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This paper analyzes the influence of error-term specification and functional form on a
quarterly demand model for beef. The Box-Cox transformation is used to generalize the func-
tional form while the equation error term is postulated to be both heteroskedastic and autore-
gressive. Results indicated that both functional form and error-term specification can play a
major role in elasticity estimation, elasticity behavior, and hypothesis testing.

The monotonic transformation intro-
duced by Box and Cox has become a pop-
ular tool for both discriminating among
alternative functional forms and provid-
ing added flexibility in model specifica-
tion. Most empirical analyses employing
the Box-Cox transformation (BCT) have
assumed that the model error term is
homoskedastic and nonautoregressive.
However, more recent evidence suggests
that error specification is at least as im-
portant as functional form when the trans-
formation is applied to the dependent
variable. Savin and White have shown that
estimating BCT models without specify-
ing an autocorrelated error structure can
yield both inefficient estimators and er-
roneous results of hypothesis tests. Zar-
embka has shown that if the true under-
lying error term is heteroskedastic, then
the maximum likelihood estimator of the
dependent variable's BCT parameter is
biased in the direction which tends to
make the estimated error term more ho-
moskedastic. This can result in inconsis-
tent estimators for all model parameters.
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One way to avoid this limitation is to relax
the homoskedastic assumption of the
model and estimate simultaneously the
functional form and error-term specifica-
tion. Subsequent statistical tests can then
be performed to test for the significance
of heteroskedasticity. This approach is in
accordance with Zarembka's suggestion
that it is important to ascertain the ro-
bustness of parameter estimates to hetero-
skedasticity.

Several studies have independently ex-
amined the roles of autocorrelation and
heteroskedasticity in Box-Cox type models.
These include Savin and White, Lahiri and
Egy, Blaylock et al., and Blaylock and
Smallwood (1982). However, we are un-
aware of any empirical studies which have
considered these problems jointly. Our ob-
jective is to investigate the influence of
functional specification, autocorrelation,
and heteroskedasticity on the parameters
of a quarterly demand function for beef.'
We examine these factors, using a struc-

1Other studies which have used the transformation
of variables technique to analyze meat demand in-
clude Chang, Hassan and Johnson, and Kulshresh-
tha. Following these studies, we assume that com-
modity price is exogenous. In addition, single
equation demand models should be interpreted as
approximations to a more complete system of equa-
tions.
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Specification in Demand Models

tured statistical model, to ascertain their
effects on the estimated demand equation
and subsequent price and income elastic-
ities.

General Model Development

The Box-Cox transformation for any
positive variable W is defined as

W(X)' = (W^ - 1)/Xw,

= In W,

Xw - 0

X, -O (1)

where X, is a parameter to be estimated.
A desirable property of the BCT is that,
with the addition of a single parameter,
X,, one obtains a general class of power
transformations, including several that are
frequently used in empirical analyses. For
example, if X, = 1 one obtains the linear
transformation, if X, = 0 one obtains the
logarithmic transformation, and if X, = -1
one obtains the inverse transformation.
The BCT is typically employed in econo-
metric models of the form

K

Yty) = + Z kXtk) + Ut (2)
k=l

for each observation t, where ut is the
equation error term, Yt is an endogenous
variable, Xkt (k = 1, 2, . . ., K) are exoge-
nous variables, /k (k = 1, 2, . . ., K) are
coefficients on the transformed exogenous
variables, Xy and Xk (k = 1, 2, ... , K) are
BCT parameters, and a is a constant.
Hence, the Box-Cox model provides a
convenient framework for allowing both
increased model flexibility and a means
for discriminating among many of the
commonly used "classical" functions.2

Specification of the error structure for
ut is required for estimation of equation
(2). With few exceptions, the error term
in Box-Cox models is assumed to be in-
dependently, identically, and normally
distributed, with E(ut) = 0 and E(u 2) = -2

2 The "classical" functions include linear, double-log,
semi-log, inverse, and the log-inverse.

for all t. However, imposition of these
conditions is unnecessarily restrictive and
may lead to inconsistent parameter esti-
mators if the underlying error structure
violates these assumptions.3 Furthermore,
given Zarembka's result that the estimator
of the Box-Cox transformation parameter
on the dependent variable is biased in the
direction which tends to stabilize the error
variance, the predicted errors cannot be
used ex post facto to test for heteroske-
dasticity. A solution to this problem is to
allow more flexibility in the specification
of the error structure.

We assume in this analysis that the error
distribution can be adequately described
by structures suggested by Gaudry and
Dagenais (heteroskedasticity) and Savin
and White (autocorrelation).

We make the assumption that if u, is
heteroskedastic, it can be expressed as

ut = [f(Zt)] vt (3)

where Z is an exogenous variable used to
explain the heteroskedasticity. We also as-
sume E(v,) = 0, E(v 2) = V2 and E(vZt) = 0.
The functional form we select for f(Zt) is

ut = [exp{bZz)}}]'2v t (4)

where a BCT (X,) has been applied to the
variable which is postulated to stabilize
the error variance. It follows that

E(u 2) = Wt = {26ZXZ)}. (5)

Many of the traditional empirical spec-
ifications of heteroskedasticity are special
cases of equation (5). For example, Park's
specification

WOt = VZt

is obtained from equation (5) by setting

3 If the value of the transformation parameter on the
dependent variable is known a priori, then least
squares estimators can be used to obtain consistent
estimators of the remaining model parameters. It is
for this reason that estimators of the "classical" forms
are consistent in the presence of heteroskedasticity
while estimators obtained from direct estimation of
the transformation parameters are inconsistent if
the error variance is heteroskedastic.
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X = 0. The classical univariate form

ct = 2Zt

is obtained by setting X = 0 and 6 = 1. The
homoskedastic case is obtained from
expression (5) by setting 6 = 0.

To allow and test subsequently for the
presence of autocorrelated residuals in the
model, we assume that the vt's follow a
stationary first-order autoregressive pro-
cess of the form

Vt = Ppvt- + Wt (6)

where wt is assumed to be a normally, in-
dependently, and identically distributed
random-error term with zero mean and a
constant variance oa2. 4 It should be noted
that the error term in Box-Cox models
cannot be strictly normal because the
transformation can be applied only to pos-
itive variables. However, Draper and Cox
have shown that estimates of the transfor-
mation parameters are robust to nonnor-
mality if the error distribution is reason-
ably symmetric.

Beef Model

The regression model we propose for
estimating the quarterly demand for beef
can be written as

YtyI = a + X tOkXtk)
k=l

3

+ yrDr + ut (7)
r=l

where the sample period (t = first quarter,
1960, through fourth quarter, 1979) and
variable specifications were chosen only
for expository purposes and the following
definitions apply:

Yt : per capita consumption of
beef and veal (Source: Live-
stock and Meat Situation)

4The models were originally estimated under the
assumption of first- and fourth-order autocorrela-
tion. The fourth-order autocorrelation coefficient was
not found to be significant, but the data did indicate
a significant first-order autocorrelation.
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Xt : retail price index of beef and
veal (Source: Livestock and
Meat Situation) divided by the
Consumer Price Index (CPI,
1967 = 100, source: Bureau of
Labor Statistics)

X2t : Retail price index of pork di-
vided by CPI (Source: Live-
stock and Meat Situation)

X3t : retail price index of poultry
divided by CPI (Source: Poul-
try and Egg Situation)

X4t : retail price index of fish di-
vided by CPI (Source: Bureau
of Labor Statistics)

X5t : index of per capita disposable
income divided by CPI
(Source: Survey of Current
Business)

D1, D2, D3: seasonal dummies for the sec-
ond, third, and fourth quar-
ters of the calendar year, re-
spectively.

Prices and income are divided by the CPI
to approximate homogeneity of degree
zero in the demand function. The dummy
variables enter linearly for ease of esti-
mation. 5

Estimation

The demand equation defined in
expression (7), together with the structure
of the error term given in expressions (4)
and (6), is estimated via nonlinear maxi-
mum likelihood procedures.6 Briefly, the
estimation procedure is outlined as fol-
lows. First, note that the Jacobian of the
transformation from Y(Xy) to the Yt's is giv-
en by

5 The effects of dummy variables on the original de-
pendent variable are difficult to interpret. The in-
terested reader is referred to Blaylock and Small-
wood (1983).

6 A general discussion of the derivation of likelihood
functions and the role of the Jacobian can be found
in Theil or Kmenta.
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TABLE 1. Estimated Transformation, Autocorrelation, and Heteroskedastic Parameters.

Autocor- Hetero-
Transformation Parameters relation skedasticity

Model 3y X, X2 X3 X4 X5 P 6 Xz -LLa

BC 1.73 1.73 1.73 1.73 1.73 1.73 0.0 0.0 193.3
BCA -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 0.67 0.0 213.1
BCAH 0.60 0.60 0.60 0.60 0.60 0.60 0.57 3.41 7.57 215.8
BCG -0.71 1.47 17.59 4.71 6.32 -0.30 0.0 0.0 217.1
BCGA -0.31 2.55 -8.10 2.42 6.97 -5.91 0.64 0.0 223.0
BCGAH 0.24 2.58 -6.70 3.68 9.48 -4.64 0.63 1.56 7.83 223.8
a Value of the log-likelihood function.

N

I JI = I det((dY/)/0Y,)| = Yxy-1. (8)
t=i

The likelihood function corresponding to
the beef model is written as7

N

L = 11 (1/-IV)[Y /f(Z)]
t=2

*exp{-(1/2a2)[(St// ft(Zj)

- p(St_/Vf(Z))]2}. (9)

where
5

St = Y - a - kXL'k)
k=1

- rDr (10)
r=l

and

f(Z,) = exp{ 6Z(X)} (11)

The log-likelihood function corresponding
to equation (9) is written as

LL = [(N - 1)/2]ln(a 2)
N

+ (X - 1) ln(Yt)
t=2

N

-1/2 ln[f (Zt)]
t=2

N

- (1/2a-2) 1 [St/Vf(Zj
t=2

- p(St_,/Vf(Z_))]2 + c (12)

where c is a constant.

7 It is recognized that the effect of the first observa-
tion is lost. However, to recapture its effect would
impose a severe computational burden.

The log-likelihood function is then con-
centrated on a2, a, and the 3's in order to
reduce the number of parameters to be
estimated directly by a nonlinear optim-
izing algorithm. 8

Empirical Results

The linear, double-log, semi-log, in-
verse, and log-inverse functions have been
shown to be special cases of the general
Box-Cox model (e.g., see Savin and White).
The linear and double-log forms are spe-
cial cases of the Box-Cox model when both
the dependent and independent variables
are transformed identically. Each of the
"classical" type forms was estimated both
with and without the assumption of first-
order autocorrelation. The following vari-
ations of the Box-Cox model were esti-
mated:

BC: Model with the same BCT ap-
plied to both dependent and in-
dependent variables. The desig-
nations BCA and BCAH will be
used to denote the autoregressive
and heteroskedastic-autoregres-
sive versions, respectively;

BCG: Model with all the variables trans-
formed differently. The defini-
tions of BCGA and BCGAH are
as above.

8 A computer program written by Liem was used in
this analysis. The program uses the Fletcher-Powell
algorithm.
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TABLE 2. Summary of Nested Specifications.

General
Specification Restricted Version(s)

Autocorrelated
"classical"
forms "Classical" forms [1]

BC Linear [1], Double-log [1]
BCA Linear [2], Double-log [2], Auto-

correlated linear [1], Autocorre-
lated double-log [1], BC [1]

BCAH Linear [3], Double-log [3], Auto-
correlated linear [2], Autocorre-
lated double-log [2], BC [2],
BCA [1]

BCG "Classical" forms [6], BC [5]
BCGA "Classical" forms [7], Autocorre-

lated "classical" forms [6], BC
[6], BCA [5], BCG [1]

BCGAH "Classical" forms [8], Autocorre-
lated "classical" forms [7], BC
[7], BCA [6], BCAH [5], BCG
[2], BCGA [1]

Note: Values in brackets refer to the number of inde-
pendent parametric restrictions placed on the gen-
eral specification used to obtain the restricted form(s).

The transformation parameters, auto-
correlation coefficients, parameters of the
heteroskedastic structure, and the maxi-
mum values of the log-likelihood func-
tions for the alternative Box-Cox models
are presented in Table 1.9 Income was
found to be the most appropriate variable
to stabilize the error variance as measured
by increases in the log-likelihood function.
Thus, Zt in the above notation is Xs,.

To compare statistically the fit of the
various functions, the maximum likeli-
hood ratio test is used. This test is appro-
priate since many of the models are nest-
ed. A model is considered to be a nested
version of another if the simpler of the
two models can be obtained by appropri-
ately restricting the coefficients of the

9 The residuals from all models were analyzed via a
Box-Jenkins procedure. The residuals appeared to
behave as white noise after correction for first-order
autocorrelation.

72

TABLE 3. Summary of Chi-square Test Re-
suits.

Unrestricted Accepted Restricted
Specification Specification(s)a

Autocorrelated
"classical"
forms None

BC Double-log
BCA Linear Ab, Double-log A
BCAH Double-log A, BCA
BCG None
BCGA None
BCGAH BCGA

a Accepted at the 0.05 significance level.
b Denotes that the function was estimated with first-

order autocorrelation.

more general model. For example, the
"classical" forms are nested or special cases
of their respective autocorrelated forms
when p = O; the linear and double-log
functions are nested versions of the BC
model when the transformation parame-
ter is restricted to 1 and 0, respectively;
and the BC model is a special case of the
BCAH model when p = 0 and 6 = 0. A
summary of the nested specifications is
given in Table 2.

The likelihood ratio method was used
to test the null hypothesis that no signifi-
cant difference existed between the models
which are nested versions of each other.
The likelihood ratio is defined as

0 = L(R)/L(UR) (13)

where L(R) is the restricted likelihood
function, which corresponds to the sim-
pler case of the more general function
represented by the likelihood function
L(UR). It can be shown that minus two
times the logarithm of the likelihood ratio
is asymptotically distributed as a chi-
square random variable with the degrees
of freedom corresponding to the number
of independent parametric restrictions
placed on the unrestricted model used to
obtain the special case (Theil). Statistical
analysis of the nested models involves
comparing the calculated test statistics
with the tabulated values of the chi-square
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variable at the 0.05 significance level (with
the appropriate degrees of freedom).

A summary of the chi-square test re-
sults is presented in Table 3. Results in-
dicated that the autocorrelated "classical"
functions were a significant statistical im-
provement vis-a-vis their nonautocorrelat-
ed counterparts. The BC model was not
statistically different from the double-log
form while the BCA model was a statis-
tical improvement over the linear, dou-
ble-log, and BC functions. The autocor-
related double-log form and the BCA were
the only restricted versions of the BCAH
model that were accepted. The general-
ized models (i.e., BCG, BCGA, and
BCGAH) were a statistical improvement
over all their respective nested specifica-
tions, except the BCGA model, which the
chi-square test failed to reject as signifi-
cantly different from the BCGAH equa-
tion. In the case of the beef equations,
correcting for nonspherical residuals as
well as further generalizing the Box-Cox
model by adding additional BCT param-
eters has significantly altered the hypoth-
esis test results.

In some cases, the change in the mag-
nitude of the transformation parameters
was substantial. For example, the BCT on
the dependent variable changed from
1.73 for the BC model to 0.24 for the
BCGAH model. There was even more
variation in the transformation parame-
ters associated with the independent vari-
ables. The BCT on income changed from
-0.30 for the BCG to -4.64 for the
BCGAH model. The autocorrelation coef-
ficient, p, appeared relatively stable as did
the parameters associated with the heter-
oskedastic structure.

In general, the transformation param-
eters indicate whether the underlying
variable has resulted in a convex or con-
cave transformation. If the transformation
parameter is greater than one, this indi-
cates that the transformed variable is a
convex function of the original variable,
and if it is less than one, the function is

concave. The Box-Cox model can also be
interpreted as a linear functional form
with variational parameters (Hassan and
Johnson). This interpretation indicates how
the linear approximation must adjust to
explain the sample data.

It is also interesting to note that only
the BC, BCAH and BCGAH models sat-
isfy the mean convergence criterion out-
lined by Huang and Grawe. This criterion
is satisfied if the BCT on the dependent
variable lies outside the interval -1 <
BCT < 0. Satisfaction of this criterion is
important to ensure that the conditional
expectation of the untransformed depen-
dent variable (that is, conditional on the
deterministic part of the model) exists.
This is an important issue if one attempts
to calculate elasticities based on the ex-
pected value of the dependent variable.
In Box-Cox models, this expected value is
not necessarily given by the deterministic
part of the model.

In summary, the general BCGAH ap-
pears to be the most satisfactory quarterly
beef model based on chi-square tests and
the mean convergence criterion. This lends
supporting evidence to the contention that
functional and error-term specification
need to be considered simultaneously.
Further evidence is provided by analyz-
ing the estimated elasticities from the al-
ternative models.

Elasticities, evaluated at the sample
means, for the alternative models are pre-
sented in Table 4. The own-price elastic-
ity appears to be relatively robust as to
both application of the BCT parameters
and error-term specification. The income
elasticities, however, varied widely among
the models. For example, the income elas-
ticity estimated from the parameters of
the BCGAH model was 0.44 compared to
0.89 for the BCAH specification and 0.80
for the autocorrelated linear function. The
"classical" forms appeared to overesti-
mate the beef income elasticity compared
to the elasticity from the BCGAH model.
This is important if the elasticities are to
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TABLE 4. Estimated Elasticities.a

Model Own Price Income

Linear -0.50 0.83
Linear Ab -0.47 0.80
Double-log -0.49 0.86
Double-log A -0.50 0.74
Semi-log -0.51 0.77
Semi-log A -0.52 0.65
Inverse -0.51 0.71
Inverse A -0.52 0.63
Log-inverse -0.48 0.79
Log-inverse A -0.50 0.71
BC -0.49 0.98
BCA -0.50 0.71
BCAH -0.51 0.89
BCG -0.52 0.87
BCGA -0.46 0.37
BCGAH -0.47 0.44

a Elasticities were evaluated at the sample means.
b Denotes autoregressive model.

be used for policy analysis or projecting
demand because the elasticities from the
"classical" forms would severely overes-
timate the effect of income changes on
beef demand.

Another criterion for selecting among
the alternative beef equations is the be-
havior of the elasticities as beef prices or
income changes. Chang argues that "the
income elasticity for a specific food, like
meat, generally should be falling rather
than rising" as consumption rises in re-
sponse to increased income. This requires
that the first derivative of the income elas-
ticity (EI) with respect to income be neg-
ative. This condition can be expressed for
the BCG models as

(X - XE,) < 0

and as

Xy(1 - EI) < 0

for the BC models. The only quarterly beef
models that satisfied these conditions were
the semi-log, inverse, log-inverse, BCA,
BCGA, and BCGAH models.

It may also be reasonable to expect that
the price elasticity (Ep) at a given income
level will rise in absolute value as beef

prices increase. This condition can be ex-
pressed for the BCG and BC models as

(X1 - XEp) > 0 and y(1 - Ep) > 0,

respectively. This condition is satisfied only
by the semi-log, linear, BC, BCAH, and
all BCG models.

It is also reasonable to assume that the
price elasticity will fall in absolute value
at a given price as income and consump-
tion increase. Likewise, it is reasonable that
the income elasticity will rise at a given
income level as beef prices rise and con-
sumption falls. It can be shown (see Gem-
mill) that these conditions on elasticity be-
havior can be satisfied only if the
transformation parameter on the depen-
dent variable is greater than zero. Among
the various models examined, only the BC,
BCAH, BCGAH, linear, inverse, and semi-
log models satisfied these conditions.

Consequently, only the semi-log and the
BCGAH functions satisfy all of the above
conditions for elasticity behavior believed
to characterize the demand for beef.
Hence, based on the chi-square tests and
satisfaction of both the mean convergence
criterion and elasticity conditions, the
BCGAH model appears to be the best
function of those considered for analyzing
the quarterly demand for beef.

Conclusions

This paper has demonstrated, via a
quarterly demand model for beef, several
key points concerning the Box-Cox func-
tional form and its error-term specifica-
tion. We provided a specific example to
show that some a priori assumptions con-
cerning the distribution of the error term
can lead to inconsistent parameter esti-
mators. Our results revealed that in quar-
terly beef models the specification of the
error term can be at least as important as
the functional form for hypothesis testing
and elasticity estimation. Generalizing to
other applications of Box-Cox models, the
following conclusions appear applicable
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for researchers employing flexible func-
tional forms:

1. Autocorrelated residuals, which are
likely to occur when time-series data
are used, should be corrected in the
Box-Cox models.

2. The analytic form of heteroskedasticity
should be estimated simultaneously
with the nonstochastic (i.e., fixed) part
of the model.

3. Transforming the dependent and in-
dependent variables identically as op-
posed to using a different transforma-
tion parameter on all model variables
can play a crucial role in hypothesis
testing and elasticity estimation.

4. The transformation parameters can
vary widely in magnitude; thus care
should be taken not to overly restrict
the parameter range if the grid-search
method is employed for estimation.

We recommend that results from
models employing the Box-Cox transfor-
mation be viewed with skepticism unless
proper analysis of the error term is con-
ducted.
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