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Abstract:  This paper uses a stochastic frontier and inefficiency model to test the efficiency 

of grape production in the Western Cape. The data covers two panels of wine grape farms 

(34 in Robertson and 36 in Worcester) for 2003 and 2004 and 37 table grape farms in De 

Doorns for 2004 only.  Tests show that Cobb Douglas stochastic production frontiers, with 

variables to explain the inefficiencies are an appropriate representation of the five 

individual samples.  

The stochastic frontier results indicate that output can be explained by land, labour 

and machinery and that efficiency cab be affected by labour quality, age and education of 

the farmer, location, the percentage of non-bearing vines and expenditures on electricity 

for irrigation.   

These data is sufficiently good to produce reasonable results without pooling, but 

most applied economists would consider the possibility of improving the estimates by 

pooling the samples. However, pooling tests show that in this situation with small samples, 

when pooling is permissible it may not be helpful. More effort on determining the true 

distributions is needed to improve the way such samples are handled and Bayesian 

methods may be helpful in this respect.  
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 2 



1. Introduction 

 The survey by Battese (1992) shows that fitting frontier production functions to 

agricultural data has become common. Stochastic frontiers, of the type originally suggested 

by Aigner, Lovell and Schmidt (1977), discriminate between random errors and differences 

in efficiency.  Battese and Coelli (1995) introduced the inefficiency model, in which the 

efficiency differences are simultaneously estimated from the stochastic frontier and explained 

by farm-specific variables.  Their models incorporate tests that choose between functional 

forms and between frontier and mean regression models.  This model is here applied to five 

small samples of grape producers in the Western Cape province of South Africa.   The data 

covers two panels of wine grape farms (34 in Robertson and 36 in Worcester) for 2003 and 

2004 and 37 table grape farms in De Doorns for 2004 only.  The two years were similar, with 

no unusual weather and the three regions are located close together, with all farms using 

irrigation. These data cover outputs, inputs and farm specific characteristics that can be used 

to explain efficiency at the farm level. The focus of the paper is simple. The first study noted 

by Battese (1992) is Russell and Young (1983) whose sample included hill farms in the 

Pennines as well as dairy units on the Cheshire plain and other studies have included both 

animal and cereal farms. The majority of production frontier studies in agriculture pool cross 

section and time series data or use panel techniques to get sensible results.  Thus, often apples 

and oranges are being compared (Bernard and Jones, 1996) and the recent literature on panel 

data (Baltagi, 2005) has begun to pay more attention to tests that determine whether data 

should be pooled. Here, we exploit the fact that despite the small samples, these data are good 

enough to produce acceptable results without pooling, to see if pooling tests are useful in 

determining what level of aggregation to use.   

 The paper proceeds as follows.  The next section reviews the salient features of grape 

production in the three regions, with the aid of summary statistics and describes the data used 
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for estimation. Section three outlines the stochastic frontier model with inefficiency effects 

and the reports on the hypothesis tests for model selection. The fourth section reports the 

results and is followed by a brief conclusion. 

 

2. Western Cape Grape Production: Summary Statistics and Variable Definitions    

Table I reports the summary statistics for these samples, in terms of the variables 

used in estimation.  Thus, following the convention of keeping the inputs in physical terms, 

the outputs are expressed in terms of tons of wine grape equivalents, with fruit and table 

grapes converted to wine grapes at average relative prices.  The first column shows that the 

average output per farm is similar for the four wine grape samples, while the table grape 

farms show more variance and produce almost twice as much.  This is despite the average 

farm size, which is far smaller than Worcester, while Robertson is between.  The greater 

input intensity of table grapes is again evident in labour use, which despite the smaller 

farms, is about three times that of the wine farms. Use of machinery (tractors, plus a few 

diggers and harvesters) is fairly uniform across the samples and machinery was the third 

and last input in most estimates.  However, fuel costs were also recorded and for table 

grapes these proved a better measure of machinery use.  As the Table shows, about twice 

as much fuel was used in table grape production, which suggests more intensive use of the 

available machinery.  For the panel of wine farms, the best measure of machinery input 

proved to be the more sophisticated service flow from the capital stock, which was taken to 

be 10% depreciation on the machinery value, plus the running costs, represented by fuel 

expenditures.  

TABLE 1 HERE 

The next five variables are the farm-specific factors that are used to explain the 

efficiencies in the second part of the model.  The first is the average wage, which varies as 
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some farms employ more skilled labour.  The Table shows that wages are higher in 

Worcester than in Robinson and highest in De Doorns.  An analysis of labour differences 

and wages can be found in Conradie (2005), but here the wage serves to pick up the lack of 

quality adjustment in the labour variable.  Age and education of the farmer are both 

uniform across the samples, but some do have an amazing 20 years of education, which is 

normally associated with higher degrees.  Are a minority of the farmers retirees from 

academia, or similar employments?   

 The difficulty of measuring efficiency for a permanent crop like grape vines is 

partly captured by the percentage of the hectarage which is too recently planted to be 

yielding grapes. This varies from zero to two thirds of the farm in one case and as the new 

vines still use inputs, this must affect efficiency.  Expenditures on electricity, which is used 

mainly for irrigation systems, is again far higher in table grape production.  The next two 

columns report land and labour productivity.  Land productivity is highest in De Doorns 

and lowest in Worcester, while labour productivity is lowest in De Doorns and highest in 

Robertson. Finally, the last two columns show factor ratios.  The land/labour ratio is far 

lower in table grapes, while the machinery/labour is far less different across the samples. 

 

3. Choice of Model, Functional From and Level of Aggregation 

The general form of the production frontier is 

      1 
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The Vi’s are independently and identically distributed random error terms and uncorrelated 

with the regressors, and the Ui’s are non-negative random variables associated with the 

technical inefficiency of the firm. 

The technical efficiency of an individual firm is defined in terms of the ratio of the 
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observed output to the corresponding frontier output, conditional on the levels of inputs 

used by that firm.  Thus, the technical efficiency of firm i in the context of the stochastic 

frontier production function is defined 
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In Battese and Coelli’s (1995) inefficiency model, the Uis, in equation (1) are 

defined as 

iii WzU += δ      3 

where zi is a vector of explanatory values associated with firm level technical inefficiencies 

in production, δ is a vector of unknown parameters to be estimated and Wis are the errors.  

First, the functional form of the stochastic frontier is determined by testing the 

adequacy of the Cobb Douglas relative to the less restrictive translog.  These frontier 

models are defined as   

     4 U - V + x x    + x   +  = Y iikijijk

n

1=k

n

1=j
jij

n

1=j
0i βββ ∑∑∑

where all of the variables are in logarithms and if terms under the double summation are 

not significantly different from zero, the translog reduces to the Cobb Douglas. Y is grape 

output in physical terms and the independent variables (xi) are land, labour and machinery. 

This gives nine independent variables in the translog due to the addition of three squared 

terms and three cross products. In the inefficiency model, there are five explanatory 

variables, which are the wage rate, farmer’s age and education, the percentage of the farm 

area planted with non-bearing vines and electricity expenditure.  The remaining two 

variables are regional dummies for Worcester and De Doorns, to allow for regional 

variations. 
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First, a series of hypothesis tests were conducted to select the level of aggregation, 

the functional form and to choose between the frontier model and the standard average 

production function. The results reported in Table 2 are interdependent, in the sense that 

functional form and frontier test results are used in the pooling tests.  For the functional 

form tests the null hypothesis (H0) is that βij = 0, i,j = 1,...,n, meaning that the Cobb-

Douglas frontier is an adequate representation for these data.  Generalised Likelihood Ratio 

(LR) tests1 show that the Cobb Douglas is an adequate representation of the data for all five 

grape samples, as λ is less than the critical value.  However, for the three panels that the 

pooling tests allow, the translog is preferred in two.  The problem here is that the results for 

the translog do not comply with the theoretical restrictions for any production function.  

The basic requirement is that the coefficients of the three inputs must all lie between zero 

and unity, since they are output elasticities.  Thus, the Cobb Douglas results are preferred, 

despite the tests. 

TABLE 2 HERE 

Having selected the Cobb Douglas functional form, the next section of Table 2 

reports the results of tests that hypothesis that the technical efficiency effects are not 

simply random errors. The key parameter is γ = σu
2/(σu

2 + σv
2), which is the ratio of the 

errors in equation (1).  So, γ is defined between zero and one, where if γ = 0, technical 

inefficiency is not present, and if γ = 1, there is no random noise.  The null hypothesis is 

thus that γ = 0, indicating that the mean response function (OLS) is an adequate 

representation of the data, whereas the closer γ is to unity, the more likely it is that the 

frontier model is appropriate.  If γ is not significantly different from zero, the variance of 

the inefficiency effects (Wi in equation 3) is zero and the model reduces to a mean response 

                     
1  The likelihood-ratio test statistic, λ = -2{log[Likelihood (H0)] – log[Likelihood (H1)]} has approximately χ2

ν 
distribution with ν equal to the number of parameters assumed to be zero in the null hypothesis.  
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function in which the inefficiency variables enter directly (Battese and Coelli, 1995). This 

test is unambiguous, with all values close to unity and all t tests indicating that the frontier 

is the appropriate model.  The next column in this section reports λ, the LR test values for 

the more powerful test with the null hypothesis that γ = δ0 = δi  = 0, which means that in 

addition to γ being insignificant, the inefficiency effects are not present in the model. The 

null hypothesis, H0, is soundly rejected in all cases at the 5% level, with DOF equal to the 

numbers of parameters set to zero.2 

In the last section, LR tests determine the extent to which the five samples can be 

pooled, or estimated as a panel.  The test is that suggested by Battese and Coelli (1988), 

which compares the LR for the pooled model (H0) with the sum of the LRs for the sub-

samples estimated separately (H1).  Thus, the LR when both years for Robertson are 

pooled is –1.382, compared with 8.815 (the sum of the two H0 LRs in the functional form 

test, below), giving a test statistic (λ) of 19.134.  This is compared with the critical χ
2 

value at the 5% significance level, with 12 degrees of freedom (DOF).  The DOF is the 

number of parameters estimated, which is 12 (see Table 3) times by the difference in the 

number of estimating equations, which is two, minus one.  The outcome is close, but the 

two can be pooled, as can the two years for Worcester, with greater certainty.  However, 

the two wine regions should not be pooled in either year, which is a little surprising since 

the years were not very different. The three regions can be pooled for 2004 if the function 

is translog, but this gave unacceptable results and is not pursued further.  This was also the 

case with pooling all five samples, so the only high level of aggregation allowed is all four 

wine samples, which narrowly qualifies even with a Cobb Douglas function. These tests 

explain why only three panels are reported in the next section.  

                     
2 As the null hypothesis involves parameter γ, which as a ratio of two variances is necessarily positive, the test statistic 
follows a mixed chi-squared distribution and the critical values are from found in Kodde and Palme (1986). 
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4. Stochastic Production Function and Inefficiency Model Results 

4.1. Output Elasticities, Returns to Scale and Farm Size   

 For all the five samples, the Cobb Douglas function was found to be an adequate 

representation of the unknown, underlying production function, meaning that the cross 

products and squared terms did not improve the fit sufficiently to justify inclusion.  Table 3 

reports the parameter estimates and t statistics for these models, beginning with the output 

elasticities for the inputs. For Robertson in 2003, all three elasticities are significant at the 

5% level and a 1% increase in labour increases output by 0.577%.3  Land is far less 

important and machinery contributes still less, so that the elasticities sum to only 0.812, 

which indicates that on average, there is decreasing returns to scale. 

In the second year, land becomes the dominant input, labour falls and machinery is still 

last, but the sum is 1.207, which would suggest increasing returns to scale.  With samples 

of only 34, it is perhaps not surprising that the results are so unstable, so forming a two-

year panel to reduce the variability makes perfect sense.  This results in more reasonable 

elasticities for land and labour and a sum that is much closer to constant returns to scale, 

but at the cost of machinery being insignificant.  Aggregation by pooled estimation may 

well be inferior to simply aggregating the two previous results.  The pooling test is also 

odd, in that it allowed pooling despite such different slope coefficients.  Were the two sub-

samples larger, such aggregation could well be destroying real information rather than 

improving the estimates.  

TABLE 3 HERE 

The Worcester results are less different, with land dominating both years and machinery 

contributing least, so it is no surprise that pooling was permitted, but in this circumstance it 
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really isn’t needed and rather than improving the significance of machinery, it makes this 

input insignificant.4 Again, a simple average would perhaps have been preferable.  For De 

Doorns, the three elasticities all have reasonable values and are significant, but the sum of 

1.489 is rather too much evidence of increasing returns. 

 The last results are for a panel comprised of both regions in both years. The 

programme for the inefficiency model does not handle panels, but equivalent results are 

obtained by using time and regional dummies.  All three inputs have reasonable elasticities 

and are significant at the 5% level, while there is still evidence of increasing returns to 

scale and the time dummy proved to insignificant. 

 In many papers, where the data refuses to cooperate, this panel could well have been 

the only results reported, but in this case the small samples gave good results, so the 

pooling issue could be examined. The pooling tests are somewhat useful: for instance, 

confirming the impression given by the summary statistics, that table grapes really are 

different from wine grapes.  However, it is not clear how well the tests guide the researcher 

beyond this point. 

 The sum of the output elasticities provides an indication of the predominant scale 

effect in a sample, but it is an average and can be quite misleading, if farms that are too 

large and those that are too small balance out.  The frontier programme calculates an 

efficiency level for each farm, so if the farms are then ranked according size some 

indication of the effect of size on efficiency can be gained. However, just as yield is a 

partial measure of productivity, returns to scale is output per unit of all inputs, not just 

land.  Data envelopment analysis can be used to calculate scale efficiency, but for reasons 

                                                                                                                                                                 
3 The t test critical values at the 5% level are shown at the bottom of the Table.  The test is one tailed as the 

elasticities must be positive.  
4 The aphorism with which Samuelson used to head the banking chapter in his textbook comes to mind here. 
The first law of banking and woe betide those who don’t heed it 
Never lend money, except to those who don’t need it.                 Ogden Nash  
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of space this paper uses the efficiency levels from the stochastic frontier estimation and 

these do appear to be a monotonically increasing function of farm size.  The quartile of 

smallest farms has an average efficiency of 65%, the next quartile 71%, the next 75% and 

the largest, 76%.   

 

4.2. Explaining the Inefficiencies 

 The same variables are reported for each sample in explaining the inefficiencies, to 

facilitate comparisons, with the exception of De Doorns, where only electricity was 

significant.  For all but De Doorns and one sample, higher average wages decrease 

inefficiency (hence the negative coefficients).  This is to be expected, since this serves as 

quality adjustment for the labour input.  Expenditures on electricity reduced inefficiency in 

De Doorns, which suggest that irrigation is important for table grapes.  For Robertson the 

same effect dominates, but for Worcester pooled and the full pooled sample the sign is 

positive.  This may well reflect the locations of the farms, as those on higher ground will 

have to spend more on pumping irrigation water.   

 The same type of problem arises with non-bearing vines, which increase 

inefficiency, in accordance with the conventional wisdom, only in Worcester in 

2004.  In the four cases in which non-bearing vines increase efficiency, the causality 

may run from efficient production to planting new vines.  This follows, as any 

farmer who intends to continue producing has to do some replanting almost every 

year.  If a farm is prospering, it is also likely to be investing, so it seems to be those that are not 

efficient that are not investing.  Thus, the dynamics of the situation reverse the expected static 

result.  Age and education often give odd results in these models and here age reduces 

efficiency, but so too does education, in Robertson especially.  As was noted above, 

wine farmers with 20 years of education may have bought vineyards late in life as an 
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attractive retirement lifestyle (the prospect certainly appeals to the authors).  The last 

statistics are the variance parameters σ2=σu
2+σv

2 and γ=σu
2/σ2 which do not require 

further discussion. 

 

5. Conclusions 

This paper uses a stochastic frontier and inefficiency model to test the efficiency of 

grape production in the Western Cape.  Data covers two panels of wine grape farms (34 in 

Robertson and 36 in Worcester) for 2003 and 2004 and 37 table grape farms in De Doorns for 

2004 only.  Tests show that Cobb Douglas stochastic production frontiers are an appropriate 

representation of the five individual samples.  

The stochastic frontier results indicate that output can be explained by land, labour 

and machinery and that efficiency cab be affected by labour quality, age and education of the 

farmer, location, the percentage of non-bearing vines and expenditures on electricity for 

irrigation.   

 These data is sufficiently good to produce reasonable results without pooling, but 

most applied economists would consider the possibility of improving the estimates by 

pooling the samples. However, pooling tests show that in this situation with small samples, 

when pooling is permissible it may not be helpful. More effort on determining the true 

distributions is needed to improve the way such samples are handled and Bayesian methods 

may be helpful in this respect. 
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Table 1: Summary Statistics for the Samples 

Variable Output Land Labour Machines Fuel Wage Age Education 
Non-

bearing Electricity Output/ Output/ Land/ Machinery/ 

Statistic 
Wine 

grapes Hectares 
Full Time 
persons Number Rand 

R per 
month Years Years Percent Rand Land Labour Labour Labour 

 Robertson - 34 wine farms 2003           
Mean 1887.08 87.92 33.21 5.74 67.10 908.13 41.91 14.26 0.16 91.62 22.58 57.45 2.75 0.09 

SD/Mean 0.73 0.79 0.75 0.58 0.92 0.24 0.25 0.14 0.52 0.99 0.44 0.42 0.48 0.55 
Minimum 102.85 13.20 7.56 2.00 10.00 562.19 28.00 10.00 0.00 6.56 7.44 11.97 1.02 0.04 
Maximum 5482.50 299.00 129.17 16.00 350.0 1400.7 64.00 20.00 0.41 374.62 52.70 103.60 5.79 0.20 

 Robertson - 34 wine farms 2004           
Mean 1982.98 94.80 34.80 5.97 70.23 1031.65 41.91 14.26 0.16 98.43 22.59 56.97 2.77 0.09 

SD/Mean 0.74 0.79 0.71 0.58 0.93 0.34 0.25 0.14 0.52 0.96 0.37 0.41 0.49 0.60 
Minimum 273.13 12.20 10.12 2.00 16.00 456.08 28.00 10.00 0.00 8.50 9.04 13.47 0.60 0.03 
Maximum 5845.00 330.00 113.90 16.00 380.0 1733.33 64.00 20.00 0.45 390.00 44.49 113.57 6.26 0.20 

 Worcester - 36 wine farms 2003           
Mean 1675.59 101.30 35.15 6.25 79.21 923.18 41.08 14.68 0.17 80.96 16.17 47.38 2.99 0.08 

SD/Mean 0.73 0.62 0.69 0.66 0.66 0.31 0.21 0.11 0.51 0.69 0.28 0.35 0.29 0.71 
Minimum 100.00 6.00 4.50 2.00 8.38 267.63 24.00 12.00 0.00 7.59 7.02 17.76 1.20 0.03 
Maximum 5727.05 312.00 110.00 24.00 205.4 1605.61 57.00 17.00 0.42 260.00 27.40 87.88 4.80 0.33 

 Worcester - 36 wine farms 2004           
Mean 1846.82 104.23 35.87 6.58 83.72 1058.32 41.08 14.68 0.20 95.38 16.96 50.63 3.08 0.08 

SD/Mean 0.76 0.63 0.70 0.64 0.73 0.30 0.21 0.11 0.54 0.72 0.25 0.31 0.32 0.72 
Minimum 95.00 5.50 5.50 2.00 10.00 268.00 24.00 12.00 0.04 8.00 7.82 17.27 1.00 0.03 
Maximum 7124.80 324.50 113.10 25.00 261.3 1933.94 57.00 17.00 0.67 337.00 29.48 85.79 5.25 0.36 

 De Doorns - 37 table grape farms 2004           
Mean 3852.56 60.80 119.20 6.70 158.6 1239.92 41.21 14.38 0.16 175.86 69.08 36.25 0.55 0.07 

SD/Mean 1.03 1.27 1.34 0.94 1.33 0.33 0.19 0.12 0.75 1.41 0.24 0.35 0.42 0.43 
Minimum 965.70 15.00 24.25 2.00 15.00 352.11 27.00 12.00 0.00 4.02 35.34 16.57 0.30 0.05 
Maximum 22477.50 452.00 969.76 36.00 1100 2839.01 56.00 20.00 0.50 1500.00 106.38 74.16 1.29 0.28 
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Table 2: Hypothesis Tests       

  Log-Likelihoods LLR Test DOF χ2 Critical Outcome 
Functional Form Test H0 H1 Statistic  Value 5%  

 
Parameter 

Restrictions 
Cobb 

Douglas Translog Statistic    
Robertson 2003 H0: All βjk = 0 0.569 4.87 8.602 6 12.59 Accept H0 - CD is adequate 
Robertson 2004  7.616 8.211 1.19 6 12.59 Accept H0 - CD is adequate 
Worcester 2003  5.92 12.21 12.58 6 12.59 Accept H0 - CD is adequate 
Worcester 2004  16.49 17.051 1.122 6 12.59 Accept H0 - CD is adequate 
De Doorns 2004  7.254 11.86 9.212 6 12.59 Accept H0 - CD is adequate 

Robertson both years -1.382 10.893 24.55 6 12.59 Reject H0- CD is inadequate 
Worcester both years 19.494 25.312 11.636 6 12.59 Accept H0 - CD is adequate 
All 4 wine samples -4.454 11.88 32.668 6 12.59 Reject H0- CD is inadequate 

    LLR test     
Frontier Tests  Gamma t stat Statistic DOF Parameter Restrictions H0: � = δi = 0 
Robertson 2003  0.999 1911 40.893 7 13.401 Reject H0 - frontier not OLS 
Robertson 2004  1.000 277.393 34.782 7 13.401 Reject H0 - frontier not OLS 
Worcester 2003  1.000 624.090 31.835 7 13.401 Reject H0 - frontier not OLS 
Worcester 2004  1.000 16.291 21.500 7 13.401 Reject H0 - frontier not OLS 
De Doorns 2004  0.895 102.464 141.554 3 7.054 Reject H0 - frontier not OLS 

Robertson both years 0.952 22.808 51.381 7 13.401 Reject H0 - frontier not OLS 
Worcester both years 0.958 19.107 19.494 7 13.401 Reject H0 - frontier not OLS 
All 4 wine samples 1.000 16017 48.461 7 13.401 Reject H0 - frontier not OLS 

       
Pooling Tests Functional H0 H1 LLR Test DOF   

Sample Form Pooled Separate     
Robertson both 

years Cobb Douglas -1.382 8.185 19.134 1*12=12 21.03 Accept H0 - can pool 
Worcester both 

years Cobb Douglas 19.494 22.41 5.832 1*12=12 21.03 Accept H0 - can pool 
Both regions 2003 Cobb Douglas -9.611 6.489 32.2 1*12=12 21.03 Reject H0 - can't pool 
Both regions 2004 Cobb Douglas 9.55 24.106 29.112 1*12=12 21.03 Reject H0 - can't pool 
All 3 regions 2004 Translog 19.045 31.36 24.63 2*12=24 49.77 Accept H0 - can pool 
All 3 regions 2004 Cobb Douglas 4.511 31.36 53.698 2*12=24 36.42 Reject H0 - can't pool 
All 4 wine samples Cobb Douglas -4.454 30.595 70.098 3*18=48 73 Accept H0 - can pool 

All 5 samples Translog 1.928 37.849 71.842 4*18=72 92.8 Accept H0 - can pool 
All 5 samples Cobb Douglas -10.479 37.849 96.656 4*12=48 67 Reject H0 - can't pool 
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Table 3: Stochastic Production Frontier and Inefficiency Model Results  

 

Robertson 
2003 

 

Robertson 
2004 

 

Robertson 
2003, 2004 

 

Worcester 
2003 

 

Worcester 
2004 

 

Worcester 
2003, 2004 
 

De Doorns 
2004 

  

Pooled 4 
wine samples 
 

 Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity 
Frontier (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) 
Intercept 

 
0.531 

(29.977) 
0.204 

(1.826) 
0.444 

(9.171) 
0.099 

(1.270) 
0.131 

(1.340) 
2.646 

(18.116) 
0.731 

(0.749) 
3.327 

(0.236) 
Land 

 
0.135 

(1.694) 
0.653 

(9.439) 
0.385 

(5.875) 
0.867 

(7.425) 
0.758 

(9.356) 
0.842 

(12.058) 
0.758 

(11.743) 
0.758 

(12.484) 
Labour 

 
0.577 

(9.444) 
0.384 

(3.555) 
0.524 

(5.466) 
0.348 

(1.580) 
0.284 

(3.196) 
0.319 

(3.589) 
0.566 

(2.575) 
0.321 

(4.224) 
Machinery 

 
0.100 

(2.059) 
0.171 

(1.605) 
0.032 

(0.347) 
0.056 

(0.383) 
0.104 

(1.677) 
0.067 

(0.897) 
0.174 

(2.132) 
0.137 

(1.676) 
Sum 0.812 1.207 0.941 1.271 1.146 1.228 1.498 1.215 

Inefficiency Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter 
 (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) (t stat) 

Intercept 
 

-2.751 
(-2.445) 

-5.987 
(-2.654) 

-6.461 
(-2.318) 

0.043 
(0.044) 

1.446 
(2.055) 

0.860 
(0.658) 

0.659 
(0.436) 

-1.405 
(-0.099) 

Wage 
 

-0.667 
(-2.512) 

-0.247 
(-1.554) 

-0.510 
(-1.648) 

-0.222 
(-0.818) 

-0.206 
(-2.368) 

-0.376 
(-3.389) 

- 
 

-0.158 
(-2.369) 

Electricity 
 

-0.916 
(-5.185) 

0.129 
(1.304) 

-0.313 
(-2.228) 

0.222 
(0.780) 

-0.015 
(-0.216) 

0.752 
(3.244) 

-0.868 
(-3.017) 

0.441 
(1.507) 

% Non-
bearing 

-4.790 
(-3.275) 

-0.386 
(-0.563) 

-1.771 
(-1.839) 

0.142 
(0.182) 

0.862 
(3.033) 

-0.633 
(-1.939) 

- 
 

0.635 
(-3.337) 

Farmer's 
age 

1.456 
(2.524) 

0.374 
(1.362) 

0.781 
(2.161) 

0.473 
(1.497) 

0.310 
(2.399) 

0.404 
(1.172) 

- 0.165 
(4.691) 

Education 
 

2.447 
(2.780) 

2.245 
(3.170) 

3.289 
(3.615) 

-0.288 
(-0.597) 

-0.331 
(-1.332) 

0.198 
(2.799) 

- -0.871 
(3.810) 

sigma-
square 

0.224 
(2.807) 

0.038 
(2.594) 

0.163 
(2.985) 

0.057 
(2.028) 

0.026 
(4.335) 

0.057 
(3.690) 

0.485 
(4.565) 

0.072 
(8.616) 

Gamma 
 

1.000 
(1911) 

1.000 
(277) 

0.952 
(22.808) 

1.000 
(624) 

1.000 
(16.291) 

0.958 
(19.107) 

0.895 
(102.464) 

1.000 
(16017) 

Worcester dummy 
      

0.194 
(3.783) 

Critical t 5% 1.717 1.717 1.671 1.711 1.711 1.671  1.658 
Critical t 10% 1.321 1.321 1.296 1.318 1.318 1.296  1.289 
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