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Precision Nitrogen Fertilization Technology with Micro Grids

Abstract

Sensor-based precision fertilizer technologies are being developed and researched by 

production scientists.  One such technology uses normalized difference vegetation index (NDVI) 

reflectance measurements of growing winter wheat plants and a nitrogen fertilizer optimization 

algorithm (NFOA) to determine nitrogen requirement necessary for plants to reach their yield 

plateau.  A number of precision fertilizer application systems that use this technology are 

considered in this paper.  A linear response stochastic plateau wheat yield function conditional 

on NDVI reflectance measurements is estimated and used within an expected profit-

maximization framework to estimate upper bounds on the returns from the precision nitrogen 

application systems.  The on-the-go precision system that assumes perfect information was 

approximately $7 per acre more profitable than the convention of applying 80 pounds of nitrogen 

prior to planting in the fall.  The whole-field precision system was break-even with conventional 

methods.
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Introduction

Nitrogen fertilizer is a primary input for winter wheat production, accounting for between 

15 and 25 percent of total operating expenses (USDA).  A conventional approach to wheat 

production involves applying nitrogen requirements uniformly to a whole field prior to planting 

wheat in the fall.  Substantial variations in soil nutrient availability both within and across fields 

and the cost associated with over-application of nitrogen with a whole field management strategy 

provide justification for using variable rate precision application technologies for wheat 

production.  Since the 1990’s, precision application technologies using soil sampling to 

determine soil nitrogen availability have been proposed.  However, adoption of precision soil 

sampling for nitrogen has been limited (Daberkow and McBride).  

Early published studies on the costs and benefits of soil-based precision technologies 

mostly reported that the benefits from theses technologies were greater than the costs (Lambert 

and Lowenberg-DeBoer).  More recent research argued that technologies and strategies such as 

combine yield monitors, soil sampling and mapping, and fertilizer applicators equipped with 

global positioning systems have not been adopted in widespread fashion because significant 

costs associated with site-specific information management and variable rate application were 

overlooked (Hurley et al., Swinton and Lowenberg-DeBoer; Bullock and Bullock).  Economic 

theory suggests that if a new technology is unambiguously economical it will be adopted by 

profit maximizing producers.  As a result, alternative techniques for applying fertilizers variably 

are being explored to solve the problem of over applying fertilizer in some parts of the field, and 

under applying fertilizer in other parts.

One alternative to soil sampling that has gained substantial interest from the production 

agriculture community uses reflective sensor measurements of growing wheat plants to 
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determine nitrogen need (Alchanatis et al.; Ehlert et al.; Phillips et al.; Raun et al., 2001; 

Schachtl et al.).  The technology developed by Raun et al., 2001 uses NDVI reflectance 

measurements of growing wheat plants and a nitrogen fertilizer optimization algorithm (NFOA) 

to determine plant performance and nitrogen needs on micro grids as small as four square-feet.  

Two individual systems using this technology have been developed by engineers.  

The first system is a precision-based, whole field application system, and the second 

system is a site-specific variable rate application system that can sample and treat plants on 

individual four square-foot micro grids instead of the three-acre grids commonly used with soil 

testing and mapping strategies (Raun et al 1998; Solie et al., 1999).  Both systems are 

commercially available for use in winter wheat production, but adoption has been slow. 

Public and private sector investment into this technology, including the two systems 

described, has been substantial, but an economic analysis of the expected producer benefits from 

the adoption of these systems is lacking.  The objectives of this research are to determine the 

maximum expected net returns for the whole field system and two special cases of the variable 

rate system relative to the maximum expected net return from conventional all-before-planting 

systems.  The net value of the plant-based systems above that of the conventional systems would 

be useful to farm producers in helping them decide whether or not to adopt this technology, and 

would provide engineers and manufacturers with a target cost to deliver the systems.  Data for 

wheat yield, optical reflectance information, and levels of preplant nitrogen have been collected 

from on-farm in-season trials over six years and across eight locations in Oklahoma.  These data 

provide the opportunity to develop a yield response to nitrogen function that is conditional on in-

season sensor readings taken from growing winter wheat plants in the late winter or early spring.  
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The NDVI reflectance reading obtained with the optical reflectance sensor is believed to reveal 

information about plant nutrient availability and hence plant performance.

We first develop a conceptual framework of the producer’s optimization problem that 

describes the interaction between independent variables (such as nitrogen, optical reflectance 

readings, and stochastic variables) and the dependent variable (wheat yield).  Using the panel 

data set, a wheat yield response to optical reflectance information function and a response 

function that describes the relationship between optical reflectance information and the level of 

nitrogen are estimated.  Optimal levels of nitrogen for the alternative systems are then derived.  

Monte Carlo integration is then used to determine whether or not farmers should consider 

adopting a plant-based precision nitrogen fertilizer application technology.  Sensitivity analysis 

is used to provide insight into how the results change to slight changes in the model’s 

parameters.

Conceptual Framework

Expected profit maximization

The plant-based precision technology requires placing a nitrogen rich strip (NRS) in the 

field in the fall.  The NRS is fertilized with a non-limiting level of nitrogen fertilizer; that is, a 

level that will ensure that the yield of wheat growing in that strip will reach its plateau level 

(Frank, Beattie and Embleton; Grimm, Paris, and Williams; Waugh, Cate, and Nelson).

Normalized difference vegetation index (NDVI) sensor measurements of plants growing 

in the NRS and in nonNRS regions of the field are obtained in late winter (Tucker; Hockheim 

and Barber; Raun et al., 1999) and used within a nitrogen fertilizer optimization algorithm 

(NFOA) to compute the optimal level of nitrogen to apply to the growing wheat.  A concern 

regarding the NFOA is that it does not consider the price of nitrogen or the price of wheat.  In 
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addition, this particular technology faces a high economic hurdle because it was designed to use

urea-ammonium nitrate (UAN), which is historically a more expensive form of nitrogen fertilizer 

than anhydrous ammonia.    

The whole-field precision system uses a portable sensing device that collects NDVI 

sensor measurements of growing plants that is then entered into the NFOA to obtain the average 

whole field recommendation of nitrogen fertilizer.  Alternatively, the plant-based technology has 

been incorporated into a site-specific system that has the NFOA stored in a computer on board a 

self-propelled boom applicator that is equipped with a mix of optical reflectance sensors, 

computers, and spray nozzles.  The applicator assesses plant nitrogen need and applies discrete 

quantities of liquid nitrogen fertilizer on individual four square-foot grids on the go.  

Economic theory suggests that for a precision technology to be adopted into the on-farm 

production process, the adopters need to be convinced that it is substantially more profitable than 

the conventional system they are accustomed to using (Lowenberg-DeBoer).  Conceptually, the 

expected farm-level net return associated with the proposed precision technology is the 

difference between expected crop revenue (expected price times expected yield) and the total 

cost of nitrogen application (cost of nitrogen plus fixed application costs), or mathematically
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where t is net return to nitrogen application in field-year t; ity is wheat yield on grid i in field-

year t, T
itN is the amount of nitrogen on grid i in field-year t, P

itN is the level of preplant nitrogen 
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on grid i in field-year t, R
itN is the level of topdress nitrogen on grid i in year t, the symbol 

itORI represent optical reflectance readings taken on each grid and field-year, the 

symbol NRS
tORI represents optical reflectance readings taken off the NRS in year t, symbols 

RP rr and are the price of preplant and topdress nitrogen sources, respectively, symbols Pc and 

Rc are fixed costs for preplant application and topdress application, respectively, and

represents a vector of random error terms.  

The yield response function

A key element in equation (1) is the yield response to nitrogen function.  Because of the 

data limitations, the yield response function had to be developed and estimated in two parts.1  

The key assumption is that nitrogen is assumed to have the same influence (except for an 

efficiency adjustment) on ORI and in turn yield whether it is applied preplant or at time of 

sensing.  So, for the first part in developing our yield response function we define wheat yield 

response to optical reflectance information to be

(2) ,it it ity a bORI   

where ity is wheat yield in bushels per acre on grid i  in field-year t , symbols  and a b are the 

intercept and slope coefficient to be estimated, and the error term it is partitioned into an 

independently and identically distributed random error term *
it that has mean zero and 

variance *
2 ,


 and year random effect t that has mean zero and variance 2 .
2  

                                                
1 The available data have preplant applications of nitrogen, mid-season readings of ORI, and wheat yield.  

An ideal experiment would record ORI before applications of varying levels of nitrogen.  To-date, such 
an experiment has not been conducted.

2
The hypothesis of linear functional form could not be rejected at a 95% level of confidence in favor of an 

exponential functional form based on the J-test for nonnested models ).7899.||Pr,33.1,0:( 0  ttH 
(Greene, p. 302).
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Independence is assumed between the two variance components, and therefore the 

variance of the overall error term is *
2 2 2 .  

     The symbol itORI is defined as the NDVI 

reflectance reading taken on grid i  in field-year t  and is adjusted by the number of growing 

degree days.  It is assumed that itORI is quantifiable information that relates how much nitrogen 

is available to the plants at the time of sensing, which in turn provides information that is useful 

in quantifying how much additional nitrogen is needed to reach full yield potential.  

The wheat yield response to the optical reflectance information was defined in equation 

(2).  However, the relationship of primary interest for this study is the relationship between 

wheat yield and the total level of nitrogen, regardless of where it comes from (i.e., residual from 

previous year, released through soil mineralization, fertilizer application, rain, or lightning).  

Research suggests that a linear response plateau (LRP) function performs as well, if not better, 

than polynomial forms (Perrin; Lanzer and Paris), and that the LRP explained crop response to 

fertilizer at least as well, if not better, than polynomial forms (Grimm, Paris, and Williams;

Heady, Pesek, and Brown; Paris; Frank, Beattie, and Embleton; Chambers and Lichtenberg).  

A study conducted by Tembo, Brorsen and Epplin used data from a long-term winter 

wheat experiment (32-years) conducted in Oklahoma to estimate a LRP and a proposed 

alternative estimated as a linear response stochastic plateau (LRSP), where the plateau is 

assumed to be a year random variable that is distributed normally.  In their paper, they found that 

the LRSP function improved on the statistical accuracy of the estimates for the optimal level of 

nitrogen to apply to wheat.  Katibie et al. (2003) also utilized both LRP and LRSP functional 

forms to determine the effect of stocking density on wheat grain yield and average daily gain of 

steers using seven years of experimental data from a stocking density experiments conducted in 
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Oklahoma.  They used a likelihood ratio test and rejected the conventional LRP in favor of the 

LRSP function.

Katibie et al. (2005) point out that the primary difference between the LRP and the LRSP 

forms regards the nonrandom assumption for the plateau.  With an LRP the effect is treated as 

fixed and has often been specified using dummy variables.  Tembo, Brorsen, and Epplin argue 

that when estimating yield response functions using long-term panel data, it is more plausible to 

assume that the plateau is stochastic due to certain unknown factors over time such as differences 

in weather patterns, level of rainfall, and mineralization of the organic matter.  In addition to the 

assumption of a stochastic plateau, the Tembo, Brorsen, and Epplin model is a predictive model 

that allows for identifying unusually low or high yields by estimating random effects for each 

field-year. 

In the case of variable rate nitrogen application, such as the system that Raun et al. (1999) 

developed, each grid or space in the field is treated as an independent farm with each grid having 

its own plateau.  The plateau on each grid has two random components: a year random effect that 

is measured with the NRS and an element unique to the grid which is unknown unless measured 

using the sensors.  It is assumed that the plateau in each grid is random due to one or more 

unknown factors such as weather patterns, rainfall, and/or soil mineralization that all vary across 

years.  Additionally, the plateaus have randomness that results from unknown factors across 

space, such as uneven rainfall across grids, unequal levels of drainage, poor plant stand, and/or 

differences in the soil mineralization process that vary across grids within the field (mainly due 

to different soil types).  The nitrogen fertilizer optimization algorithm (NFOA) developed by 

Raun et al., (2002) implicitly assumes a LRSP function.  
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The second part, then, uses the approach provided by Tembo, Brorsen, and Epplin to 

develop and estimate a LRSP function that relates the level of nitrogen to optical reflectance 

information collected from growing wheat in late winter.  This relationship is defined as3

(3)
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where S
itORI is optical reflectance information observed in late winter on grid i in field-year t; 

 and  are the intercept and slope parameters to be estimated; A
itN  is the level of nitrogen that is 

available to the plant at the time of planting (this could be residual N from the previous year, 

from preplant fertilizer, soil mineralization, or from other possible sources such as rainfall and 

lightning); R
itN is the post-sensing level of nitrogen required in the spring that is necessary for the 

plants to produce the plateau level of yield; the symbols ittu and represent the year random 

effect and traditional random error component, respectively, and are both assumed to be 

distributed normal with a mean of zero and variances equal to ,and 22
 u respectively; and the 

plateau is defined as   itt
NRS
t vORIE  , which is equal to a constant average of sensor readings 

taken from the NRS plus a field-year random effect, vt, and a spatial plateau random 

effect, ,it that varies by grid.  The plateau random variables are assumed to be independently and 

identically distributed with means equal to zero and variances equal to, ,and 22
 v  respectively.

                                                
3

Note that equation (3) can not be estimated in its present state because observations for R
itN are not available.  That 

is, the spatial random component it can not be estimated because data are not available from experiments in 

which nitrogen treatments were applied after sensing.  Consequently, equation (3) is estimated using observations 

for preplant nitrogen only for A
itN , and assuming that the plateau spatial error component it is equal to zero.
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As previously mentioned, an important component of this paper is to develop a response 

equation that sufficiently describes the relationship between wheat yield and the total level of 

nitrogen that is necessary for the plants to reach their plateau yield.  The theoretical derivation of 

such a relationship can be accomplished in the following steps.  The first step is to develop an 

equation that relates the level of preplant nitrogen to optical reflectance information observed in 

the late winter.  This equation can be expressed as

(4)
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where P
itN is the level of preplant applied nitrogen on grid i in year t.  Equation (4) can be solved 

for the level of preplant nitrogen, which in this paper  is simplified by assuming that the total 

amount of nitrogen available to the plants at the time of sensing in late winter comes from a 

preplant source only (i.e., P
it

A
it NN  ).  The solution for this step is written as

(5) .


 tit
S
itP

it

uORI
N




The next step is to derive the relationship between the total level of nitrogen available to 

the plants and optical reflectance information observed post-topdressing.  The challenge here is 

that that post-topdressing sensor information is never observed with available data.  However, it 

seems reasonable to assume that optical reflectance information taken after topdressing nitrogen 

in late winter would be the same as the optical reflectance information would be (with an 

adjustment reflecting an expected gain in nitrogen use efficiency) if the same amount of nitrogen

had been applied before planting.  With this assumption, the solution obtained in equation (5) 

can be substituted into equation (4) and simplified.  Doing so yields the following
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where T
itORI represents post-topdressing optical reflectance information on grid i in field-year t in 

late winter, which is a function of the optical reflectance information taken prior to topdressing 

and hence represents the level of nitrogen available to the plants at that time.  However, the 

process is not complete because we are interested in a function that relates total nitrogen level 

(level of N available plus the level of N required for plants to yield at the plateau) to optical 

reflectance information.  This requires the addition of the variable representing the level of N 

required back into equation (6).  Completion of this step provides a function that relates the total 

level of nitrogen to optical reflectance information, or more formally
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The final step requires substituting equation (7) into the original yield function described 

by equation (2) to obtain the desired LRSP function.  This LRSP function is expressed as

(8)
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Equation (8) represents the production function that will be used to generate yields, levels of 

nitrogen, and expected profit estimates for the alternative nitrogen fertilizer management systems 

that are being compared in this study.
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Data and Estimation

Parameter estimates for equation (2) and equation (4) (assuming that it is equal to zero) 

are estimated using data gathered from eight on-farm winter wheat experiments conducted at six 

locations located on or near research stations throughout Oklahoma from 1998-2003.  The data 

set includes observations for wheat yield, optical reflectance information, and level of preplant 

nitrogen for a total of 624 site years useful for analysis.  Locations for each of the experiments 

included Haskell (Exp. #801), Hennessey (Hennessey AA), Lahoma (Exp. #508), Perkins (Exp. 

N x P, and Exp. N x S), Stillwater (Exp. #222 and Efaw AA), and Tipton (Exp. N x S).  The N 

rate by spacing (N x S) experiment at Perkins included only nitrogen and was initiated in 1996; 

however, only data for 1998 was used in this study.  The N rate by P rate (N x P) experiment at 

Perkins included both nitrogen and phosphorus from 1998 to 2003.  The Hennessey AA and 

Efaw AA experiments were designed as anhydrous ammonia fertility experiments.  Data were 

collected at Haskell (Exp. #801) from 1999 to 2002, and at Stillwater (Exp. #222 and Efaw AA) 

for five years from 1999-2003.  At Hennessey data were collected for 2000 and 2002.  At 

Lahoma, data were collected in 1999, 2000, 2002, and 2003, and at Tipton data were only 

collected in 1998.

 Soil types for each locations are: Haskell, Taloka silt loam (fine, mixed, thermic Mollic 

Albaqualfs); Hennessey, Shellabarger sandy loam(fine-loamy, mixed, thermic Udic Paleustolls); 

Lahoma, Grant silt loam (fine-silty, mixed, thermic Udic Argiustolls; Perkins, Teller sandy loam 

(fine-loamy, mixed, thermic Udic Argiustolls); Stillwater, Kirkland silt loam(fine, mixed, 

thermic Udertic Paleustoll); Stillwater-Efaw, Norge sitl loam (fine-silty, mixed, thermic Udic 

Paleustoll); and Tipton, Tipton silt loam (fine-loamy, mixed, thermic Pachic Argiustolls).
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In each of the experiments, winter wheat was planted at a 70 pounds per acre seeding rate 

using a 7.5 inch row spacing, excluding the S*N experiment at Perkins where spacing ranged 

from six inches to ten inches.  It was not reported in the paper how spacing affected yields for the 

Tipton (N x S) and Perkins (N x S) experiments.  In addition, the paper did not provide 

information regarding how phosphorus affected yield for the Perkins (N x P) experiment.  All 

field experiments where sensor and yield data were collected employed randomized complete 

block designs with 3 to 4 replications (depending on site).

Nitrogen rich strips were placed in each experimental plot prior to planting wheat in late 

September or early October.  All optical reflectance readings were taken during Feekes growth 

stages 4 (leaf sheaths beginning to lengthen) and 5 (pseudo-stem, formed by sheaths of leaves 

strongly erect) (Large).  Sensor measurements were taken from treatments with varying levels of 

N nutrition within each replication.  NDVI spectral reflectance was measured using a handheld 

sensor that included two upward and downward directed photodiode sensors that received light 

through cosine corrected Teflon windows fitted with red (671 ± 6 nm) and near-infrared (NIR) 

(780 ± 6 nm) interference filters developed by (Stone et al.).  

Consistent with different planting times and growing conditions, spectral reflectance 

readings were from wheat were collected from a 43.03 square-feet (4.0 square-meters) area 

under natural lighting either in January, February, March, April, or May.  Plots were harvested 

with a self-propelled combine and grain yield was determined from the same 43.03 square-feet 

area where spectral reflectance data were collected.  Additional information regarding the 

experiments can be found in Mullen et al. (2003).  

Parameters in equation (2) are estimated using a linear mixed effects model (PROC 

MIXED in SAS).  The presence of year random effects is tested using a likelihood ratio test.  
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The LRSP described in equation (3) is estimated using a nonlinear mixed effects model (PROC 

NLMIXED in SAS).  This is required because the randomness associated with year random 

effects (i.e., tv in equation 3) enters the response function non-linearly (Tembo, Brorsen, and 

Epplin).  The model illustrated in equation 3 is sufficiently designed to allow for the presence 

of plot-level plateau spatial randomness, which is denoted by it in equation 3.  A lack of data 

prohibits direct estimation of the plot-level plateau randomness; however, an alternative model 

will be simulated that allows for spatial random effects.  In the alternative model, a percentage 

of the random variation contained in the general error component ( it in equation 3) is 

subtracted and given to the plateau spatial error component ( it in equation 3).  The two models 

are compared to determine the effects of spatial variability on profitability.

Levels of Nitrogen

Equation (8) is used to compute the application levels of nitrogen fertilizer for each of 

several systems, including (System 1) an all-before-planting system based on an economically 

optimal level of nitrogen computed using the analytical approach provided by Tembo, Brorsen, 

and Epplin; (System 2) the portable plant-based precision system that gives a uniform, whole 

field recommendation; (System 3) the on-the-go variable rate precision system; (System 4) the 

plant-based NFOA system developed by Raun et al. (2004); (System 5) an all-before-planting 

system that represents the agricultural extension recommendation of 80 pounds per acre preplant 

system (i.e., two pounds of N per acre based on a 40 bushel per acre yield goal), and (System 6) 

an all-before-planting system that represents the average of what producers were actually found 

to be applying in the southern Plains (i.e., 63 pounds per acre) in a survey conducted in 2000 

(Hossain et al., 2004).  In addition, a check system (System 7) that has no nitrogen applied is 
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included.  Optimal application levels of nitrogen for systems 1, 2, and 3 are derived using the 

response function described by equation (3). 

Optimal level of preplant nitrogen

The approach used by Tembo, Brorsen, and Epplin is used to obtain the optimal level of 

nitrogen to apply in the fall prior to planting wheat, which is the traditional system for applying 

nitrogen fertilizer in the southern Great Plains region of the United States.  This process requires 

several steps.  To account for all nitrogen requirements applied in the fall prior to planting, we 

need to rewrite equation (3) as 

(9)  






















,if      

,

,if    

,

NRS
it

NRS
t

NRS
t

P
it

ittitt
NRS
t

P
it

NRS
t

NRS
it

P
it

itt
P
it

it

NORINN

uvORIE

NORINN

uN

ORI









where P
itN is the level of nitrogen applied to grid i in field-year t in the fall prior to planting 

(assumed to be the total level of nitrogen in this case), the symbols  and    represent intercept 

and slope coefficients to be estimated, NRS
tN is the plateau level of nitrogen.  Note, after the 

sample reflectance readings from the NRS have been taken with the sensors, and an average 

computed, then NRS
tN will be known. 

The next step is to substitute equation (9) into the yield function given by equation (2), 

which gives the following conditional wheat yield response to nitrogen function 
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Using the yield function described in equation (10) and following the analytical approach of 

Tembo, Brorsen, and Epplin, the optimal level of nitrogen to apply as a preplant in the fall  *P
itN

is 

(11) ,1
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 where 1( )F   is the inverse of the normal cumulative distribution function.  To complete the 

computation, the market price for preplant nitrogen  r  and the expected price of wheat  p are 

required, and the parameters,  and,,, ba can be replaced by their statistical estimates.  

Because *P
itN cannot be negative and ,  0,b   equation (11) is valid only if
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An optimal solution can be determined analytically only if a unique inverse exists for the 

prescribed cumulative distribution function.  First, we define
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where NRS
ity represents the yield that is generated on the NRS, which is expected to be the yield on 
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The next step is to obtain an approximate of the inverse in equation (11).  However, first 

convert )|( P
it

NRS
t

NRS
t NNyE  into a standard normal variant defined as ,  or more formally as
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it  )(1 *  is the observed probability in the right-hand tail of the 

(0,1)N distribution and )( *P
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The optimal level of preplant nitrogen to apply in the fall prior to planting is obtained by solving 

(15) for ,*P
itN which gives
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As an example, assume r = $0.15 and p = $3.00.  Further, assume that the slope estimate for b in 

equation 2 is equal to 7.5793 and that the slope estimate for  in equation 3 is equal to 0.031.  

Using these values we can see that .2128.0
)031.05793.700.3(

15.



   Because we are 

interested in a one-tailed test, we must subtract the 2128.0  from 0.5, which is equal to 

0.2872.  Unfortunately, the normal distribution function cannot be expressed in an easily 

invertible form; however, entering the one-tailed version into the NORMINV function in Excel 

provides us with an approximation of the unique inverse desired.  After  is known, solving 

equation (16) is straightforward.  Assuming that ,79.0  and that statistical estimates for 

,1947.7)(and,031.0,99.5,20.0,38.0  NRS
tv ORIE  then the optimal level of 

preplant nitrogen in equation (16) is equal to 58.52 pounds per acre.
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Optimal level of nitrogen for the portable handheld precision system 

In this section of the paper we derive a function that describes the uniform level of 

nitrogen fertilizer that is necessary for plants to produce at the yield plateau.  This system makes 

use of a portable, sensor that obtains average reflectance readings on both the NRS and on 

individual nonNRS grids throughout the field.  After sensing and the optical reflectance 

information is known, including information from the NRS, the plateau is no longer considered 

stochastic (assuming as we have that it is equal to zero), and therefore optimal levels of nitrogen 

can be determined using the standard formula for a deterministic plateau.  Intuitively, the optimal 

level of topdress nitrogen required in the late winter is the amount required to achieve the plateau 

yield.

Under this system, the level of nitrogen required to reach the plateau yield can be thought 

of as the difference between the level of nitrogen in the NRS and the level of nitrogen applied 

prior to planting, or
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where the level of nitrogen available in the NRS can be solved using equation (14) and written as
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and the level of preplant nitrogen can be solved using equation (9) and written as
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Subtracting equation (19) from equation (18) gives the optimal level of additional 

nitrogen required in the spring using the portable sensing system, and is written as
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Since the optical reflectance information given by the sensor measures the value of the plateau, 

the plateau is no longer thought of as stochastic and the deterministic solution is appropriate. 

Optimal level of nitrogen for variable rate application with perfect information

Determining the optimal level of nitrogen to apply on each grid for each field-year for the 

variable rate system is an important and challenging task.  One of the primary assumptions 

regarding the on-the-go system is that the cause of any low optical reflectance reading, whether it 

is from low nitrogen or from another physical factor such as poor soil or a poor stand, can be 

perfectly identified.  This is not achievable in practice at this time, but the NFOA is continually 

being tweaked based on ongoing research (e.g., Raun et al., 2005).  

If all information about plant nitrogen need is known with certainty (i.e., an 

unachievable, perfect information scenario) then the level of nitrogen required in the spring is 

thought of as the difference between the plateau yield and the yield at the intercept adjusted by 

the marginal product of nitrogen.  This solution is expressed more formally as

(21)
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This result can also be derived directly from the condition outlined in equation (8), and is 

considered optimal under a situation where perfect information about the random processes is 

known.  

The above result does not assume away uncertainty associated with unfavorable weather 

that may take place between the time of topdressing and the time of harvesting.  However, 
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unknowns associated with soil mineralization, technological problems with the sensors or 

computers on the system, and other potential problems such as weed and insect problems present 

at the time of sensing are assumed away.  It is unreasonable to assume certainty concerning the 

random processes, and therefore the results obtained from equation (21) are unachievable in 

practice.  However, the result does place a maximum threshold value on the on-the-go system, 

barring unusual weather events between topdressing and harvest.  Such a value would be useful 

to producers deciding whether or not to adopt the system.

Optimizing nitrogen using the nitrogen fertilizer optimization algorithm (NFOA)

The nitrogen fertilizer optimization algorithm (NFOA) developed by Raun et al. (2002) is 

used to determine how much nitrogen is needed in late winter during the topdress application 

season.  Following their work, the optimal level of nitrogen to apply using the plant-based 

precision technology, ,NFOA
itN  is defined as
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where is a constant that represents the level of nitrogen use efficiency (NUE) that is expected to 

be gained from applying only the level of nitrogen that is needed by the plants in the spring with 

none of it going unused as opposed to applying nitrogen prior to planting in the fall (Raun et al., 

2002 used an NUE of 0.70 in the NFOA), itYP0 is yield response to optical reflectance 

information and gives an estimate at the time of sensing for wheat yield potential when no 

additional nitrogen is added to the plants.  Mathematically, itYP0 has the following exponential 

functional form 

(23) ),exp(0 10 cORIcYP itit 
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where 0c and 1c are the intercept and slope parameters.4  The symbol itORI denotes the optical 

reflectance information taken in the spring on grid i in field-year t, and the symbol itYPN in 

equation (22) is defined as the yield potential when additional nitrogen fertilizer is applied in the 

spring at a level necessary to bring plant growth to the maximum potential.  More formally, it is 

written as

(24)
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where RI is a response index that is calculated as the ratio of optical sensor readings taken from 

the NRS to optical senor readings taken from an adjacent nonNRS strip of the field that 

represents growing wheat when nitrogen is limiting, or defined mathematically as
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and according to Raun et al. (2002), maxy is the maximum yield that is determined by the farmer, 

or previously defined as a biological maximum for the specific crop, and grown within a specific 

region, and under defined management practices (e.g., dryland winter wheat produced in central 

Oklahoma would be 104 bushels per acre.  Substituting equation (25) into equation (24) gives 
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4 Note that parameter estimates have been shifted one standard deviation out to the left in an effort by 

Raun et al. (2004) to describe a yield frontier.  Current estimates of c0 equal to 0.359 and c1 equal to 
324.4 describe the frontier.
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The NFOA is very similar to equation (8).  The main differences are that YP0 and YPN

are based on an exponential function, the plateau level is reduced when YP0 is low, and the 

value of  is more than double. In equation (22), corresponds to the marginal product of 

nitrogen  8equationinb which can be estimated from the data.

Simulation of Expected Net Returns

Equation (8) is simulated in two separate models to determine the expected net return 

from each of the alternative systems.  The first model assumes that no plateau spatial variability 

exists (i.e., it equal to zero), and the second model allows for plateau spatial variability by 

subtracting variance from the general error component it and allocating it to the spatial error 

component .it   Although this method is crude, it does provide us with an idea of how sensitive 

net returns are to the presence of spatial variability within the field-year.  

Net returns on 250 sample grids within each of 250 sample field-years were simulated 

using the following steps.  First, sample values for the error components in equation (8) are 

simulated using a random number generator.  Errors are assumed normally distributed with mean 

zero and estimated variances provided from the regression procedures used to estimate equations 

(2) and (3).  Intercepts, slopes, and expected value of optical reflectance information at the 

plateau are also provided from these regression procedures.  In addition to the error components, 

values of NRS
t

S
it ORIORI and are simulated for each grid and field-year of the sample.  Moreover, 

application costs, and prices for 82% NH3 and 28% UAN are included.  A zero level of N is 

assumed when expected net returns from application are negative on average over the entire 

field.

  The process for calculating sample values for the optical reflectance information from 

the nitrogen rich strip is
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and the process for calculating sample values for the optical reflectance information on an 

individual grid and field-year is described by equation (3).  Note, it has not been included in 

equation (25).  Because the NRS is assumed to cover a sufficiently large area of the field, the 

plateau spatial variability is assumed to average to zero given that a substantial number of 

readings are taken from it.

After sample values for the errors and the optical reflectance information are simulated 

for each grid and field-year, then the formulas for the optimal levels of nitrogen (i.e., equations 

(16), (20), (21), and (22)) for each of the alternative systems can be used to generate samples of 

optimal nitrogen rates for each grid in each field-year.  The yield response function defined in 

equation (8) is then used to calculate sample values for wheat yield for each system, grid, and 

field-year in the sample.  Net returns are then calculated as the difference between wheat revenue 

and cost of nitrogen and nitrogen application expenses for each grid in the field-year.  The Monte 

Carlo integration is then completed by averaging net returns across the sample of field-years for 

each system.  The differences in the average profits between the precision systems and the 

conventional systems provide an estimate for the value of the plant-based precision systems (e.g., 

the difference between the expected profit from the perfect information system and the expected 

profit from a uniform application of 80 pounds of nitrogen per acre provides an approximation 

for how much a winter wheat producer could pay for a variable rate application system).  

For each system, a long run average price of $3 per bushel was used for the expected 

price of wheat grain (USDA), and market prices of $0.15 and $0.25 per pound are used for 

anhydrous ammonia and 28% UAN, respectively (Oklahoma Department of Agriculture).

Gains in efficiency
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It is believed that some gain in efficiency will be obtained when the plant-based sensing 

technology is used instead of the traditional preplant systems.  However, it is not assumed as is 

by Raun et al. (2002) that a seventy percent gain (i.e., 70.0 ) is achievable.  For this study, we 

are assigning a twenty percent gain in efficiency to the marginal product of nitrogen, such that 

the slope parameter  is multiplied by an efficiency parameter   that is set equal to 1.2.  

Sensitivity analysis on the efficiency parameter and its effect on expected profits are presented 

later in the paper.  The efficiency parameter is assigned to equation (8) as well as for the optimal 

levels of nitrogen in equations (20), (21), and (22).

Results and Discussion

Regression estimates of equation (2) are presented in Table 1.  Rejection of the null 

hypothesis that no random effects exist were based on the likelihood ratio test.  Each of the 

parameters is significant at the .05 level.  Estimates of equation (3) are presented in Table 2.  The 

marginal product of nitrogen  2349.)031.5793.7( b  was smaller than that found by 

Tembo, Brorsen, and Epplin (0.3075), and is considerably smaller than the 0.7 assumed in the 

NFOA.  This result suggests that approximately 4.3 pounds of nitrogen should be applied to gain 

an additional bushel of wheat rather than the 3.25 pounds suggested by the Tembo, Brorsen and 

Epplin model.  

Expected yield, optimal levels of nitrogen, and expected profits for each system and 

without spatial variability are reported in Table 3.  As expected, the perfect information variable 

rate system had the largest expected profit of approximately $114 per acre.  Net return to 

nitrogen application for this system was approximately $3 greater than the average net return for 

the Tembo, Brosen and Epplin system.  A better comparison might be made between the perfect 

information variable rate system and the state recommendation of applying 80-pounds per acre 
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prior to planting in the fall.  The net return to nitrogen and nitrogen application for the state 

recommendation system was approximately $107 per acre, which is approximately $7 per acre 

lower than the perfect variable rate system.  

The portable system had an average net return of approximately $109 per acre, which 

was approximately $2 per acre more profitable than the state extension recommendation of 

applying 80-pounds per acre.  The portable system averaged $2 per acre less than that of the 

Tembo, Brorsen and Epplin system.  In this case, the cost saving of the precision technology 

could not outweigh the gains in additional yield predicted with the Tembo, Brorsen and Epplin 

system.  The portable system used 42% less N on average than the Tembo, Brorsen and Epplin 

preplant system, but the cost of N for the precision system was only $0.28 less than the cost of N 

for the Tembo, Brorsen and Epplin preplant system.  However, the additional yield obtained with 

the Tembo, Brorsen and Epplin preplant system relative to the portable system results from using 

a larger average uniform level of nitrogen (i.e., 57.35 pounds versus 33.3 pounds).  Using the 

average from a set of sensor readings taken from the farmer’s field to approximate the uniform 

level of nitrogen needed to achieve the yield plateau, some areas of the field will still receive less 

nitrogen than actually needed, keeping some yield in the field from reaching its potential plateau.

Another interesting comparison is the approximate $8 difference in net return between 

the perfect information variable rate system and the NFOA system.  This could be viewed as 

indication that further improvements could be made to the NFOA.  However, it is unlikely that 

the NFOA could be improved to the point that it performs as well as the perfect information 

system described in this paper.  Note that the marginal product of nitrogen for the NFOA is too 

high, and adjusting it down to the size of that found using the data, the NFOA outcome would be 

similar to that given by the profits for the 80 pounds per acre system.  Also, note that the 
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production function assumed in the simulation does not exactly match the production function 

assumed by the NFOA so the NFOA could do relatively better in real-world applications.

Plateau spatial variability is expected to exist within each of the field years resulting from 

random weather within a field and varying soil type.  Table 4 reports average yield, nitrogen, and 

expected profit for each of the alternative systems assuming that plateau spatial variability is 

present.  In this instance, 50 percent of the variability estimated in the general error component 

( it  in equation 3) has been subtracted and added to the plateau spatial error component ( it in 

equation 3).  The presence of plateau spatial variability does not have a large effect on the yields, 

levels of nitrogen, and expected profits.    

Sensitivity values for independent relative changes in the exogenous variables are 

reported in Table 5.  Note that the sensitivity analysis has been conducted on results that were 

calculated assuming that plateau spatial variability is equal to 25 percent of the total variability 

estimated for the general error component ( it in equation 3).  Sensitivity results indicate that as 

the marginal product of nitrogen increases (implying that the total level of nitrogen applied 

decreases) the value of the perfect variable rate system increases relative to the value of the state 

recommended system that applies 80-pounds of N per acre.  In addition, as the marginal product 

of nitrogen increases, the value of the NFOA system becomes more profitable relative to all 

other systems.  That is, a situation when less nitrogen is needed to obtain an additional unit of 

yield, the NFOA system becomes the preferred system. 

As expected, the value of the perfect variable rate system increases relative to the state 

recommended system as the price of NH3 increases relative to the price of UAN.  When the price 

of NH3 is increased to the point where it is equal to the price of UAN, the value of the variable 

rate system increased to approximately $11 per acre over that of the state recommended system.  
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The opposite relationship exists when the price of UAN increases relative to the price of NH3.  If  

the price of UAN increases to $0.50 per pound, holding the price of NH3 constant at $0.15 per 

pound, then the value of the state recommended system is approximately $1 per acre more 

profitable than the perfect variable rate system.  In this situation, a typical producer would not be 

interested in adopting the plant-based precision system.

 As the nitrogen use efficiency adjustment variable is increased, the value of the perfect 

variable rate system increases over the value of the state recommended system.  Note that when 

the NUE is adjusted upwards from 1.20 to 1.50, the average return of the portable system 

increases from approximately $106 per acre to $107.50, which is a value larger than the average 

net return for the state recommended system.  Also notice that the estimate for the NUE 

adjustment factor positively affects the expected profitability of the NFOA system.  

As the custom application cost for NH3 increases relative to the custom application rates 

for the alternative systems, then the value for the preplant systems is reduced.  Similarly, 

increases cost of custom applying uniform levels of UAN relative to the alternative systems 

would reduce the value of the portable system relative to the alternative systems.  Likewise, if 

custom variable rate application of UAN increases relative to the custom rates for the alternative 

systems, then the value of the perfect variable rate system will decline relative to the alternative 

systems.  

Summary and Conclusions

Panel data covering six years and seven locations in Oklahoma were used to estimate 

wheat yield response to nitrogen conditional on optical reflectance information taken from 

growing wheat plants in the spring.  A linear response stochastic plateau function was assumed 

to best fit the data.  Yield and net return were simulated on a large sample of independent grids 
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and field-years.  Under the assumption that the random processes are known perfectly, a 

maximum, unachievable value for the plant-based precision technology, over and above that of 

the conventional system, was found to be approximately $7 per acre.  The portable precision 

system was found to be approximately breakeven with the nitrogen application system that 

represents the 80-pound per-acre state extension recommendation.   

Previous economic research has shown that variable rate application technologies that are 

based on sampling the soil have not been profitable when all economic costs associated with the 

technology are included in the analysis.  A perfect information plant-based precision application 

technology had a value approximately $7 per acre above that of the conventional preplant 

system.  The implications of this finding would be more promising if the relative prices of 

nitrogenous fertilizers increase.  Currently, the plant-based precision sensing technology is 

available on a commercial basis, and is being promoted to increase net returns to nitrogen 

fertilization.  However, the findings of this study explain why adoption has been slow.  These 

findings also indicate that the optical sensing technology, including the nitrogen fertilizer 

optimization algorithm (NFOA), in many cases, does not apply enough nitrogen fertilizer, and 

therefore could be improved.  

In addition to the lack of substantial increases in producer net return, other factors may 

impede the adoption of this technology such as timing.  This specific technology applied all 

nitrogen in the spring as a topdress.  However, during this time adverse weather conditions can 

limit application to only a few days, and possibly prevent application altogether.

Limitations and Further Research

A limitation to the widespread adoption of this technology in the southern Plains regards 

the large number of acres that are grazed with stocker cattle in the winter months.  In the case of 
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grazing, nitrogen rich strips would have to be fenced off from livestock.  Plus, the technology 

requires a 14 day re-growth period before sensors measurements can be taken.  If livestock are 

not removed at the appropriate time, the window of opportunity for topdressing can narrow or 

become nonexistent.  This too, increases the risk of not being able to apply the necessary level of 

nitrogen when the plants use it the most efficiently.  As a result of these impediments, and the 

fact that the technology is only marginally profitable may explain the limits of its adoption.

Further research oriented at evaluating the possible economic benefits from using the 

site-specific system for nitrogen application and application of additional chemicals such as 

insecticides and herbicides needs to be investigated.
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Table 1. Regression of Wheat Yield Response on Optical Reflectance Information

Statistic Symbol Estimatesa

Intercept a -12.25
(3.52)

Optical reflectance b 7.57
(0.42)

Year random effect
2
 9.65

(2.58)

Error variance
2

*
 103.79

(5.57)
a Asymptotic standard errors are in parentheses.
Note, that the parameter estimates for equation (2) were estimated using PROC MIXED in SAS.

Table 1. Stochastic Linear Plateau Model of Optical Reflectance Information as a Function 
of Nitrogen

Statistic Symbol Estimatesa

Intercept α 5.99
(.1609)

Level of nitrogen  .031
(.3458)

Expected plateau ORI  NRS
tORIE 7.19

(.1958)

Nitrogen at expected plateau
NRS
tN . 58.52

(.1958)

Variance of plateau yield
2
v 0.39

(.1378)

Variance of year random effect
2
u 0.55

(.1614)

Variance of error term
2
 0.66

(.0385)
a Asymptotic standard errors are in parentheses.  
Note, the parameter estimates for equation (3) were estimated using NLMIXED procedure in SAS.  
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Table 2. Average Yield, Nitrogen, and Expected Profits from Alternative Nitrogen 
Management Systems without Plateau Spatial Variability

System

Estimate 0/0a 80/0b 63/0c 0/Portd TBE/0e 0/GSf 0/NFOAg

Average Yield 32.54 41.61 41.23 40.11 41.79 42.11 38.29

Average Nitrogen (lbs) 0.00 80 63 33.38 57.53 31.77 17.73

Average profit ($) 97.63 106.72 108.13 108.88 110.64 113.79 106.28
a the check system with no nitrogen added.
b the system that represents the state extension recommendation of 80 pounds per acre, or 2 pounds of nitrogen 

for each bushel of yield goal.
c the system that represents the average level of nitrogen applied in the state of Oklahoma that was reported by 

producers via a survey conducted in 2000.
d the system that represents the portable precision system where no nitrogen was applied prior to planting.
e the system that represents the analytical approach developed by Tembo, Brorsen, and Epplin to determine the 

optimal level of nitrogen to apply in the fall prior to planting.
f the system that represent the plant-based variable rate precision system that assumes perfect knowledge about 

the random processes.
g the system that represents the NFOA developed by Raun et al. (2004).

Table 4. Average Yield, Nitrogen, and Expected Profits from Alternative Nitrogen 
Management Systems with Plateau Spatial Variability

System

Estimate 0/0a 80/0b 63/0c 0/Portd TBE/0e 0/GSf 0/NFOAg

Average Yield 32.54 41.61 41.23 38.87 41.57 42.10 39.95

Average Nitrogen (lbs) 0.00 80 63 33.27 57.35 32.40 17.65

Average profit ($) 97.63 106.72 108.13 105.01 109.15 113.92 105.25

Note that plateau spatial variability of 50% is assumed to come from the general error component, .it
a the check system with no nitrogen added.
b the system that represents the state extension recommendation of 80 pounds per acre, or 2 pounds of 

nitrogen for each bushel of yield goal.
c the system that represents the average level of nitrogen applied in the state of Oklahoma that was 

reported by producers via a survey conducted in 2004.
d the system that represents the portable precision system where no nitrogen was applied prior to planting.
e the system that represents the analytical approach developed by Tembo, Brorsen, and Epplin to 

determine the optimal level of nitrogen to apply in the fall prior to planting.
f the system that represent the plant-based variable rate precision system that assumes perfect knowledge 

about the random processes.
g the system that represents the NFOA developed by Raun et al. (2004).
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Table 3. Sensitivity Values for Independent Relative Changes in MPN, Prices of Nitrogen, 
NUE Adjustment, and Custom Application Costs

System

Parameter
Coefficient/

Price 0/0a 80/0b 63/0c 0/Portd TBE/0e 0/GSf 0/NFOAg

0.114 97.63 100.48 99.68 97.00 101.99 105.43 99.75Marginal Product of 
Nitrogen 0.189 -------- 105.74 106.30 103.81 107.87 111.96 103.15

0.234* -------- 106.72 108.13 105.80 109.86 113.88 105.97
0.303 -------- 106.99 109.31 107.67 111.86 115.69 110.34
0.531 -------- 107.00 109.55 110.44 115.11 118.35 125.13
0.682 -------- 107.00 109.55 111.26 116.15 119.14 135.01

Price of NH3 ($/lb) 0.15* 97.63 106.72 108.13 105.80 109.86 113.88 105.97
0.20 -------- 102.72 104.98 -------- 107.14 -------- --------
0.25 -------- 98.72 101.83 -------- 104.66 -------- --------
0.30 -------- 94.72 98.68 -------- 102.41 -------- --------

Price of UAN ($/lb) 0.20 -------- -------- -------- 107.46 -------- 115.49 106.85
0.25* 97.63 106.72 108.13 105.80 109.86 113.8 105.97
0.30 -------- -------- -------- 104.14 -------- 112.28 105.09
0.40 -------- -------- -------- 100.83 -------- 109.10 103.38
0.50 -------- -------- -------- 97.55 -------- 105.95 101.78

1.20* 97.63 106.72 108.13 105.80 109.86 113.88 105.97
1.50 -------- -------- -------- 107.46 -------- 115.55 109.73

Nitrogen Use Efficiency 
Adjustment

2.00 -------- -------- -------- 109.43 -------- 117.16 116.08

6.11* 97.63 106.72 108.13 105.80 109.86 113.88 105.97Custom, Uniform NH3

Application Rates 7.00 -------- 105.84 107.25 -------- 108.98 -------- --------
8.00 -------- 104.84 106.25 -------- 107.98 -------- --------

3.74* 97.63 106.72 108.13 105.80 109.86 113.88 105.97Custom, Uniform UAN 
Application Cost ($/acre) 4.00 -------- -------- -------- 105.58 -------- -------- --------

5.00 -------- -------- -------- 104.75 -------- -------- --------

5.01* 97.63 106.72 108.13 105.80 109.86 113.88 105.97
6.00 -------- -------- -------- -------- -------- 113.02 105.17

Custom, Variable Rate 
Application Cost ($/acre)

7.00 -------- -------- -------- -------- -------- 112.16 104.42
8.00 -------- -------- -------- -------- -------- 111.33 103.74

Note, sensitivity analysis has been conducted on the results that were calculated assuming that plateau spatial 
variability τit is equal to 25% of the total variability estimated for the general error component ηit.

a the check system with no nitrogen added.
b the system that represents the state extension recommendation of 80 pounds per acre, or 2 pounds of nitrogen for 

each bushel of yield goal.
c the system that represents the average level of nitrogen applied in the state of Oklahoma that was reported by 

producers via a survey conducted in 2004.
d the system that represents the portable precision system where no nitrogen was applied prior to planting.
e the system that represents the analytical approach developed by Tembo, Brorsen, and Epplin to determine the 

optimal level of nitrogen to apply in the fall prior to planting.
* the baseline values for parameters.
f the system that represent the plant-based variable rate precision system that assumes perfect knowledge about 

the random processes.
g the system that represents the NFOA developed by Raun et al. (2004).


