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Abstract

A model of dynamic oligopsony is estimated for the liquid milk market in the UK.
The paper extends existing methods of estimating such models by allowing for the
joint estimation of the market conduct equation and the input supply equation.
This entails the estimation of a two equation model in which the parameters of
one equation change between two regimes whilst those of the other do not. Our
results provide little evidence of dynamic strategic behaviour and suggest that the
farm-gate price of milk is determined competitively.
JEL codes: D4, L1, Q13



1 Introduction

Prior to deregulation in 1994, the Milk Marketing Board (MMB) was responsible
for the purchase of almost all milk produced in England and Wales. The board
supplied liquid milk to processors at a price determined by formula and based on
the prices of processed milk products. At deregulation the position of the MMB as
the monopoly supplier of milk to the milk processing industry was discontinued and
Milk Marque, a farmers cooperative, was formed from the MMB. This organisation
continued to be responsible for marketing the milk from the majority of dairy
farmers, although the numbers declined slowly as some farmers sold to the milk
processors either directly or through �milk groups�. In 1999 Milk Marque was
subject to an anti-trust investigation by the Monopolies and Mergers Commission.
Noting that Milk Marque still handled around half of all liquid milk sales ex-
farm, the commission found that Milk Marque was guilty of exercising monopoly.
The commission therefore recommended that Milk Marque should be broken into
a number of separate organisations. The Secretary of State initially rejected this
advice but subsequently Milk Marque voluntarily decided that it should re-form as
three regionally based cooperatives: Milk Link, Zenith Milk and Axis Milk. Zenith
and Axis have subsequently merged with The Milk Group and Scottish Milk to
form Dairy Farmers of Britain and First Milk respectively. These cooperatives have
over time moved from being solely concerned with the marketing of liquid milk
into milk processing. At the same time traditional milk processors have undergone
a process of consolidation with, for example Unigate merging with Dairy Crest and
Arla Foods merging with Express Dairies.1

The ex -farm market for liquid milk has thus been subject to considerable struc-
tural change since deregulation. This change has been accompanied by a reduction
of around 21% in the real price received by farmers for liquid milk between Janu-
ary 1994 and September 2004. During this time the retail price of milk has been
constant. Between April 2001 and September 2004 the retail price increased by 8%
as the farm gate price has increased by only 4%. This price change has resulted
in suspicions that the loss of market power by farmers following the demise of the
MMB has led to them being subject to a price squeeze that is the consequence of
monopsony power exerted by the downstream processors. The aim of this paper
is to test whether this suspicion is borne out by the facts. We estimate a model
of pricing at the farm level which allows for collusion (tacit or otherwise) in the
downstream sectors. It is clear that the structure of the industry has been dynamic
during the post deregulation period. The model we estimate explicitly allows for
dynamic strategic behaviour in the downstream sectors.

1The latter merger was itself the subject of an investigation by the competition commission
in 2003.
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Richards, Patterson & Acharya (2001) estimate a model of dynamic oligopsony
for potato processors in the paci�c north west of the United States. The model
comprises two equations of which one has parameters which vary between two
distinct regimes which prevail at di¤erent and unknown times. The mixtures
model adopted by Richards et al. (2001) allows for the estimation of such a model
by estimating the classi�cation of the data into the two regimes simultaneously
with the parameters of the equation in question. Inference in their approach is
classical and employs the EM algorithm. A drawback of their approach is that
the two equations in the model cannot be estimated simultaneously. This paper
introduces an alternative Bayesian approach to the estimation of the model which
allows for the joint estimation of the two equations. In doing so the literature on
Bayesian estimation of switching regression models using the mixtures approach is
extended to consider a system in which the parameters of some equations remain
�xed between the regimes. The paper proceeds as follows. In the following section
a brief intuitive explanation of the model is given. This draws heavily on Richards
et al. (2001) to whom the reader is referred for a thorough treatment. Section 3
sets out the method of estimation and describes the data used. The results are
presented in section 4 and section 5 concludes.

2 Dynamic oligopsony

Dynamic models assume that �rms interact continuously through time and that in
such an approach a collusive equilibrium is a potential outcome. Firms are able to
raise pro�ts by jointly determining output so as to behave as if they were a single
�rm. Individual �rms have an incentive to break such an arrangement provided the
other �rms continue with the collusive agreement. A punishment strategy may be
su¢ cient to prevent such a break-down in some circumstances. One such strategy
is for �rms to respond to a single period defection by themselves reverting to the
Nash equilibrium output until the collusive equilibrium is re-established. In cases
where information is complete and perfect such a punishment strategy is su¢ cient
to produce a collusive equilibrium in a repeated game. Where information is
less than perfect, Richards et al. (2001) note that a �rm is unable to distinguish
between price �uctuations that are the normal consequence of varying market
conditions and those which result from a deviation from collusive behaviour. In
such cases �rms can be expected to adopt a trigger strategy in which they revert
to the Nash equilibrium when the input price rises above some predetermined
level. Because information is imperfect however, �rms can be expected to cheat
to some extent in a collusive equilibrium. The probability of the rivals responding
to cheating by adopting a punishment strategy is less than one where information
is imperfect. The collusive equilibrium output is therefore at the point where the
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marginal bene�t of increasing input purchases is equal to the marginal expected
loss that results from the rivals correctly interpreting and adopting a punishment
strategy accordingly. As a consequence the equilibrium is expected to vary between
a less than perfect collusive equilibrium and a punishment regime of Cournot
equilibrium.
The empirical model comprises two equations. The �rst is based on the �rst

order condition of the monopsonist and describes their market conduct:

mi = w � p(X; z) = cq + ��X (1)

where mi is the processor�s margin, p and w are the prices of milk at the farm
gate and retail levels respectively, cq is the marginal cost, � is the inverse slope of
the demand function (the �exibility) and X is the supply of milk. � is the market
conduct parameter which describes the average response of a �rm to a change in a
rivals output. The parameter takes the value � = 2 for perfect collusion, � = 1 for
Cournot competition and � = 0 for Bertrand or perfect competition. As has been
outlined the conduct parameter in equation 1 is expected to vary discontinuously
according to whether the industry is in a collusive or punishment period. This is
accommodated in the empirical speci�cation by allowing all of the parameters in
the equation to adjust between the two time periods. We assume a linear marginal
cost function to give the following equations for estimation under the two regimes:

mp = �11 + �21pf + �31pl + �41X (2)

mc = �21 + �22pf + �32pl + �42X (3)

where pf and pl are the prices of fuel and labour respectively. The second equation
is the input supply equation required to estimate � and thus to identify �. We
assume that this is linear with partial adjustment:

Xt = �1 + �2p+ �3pf + �4Xt�1 +

11X
i=1

�iDi (4)

where pf is the price of feed barley and Di are month dummies respectively.

3 Estimation and data.

The system to be estimated comprises two equations, a markup equation and an
input supply equation. The parameters of the markup equation di¤er between
two regimes which prevail at unknown times. The parameters of the supply equa-
tion do not di¤er. The estimation problem is thus to estimate the two equations
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simultaneously along with the classi�cation into the two regimes.
Richards et al. (2001) use the mixtures model (Titterington, Smith & Makov

(1985)) as the basis of this estimation. Their approach is classical and separately
estimates the supply and markup equations. Our approach is Bayesian and allows
for the joint estimation of these equations. Our method extends the literature on
the Bayesian estimation of systems of equations in a mixtures setting because in
our case one of the equations (the supply equation) is common to the two regimes.
To ease notation let us write equations 2, 3 and 7 as:

mp = zp�p + up (5)

mc = zc�c + uc (6)

q = p
 + v (7)

where up and uc are independent of one another but correlated with v according
to the following bivariate distributions:�

up
v

�
� N (0;�p) (8)�

uc
v

�
� N (0;�c) (9)

where:

�p =

�
�11 �13
�31 �33

�
(10)

�c =

�
�22 �24
�42 �44

�
(11)

The dimensions of the matrices and vectors are as follows:

mi : Ti � 1
Xi : Ti � k1
�i : k1 � 1
ui : Ti � 1

9>>=>>; i = p; c (12)

q : T � 1 (13)

p : T � k2 (14)


 : k2 � 1 (15)

v : T � 1 (16)

where T = Tp + Tc is the total number of observations and Tp and Tc are the
number of observations when the punishment and collusive strategies respectively
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are played.
To simplify the notation further we de�ne the following:

y =

0@ mp

mc

q

1A (17)

X =

0@ zp 0 0
0 zc 0
0 0 p

1A (18)

� =

0@ �p
�c



1A (19)

and write the full model as follows:

y = X� + " (20)

The dimensions are as follows:

y : 2T � 1 (21)

X : 2T � (2k1 + k2) (22)

� : (2k1 + k2)� 1 (23)

" : 2T � 1 (24)

In our analysis we do not wish to predetermine which of the regimes a given
observation belongs to, instead we will allow the data to determine the classi-
�cation. To accomplish this, the classi�cation of a speci�c observation is made
random. Thus, we introduce a 2�1 dimensional random vector ci of which the jth
element cij = 1 if the ith observation is from the jth component distribution and
0 otherwise. With this view of the sampling process the joint probability density
function for the ith observation can be written (Diebolt & Robert (1994))

p
�
�;�p;�c;�; ci;yi;Xi

�
=
�
�1p1

�
�p;
;�p;yi;Xi

��ci1 (�2p2 (�c;
;�c;yi;Xi))
ci2

(25)
where pj (�) is a p.d.f. with parameters �, 
 and �. yi and Xi are the rows in
the matrices y and X which correspond to the ith observation. The parameters
�j satisfying �1 + �2 = 1 are the proportions of the population coming from the
kth component, �0 = (�1; �2). For the full sample of T observations, the density is
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written:

p
�
c;y;Xj�;�p;�c;�

�
=

TY
i=1

�ci11 p1
�
�p;
;�p;yi;Xi

�ci1 � (26)

�ci22 p2 (�c;
;�c;yi;Xi)
ci2 ; (27)

where c0 = (c1; c2; : : : ; cT ).
We adopt a Bayesian approach to inference regarding the unknown parameters.

The essential feature of the Bayesian method is that uncertainty regarding the true
value of the parameters is expressed with a probability density function known as
the posterior. The �rst stage is to convert the likelihood, which is an improper
density when viewed as a function of the unknown parameters, into a proper
density by employing Bayes law and multiplying by a prior.
Following Zellner (1971, p. 242) we assume a di¤use prior:

g
�
�;�p;�c;�; jci;yi;Xi

�
/ j�pj�

3
2 j�cj�

3
2 ; (28)

to give the posterior:

p
�
�;�p;�c;�; c;y;X

�
= �

PT
i=1 ci1

1 �
PT
i=1 ci2

2

TY
i=1

p1
�
�p;
;�p;mi; qi

�ci1 �
p2 (�c;
;�c;mi; qi)

ci2 j�pj�
3
2 j�cj�

3
2 : (29)

The objective of a Bayesian analysis is to report the posterior distribution of
the parameters of interest and/or summary statistics for this distribution. For
example we will employ the mean as a point estimate of the parameters. The
posterior is of a form where the analytical integration required to compute the
mean is intractable. The alternative is to use the mean of a sample drawn from
the marginal distribution of the parameter as an approximation.
The Gibbs sampler (see Casella & George (1992)) allows one to sample from

a marginal distribution by using the conditional distributions. The sampler can
be used to obtain a sample from the marginal for a single parameter or from the
multivariate marginal for a block of parameters. The latter approach is common
and is employed here. Thus given the density in 29, we obtain a Gibbs sample
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from each of the following marginal densities2

p (�) =

Z Z Z Z Z Z
p
�
�;�p;�c;�; c;y;X

�
d�pd�cd�dcdydX (30)

p (�p) =

Z Z Z Z Z Z
p
�
�;�p;�c;�; c;y;X

�
d�d�cd�dcdydX (31)

p (�c) =

Z Z Z Z Z Z
p
�
�;�p;�c;�; c;y;X

�
d�d�pd�dcdydX (32)

p (�) =

Z Z Z Z Z Z
p
�
�;�p;�c;�; c;y;X

�
d�d�cd�pdcdydX (33)

p (c) =

Z Z Z Z Z Z
p
�
�;�p;�c;�; c;y;X

�
d�d�cd�pd�dydX: (34)

The marginal p.d.f. for each block of parameters is approximated iteratively
by drawing on each of the conditional densities in turn. Arbitrary starting values
are speci�ed for all those parameters except those being drawn in the �rst step.
The starting values are replaced by draws as they become available.
The posterior densities for � and c can be obtained directly from the posterior

in 29:

p
�
�j�;�p;�c; c;y;X

�
/ �

PT
i=1 ci1

1 �
PT
i=1 ci2

2 (35)

p
�
cj�;�p;�c;�;y;X

�
/

�
�1p1

�
ci;yi;Xij�p;
;�p

��ci1 � (36)

(�2p2 (ci;yi;Xij�c;
;�c))
ci2 (37)

The conditionals for �, �p and �c are dependent upon the unknown densities p1
and p2:

p
�
�;�p;�cjc;�;y

�
/ j�pj�

3
2 j�cj�

3
2 � (38)

TY
i=1

p1
�
�p;
;�p;mi; qi

�ci1 p2 (�c;
;�c;mi; qi)
ci2 :(39)

Note that the structure of the matrices in 18 and 17 imply that the observations
are not necessarily in temporal order as the �rst Tp correspond to the punishment
regime and the remainder correspond to the collusive regime. Assuming that the
densities are multivariate normal, 39 can be written:

p
�
�;�p;�cjc;�;y;X

�
/ j�pj�

Tp+3

2 j�cj�
Tc+3
2 exp

�
�1
2
(u0Au)

�
(40)

2The conditionality on the observed data (x) is implicit in the marginals.
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where:

u =

0@ mp � zp�p
mc � zc�c
q� p


1A =

0@ up
uc
v

1A (41)

and we de�ne A as:

A =

0BB@
ITpa11 0 ITpa13 0
0 ITca22 0 ITca24

ITpa31 0 ITpa33 0
0 ITca42 0 ITca44

1CCA (42)

where the elements aij are from the inverted covariance matrices as follows:

��1
p =

�
a11 a13
a31 a33

�
(43)

��1
c =

�
a22 a24
a42 a44

�
(44)

40 can be written:

p
�
�;�p;�cjc;�;y;X

�
/ j�pj�

Tp+3

2 j�cj�
Tc+3
2 (45)

exp

8<:�12
0@ tr

�
U0
pUp�

�1
p

�
+

tr (U0
cUc�

�1
c )+

(� � b)0X0AX (� � b)

1A9=; (46)

where:

Up =
�
mp � zp�p qp�pp


�
(47)

Uc =
�
mc � zc�c qc�pc


�
(48)

b = (X0X)
�1
X0y (49)

From 46 following conditionals can be obtained:

p (�pj�;�c; c;�;y;X) / j�pj�
Tp+3

2 exp

�
�1
2

�
tr
�
U0
pUp�

�1
p

���
(50)

p
�
�cj�;�p; c;�;y;X

�
/ j�cj�

Tp+3

2 exp

�
�1
2

�
tr
�
U0
cUc�

�1
c

���
(51)

p
�
�j�p;�c; c;�;y;X

�
/ exp

�
�1
2

�
(� � b)0X0AX (� � b)

��
(52)

and it is evident that the conditionals for �p and �c are inverted Wishart and
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Parameter �11 �21 �31 �41 �12 �22 �32 �42
Estimate -0.124 -0.055 0.281 0.116 -0.096 -0.033 0.281 0.077
5% -0.221 -0.103 0.233 0.065 -0.206 -0.086 0.234 0.020
95% -0.029 -0.011 0.326 0.178 0.003 0.007 0.325 0.165

Table 1: Parameters and interval estimates for equations 2 and 3

Parameter �1 �2 �3 �4
Estimate 1.071 0.134 -0.036 0.092
5% 0.838 0.009 -0.082 0.006
95% 1.179 0.355 0.002 0.286

Table 2: Point and interval estimates for the milk supply equation (4)

that for � is multivariate normal.
We use monthly data for the period April 2001 to September 2004. The margin

in equations 2 and 3 is the di¤erence between the retail and farm gate prices of
milk. X is measured as wholesale milk deliveries. The source of all the preceding
variables is the Milk Development Council (MDC) Datum. Feed barley prices
are obtained from the Department for the Environment Food and Rural A¤airs
(DEFRA). The fuel price is measured as an index of prices for fuels purchased for
manufacturing industry and the wage rate is the index of labour costs in the food,
beverage and tobacco industries. Both of these series are obtained from the O¢ ce
of National Statistics (ONS) time-series data base.

4 Results

Tables 1 and 2 give point estimates and interval estimates for the parameters
from a Gibbs sample of 5000. The sample is formed by discarding 200 draws as
a �burn-in�and also by discarding draws where the slope of the supply curve (�2)
and/or the combined slope conjectural variation parameters (�41 and �42) and/or
the partial adjustment parameter (�5) are positive. The only parameter for which
the interval estimate spans zero is the coe¢ cient on the fuel price in equation 3
(�22) and the coe¢ cient on feed barley price in equation 4. Note also that the
sign on the point estimate of �21 and �22 is contrary to expectations. All the
other point estimates have the expected signs. The estimated parameter for the
slope of the demand curve implies that the short run elasticity of milk supply is
0.022 at the mean price and quantity. The long run slope of the supply equation is
computed for each draw in the Gibbs sample. This gives a point estimate of 0:151
with 5 � 95% interval estimate of 0:010 � 0:398 which implies a long run supply
elasticity of 0.024.
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Short run Long run
Parameter �1 �2 �1 �2
Estimate 0.015 0.010 0.017 0.012
5% 0.001 0.000 0.001 0.000
95% 0.041 0.031 0.045 0.035

Table 3: Estimates of market conduct parameter

Table 3 reports the estimates of the market conduct parameter. These esti-
mates are constrained to be of the right sign. In all cases the estimates indicate
that the pricing strategy of purchasers of liquid milk has been close to that which
would be expected in a competitive industry.

5 Conclusions

This paper has investigated the market conduct of purchasers of liquid milk from
farmers in the period during which the market has been deregulated. The model
estimated is su¢ ciently general to allow for dynamic strategic behaviour. Our
results show little evidence to support the view that this type of anti-competitive
behaviour has occurred in the market for liquid milk since deregulation. This
suggests that the loss of market power experienced by farmers following the demise
of the MMB has not been responsible for the decline in farm-gate prices for liquid
to milk relative to the supermarket price. This conclusion is reached based on
an estimate of the supply elasticity for milk which is somewhat lower than that
which is commonly reported. Whilst the result would be di¤erent if the estimate
used was closer to the conventional estimate the qualitative result would not be
substantially di¤erent.
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