of M̄x + ŝ = x such that (rrb)>e = 0.
Hence, (I − M̄)rrb = ŝ. Define B = I − M̄ and N̆ = N\{i, k}. Then, equation ` of the
system Brrb = ŝ can be written as∑

h∈N̆

B`hr
rb
h = ŝ` −B`irrbi −B`krrbk . (6.2)

with ` ∈ N̆ . Define B̆ ∈ R(n−2)×(n−2) to be the matrix obtained from B by deleting the
rows and columns corresponding to players i and k.

We prove now that B̆ is invertible. Suppose, on the contrary, that there is an y ∈ RN̆ ,
y 6= 0, such that y>B̆> = 0. Let ` ∈ N̆ be such that y` = maxh∈N̆ yh. We assume, without
loss of generality, that y` > 0. For each h 6= `, B>h` ≤ 0 and, hence, −yhB>h` ≤ −y`B>h`, with
equality only if yh = y` or B>h` = 0. Since y>B̆> = 0,

∑
h∈N̆\{`}−yhB>h` = y`B

>
``. Further,

since
∑
h∈N B

>
h` = 0, we have

∑
h∈N̆\{`}−B>h` = B>`` +B>i` +B>k` ≤ B>``, with equality only

if B>i` = B>k` = 0. Then, we have

y`B
>
`` =

∑
h∈N̆\{`}

−yhB>h` ≤ y`
∑

h∈N̆\{`}

−B>h` ≤ y`B>``

and, hence, all the inequalities are indeed equalities. Therefore, B>i` = B>k` = 0 and, for each
h ∈ N̆\{`}, yh = y` or B>h` = 0. Define N̄ = {m ∈ N̆ | ym = maxh∈N̆ yh}. Now, for each
m ∈ N̄ , we have B>im = B>km = 0 and, further, for each h ∈ N̆\N̄ , B>hm = 0. That is, no
player outside N̄ has played against players inside N̄ , which contradicts the irreducibility
of A.

Define C = (B̆)−1, r̆rb = (rrbh )h∈N̆ , Bi = (Bhi)h∈N̆ and Bk = (Bhk)h∈N̆ . Then, using
(6.2) we have B̆r̆rb = s̆−Birrbi −Bkrrbk and hence, r̆rb = C(s̆−Birrbi −Bkrrbk ). So, for all
` ∈ N̆ ,

rrb` = r̆rb` =
∑
h∈N̆

C`h(s̆h −Bhirrbi −Bhkrrbk ).

Define γs` =
∑
h∈N̆ C`hs̆h, γ

i
` = −

∑
h∈N̆ C`hBhi and γ

k
` = −

∑
h∈N̆ C`hBhk. Then, for each

` ∈ N̆ ,
rrb` = γs` + γi`r

rb
i + γk` r

rb
k . (6.3)

Furthermore, equation i in Brrb = ŝ is

Biir
rb
i +Bikr

rb
k +

∑
`∈N̆

Bi`r
rb
` = ŝi. (6.4)

Define Γi,i = −
∑
`∈N̆ Bi`γ

i
` and Γi,k = −

∑
`∈N̆ Bi`γ

k
` . Then, plugging in the expression of

each rrb` (6.3) into (6.4) we get

(Bii − Γi,i)rrbi + (Bik − Γi,k)rrbk = ŝi −
∑
`∈N̆

γs` . (6.5)
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Now, adding up (6.3) over all ` ∈ N̆ and using that
∑
h∈N r

rb
h = 0,

(1 +
∑
`∈N̆

γi`)r
rb
i + (1 +

∑
`∈N̆

γk` )rrbk = −
∑
`∈N̆

γs` . (6.6)

Define σi =
∑
`∈N̆ γ

i
` and σk =

∑
`∈N̆ γ

k
` . Then, solving equations (6.5) and (6.6), we get

rrbi =
ŝi − (1− Bik−Γi,k

1+σk
)
∑
`∈N̆ γ

s
`

(Bii − Γi,i)− (Bik − Γi,k) 1+σk

1+σi

and rrbk =
−
∑
`∈N̆ γ

s
`

1 + σk
− 1 + σi

1 + σk
rrbi . (6.7)

To understand how rrbi and rrbk vary with ŝi, it is convenient to know the signs of γi and
γk. We claim that both γi and γk are nonnegative vectors. By definition, γi = −CBi

and, since C−1 = B̆, B̆γ = −Bi. Furthermore, −Bi ≥ 0. Since matrix B̆ and vectors γi

and −Bi satisfy the conditions of Lemma 6.1, γi is nonnegative. The argument for γk is
analogous using −Bk instead of −Bi. The nonnegativity of γi and γk implies that σi and
σk are also nonnegative. Since γk is nonnegative, also Γi,k is nonnegative and Bik − Γi,k is
negative. Furthermore,

Bii − Γi,i = Bii +
∑
`∈N̆

Bi`γ
i
` ≥ Bii +

∑
`∈N̆

Bi` ≥ 0.

We reexamine now equation (6.7). Note that γs, γi, γk, Γi,i, Γi,k, Bii, and Bik only depend
on B̆. Then, the denominator of the expression for rrbi is positive and so rrbi is strictly
increasing in ŝi. Further, since rrbk is strictly decreasing in rrbi , it is strictly decreasing in ŝi.

Now, because of (6.3), rrb` is weakly increasing in rrbi and rrbk . Yet, since rrbi and rrbk
are strictly increasing and decreasing, respectively, in ŝi, some extra work is needed to
understand how rrb` varies with ŝi. To do so, we first show that all the components of γi

and γk are no larger than 1. We prove it for γi, the proof for γk being analogous.

B̆(e− γi) = B̆e− B̆γi = B̆e−Bi,

and, for each ` ∈ N̆ ,

(B̆e−Bi)` =
∑
h∈N̆

B`h +B`i ≥
∑
h∈N̆

B`h +B`i +Bki = 0.

Then, since B̆e−Bi is a nonnegative vector, matrix B̆ and vectors e− γi and B̆e−Bi are
in the conditions of Lemma 6.1 and, hence, e− γi is nonnegative.

Therefore, we know that all the components of γi and γk are no larger than 1. Looking
again at equation (6.3), we have that rrb` cannot increase with ŝi faster than rrbi so rrb` /r

rb
i

is weakly decreasing in ŝi. Similarly, rrb` /r
rb
k is weakly increasing in ŝi. From this, the

statement follows.

Proposition 6.3. Let tournament A be such that i Rϕ
fb

A j. Let A′ be a tournament identical
to A, except that there is k ∈ N\{i} such that M ′ik = Mik and A′ik > Aik. Then, i Rϕ

fb

A j

and, if k = j, i Pϕ
fb

A j. In particular, ϕfb satisfies nnrb.

The proof of this proposition is analogous to the proof of Proposition 6.2, with B =

LA −A instead of B = I − M̄ .
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7 Discussion

Table 1 summarises the results of the ranking methods we have studied with respect to the
different properties. The scores ranking method satisfies most of the properties we have
studied. However, although this ranking method is very natural when looking at round-
robin tournaments, in our more general setting it has the important drawback that it just
looks at the aggregate score of each player, ignoring the opponents he has faced to obtain
this score. All the other ranking methods we have considered use this information. That is,
in one way or another, they are responsive to the strength of the opponents of each player.
This is captured by the fact that the scores ranking is the only one satisfying iim outside the
subdomain of round-robin tournaments as well. So when players have different opponents
(or face opponents with different intensities), iim is a property one would rather not have.

Scores Neustadtl Fair bets Maximum
Likelihood

Recursive
Performance Buchholz Recursive

Buchholz
ano X X X X X X X
hom X X X X X X X
sym X X X X X X X
bpi X X X X X X X
fp X X X X X X X
op X X X X X X X
svl X X X X X X X
nrl X X X X X X X
scc X X X X X X* X
htv X X X X X X* X
iim X X X X X X X
prb X X X X X X X
nnrb X X X ? X X X
*Requires |N | > 2.

Table 1: Ranking methods and properties.

On the entire domain of tournaments, maximum likelihood and recursive Buchholz are
the two ranking methods that look most appealing. One potential advantage of ϕrb with
respect to ϕml is that, since ϕml requires to solve a system of non-linear equations, it may
be very hard to compute in settings where there is a high number of players to be ranked.
The difficulties to compute rml were already studied in Dykstra (1956). Also, recall that
recursive Buchholz can be seen as a variation of the recursive performance but, differently
from the vector ĉ used to define rrp, the vector ŝ used for calculating rrb is linear in s; this
linearity seems to be behind the good behaviour of this ranking method.

Finally, from our point of view, the major weakness of the fair bets ranking is that it
violates svl, which imposes the natural requirement that if we reverse all the results in
the tournament, then the corresponding ranking should be obtained by reverting original
ranking as well.
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