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Protected Species Take Risk

Stephen M. Stohs

May 31, 2006

Introduction

A variety of economic production activities pose the risk of harm to threat-

ened or endangered species. Examples include Pacific Northwest logging

activities which destroy spotted owl habitat, economic development which

compromises wetland habitat, and commercial marine fishing which results

in the incidental take of threatened or endangered species. Fish and game

managers who are responsible for upholding the requirements of federal laws

governing protected species face the challenge of monitoring and controlling

the risk posed by economic production activities. As the populations of these

species are low by definition, a small size reduction can potentially result in a

significant negative impact to survival prospects. Risk management in such

settings generally requires obtaining data on protected animals which are

injured or killed and drawing statistical inference from the (preferably) small

counts involved.
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Bycatch of protected species is an important policy issue for marine fish-

eries management. The Endangered Species Act (ESA) prohibits the inci-

dental take of species which are determined to be endangered. The ESA

creates a challenge for fisheries management, since protected species bycatch

is an inherent risk of fishing which is difficult to fully eliminate. Restrict-

ing fishing in favor of species protection imposes costs on commercial and

recreational fishermen in the form of lost fishing opportunities. Hence it is

important to quantify the relationship between the level of fishing effort and

the risk of protected species bycatch. Because it is not possible to predict

the relationship with certainty, a probability-based approach is warranted.

One example of protected species bycatch is that of leatherback turtle

(Dermochelys coriacea) take in the large-mesh drift gillnet (California DGN)

fishery for swordfish and thresher shark off the west coast of the USA. A drift

gillnet fishing trip consists of a number of sets, typically on the range from 1

to 20, where each set involves lowering a net into the water for approximately

twelve hours then hauling it up to retrieve the day’s catch. The sets are

roughly homogenous with respect to duration and gear type and are each

regarded as one day’s worth of fishing effort. If an endangered leatherback

turtle is entangled more than one hour before the end of a set, it is virtually

certain to die of suffocation, due to a biological limit on the time a turtle can

hold its breath underwater.

Incidental take of leatherback turtles in the California DGN fishery is a

rare event: There were a total of twenty-three leatherback takes in 7,221
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observed California DGN sets over the seasons from 1990-2005. However,

a small number of leatherback takes can have large economic implications

for the responsible fisheries. In the case of the California DGN fishery, a

large area was closed to DGN fishing for the period from August 15 through

November 15 after it was deemed the risk of leatherback take was exces-

sive, even though the overall number of leatherback takes appeared to be

extremely small.

The empirical context calls for a probability model suitable to charac-

terize a small risk of leatherback bycatch which is sparsely distributed over

a large amount of fishing effort. The Poisson distribution is the standard

probability model for rare event counts. The model may be specified in

a natural way to reflect the stochastic relationship between the number of

DGN sets, leatherback catch per unit effort (CPUE), and leatherback take.

Once estimated, the model may be used to construct prediction intervals for

future leatherback take conditional on the number of DGN sets. The Poisson

probability model may be extended to include covariates which explain the

variation in CPUE across observation units.

I specify and estimate a Poisson probability model of leatherback take

using a Bayesian approach to inference and prediction. I use historical data

for fishing in the area north of Pt. Conception over the years from 1990-2005

to fit a specification with a noninformative gamma prior distribution and a

Poisson likelihood function which assumes that leatherback take risk scales

linearly with fishing effort. A Bayesian version of Pearson’s chi square good-
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ness of fit test is employed to test the fit of the model to existing observer

data. I next show how the fitted Poisson model may be used to make prob-

ability statements or construct prediction intervals for numeric measures of

interest to fishery managers.

The Poisson Probability Model

The statistician I.J. Good argued that the Poisson distribution should have

been named the von Bortkiewicz distribution, after the economist Vladislav

Bortkiewicz (Anonymous n.d.). Bortkiewicz published a work, “The Law

of Small Numbers,” in 1898 which summarized his results on the Poisson

distribution. In this he was the first to note that events with low frequency in

a large population followed a Poisson distribution even when the probabilities

of the events varied. E. J. Gumbel writes in the International Encyclopedia

of the Social Sciences,

“A striking example was the number of soldiers killed by horse kicks

per year per Prussian army corps. Fourteen corps were examined, each for

twenty years. For over half the corps-year combinations there were no deaths

from horse kicks; for the other combinations the number of deaths ranged

up to four. Presumably the risk of lethal horse kicks varied over years and

corps, yet the over-all distribution was remarkably well fitted by a Poisson

distribution1.”

1Applied econometricians are always on the lookout for probability models which pro-
vide a good fit to observational data samples from inhomogeneous sampling units, as real
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The Poisson distribution is applicable for modeling a series of Bernoulli

trials, or two-outcome experiments {B1, B2, . . . , Bn, i = 1, 2, . . . , n}, where

each Bi is either equal to 1 or 0, the Bernoulli outcomes are exchangeable2,

the probability of success on each trial θ is small, and the number of trials n

is very large. The standard model for the number of “successes” in a fixed

number of exchangable Bernoulli trials is the Binomial model:

f(y) =

(
n

y

)
θy(1− θ)n−y, (1)

where Y =
∑n

i=1 Bi is a Binomial random variable. It is straightforward to

demonstrate that with λ = nθ held fixed,

lim
θ→0

f(y) = e−λ λy

y!
. (2)

This gives rise to the so-called Law of Rare Events, which states that for

large n and small θ, we may closely approximate a Binomial(n, θ) random

variable by the Poisson model, taking

p(y|θ, n) = e−nθ (nθ)y

y!
(3)

We write Y ∼ Pois(λ) to indicate that Y follows a Poisson distribution

world applications seldom offer the luxury of controlled experimental trials.
2A sequence of probabilistic outcomes is exchangeable if permutation of the labels does

not affect the joint distribution of the outcomes.
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with rate parameter λ. Straightforward calculations show that

E(Y ) = V ar(Y ) = λ. (4)

To specify a model of incidental protected species take, we let yi denote

the take in observation unit3 i, for i = 1, . . . , n, and assume the ith observa-

tion unit is subject to a Poisson rate of λi. The Poisson model of protected

species take for observation unit i conditional on the rate parameter becomes

p(yi|λi) = e−λi
λyi

i

yi!
. (5)

A restricted version takes θ as the constant, homogeneous level of CPUE

across all observation units, and ni as the units of effort for observation

unit i. The Poisson rate parameter for the ith observation unit is assumed

proportional to effort:

λi = niθ. (6)

Subject to this restriction, the probability model for the number of protected

species takes in observation unit i becomes

p(yi|θ, ni) = e−niθ
(niθ)

yi

yi!
. (7)

3Generally we could consider breaking up observations across time periods, spatial
regions, or both.

6



Classical versus Bayesian Inference

The classical approach to estimation and prediction differs fundamentally

from the Bayesian approach by how it construes the roles of model para-

meters and data. Under the classical paradigm, the parameters are viewed

as unobserved, nonrandom quantities that govern the probability distribu-

tion which generated the data. A data set is typically assumed to represent

a random sample drawn from the underlying population distribution. Any

particular data set is a subset of an infinite number of different possible real-

izations of the random variables which comprise the data generating process,

and the analyst’s job is to best use the data to estimate the unknown but

fixed parameters which enter the model.

Under the Bayesian view, both data and parameters are described by

probability distributions, expressing logically coherent beliefs about these

quantities of interest which are consistent with the observed data, rather than

describing the relative frequencies of occurrence over an infinite sequence of

hypothetical repetitions of a controlled random experiment. The Bayesian

view has intrinsic appeal to researchers whose disciplines constantly face a

paucity of real world data which can be reasonably interpreted as arising

from identical trials under controlled experimental conditions. In the case

of managing economic production subject to the risk of harm to protected

species, the Bayesian approach seems more appropriate, as it does not rely

on a counterfactual assumption of controlled experimental trials.
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Estimation and Prediction

The key elements of the Bayesian approach are a prior distribution, gener-

ically notated p(θ), which summarizes prior beliefs about the parameter or

parameters in question, and a likelihood function, represented p(y|θ), which

may be interpreted as the probability distribution for the data y conditional

on the parameter(s) θ. Estimation and inference in the Bayesian approach

is based on the application of Bayes’ Rule, which provides an algorithm for

using the prior distribution and the observed data to obtain a posterior pa-

rameter distribution which represents updated beliefs about the parameters

in light of the empirical evidence:

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (8)

where p(y) =
∫

p(y | θ)p(θ)dθ is the marginal distribution4 of y. The data

represent a given set of observations and hence may be regarded as constant

in the formulation, and thus the marginal distribution p(y) represents a scale

factor which makes the posterior density integrate to 1. In light of this,

Bayes’ rule is often expressed more simply in proportionality form as

p(θ|y) ∝ p(y|θ)p(θ), (9)

4Typical notation for describing Bayes’ rule involves an abuse of notation, as p(·) is
used to describe the the prior, the posterior, the marginal, and the posterior predictive
distributions, with the different interpretations indicated by the arguments of p(·).
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with the understanding that p(y) may be recovered by integration, as shown

above.

Estimation

Suppose we have on hand data for N exchangeable observation units on

the number of sets fished ni and count data yi for the bycatch on the ith

set, for i = 1, 2, . . . , N . For the Poisson model with homogeneous bycatch

risk per unit of effort5, θ, the likelihood function is formally identical to the

corresponding classical likelihood:

p(y | θ, n) ∝ e−nθθy, (10)

where n =
∑N

i=1 ni is the total exposure and y =
∑N

i=1 yi is the total bycatch

count.

The Poisson distribution represents a case where the form of the likeli-

hood gives rise to what is known as a conjugate prior, a parametric probabil-

ity distribution which may be used to quantify available information before

reflecting the likelihood of the observed data sample, and which combines

in a natural manner with the likelihood to form the posterior probability

distribution. The conjugate prior for the Poisson distribution is

p(θ) ∝ e−βθθα−1, (11)

5The hypothesis that a model with homogeneous Poisson bycatch risk per unit of effort
provides an adequate fit to the observed data is tested in a later section.
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which (with the addition of a normalizing factor) is known as the Γ(α, β)

distribution. The distribution has mean and variance parameters given by

E(θ) =
α

β
(12)

and

V ar(θ) =
α

β2
, (13)

and for suitable choice of the location parameter α and shape parameter

β, the distribution can reflect a wide range of prior beliefs about the rate

parameter θ. Applying Bayes’ rule with a Gamma prior distribution to the

case of my model of turtle bycatch yields results in the following posterior

density:

p(θ |n, y) ∝ e−(β+n)θθα+y−1, (14)

which is a Γ (α + y, β + n) distribution. The form of the posterior suggests

that the roles of α and β are analogous to the prior number of takes and the

prior number of sets, respectively.

For simplicity and comparability with maximum likelihood estimation

results, I consider the case α = 0 and β = 0, which gives rise to an improper

prior6. The prior distribution in this case has form

p(θ) = θ−1, 0 < θ < ∞ (15)

6An improper prior is one which does not integrate over the support, but which gives
rise to an integrable function after multiplication by the likelihood.
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which can be interpreted as a diffuse prior which reflects ignorance about the

precise value of θ before observing the data, and places the highest weight

on the smallest values of θ > 0.

The posterior is given by Bayes’ rule as

p(θ |n, y) ∝ e−θnθy−1, (16)

which bears formal similarity to the likelihood function, but which is inter-

preted to summarize the uncertainty about the value of the homogeneous

rate parameter θ in light of the observed bycatch count y and exposure n.

The posterior distribution assumes the form of a gamma distribution with

mean mean µθ = y
n

and variance σ2
θ = y

n2 , which are formally identical to

the mean and variance of the maximum likelihood estimator for the classi-

cal model, but subject to different interpretation in the Bayesian case. The

Bayesian view holds that the posterior distribution gives a complete sum-

mary of the inference about the rate parameter θ in light of the observed

data and the probability model in use, which may be subsequently used to

obtain summary statistics such as the mean and variance of the posterior, or

prediction intervals.

Prediction

The posterior distribution of θ may be used in conjunction with the likelihood

function to derive the predictive distribution of ỹ, denoted p(ỹ | ñ, n, y), for
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subsequent prediction of the number of takes. The predictive distribution is

defined as the integral of the likelihood for a new observation conditional on

effort, integrated over the posterior predictive density:

p(ỹ | ñ, n, y) =

∫
p(ỹ | θ, ñ)p(θ |n, y)dθ, (17)

where ỹ is the (stochastic) future predicted bycatch count conditional on

future effort level ñ.

The predictive distribution may be interpreted as a mixture of the like-

lihood for a future count observation ỹ conditional on effort ñ with the

posterior distribution of the rate parameter θ. The predictive distribution

reflects posterior uncertainty in the rate parameter θ and stochastic varia-

tion in future experience in a coherent manner. It is shown in the appendix

that the posterior distribution for the Poisson model subject to homogeneous

risk per unit of effort with gamma prior is a negative binomial distribution,

Negbin(y, n
ñ
).

Application to Leatherback Turtles

I next apply the model to observer data from a fishery where leatherback

take is an ongoing concern. The data were extracted from the California Drift

Gillnet Observer Database, and are a representative sample of approximately

20% of the fishing effort which took place for the portion of California DGN
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fishery North of Pt. Conception7 over the period from 1990-2004.

The number of sets fished over the period were n = 2876 and the number

of leatherback takes were y = 21. For this data and the prior discussed

above, the posterior is

p(θ |n, y) ∝ e−nθθy−1, (18)

which is easily recognized to be in the form of a gamma distribution with

β = n = 2876 and α = y = 21.

The mean and variance of the posterior distribution for θ are

E(θ) =
α

β
=

21

2876
≈ 7.302× 10−3, (19)

and the variance of θ is

σ2
θ = V ar(θ) =

α

β2
=

21

28762
≈ 2.539× 10−6, (20)

with corresponding standard deviation given by

σθ =
√

σ2
θ = 1.593× 10−3. (21)

For sufficiently large values of β, the Gamma distribution is approxi-

mately normally distributed. The graph below compares the gamma poste-

7Pt. Conception lies at 37◦27′ North Latitude, and represents a dividing line between
the geographically and ecologically distinct southern and northern ranges of the DGN
fishery. I restrict my attention to the northern portion of the DGN fishery because it
is a region where leatherback bycatch is known to be a problem, and where it may be
reasonable to assume the risk is homogeneous with respect to time and area.
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Figure 1: Gamma posterior and approximating normal distribution

rior distribution to a normal approximation with the same mean and vari-

ance.

Assessing Goodness of Fit

The model used above implicitly assumes a sufficiently homogeneous level

of leatherback take risk to justify pooling observations across seasons and

geographic location within the area North of Point Conception. I employed

two approaches to assessing whether the model is consistent with the data.

First I created graphs which compare the expected number of leatherback
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Season Sets Takes

1990 94 1
1991 210 1
1992 423 4
1993 445 2
1994 265 1
1995 282 5
1996 236 2
1997 292 4
1998 235 0
1999 153 1
2000 142 0
2001 35 0
2002 46 0
2003 13 0
2004 5 0

Totals 2876 21

Table 1: DGN sets and leatherback takes by season

takes across seasons and across latitudes compared to the observed number

in each case. Next I tested the fit numerically using a Chi square goodness

of fit test adapted to a Bayesian context.

Graphical Assessment of Model Fit

To assess intertemporal agreement of the model with data, I consider ob-

served DGN sets and leatherback takes broken out by season, as shown in

the Table 1.
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Because of the small number of sets fished north of Pt. Conception after

the 1999 season, I aggregated effort and leatherback takes for those years8.

Using the fitted gamma posterior distribution and the assumption of ho-

mogeneous Poisson rate parameter across seasons, the expected number of

takes9 in season i = 1990, 1991, . . . , 1999, 2000− 2004 may be calculated as

E(ỹi | y, n) = E[E(ỹi |ni, θ) | y, n]

= E(niθ | y, n)

= niE(θ | y, n), (22)

where ỹi is the predicted number of leatherback takes in season i, ni is the

observed number of DGN sets and E(θ | y, n) is the mean of the posterior

distribution for θ.

Figure 2 shows the expected and observed numbers of leatherback takes

by seasons, with the rightmost points (labeled 2000) corresponding to aggre-

gate values for the 2000-2004 seasons. The graph suggests that the observed

numbers of leatherback takes by season are in reasonably close agreement

with the expected numbers under the hypothesis of a homogeneous Poisson

rate parameter which was used to calculate the expected numbers of takes.

A similar approach was used to check for agreement between the fitted

model and the observed numbers of leatherback takes at different degrees of

8The validity of the asymptotic Poisson approximation to the binomial distribution
becomes questionable for small numbers of observed sets.

9The outer expectation in the iterated expectation on the first line is over the posterior
distribution of θ, and the inner expectation is conditional on θ, as shown.
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17



latitude. Figure 3 shows the geographic distribution of the 23 leatherback

takes which were observed in the California DGN fishery over the period

from 1990-2004. The graph includes a horizontal line at the latitude for

Point Conception (34.45◦ N), which may regarded as a separation boundary

between the northern and southern portions of the fishery. 21 leatherback

takes are shown to the north of this boundary, and only 2 below. Of the two

leatherback takes for the southern portion of the fishery, one was located very

near the boundary. Overall the 23 leatherback takes exhibit wide geographic

dispersion, indicating that leatherback take risk is not narrowly concentrated

over any particular portion of the range where DGN fishing occurs.

Leatherback take risk is believed to vary with respect to latitude; for

instance, only two leatherback takes were observed over 4291 sets of effort

south of Pt. Conception over the same fishing seasons (1990-2004) that 21

leatherback takes occurred over 2876 sets fished north of Pt. Conception.

Table 2 shows the distribution of leatherback takes by degrees latitude10 for

the range of latitudes north of Pt. Conception.

In order to maintain the applicability of the asymptotic Poisson distri-

bution assumption, I grouped the data from 44 degrees latitude north. I

computed expected numbers of takes in a similar matter for the latitude

classification as I did above for the classification by season. Figure 4 shows

the expected and observed numbers of takes graphed on degrees of latitude

10For convenience, the classification was based on the largest whole degrees latitude less
than or equal to the exact latitude for each observation.
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Latitude Sets Takes

37 1739 12
38 235 3
39 136 2
40 170 1
41 250 0
42 86 1
43 145 1
44 83 0
45 21 1
46 11 0

Total 2876 21

Table 2: DGN sets and leatherback takes by degrees latitude

where fishing occurred. The fit of the observations to the predicted numbers

of leatherback takes is remarkably close. In particular, there is a clear indica-

tion that the large number of takes over time at 37 degrees of latitude is well

explained by the concentration of fishing effort at that latitude, rather than

by a higher level of leatherback bycatch risk relative to the other latitudes

north of Pt. Conception.

Using Bayesian p-values to Assess Model Fit

The graphical comparisons shown above provide indication that the Poisson

model with homogeneous bycatch rate parameter and uninformative gamma

prior distribution fits the observed data reasonably well across seasons and

across latitudes. I used a Bayesian p-value approach to assess whether the

agreement between the expected and observed takes would be unlikely to
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occur under the maintained hypothesis of a homogeneous Poisson rate para-

meter over the ranges of seasons and degrees of latitude represented in the

data.

Following Gelman et al. (Gelman, Carlin, Stern & Rubin 2004), I used

the χ2 discrepancy statistic T (y, θ) =
∑N

i=1
(yi−E(yi | θ,ni))

2

var(yi | θ,ni)
, where the observed

numbers of leatherback takes yi and DGN sets ni are partitioned either by

fishing season or by degrees of longitude, and used simulation based on the

posterior distribution of θ and replications from the distribution of yi con-

ditional on ni and the simulated values of θ to compute Bayesian p-values,

defined as the probability the χ2 statistic calculated from the replicated data

could be more extreme than that calculated from the observed data:

pB = Pr(T (yrep, θ) > T (y, θ) |ni, yi, i = 1, 2, . . . , N). (23)

The probability is taken over the posterior distribution of θ and the posterior

predictive distribution of yrep. Unlike the Classical case, where the value of

the test statistic computed from the observed data is held fixed in computing

a p-value, the Bayesian p-value calculation reflects independent variation

in θ over its posterior distribution and variation in yi over the conditional

distribution; hence no degrees of freedom adjustment is necessary.

Based on 100,000 simulated draws, the p-values which result are 0.36 for

the test of homogeneous Poisson rate across fishing seasons, and 0.70 for

the test of homogeneous Poisson rate across degrees of latitude. These p-
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values may be interpreted as the probability that a random draw of θ from

its posterior distribution and ỹ from the posterior predictive distribution

conditional on θ would give rise to a value of the Chi square discrepancy

statistic in excess of the one calculated for the observed sample of values yi

and ni for i = 1, 2, . . . , N .

A p-value near 0 (say less that 0.05) would indicate a lack of fit between

the data and the model, as the Chi square discrepancy computed for the

observed yi would indicate a worse fit of the data to the hypothesized model

than the same measure applied to all but a small percentage of replicated

data samples. Similarly, a p-value close to 1 (say greater than 0.95) would

indicate a model which overfits the observed data, as the Chi square discrep-

ancy measure for more than 95% of the replicated data samples would then

indicate a poorer fit to the model than that of the observed data sample. In

both the case of annual variation and latitudinal variation in the observation

units, the Bayesian p-values lie squarely in the center of the range from 0.05

to 0.95, providing no significant evidence that the observed data lie outside

the normal range of variation which would occur under the hypothesis of a

homogeneous Poisson leatherback bycatch rate per unit of fishing effort.
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Predicting the Number of Leatherback

Takes Conditional on Effort

A standard approach to controlling bycatch in marine fisheries is to utilize

some combination of a limit to fishing effort and a cap on allowable bycatch.

All three possible approaches have drawbacks; if only an effort cap is used,

there is a risk that unacceptable levels of bycatch will result. With a stringent

bycatch limit, there is a chance that allowable fishing effort will be curtailed

to a level where fishing is no longer economically viable. Layering a bycatch

cap on top of a given effort limit provides an extra layer of precaution against

the risk of an unacceptable bycatch level, but results in an even lower ex-

pected level of allowable fishing opportunity, and still less chance the fishery

will remain economically viable given the regulatory constraint.

If bycatch is regulated using only an effort limit, a question of interest

concerns the number of leatherback takes that would occur at a given level

of allowable effort. The posterior predictive distribution for the number of

leatherback takes conditional on fishing effort provides a tool for computing

various estimates of the predicted level of leatherback take, including the

expected level of take conditional on effort, and posterior prediction intervals.

The posterior predictive distribution for the number of leatherback takes

for effort of 400 DGN sets is displayed in the bar graph of Figure 5. The

distribution is seen to have a mode of 2, but is skewed to the right, with

more than a 5% probability of six or more leatherback takes.
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A 95% prediction interval may be defined11 as the smallest range of values

of ỹ with probability greater than or equal to 95%. The interpretation is that

under the assumptions of the model, there is a probability of 95% or more

that the number of leatherback takes will lie on this range, provided that

effort reaches the assumed level. I constructed 95% prediction intervals for

the cases of 200, 300, or 400 sets of fishing effort. Due to the high probability

of a small number of leatherback takes, the lower bound of the prediction

interval was 0 in each case, but the upper bound varied from 4 to 5 to 6 as

the assumed level of effort increased from 200 to 300 to 400, reflecting the

increased probability of higher bycatch levels with an increase in effort.

Has Leatherback Take Risk Recently Declined?

One question of interest which the predictive distribution may be used to

address is whether the lack of any leatherback takes from the 2000 season on

represents significant evidence that the leatherback take risk has dropped.

The predictive distribution may be used to compute the probability of zero

leatherback takes given that there were 99 sets of fishing over this period12.

A very low value for the probability of observing zero takes would suggest

that the take rate had dropped, while a higher value would show that the

11Exact 95% prediction bounds are generally not obtainable for discrete distributions.
12A classical statistician might claim that it is meaningless to compute the probability

of an event which has already taken place – the probability that it occurred is now either
1 or 0 but not both. To a Bayesian, the probability may lie between 0 and 1 provided the
outcome is unknown to the researcher.
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observation of zero takes would not have been unlikely, even if the take risk

remained as high as its previous level.

Based on the posterior predictive distribution, the probability of zero

leatherback takes in 99 sets is calculated as

Pr{ỹ = 0 | ñ, n, y} = 0.491, (24)

using ỹ ∼ Negbin(y, n
ñ
) with ñ = 99, n = 2876, and y = 21. This calculation

indicates that the absence of leatherback takes in fishing seasons from 2000 on

does not represent strong evidence of a drop in leatherback take risk, as there

would have been a high probability of zero takes even if the risk remained

at its previous level, given that only 99 sets of fishing occurred. Under

traditional rules of thumb for hypothesis testing13, the data are consistent

with a null hypothesis that take leatherback take risk has not decreased.

Conclusion

The need to balance fishing opportunities against the risk of endangered

species take represents a challenge for fisheries management which depends

on reasonable predictions of endangered species take as a function of fish-

ing effort. Regulating protected species bycatch typically involves limiting

production contingent on a small and random number of protected species

13Traditionally, predicted probabilities below 5% are considered weak evidence that a
null hypothesis is inconsistent with the data, while predicted probabilities below 1% are
considered strong evidence.
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interactions.

Ignoring the stochastic nature of protected species risk may lead to sub-

optimal policy choices. The Poisson model potentially offers a more realis-

tic description in both the narrow context of fisheries bycatch management

described in this paper, as well as the broader context of managing other

economic production activities which pose risk to protected species. The

approach described herein may offer a more effective tool for evaluating al-

ternative management strategies for controlling protected species risk.

A missing ingredient from the approach taken in this paper was any ex-

plicit conditioning on detailed scientific information concerning leatherback

turtle habitat, migration patterns, or variation in seasonal abundance. In-

stead, leatherback take risk was treated as a black box, and evidence was

sought for a significant departure from a maintained hypothesis of homoge-

neous risk per unit of fishing effort. While the results presented here point in

the direction of homogeneous risk over the time and geographic range of the

data for the portion of the California DGN fishery north of Pt. Conception,

introduction of available scientific information could potentially identify risk

variation at finer scales of time or geography which would be useful in risk

management. Future research will explore the possibility of using extant

scientific information to refine estimates of leatherback take risk.
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Appendix

The negative binomial posterior predictive distribution is derived from the

gamma posterior distribution and Poisson likelihood function as follows:

p(ỹ | ñ, n, y) =

∫
p(ỹ | ñ, θ)p(θ |n, y)dθ

=
ny

Γ(y)

∫
exp(−ñθ)(ñθ)ỹ

ỹ !
exp(−nθ)θy−1dθ

=
nyñỹ

Γ(y)Γ(ỹ + 1)

∫
e−(ñ+n)θθ(ỹ+y)−1dθ

=
nyñỹ

(y − 1)!ỹ!
· (ỹ + y − 1)!

(ñ + n)ỹ+y

=

(
ỹ + y − 1

ỹ

) (
ñ

ñ + n

)ỹ (
n

ñ + n

)y

=

(
α + ỹ − 1

ỹ

) (
β

β + 1

)α (
1

β + 1

)ỹ

, (25)

with α = y and β = n/ñ.

Taking p = ñ
ñ+n

and N = ỹ + y − 1, we may alternately express the

posterior predictive distribution using

p(ỹ | ñ, n, y) = binom(ỹ, N, p) · (1− p), (26)
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where

binom(ỹ, N, p) =

(
N

ỹ

)
pỹ(1− p)N−ỹ (27)

is the binomial probability mass function with parameters N and p.
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