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Abstract

We study the problem of optimal contract design in an environment with an

uninformed decision maker and two perfectly informed experts. We characterize

optimal contracts and observe that consulting two experts rather than one is always

beneficial; this is so even if the bias of a second expert is arbitrary large and this

expert would have no value in a cheap talk environment. We also provide conditions

under which these contracts implement the first best outcome; our sufficient con-

dition is weaker than the conditions in the literature on the environments without

commitment. In order to derive optimal contracts, we prove a “constant-threat”

result that states that one can restrict attention to contracts in which the action

implemented in case of a disagreement among the experts is independent of their

reports. A particular implication of this result is that an optimal contract is con-

stant for a large set of experts’ preferences and hence is robust to mistakes in their

specification.
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1 Introduction

A growing body of literature studies optimal contracting between a decision maker and

a single biased expert who has decision relevant information.1 This paper focuses on

environments in which the decision maker can obtain a second opinion from another

expert. We are interested in the following questions: What is the value of a second

opinion and what is the structure of optimal contracts?

We consider a model with an uninformed decision maker and two perfectly informed

experts. The set of actions available to the decision maker is a unit interval. The experts

are strategic and biased in different directions.2 The experts’ information is not verifiable,

i.e., communication is cheap talk. The decision maker can commit to an action rule that

is contingent on the reports of the experts. (This commitment assumption distinguishes

our model from the literature on cheap talk communication.)3

Our first result is that adding a second expert is always valuable for the decision

maker: In our model, the optimal contract improves the payoff of the decision maker

relative to what she would obtain with one expert (Proposition 3). This holds regardless

of the magnitude of the biases of the experts. Hence, there is a clear sense in which two

experts are complementary.4 In particular, this observation is true even if the biases of

the experts are sufficiently large and the experts are not valuable without commitment,

i.e., no information can be obtained from the experts through cheap-talk communication.5

1Holmström (1977, 1984), Melumad and Shibano (1991), Martimort and Semenov (2006), Alonso and

Matouschek (2008), Goltsman et al. (2009), Kovac and Mylovanov (2009), Armstrong and Vickers (2008),

Koessler and Martimort (2009), Li and Li (2009), and Lim (2009) study optimal contracts in environments

in which contingent monetary transfers are not feasible. In Baron (2000), Krishna and Morgan (2008),

Bester and Krähmer (2008), Raith (2008), and Ambrus and Egorov (2009), the optimal contracts are

characterized for environments in which the decision maker can commit to monetary payments that are

contingent on the expert’s recommendation.
2We discuss the case of similarly biased experts in Section 5.
3Crawford and Sobel (1982) is the seminal reference on cheap talk communication with one ex-

pert. Cheap talk communication with two experts has been studied in Krishna and Morgan (2001a,b),

Battaglini (2002, 2004), Ambrus and Takahashi (2008); Ambrus and Lu (2009), and Li (2008, 2009)
4Krishna and Morgan (2001b) consider sequential cheap talk communication with two experts and

show that there is a value to a second expert; however, this is so only if at least one of the experts

has a relatively small bias. In a model with two experts, discrete outcome, action spaces, Li (2008)

demonstrates that the value of the second expert may be negative.
5It is well known from Battaglini (2002) and Ambrus and Takahashi (2008) that full revelation of

experts information can be achieved if the biases of the experts are not too large relative to the outcome
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Similarly to the cheap talk models, existence of a second expert allows the decision

maker to implement the first best outcome in some environments. We provide conditions

(Proposition 2 and Remark 1) for the first best to be implementable; the conditions

bound the size of bias of each expert. These conditions are related but weaker than those

required to implement the first best outcome in cheap talk environments (Krishna and

Morgan (2001a), Battaglini (2002), and Ambrus and Takahashi (2008)).

Our characterization of optimal contracts relies on the “constant-threat” result (Propo-

sition 1) that states that we can restrict attention to constructions in which any disagree-

ment between experts results in a lottery that is independent of their reports. This result

significantly simplifies the design problem, and we view it as the main technical contribu-

tion of the paper. The commitment assumption in our model is essential for this result. By

contrast, the constructions of, e.g., first best outcomes in cheap talk environments might

have to implement actions after a disagreement between experts that depend non-trivially

on their reports.

A particular implication of the constant-threat result is that an optimal mechanism

might be constant across a large set of environments that differ in preferences of the

experts and the distribution of private information (Corollary 1). This observation is

valuable if the decision maker is concerned about robustness of the optimal mechanism

with respect to these details of the environment.

In this paper, we assume that both experts are perfectly informed. This assumption is

common in the related literature. Yet, it is an important assumption in that it allows the

decision maker to check the reports of the experts against each other, and inconsistent

reports do not occur on the equilibrium path. The question of robustness to noise has been

addressed in Battaglini (2004) within a model with multiple experts, a multidimensional

environment, and noisy signals. In particular, the paper shows that if the decision maker

has some commitment power, it becomes possible to achieve the first best outcome in the

limit as the number of experts increases. We discuss robustness of our results to noise in

Section 5.

The problem of optimal contracting with two experts has also been studied in Marti-

mort and Semenov (2008). Our models and approaches are quite different. Martimort and

Semenov (2008) consider two experts who hold different independently distributed pri-

vate information and, unlike in our paper, are biased, at least in expectation, in the same

space. By contrast, in the model we study no information transmission is possible through cheap talk if

the biases of the experts are sufficiently large.
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direction. Furthermore, their paper employs dominant strategy implementation whereas

our solution concept is Nash equilibrium. Among their results, Martimort and Semenov

(2008) demonstrate impossibility of the first best outcome and show that a sufficiently

high bias renders the experts not valuable for the decision maker.

The remainder of the paper is organized as follows. Section 2 describes the model. The

constant-threat principle is derived in Section 3. Applying this principle, we characterize

the optimal contracts in Section 4. In Section 5, we discuss the robustness of the contracts

with respect to noise and describe the optimal contract for the environment with similarly

biased experts.

2 The Model

There are two experts i = 1, 2 and a decision maker. The decision maker has to select an

action from set X = [0, 1] of feasible actions. The most preferred action for the decision

maker (the state), x ∈ X, is a realized value of a random variable x̃ with support on

X. The decision maker is uninformed about x and believes that the distribution of x̃ is

represented by a cumulative distribution function F .

The experts know the value of x. The decision maker can ask them for recommenda-

tions and commit to take an action that is contingent on their reports.

Let y denote an action. The payoff function of the decision maker is u0(x, y) and the

payoff functions of expert i = 1, 2 is ui(x, y). We assume that for every x ∈ X each

function ui(x, y), i = 0, 1, 2, is strictly concave in y.

The decision maker’s payoff function is maximized at the action equal to the state,

arg max
y∈X

u0(x, y) = x, x ∈ X.

For every x ∈ X we define y∗i (x) = arg maxy∈X ui(x, y), i = 1, 2. We assume that the

experts have opposing interests :

y∗1(x) < x < y∗2(x), for every x ∈ X. (1)

Some of our results are obtained for the environment with quadratic preferences and fixed

biases, which is standard in the literature on experts: u0(x, y) = −(x − y)2, u1(x, y) =

−((x− b1)− y)2 and u2(x, y) = −((x+ b2)− y)2, where b1, b2 > 0.

Let X denote the set of distributions on X (randomized actions). Identifying point

distributions with points we have X ⊂ X . We extend the definition of ui to X × X via

3



the statistical expectation:

ui(x, µ) =

∫
ui(x, y)λ(dy), x ∈ X, λ ∈ X .

A contract is a measurable function

µ : X2 → X , (x1, x2) 7→ µ(x1, x2),

where µ(x1, x2) is a randomized action that is contingent on the experts’ reports (x1, x2).

A contract induces a game (a direct mechanism), in which after observing x the experts

simultaneously make reports x1, x2 ∈ X and the outcome µ(x1, x2) is implemented.

A contract µ is incentive compatible if truth-telling, x1 = x2 = x, is a Nash equilibrium:

for all x, x′ ∈ X

u1(x, µ(x, x)) ≥ u1(x, µ(x′, x)),

u2(x, µ(x, x)) ≥ u2(x, µ(x, x′)).
(2)

By the revelation principle, any equilibrium outcome of the experts’ interaction in a

game whose space of outcomes is X or X can be represented by the truth-telling equilib-

rium outcome in some incentive compatible contract. In what follows, we will consider

only incentive compatible contracts.

A contract µ is optimal if it maximizes the expected payoff of the decision maker,

vµ =

∫
X

u0(x, µ(x, x))dF (x),

among all incentive compatible contracts. Since the set of incentive compatible contracts

is compact in weak topology and vµ is continuous in µ, an optimal contract exists.

3 The Constant-threat Principle

In any contract, the main incentive issue is to motivate each expert to agree with the

other expert who is expected to tell the truth. Therefore, the contract must punish

disagreements. The difficulty here is that (i) a priori it is unclear which expert, if any,

tells the truth, and (ii) since the experts have opposing interests, a punishment that is

more severe for one of the experts tends to benefit the other expert. As a result, a threat

lottery that results after a disagreement may depend non-trivially on the experts’ reports.

We now prove our main technical result, the constant-threat principle, which allows us

to characterize optimal contracts. It states that one can restrict attention to contracts in
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which the lottery implemented after a disagreement has support on extreme actions 0 and

1 and is independent of the reports. This result reduces the problem of finding optimal

contracts to the problem of finding actions that are implemented if the experts report

their information truthfully, µ(x, x), and the probability of implementing y = 1 after a

disagreement. Thus, it drastically decreases complexity of the design problem because

we avoid the optimization problem in which we search on a continuum of lotteries with

support on X that are implemented after a disagreement (one threat lottery for each pair

of reports x1, x2 ∈ X, x1 6= x2).

The idea behind the constant threat principle is as follows. First, by concavity of the

experts’ payoff functions, any lottery over actions implemented after a disagreement can

be replaced, using a mean-preserving spread, by a lottery between actions 0 and 1 without

affecting the experts’ incentives to report truth.

Now, let µ be a contract in which a disagreement always results in a lottery between

0 and 1. The crucial step in the the proof is to observe that, say, expert 1 (who is left-

biased) always prefers action x to the extreme right action 1. Hence, in all states where

a disagreement lottery is better than x, his payoff from action 0 must be strictly greater

than that from x. It follows that in these states his expected payoff from that lottery

must be decreasing in the probability assigned on action 1 (similarly, the payoff of expert

2 from a disagreement lottery must be increasing in the probability assigned on action

1). Let r be the lottery that achieves the highest payoff for expert 1 among the lotteries

that can be achieved by the best deviations of expert 1 in various states x ∈ X. Denote

by p the probability this lottery assigns to action 1. Define p for expert 2 analogously.

The result now follows from the observation that p ≤ p, which is nothing else than the

argument that minimax is larger than or equal to maximin. Hence, there exists a lottery

rc that assigns probability pc to action 1, where p ≤ pc ≤ p, such that replacing every

threat lottery with rc does not violate the incentive constraints of the experts.

Let X ∗ be the set of probability distributions with support on {0, 1}. We say that a

contract µ = (µ, z1, z2) is constant-threat if

(C) there exists c ∈ X ∗ such that µ(x1, x2) = c whenever x1 6= x2.

We say that two incentive compatible contracts, µ and µ′, are equivalent if they imple-

ment the same action whenever the reports of the experts coincide, i.e., µ(x, x) = µ′(x, x)

for all x ∈ X. Thus, two equivalent contracts implement identical actions in equilibrium,

but may implement different actions off-equilibrium.
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Proposition 1 (Constant-threat principle) For every optimal contract there exists

an equivalent constant-threat contract.

Note that a constant-threat contract which is equivalent to some optimal contract

must be optimal as well, since it implements the same actions in equilibrium.

Proof. Let µ be an optimal contract. Observe that by concavity of ui(x, y) in y, i = 1, 2,

for any measure λ,∫
ui(x, y)λ(dy) ≥

(∫
yλ(dy)

)
ui(x, 0) +

(
1−

∫
yλ(dy)

)
ui(x, 1), x ∈ X.

Hence, replacing µ(x1, x2), x1 6= x2, by a lottery that puts probability
∫
yµ(x1, x2)(dy)

on action 0 and the complementary probability on action 1 will not violate the incentive

constraints of the experts. Therefore, there exists an equivalent contract µ′ in which every

threat lottery implemented after a disagreement has support on {0, 1}.
We now show that there exists a constant threat contract µc equivalent to µ′. For

every pair of different reports, x1, x2 ∈ X, x1 6= x2, let p(x1, x2) be the probability that

µ(x1, x2) in µ′ assigns to 1 after a disagreement. We extend the definition of p(·, ·) to X2

by setting p(x, x) = 1−
∫
yµ(x, x)(dy) for all x ∈ X. Define

P1(x) = {p(x′, x)|x′ ∈ X} and P2(x) = {p(x, x′)|x′ ∈ X}.

Let

Di(x, p) = max{0, pui(x, 1) + (1− p)ui(x, 0)− ui(x, µ(x, x))}, p, x ∈ X, i = 1, 2.

By construction, a deviation by expert i in state x leading to a lottery p′ ∈ X is non-

profitable iff Di(x, p
′) = 0. Furthermore, by definition of p(x, x),

Di(x, p(x, x)) = 0, x ∈ X, i = 1, 2.

Thus, incentive constraints (2) can be written as

Di(x, p) = 0, x ∈ X, p ∈ Pi(x), i = 1, 2. (IC)

We now show that

D1(x, p) is non-increasing in p for every x ∈ X;

D2(x, p) is non-decreasing in p for every x ∈ X.
(*)
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We start by showing that we can restrict attention to contracts that on the equilibrium

path are deterministic and implement actions that are bounded by the experts’ most

preferred actions,

µ(x, x) ∈ [0, 1], y∗1(x) ≤ µ(x, x) ≤ y∗2(x), x ∈ X. (P3)

To see why this is true, fix some x′ ∈ X and suppose first that µ(x′, x′) is a proper lottery.

Then, concavity of the payoff functions implies that replacing µ(x′, x′) with the expected

value of this lottery improves the payoffs of all players without violating any incentive

constraints. Next, let µ(x′, x′) = y′ ∈ X, y′ > y∗2(x′) for some x′ ∈ X. Since y∗2(x′) is

closer than y′ to the most preferred alternatives of all players, concavity of the payoff

functions implies that setting µ(x′, x′) = y∗2(x′) improves the payoffs of all parties on the

equilibrium path without violating incentive constraints.

Since u1(x, y) is concave in y and y∗1(x) ≤ µ(x, x) by (P3), it follows that u1(x, y) is

decreasing in y on [µ(x, x), 1] for every x, and hence

u1(x, µ(x, x)) ≥ u1(x, 1).

If, in addition, u1(x, µ(x, x)) ≥ u1(x, 0), then, D1(x, p) = 0 for every p ∈ [0, 1]. On the

other hand, if u1(x, µ(x, x)) < u1(x, 0), then u1(x, 1) < u1(x, 0) and, hence u1(x, p) and

D1(x, p) are decreasing in p. This establishes the first statement in (*). The argument

for the second statement is analogous.

Next, let

a1(x) = inf P1(x), x ∈ X;

a2(x) = supP2(x), x ∈ X.

By (IC) and continuity of ui, we have Di(x, ai(x)) = 0 for x ∈ X. By (*),

D1(x, p) = 0, p ≥ a1(x), x ∈ X;

D2(x, p) = 0, p ≤ a2(x), x ∈ X.
(3)

Define

p = sup
x∈X

a1(x) = sup
x∈X

inf P1(x) = sup
x∈X

inf
x′∈X

p(x′, x);

p = inf
x∈X

a2(x) = inf
x∈X

supP2(x) = inf
x′∈X

sup
x∈X

p(x′, x).
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Then, there exists pc such that p ≤ pc ≤ p. By (3),

Di(x, p
c) = 0, x ∈ X, i = 1, 2.

The result now follows from (IC).

The result in Proposition 1 can be generalized. We say that an incentive compatible

contract is undominated if there does not exist another incentive compatible contract that

yields to all players a greater (equilibrium) payoff in every state and a strictly greater

payoff in some state. The arguments behind Proposition 1 are not affected if we consider

undominated contracts instead of optimal contracts.

In the remainder of the paper, we will study optimal contracts in the set of con-

stant threat contracts. Typically, however, there exist contracts that induce the same

equilibrium outcome and are not constant threat.

Finally, we would like to remark on the multiplicity of equilibria in the constant

threat contracts. In this paper, we focus on the truthtelling equilibria; this is justified by

the revelation principle. At the same time, there can be many other equilibria in a given

contract. For example, consider a constant threat contract in which a disagreement results

in a lottery that mixes between 0 and 1 with equal probability and which implements

y = 1/2 if both experts report x′. For this contract, it is an equilibrium for the experts

to report x1 = x2 = x′ regardless of the state.

4 Optimal Contracts

Let C be the set of incentive compatible constant-threat contracts. By Proposition 1,

there exists an optimal contract in C. In this section, we characterize these contracts.

4.1 First Best Contracts

We start our analysis of optimal contracts by identifying conditions under which they

implement the most preferred alternative of the decision maker. A contract in C that in

each state implements the most preferred action for the decision maker, if it exists, is

called first best.

We assume that each expert’s utility depend only on the difference between her most

preferred action and the implemented action: for each i = 1, 2

ui(x, y) = −di(y − (x− bi(x))), (4)
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where bi : X 7→ R, b2(x) < 0 < b1(x) for all x ∈ X, and di : R 7→ R is a convex

differentiable function that achieves its minimum at 0, i = 1, 2. The point x − bi(x) is

the most preferred action of i in state x. The values of b1 and b2 reflect the conflict of

preferences between the experts and the decision maker and are called the experts’ biases.

The next result provides a sufficient condition for existences of the first best contract

under these assumptions.

Proposition 2 Let (4) hold. There exists the first best contract if sup
x∈X,i=1,2

|bi(x)| ≤ 1/2.

Proof. There exists the first best contract if and only if there is p ∈ [0, 1] such that for

each expert i = 1, 2 and for every x ∈ X,

ui(x, x) ≥ (1− p)ui(x, 0) + pui(x, 1). (5)

By convexity of di, we have for i = 1, 2 and for every x ∈ X,

di(x− bi(x))

2
+
d1(1− x+ bi(x))

2
≥ d1

(
x− bi(x)

2
+

1− x+ bi(x)

2

)
= di(1/2) ≥ di(bi(x)), (6)

where the second inequality follows from the assumption that sup
x∈X,i=1,2

|bi(x)| ≤ 1/2. Ob-

serve that (6) is equivalent to (5) with p = 1/2, which implies existence of the first best

contract with the treat lottery that puts equal probabilities on 0 and 1.

The first best contract constructed in the proof of Proposition 2 uses as a threat point

the lottery that mixes with equal probability between 0 and 1. The logic behind the

construction is straightforward: if the experts’ biases are not too large, they are better

off under the decision maker’s most preferred alternative rather than the threat lottery.

It is interesting to note that the optimal threat lottery is symmetric even if the experts’

biases are not equal and their payoff functions are not symmetric.

Under some additional structure on the payoff functions, the sufficient condition in

Proposition 2 becomes necessary.

Remark 1 Assume that di is symmetric around 0 and that bi(x) = b̃i is constant, i = 1, 2.

Then, there does not exist the first best contract whenever max |b̃i| > 1/2.

Proof. Assume that b̃1 > 1/2. First, let p < 1. Then,

(1− p)d1(1− b̃1) + pd1(b̃1) < (1− p)d1(b̃1) + pd1(b̃1) = d1(b̃1),
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which contradicts (5) for x = 1 and i = 1. On the other hand, if p = 1, then for

x = max{1 + b̃2, 0},
d2(1− (x− b̃2)) < d2(b̃2),

which contradicts (5) for i = 2. The argument for b̃2 < −1/2 is symmetric.

The above results are related to Krishna and Morgan (2001a), Battaglini (2002), and

Ambrus and Takahashi (2008) who study cheap talk communication with two experts. For

the environment considered in Remark 1, Proposition 1 in Battaglini (2002) establishes

that a necessary and sufficient condition for a fully revealing cheap talk equilibrium is

that the sum of the absolute values of the experts’ biases is less than half of the measure

of the action space.6 Proposition 2 and Remark 1 complement this result by providing

necessary and sufficient conditions for the first best outcome under commitment. Our

condition is weaker and it bounds the size of each expert’s bias rather than their sum;

interestingly, the value of the bound is the same in both environments.

The construction of fully revealing equilibria in cheap talk and our construction of a

first best contract are analogous but not identical. In a cheap talk environment, for any

pair of disagreeing reports there is a threat action such that an expert who can induce

this pair of reports prefers the first best outcome to the threat action. This threat action

is supported by (out-of-equilibrium) beliefs that make it optimal. The proof then verifies

that for each pair of states (reports) there exists a threat action that satisfies a number of

inequalities that depend on biases of the experts; in equilibrium, the threat action might

have to depend non-trivially on the reports of the experts.

By contrast, in our model a contract can use lotteries as threat actions that cannot be

supported in a cheap talk model, even out of equilibrium.7 The proof of the possibility

of the first best in our environment employs a constant threat lottery that mixes equally

between the extreme actions and makes use of concavity property of payoff functions.

Furthermore, the proof of the necessary condition relies on the fact that it is sufficient to

consider report-independent threat lotteries.

6Krishna and Morgan (2001a) provide a sufficient condition for a fully revealing cheap talk equilibria

in an environment with constant and equal opposing biases that each expert’s bias is less than 1/4.
7The concavity of payoff functions implies that a lottery cannot be a best response for the decision

maker.

10



4.2 Robustness of the First Best Contract

An interesting implication of the above results is that the lottery that mixes between 0

and 1 with equal probability is the most effective threat lottery for implementing the first

best if the payoff functions are symmetric and the biases are not too large. This is so

even if the experts’ biases are not symmetric.

Corollary 1 Let the conditions in Proposition 2 be satisfied. Then, the first best contract

is constant in the preferences of the experts.

The constancy of the optimal contract is a useful feature if the decision maker is con-

cerned about robustness of the contract with respect to her knowledge of the environment.

In particular, if the optimal contract is constant, then the decision maker need not possess

correct knowledge about the magnitude and the direction of the experts’ biases, or the

distribution of their information.

4.3 Second Best Contracts

What are the properties of an optimal contract if the first best outcome cannot be imple-

mented? In what follows, we characterize optimal contracts that, given the threat lottery,

maximize the payoff of the decision maker in each state.8

Observe that any contract in C can be identified by a pair

(p, g) : p ∈ [0, 1], g : X → X,

where p is the probability of action 1 after a disagreement and g(x) is the action imple-

mented on the equilibrium path.

Let us pick a constant-threat contract (p, g) in C. By concavity of payoff functions,

both experts prefer y = x in state x = p to the treat lottery,

ui(p, p) ≥ pui(p, 1) + (1− p)ui(p, 0).

This implies that an optimal contract implements the most preferred alternative for the

decision maker, g(x) = x, at least in state x = p. In addition, if the experts’ payoff

functions are strictly concave, we obtain g(x) = x for a proper interval containing p.

8Trivially, there also exists a continuum of other contracts that deliver the same expected payoff for

the decision maker but do not have this property for a set of states of measure zero.
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Proposition 3 An optimal contract implements the most preferred alternative of the de-

cision maker in a non-empty set of states. If the experts’ payoffs are strictly concave, this

set is not a singleton.

This observation highlights the value of two experts for the decision maker. Two

experts are always valuable because there exists a contract which implements the most

preferred action of the decision maker at least in some states. This is true regardless of

the degree of conflict of preferences between the experts and the decision maker.

We now describe the structure of an optimal contract in states where the first best

outcome is not incentive compatible. For a given probability p of action 1 in an optimal

constant-threat contract, let X̃p
i be the set of states in which expert i weakly prefers the

threat lottery to the decision maker’s most preferred action,

X̃p
i = {x ∈ [0, 1] : ui(x, x) < ūi(x, p)},

where ūi(x, p) is expert i’s expected payoff from the threat lottery p,

ūi(x, p) = (1− p)ui(x, 0) + pui(x, 1).

Hence, X̃p
1 ∪ X̃

p
2 is the set of states where implementing the most preferred action is not

incentive compatible.

We now show that at any state x in X̃p
1 ∪ X̃

p
2 the incentive constraint of only one of

the experts is violated, i.e., X̃p
1 ∩ X̃

p
2 = ∅. By assumption, the experts have opposing

interests, i.e., y∗1(x) < x < y∗2(x). If p > x, then expert 1 prefers action x to action y = p

and hence to the threat lottery. Otherwise, expert 2 prefers x to the threat lottery. Hence,

at least one expert prefers x to the threat lottery, implying that X̃p
1 ∩ X̃

p
2 = ∅.

It follows immediately that whenever x ∈ X̃p
i for some expert i, an optimal contract

will stipulate to choose action g(x) that is the “closest” point to x (from the perspective

of the decision maker) subject to the incentive constraint for i,

g(x) ∈ arg max
y :ui(x,y)≥ūi(x,p)

u0(x, y).

4.4 Quadratic preferences and constant biases

We can obtain stronger results if we impose additional structure on the preferences of the

experts. Specifically, we make the assumption, which is standard in the literature, that
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the expert’s preferences can be represented by a quadratic payoff function with a constant

bias,

ui(x, y) = −(y − (x− bi))2, i = 1, 2, (7)

where b1 > 0 and b2 < 0. Assume also u0(x, y) = −(y − x)2.

In order to determine the set X̃p
i of states where expert i prefers threat lottery p to the

most preferred action x for the decision maker, we solve the inequality ui(x, x) < ūi(x, p).

Using (7) we obtain

(1− p)(x− bi)2 + p(1− (x− bi))2 < b2
i . (8)

In order to state the result, the following definitions are in order. For any p ∈ X, let

Di = b2
i − p(1− p) and let

xpi = p− bi −
√
Di, xpi = p− bi +

√
Di. (9)

In addition, for |b1| and |b2| below 1/2 define

p∗ =
1−

√
1− 4b2

2

2
, p∗ =

1 +
√

1− 4b2
1

2
.

It is easy to verify that the solution of (8) is the interval (xpi , x
p
i ), and hence X̃p

i =

(xpi , x
p
i )∩ [0, 1]. Note that X̃p

1 is nonempty if and only if b1 > 1/2 or p > p∗; symmetrically,

X̃p
2 is nonempty if and only if b2 < −1/2 or p < p∗.

The next result describes the structure of an optimal contract.

Proposition 4 Let (p, g) be an optimal constant-threat contract. Then,

g(x) =


x+ |b1| −

√
−ū1(x, p), if x ∈ X̃p

1 ;

x− |b2|+
√
−ū2(x, p), if x ∈ X̃p

2 ,

x, otherwise.

Proof. If x 6∈ X̃p
1 ∪ X̃

p
2 , then the first best action is incentive compatible, g(x) = x.

Let x ∈ X̃p
1 (the argument for x ∈ X̃p

2 will be analogous). In an optimal contract the

decision maker implements an action g(x) that minimizes the distance to x, subject to

the incentive constraint for expert 1, that is,

g(x) ∈ arg min
y∈[0,1]

(y − x)2

subject to

(y − (x+ b1))2 ≤ (1− p)(x+ b1)2 + p(1− (x+ b1))2.

13
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Figure 1: An Optimal Contract with Quadratic Preferences, |b1| = |b2| = 1, p = 1/2.

Solving the above inequality for y we obtain

y ∈ [0, 1]\
(
x+ b1 −

√
−ū1(x, p), x+ b1 +

√
−ū1(x, p)

)
.

Since x ∈ X̃p
1 , the above constraint must be binding. As b1 > 0 by assumption, the closest

action to x is g(x) = x+ b1−
√
−ū1(x, p). It is straightforward to verify that in this case

g(x) ∈ X̃p
1 . As X̃p

1 ∩ X̃
p
2 = ∅, the incentive constraint for expert 2 is satisfied as well.

In the case where both biases are greater than 1/2, an optimal contract looks as follows

(Fig. 1). Note that in this case X̃p
1 = [0, xp1) and X̃p

2 = (xp2, 1]. For the “moderate states”

in [xp1, x
p
2], both experts prefer the decision maker’s most preferred action to the threat

lottery, and the first best outcome is achieved (the points along the 45◦ line on Fig. 1).

For the “extreme left” states in [0, xp1), expert 2 strictly prefers the threat lottery to x, and

hence the decision maker implements an action that is closer to expert 2’s most preferred

action. The distortion for the “extreme right” states is analogous.

The result in Proposition 4 allows us to transfer the problem of finding an optimal

contract into a one dimensional optimization problem over value of the threat point:

min
p∈[0,1]

∫ 1

0

(gp(x)− x)2dF (x), (10)
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where gp, with some abuse of notation, is given by Proposition 4.

The value of the threat point in the optimal contract depends on the distribution

of the state x. In general, there is no closed form solution for optimal threat points.

Nevertheless, under additional assumptions, we obtain the following result.

Proposition 5 Let the experts’ biases be opposing and equal, b1 = −b2 = b, and distribu-

tion of x be symmetric, i.e., F (1−x) = 1−F (x), x ∈ [0, 1]. Then there exists an optimal

contract with p = 1/2.

Proof. The proof is in the Appendix.

5 Discussion

5.1 Similarly biased experts

Throughout the paper we have considered the environment in which the experts are biased

in different directions (c.f., (1)). Let us now assume that the experts are biased in the

same direction, e.g., they always prefer an action higher than the decision maker’s optimal

action. Then, the experts have the same least preferred action y = 0, which is the optimal

threat. Therefore, the contract that threatens the experts to implement y = 0 whenever

they disagree can implement the first best outcome.

5.2 Optimal contracts with one expert

In this subsection, we comment on the difference between optimal contracts in our model

and in a model with one expert only. Without a second expert, the recommendations to

the decision maker by the first expert remain unchecked. Therefore, the relevant incentive

constraints are with respect to other actions that can be induced by the expert’s reports

rather than with respect to the outcome resulting from a disagreement with another ex-

pert. Consequently, optimal contracts have a number of differences: There is bunching

of implemented actions across states with one agent (Proposition 3 in Alonso and Ma-

touschek (2008), and Proposition 1 in Kovac and Mylovanov (2009)) and no bunching

with two experts (Proposition 4). With one agent, optimal contracts do not implement

first best actions because this cannot be made incentive compatible (see, e.g., Proposition

1 in Kovac and Mylovanov (2009)). This is not so with two experts: there is always a
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nonempty subset of states where the first best outcome is implemented (Propositions 2–3

in this paper). Furthermore, in the model with one expert the optimal contract imple-

ments the expert’s most preferred action for a positive measure of states (Proposition 3

in Alonso and Matouschek (2008) and Proposition 1 in Kovac and Mylovanov (2009)).

Again, this is not so with two experts (Propositions 2 and 4).

5.3 Discontinuity and robustness to noise

In this paper, we assume that both experts are perfectly informed. This assumption

is common in the literature that studies cheap talk communication with two experts in

payoff environments similar to the one in this paper. It has been made, for example, in

Gilligan and Krehbiel (1989), Krishna and Morgan (2001a,b), Battaglini (2002), Levy and

Razin (2007), Ambrus and Takahashi (2008), and Li (2008, 2009).9 Yet, this assumption

is important. It allows the decision maker to check the reports of the experts against each

other, and inconsistent reports do not occur on the equilibrium path. The issue of robust-

ness to noise was pointed out by Battaglini (2002, 2004) in the context of fully revealing

equilibria in cheap talk that rely on implausible out-of-equilibrium beliefs. Although there

is no issue of out-of-equilibrium beliefs in our model due to commitment assumption, the

contracts identified in this paper are discontinuous in the reports. As a result, one might

wonder if they are not robust with respect to, for example, small amount of exogenous

noise added either to signals or to reports (as in Blume et al. (2007)), or minor mistakes

of the experts.

Ambrus and Lu (2009) discuss our construction of first best contracts and demonstrate

its robustness to a specific type of noise used in Battaglini (2002) and studied in their

paper. In this section, we take a different approach and show that a constant threat

contract can be modified and made continuous in the experts’ reports. In the environments

with a small amount of noise, the modified contract achieves payoffs close to the payoffs in

the original contract in the environment without noise. The modified contract is incentive

compatible in the original environment but may not be so in noisy environments. This

approach to robustness is analogous to the approach taken in Ambrus and Takahashi

(2008) for a multidimensional cheap talk environment. One interpretation of this approach

9The experts are imperfectly informed in the models of Austen-Smith (1993), Wolinsky (2002), and

Battaglini (2004). See also Li and Suen (2009) for a survey of work on decision making in committees;

this literature often assumes that different members of the committee hold distinct pieces of information.
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is that the experts (incorrectly) believe that they make no mistakes and their reports are

not distorted during transmission to the decision maker.

Assume that ui is twice continuously differentiable and strictly concave in the imple-

mented action, i = 1, 2. Fix a small constant ε > 0. Consider the set of constant threat

contracts Cε where the incentive constraints are satisfied as strict inequalities with the

margin at least ε, i.e., (p, g) ∈ Cε if

ui(x, g(x)) ≥ ūi(x, p) + ε, for all x ∈ [0, 1], i = 1, 2 (11)

We will refer to a constant threat contract that maximizes the expected payoff of the

decision maker subject to (11) as an ε-optimal contract.

Let (p, g) be an ε-optimal contract. Denote by L the bound on dui(x, g(xi))/dxi,

i = 1, 2. We now construct a modified contract µ′ as follows. Define

η(x1, x2) = min

{
L

ε
|x1 − x2|, 1

}
.

For any two reports x1, x2 ∈ X, we define µ′(x1, x2) to be the lottery that chooses the

threat lottery (that assigns probability p on decision 1) with probability η(x1, x2) and

action g((x1 + x2)/2) with the complementary probability. That is, the probability that

the threat lottery is chosen is a linearly increasing function of the distance between the

reports, x1 and x2.

Thus constructed, the contract µ′ is continuous in the experts’ reports. Furthermore,

if both experts report their information truthfully, the decision maker’s payoff in µ′ for a

small amount of noise is close to the decision maker’s payoff in (p, g) in the environment

without noise.

We now show that µ′ is incentive compatible in the environment without noise; fur-

thermore, the incentive constraints are satisfied with strict inequality. By construction,

expert i’s payoff in (p, g) as a function of the reports and the state can be written as

vi(x, x1, x2) =

ui(x, g(xi)), if x1 = x2,

ūi(x, p), if x1 6= x2.

It follows then that i’s payoff in µ′ is equal to

v′i(x, x1, x2) = (1− η(x1, x2))ui (x, g ((x1 + x2)/2)) + η(x1, x2)ūi(x, p).
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Define ∆v′1(x, x1) = v′1(x, x1, x) − v′i(x, x, x). If L
ε
|x − x1| ≥ 1, then η(x1, x) = 1, and

by (11)

∆v′1(x, x1) ≤ ū1(x, p)− u1(x, g(x)) ≤ −ε < 0.

Next, let L
ε
|x− x1| < 1. Then η(x1, x) = L

ε
|x− x1|, and we obtain

∆v′1(x, x1) = (1− η(x1, x))u1(x, g((x1 + x)/2)) + η(x1, x)ū1(x, p)− u1(x, g(x))

≤ (1− η(x1, x))[u1(x, g((x1 + x)/2))− u1(x, g(x))]− η(x1, x)ε

< |u1(x, g((x1 + x)/2))− u1(x, g(x))| − L|x− x1|

≤ L|x− x1| − L|x− x1| = 0,

where the first inequality is obtained by (11) and the last inequality is obtained by applying

the Taylor expansion to u1(x, g((x1 + x)/2)) with respect to x1 and that the derivative

du1(x, g((x1 + x)/2))/dx1 is bounded by L.

The argument for i = 2 is analogous.

6 Conclusions

In this paper, we study optimal contract design in an environment with an uninformed

decision maker and two perfectly informed experts. Our main insight that allows charac-

terizing optimal contracts is the “constant-threat” result that states that one can restrict

attention to contracts in which the action implemented in case of a disagreement among

the experts is independent of their reports. This result simplifies the design problem and

makes it possible to characterize optimal contracts. We describe optimal contracts and

provide conditions under which these contracts implement the first best outcome. Finally,

we remark that, unlike in the models with cheap talk communication, there is a comple-

mentarity among experts for the decision maker, that is, adding a second expert is always

valuable.

Appendix

Proof of Proposition 5. For b ≤ 1/2 the statement holds trivially, since the first-best

contract can be constructed (see Proposition 2 and its proof).

Assume b > 1/2. Let (p, gp) be a constant threat contract, where gp is described in

Proposition 4. By an argument presented in Section 4.4, if both biases are greater than
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1/2, then X̃p
1 = [0, xp1) and X̃p

2 = (xp2, 1]. We can now write the expected payoff of the

decision maker as

v(p,gp) ≡
∫ 1

0

[
−(gp(x)− x)2

]
dF (x)

= −
∫ xp

1

0

(b−
√
−u1(x, p))2dF (x)−

∫ 1

xp
2

(b−
√
−u2(x, p))2dF (x).

Recall that ui(x, p) = −(1 − p)(x − bi)
2 − p(1 − (x − bi))

2 and, by (9), xp1 = p −
b1 +

√
b2

1 − p(1− p) and xp2 = p− b2 −
√
b2

2 − p(1− p). Using the symmetry assumption

b1 = −b2 = b, we obtain that xp2 = 1− x1−p
1 and u2(x, p) = u1(1− x, 1− p), and hence

v(p,gp) = −
∫ xp

1

0

(b−
√
−u1(x, p))2dF (x)−

∫ 1

1−x(1−p)
1

(b−
√
−u1(1− x, 1− p))2dF (x).

Next, using the assumption F (x) = 1 − F (1 − x) that entails dF (x) = dF (1 − x), after

the substitution x′ = 1− x we obtain

v(p,gp) = −
∫ xp

1

0

(b−
√
−u1(x, p))2dF (x)−

∫ x
(1−p)
1

0

(b−
√
−u1(x′, 1− p))2dF (x′).

Let us now differentiate v(p,gp) with respect to p. Observe that ū1(x̄p1, p) = −b2, and

∂v(p,gp)

∂x̄p1
= −(b−

√
−u1(x, p))2

∣∣∣
x=x̄p

1

= −(b− b)2 = 0.

Note that dx̄p1/dp exists for all p ∈ [0, 1]. Hence, the value of the expression ∂v(p,gp)

∂x̄p
1
· dx̄

p
1

dp

is well defined and equal to zero. An analogous statement holds for x̄1(1 − p). Thus,

derivatives w.r.t. bounds of integration are ignored, and after defining h(x) = ∂u1(x,p)
∂p

=

2(x+ b)− 1 we obtain

∂

∂p
v(p,gp) = −

xp
1∫

0

[
b√

−u1(x, p)
− 1

]
h(x)dF (x) (12)

+

x1−p
1∫

0

[
b√

−u1(x, 1− p)
− 1

]
h(x)dF (x). (13)

It is straightforward to check that ∂
∂p
v(p,g)|p= 1

2
= 0. We now verify that v(p,gp) is concave

in p, thus p = 1/2 is a maximum. By b > 1/2, we have h(x) = ∂u1(x,p)
∂p

= 2(x+ b)− 1 > 0.

Hence, the expression [
b√

−u1(x, p)
− 1

]
· h(x)
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is nondecreasing in p. Furthermore, since b√
−u1(xp

1,p)
= 1, the above expression is non-

negative for all x ≤ xp1. Thus, the right-hand side term in (12) is nonincreasing in p. A

similar argument shows that the term in (13) is nonincreasing in p as well. It follows that

v(p,gp) is concave in p.
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