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Abstract 

In Markov-switching regression models, we use Kullback-Leibler (KL) divergence between the 
true and candidate models to select the number of states and variables simultaneously.  In 
applying Akaike information criterion (AIC), which is an estimate of KL divergence, we find 
that AIC retains too many states and variables in the model.  Hence, we derive a new information 
criterion, Markov switching criterion (MSC), which yields a marked improvement in state 
determination and variable selection because it imposes an appropriate penalty to mitigate the 
over-retention of states in the Markov chain.  MSC performs well in Monte Carlo studies with 
single and multiple states, small and large samples, and low and high noise.  Furthermore, it not 
only applies to Markov-switching regression models, but also performs well in Markov-
switching autoregression models.  Finally, the usefulness of MSC is illustrated via applications 
to the U.S. business cycle and the effectiveness of media advertising. 
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1. Introduction 

Economic systems often experience shocks that shift them from their present state into 

another state; for example, nations lurch into recession, government regimes change over time, 

and financial markets exhibit bubbles and crashes.  These states tend to be stochastic and 

dynamic: if they occur once, they probably recur.  To capture such probabilistic state transitions 

over time, Markov-switching models provide an analytical framework.  In economics, Markov-

switching models have been used for investigating the U.S. business cycle (Hamilton 1989), 

foreign exchange rates (Engel and Hamilton 1990), stock market volatility (Hamilton and 

Susmel 1994), real interest rates (Garcia and Perron 1996), corporate dividends (Timmermann 

2001), the term structure of interest rates (Ang and Bekaert 2002a), and portfolio allocation (Ang 

and Bekaert 2002b), among others.  Outside of economics, Markov-switching models find 

application in diverse fields such as computational biology (e.g., Durbin et al. 1998 for gene 

sequencing), computer vision (Bunke and Caelli 2001), and speech recognition (Rabiner and 

Juang 1993).  

To estimate Markov-switching models, Baum and his colleagues (Baum and Petrie 1966, 

Baum et al. 1970) developed the forward-backward algorithm, which was extended to 

encompass general latent variable models under the expectation-maximization (EM) principle 

(see Dempster, Laird and Rubin 1977).  If the number of states in Markov-switching models is 

known, the EM algorithm yields consistent parameter estimates, and statistical inference 

proceeds via standard maximum-likelihood theory (e.g., Bickel, Ritov and Rydén 1998).  If the 

number of states is not known, however, the likelihood ratio test to infer the true number of 

states breaks down because regularity conditions do not hold (see Hartigan 1977, Hansen 1992, 

Garcia 1998).   
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The number of states is often not known a priori, so we propose applying Kullback-

Leibler (KL) divergence to determine it.  We note that KL divergence has been used in various 

model selection contexts (see, e.g., Sawa 1978, Leroux 1992, Sin and White 1996, Burnham and 

Anderson 2002). Specifically, Akaike’s information criterion (AIC, see Akaike 1973) provides 

an estimate of KL distance but, in Markov-switching models, it misleads the users into selecting 

too many states (see Section 4.2).  Consequently, one fits spurious regressions in nonexistent 

states; this misspecification results in incorrect inclusion of variables, which reduces the 

accuracy of estimated parameters and lowers the precision of model forecasts. Hence, the 

problem of simultaneous determination of the number of states to retain in the Markov chain and 

the variables to include in the regression model for each retained state remains open.   

The objective of this paper is to develop a new information criterion for simultaneous 

selection of states and variables in Markov switching models.  To accomplish this goal, we 

obtain an explicit approximation to the KL distance for the class of Markov switching regression 

models.  The resulting Markov switching criterion (MSC) imposes an appropriate penalty, and so 

it mitigates the over-retention of states in the Markov chain and alleviates the tendency to over-

fit the number of variables in each state.  Moreover, in Monte Carlo studies, MSC performs well 

in single and multiple states, small and large samples, and low and high noise.  Finally, it not 

only applies to Markov-switching regression models, but also performs well in Markov-

switching autoregression models.    

We present two empirical applications of MSC to understand (a) the business cycles in 

the US economy and (b) the effectiveness of media advertising.  In the business cycle 

application, based on the minimum MSC value, we retain a three-state model for US GNP 

growth with one recessionary state and two expansionary states.  The second expansionary state 
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occurred mostly after 1984, and it exhibits slower growth, lower volatility, and longer duration 

than the first one.  This finding supports the notion of “great moderation” (see Kim and Nelson 

1999a, McConnell and Perez-Quiros 2000, Stock and Watson 2003).  In the advertising 

application, MSC suggests the retention of a two-state Markov-switching model for sales and 

advertising of the Lydia Pinkham brand; the results reveal new insights not discernible from the 

standard regression model.   

We organize this paper as follows.  In Section 2, we describe the model structure and 

estimation algorithm for multiple state Markov-switching models.  We derive the information 

criterion in Section 3 and investigate its properties and performance under various conditions in 

Section 4.  Section 5 presents empirical applications to business cycles and media advertising.  

Section 6 concludes the paper by identifying avenues for future research.   

 

2. Estimating N-state Markov-switching models 

We present the model structure, establish notation, and briefly describe the estimation of 

Markov-switching regressions, conditional on knowing the number of states N.   

2.1 Model structure 

Consider an N-state Markov chain.  Let ts  denote an N × 1 selection vector with elements 

sti = 1 or 0, according to whether the Markov chain resides in the state i ( Ni ,...,1= ).  The 

unobserved state vector st evolves according to an ergodic Markov chain with the transition 

probability matrix 
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where )1|1( ,1 === + tijtij ssprp  and 11 =∑ =
N
j ijp  for every Ni ,...,1= .  We define the ergodic 

probabilities of the Markov chain by the vector ,),...,( 1 ′= Nπππ  where 11 =∑ =
N
i iπ .   

At time t, when the chain is in state i (i.e., 1=tis ), we observe the dependent variable yt  

according to the regression model  

tiiitt xy εσβ +′= ,                 (2) 

where )1,0(~ Ntiε  is independently distributed over time ,,...,1 Tt =  tx  contains K explanatory 

variables, and the K × 1 vector βi denotes their marginal impact when the chain is in the state i.  

If the chain moves to the state j, the marginal impact of exogenous variables is βj with the 

corresponding level of noise 2
jσ .  To capture this “switching” in regression models, we rewrite 

(2) as follows: 

ttttt ssxy εσβ +′=                 (3) 

where ),...,( 1 Nβββ = , ),...,( 1 Nσσσ = , and the selection vector ts  indicates the state at time t.  

The matrix β and vector σ have dimensions K × N and 1 × N, respectively.  Equations (1) and 

(3), together, constitute the N-state Markov-switching regression model.  When xt includes 

lagged values of yt, we obtain the N-state Markov-switching autoregression model (e.g., 

Hamilton 1989).  Next, we describe an EM algorithm to estimate this model. 

2.2 EM algorithm  

Suppose we observe the complete data, including the sequences of both the observed 

variables },...,1:),{( TtxyY tt =′=  and the state variables },...,1:{ TtsS t == .  Then the complete 

data log-likelihood function Lc is 
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where )/)(exp()2(),;( 22
2
12/12

iittiiiti xyyf σβπσσβ ′−−= −  is the density of yt conditional on 

1=tis  (see McLachlan and Peel 2000, p. 329).   

In the E-step, we evaluate the expectation of Lc with respect to the unobserved latent 

states S, given the observed data Y and provisional estimates of .θ   Let lθ denote the provisional 

estimates at the l-th iteration, and ],|[);( l
c

l YLEQ θθθ = .  Because Lc is linear in sti, jtti ss ,1+ , 

and s1i, we obtain 
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where ),|( ,1
)( l

jtti
l

tij YssE θτ +=  and ),|()( l
ti

l
ti YsE θξ = .  To compute ),( )()( l

ti
l

tij ξτ , we apply the 

forward-backward algorithm (e.g., McLachlan and Peel 2000, p. 330), which yields 
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The “forward” probabilities ati are given by the forward recursion 
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and the “backward” probabilities btj are given by the backward recursion 
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We initialize these recursions by setting );( 1
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),...,( )()(
1

)( ′= l
N

ll πππ  is the principal eigenvector of ππ =)(lP .   

   In the M-step, we maximize ),( lQ θθ  with respect to ),,( Pvec σβθ =  to obtain the 

closed form estimates for the (l+1)-th iteration: 
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where ,),...,( 1 ′= TxxX  ,),...,( 1 ′= Tyyy  ),( )()( l
i

l
i diagW ξ=  ,),...,,...,( )()()(

1
)( ′= l

Ti
l

ti
l
i

l
i ξξξξ  and 

).( )()( l
i

l
i WtrT =   Using the provisional estimates ,lθ  we obtain the new estimates 

),,( )1()1()1()1( ++++ = llll Pvec σβθ  via the equations (10) through (12).  We iterate the E- and M-

steps until the absolute difference |θ(l+1) − θ(l)| decreases below a preset tolerance.  The resulting 

vector )ˆ,ˆ,ˆ(ˆ Pvec σβθ =  converges to the maximum likelihood estimates, which are consistent 

and asymptotically normal (Bickel, Ritov and Rydén, 1998).  For finite sample properties, see 

Psaradakis and Sola (1998). We close this section with two remarks.    

Remark 1. We enhance the stability of this algorithm as follows. First, to avoid 

singularities in the likelihood function and reduce the chance of spurious local maxima, we 

follow Hathaway’s (1985) suggestion to set a lower bound on the relative variances across states.  

Second, to prevent underflow of forward probabilities in (8), for each t and i = 1,…, N, we 

follow Leroux and Puterman’s (1992) recommendation to scale ati with a constant r such that 

∑ =
− N

i ti
r a110  lies between 0.1 and 1.0 and then multiply it by .10 r−   Because ati, appears in both 

the numerator and denominator of (6), the value of )(l
tijτ  does not change.  Similarly, we prevent 
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underflow of backward probabilities in (9).   

Remark 2.  This EM algorithm enables the estimation of Markov-switching models with 

many observations because the forward-backward method is linear in T.   Furthermore, because 

both the E- and M-steps are available in closed form, the EM algorithm is robust to numerical 

uncertainties encountered by quasi-Newton methods.  For example, Hamilton (1990, pp. 40-41) 

notes that “…methods that seek to approximate the sample Hessian can easily go astray …By 

contrast, the EM algorithm by construction finds an analytical interior solution to a particular 

subproblem.”  Nonetheless, like quasi-Newton methods, the EM does not guarantee convergence 

to global maxima (see McLachlan and Krishnan 1997, p. 34).   Finally, the EM algorithm can 

also be used to obtain Bayesian modal values by augmenting the expected complete data 

likelihood with the logarithm of prior density; see Dempster, Laird and Rubin (1977, p. 6) for 

this connection between EM and Bayesian analysis and Kim and Nelson (1999b, Ch. 9) for 

implementation in Markov-switching models.  

 

3. Deriving Markov-switching criterion 

In the above estimation, the number of states N is assumed known, which need not be the 

case in practice.  To determine the number of states, we approximate the true data generating 

process (DGP) using several candidate models, quantify the information loss between the DGP 

and each candidate model, and then choose the model that entails the minimum expected 

information loss (e.g., Burnham and Anderson 2002).  Specifically, let )( *Yg  denote the 

probability density function of the DGP and );( * θYf  be the density function for a candidate 

model, where Y* represents the data used for evaluating the model.  As in Sawa (1978) and Sin 

and White (1996), we quantify information loss using the Kullback-Leibler (KL) divergence, 
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which is defined as 









θ

=θ
);(

)(log);,( *

*

*
Yf
YgEfgd YKL ,             (13) 

where 0≥KLd , and )(* ⋅
Y

E  denotes the expectation with respect to the data generating density g.  

Equation (13) measures the divergence between the two densities g and f, indicating the 

information loss entailed when we approximate the DGP using a candidate model.  Recently, 

Zellner (2002, p. 43) interprets dKL as the difference in expected log heights of the two densities; 

for other divergence measures, see Rényi (1970) or Linhart and Zucchini (1986, p. 18). 

  The information loss in (13) depends on the model parameters θ.  In practice, we evaluate 

(13) at θ̂  obtained by fitting the candidate model f with the observed sample Y.  To remove the 

dependence of (13) on the particular sample Y, we adopt Akaike’s (1985) approach to average 

KLd  across different independent samples Y drawn from the same DGP and choose a model that 

minimizes the expected information loss:  

))]),ˆ;([log(())])([log((
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)(log)ˆ;,(
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θ
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θ

YfEEYgEE
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YgEEfgd

YYYY
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=

          

where EY(⋅) indicates expectation with respect to the density g which generates the estimation 

sample, Y.    

Because )])([log(( *
* YgEE

YY  remains invariant across all candidate models (i.e., constant 

across different choices of f ), it is sufficient to select the model that minimizes 

))])ˆ;([log((2)ˆ;,(~~ *
* θθ YfEEfgdd

YYKLKL −== ,         (14) 

where the dependence on g arises from the double expectation, and the multiplication by two is 
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for convenience.  To derive an estimator for KLd~ , we consider the Markov-switching regression 

model in (1) and (3) in which xt does not contain lagged dependent variables.   In the Appendix, 

we simplify (14) and obtain the Markov-switching criterion, 

∑
= −−

+
+−=

N

i iii

iii

KT
KTTYfMSC

1 2ˆ
)ˆ(ˆ

))ˆ,(log(2
λδ
λ

θ ,          (15) 

where ))ˆ,(log( θYf  is the maximized log-likelihood value, ),ˆ(ˆ
ii WtrT =  ),ˆ,...,ˆ(ˆ

1 Tiii diagW ξξ=  

]ˆ/[ *
iii E ππδ = , ])ˆ/[( 2*

iii E ππλ = , and *
iπ  is the i-th element of the principal eigenvector of 

*** ππ =P for the best estimates )];(log[minarg),,( *****
* θσβθ θ YfEPvec

Y
−== .  The 

subsequent remarks elaborate the properties of MSC and its implementation in practice.     

Remark 3.  The first term of MSC measures the lack of fit; its second term imposes a 

penalty for including redundant states and variables.  Thus, MSC balances the trade-off between 

improving a model’s fit to the data and achieving parsimony of the fitted model.  To select the 

candidate model, we compute (15) for varying choices of states and variables (N, K) and retain 

the one that attains the smallest value.   

Remark 4.  In regression models without Markov switching, MSC is equivalent to both 

Hurvich and Tsai’s (1989) criterion in finite samples and Akaike’s (1973) criterion in large 

samples.  Specifically, in regression models, 1=== λδN , and so MSCN=1 +−= ))ˆ,(log(2 θYf  

),2/()( −−+ KTKTT  which equals Hurvich and Tsai’s (1989, p. 300) AICC criterion.  

Furthermore, by subtracting T from MSCN=1, we obtain +− ))ˆ,(log(2 θYf  

)},2/(){1(2 −−+ KTTK  which approaches Akaike’s (1973) AIC )1(2))ˆ,(log(2 ++−= KYf θ  in 

large samples.  Thus, the proposed MSC generalizes the applicability of these criteria to N-state 

Markov-switching regression models. 
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Remark 5.  When 1>N , MSC imposes penalty through ]ˆ/[ *
iii E ππδ =  and 

])ˆ/[( 2*
iii E ππλ = .  Because the distribution of iπ̂  is not known, to implement MSC, we 

investigate the behavior of ]/[ *
iii E ππδ =  and ])/[( 2*

iii E ππλ = , where ∑= =
− T

t tii sT 1
1π  and 

*][ iiE ππ = .  For iδ , we invoke Jensen’s inequality to obtain ]/1[*
iii E ππδ =  1][/* =≥ ii E ππ .  In 

other words, a lower bound for iδ  is unity, which yields a larger value of MSC than would result 

from any other δi > 1.  For iλ , we applied Gabriel’s (1959) formula for the distribution of iπ  to 

compute iλ  for various N×N transition matrices P.  These computations indicated that iλ  is an 

increasing function of the number of states N.  Using these results, we set δi = 1 and λi = 1, N, 

and 2N  to implement MSC.  In Section 4, Monte Carlo simulations show that MSC with δi = 1 

and Ni =λ  performs satisfactorily.   

Remark 6.  The application of MSC in (15) is not specific to the EM algorithm; it can be 

used in conjunction with other estimation approaches.  For example, one could obtain 

))ˆ,(log( θYf  via quasi-Newton methods and find iT̂  using the smoother in Hamilton (1990) or 

Kim (1994).  Thus, the value of MSC in (15) can be computed to determine states and variables 

jointly.   

Remark 7.  We obtained average KLd  to remove dependence of (13) on the estimation 

sample Y.  Alternatively, we can consider the possibility of averaging by using a posterior 

density for θ and a predictive density for Y*.  This approach may provide better results in 

small samples, an issue that needs further investigation.  

Remark 8. Bates and Granger (1969) and Leamer (1978) suggest combining multiple 

models rather than selecting the single best one.  To this end, Burnham and Anderson (2004, 
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pp. 269-274) recommend computing  minMSCMSCkk −=∆   for each model fk relative to the 

model that yields the minimum MSC value, and then use the weights 
∑ ∆−

∆−
=

k
k

k
kw

)5.0exp(
)5.0exp(  to 

conduct multi-model inference.  Furthermore, to assess degrees of confidence in alternative 

models, Burnham and Anderson (2002, p. 170) offer the following guidelines: ∆k between 0-2 

indicates a substantial empirical support for the model fk; ∆k between 4-7 suggests 

considerably less support; ∆k > 10 implies essentially no empirical evidence in favor of that 

model (also see Raftery (1996, p. 252) for guidelines when using Bayes factors).  Finally, 

alternative approaches for incorporating model uncertainty include forecast combinations 

(Timmermann 2005), Bayesian model averaging (e.g., Hoeting et al. 1999), frequentist model 

averaging (Hjort and Claeskens 2003), and adaptive mixing of methods (Yang 2001). 

Remark 9.  We note that model comparisons based on AIC are asymptotically equivalent 

to those based on Bayes factors when prior information is as precise as the likelihood (Kass and 

Raftery 1995, p. 790).  When prior information is small relative to the information contained in 

data, the Bayesian information criterion (BIC) tends to select models with highest posterior 

probability.  In investigating the number of states to retain in Markov-switching autoregressive 

models, Psaradakis and Spagnolo (2003, p. 246) conclude that BIC tends to underestimate the 

number of states. We encourage further research to investigate such comparisons using the 

proposed MSC.  

Remark 10.  Here we elucidate the theoretical justification for using Kullback-Liebler 

divergence in model selection.  In information theory, Shannon’s (1948) entropy is defined as 

∑−
x

xpxp ))(log()(  for a discrete random variable with probability mass function p(x).  

Generalizing Shannon’s entropy to two continuous density functions g and f, Kullback and 
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Leibler (1951) quantify “information” by defining dxxfxgxgdKL ∫= ))(/)(log()(  and by 

connecting it to R. A. Fisher’s notion of sufficient statistics.  Akaike (1973, 1985) not only 

extends Kullback-Leibler information to quantify expected information loss 

(i.e., )]]([log([ xfEE− ), but also deepens the connection with likelihood theory (see deLeeuw 

1992) by showing that (a) the maximized log-likelihood value is a biased estimate of expected 

information loss, and (b) the magnitude of asymptotic bias equals the number of estimable 

parameters in the approximating model f.  These theoretical findings furnish the justification for 

using KL divergence as a bridge between estimation theory and model selection, thereby 

unifying them under a common optimization framework (for further details, see Burnham and 

Anderson 2004, p. 268).   

 

4. Monte Carlo studies 

Here we describe the simulation settings as well as the model selection procedure, and 

then we present Monte Carlo results to illustrate the properties and performance of MSC.  We 

also explore the applicability of MSC to Markov-switching autoregression models. 

4.1 Simulation settings and model selection procedure 

We investigate the following five settings:   

(i) Markov-switching regression:  The true model consists of two states (N0 = 2) and three 

variables in each state including an intercept. The true regression coefficients are 

),( 0
2

0
1

0 βββ = , where )3,2,1(0
1 ′=β  and )2,3,4(0

2 ′=β . The explanatory variables are 

stored in the T × 3 matrix 0X , whose first column equals one and second and third 

columns are randomly drawn from a standard normal distribution. The 0N × 1 state 
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variable 0
ts  is a Markov chain with transition probabilities: 95.00 =iip  and 05.00 =ijp  for 

each i, j = 1, 2. We obtain the dependent variable using the model in (3), 

000000 )( ttttt ssxy εσβ +′= , where 0
tx  denotes the t-th row of 0X , t = 1, 2, …, T = 250, 

)1,0(~0 Ntε , and )5.0,5.0(),( 0
2

0
1

0 == σσσ .   

In each state, we consider five candidate variables, which are stored in the matrix X of 

dimension T × 5.  The first three columns of X are the same as 0X , and we randomly 

draw the last two columns from the standard normal distribution. We consider four 

candidate states (i.e., N = 1, …, 4), and the candidate regression models include up to five 

variables from X in a sequentially nested fashion.  Thus, we have 20 possibilities (4 states 

by 5 variables) from which to choose the true model.   

(ii) Markov-switching regression with small sample and high noise: We consider two 

variations from the settings in (i).  First, to study small sample performance, we conduct 

the above simulations using T = 100.  Second, we set 10 =iσ  for both T = 100 and 250 to 

understand the effect of a higher noise level.   

(iii) Markov-switching autoregression:  We conduct the simulation in (i) for autoregressive 

models, where the t-th rows of 0X  and X contain (1, yt-1, yt-2), and (1, yt-1, yt-2, yt-3, yt-4), 

respectively, for t = 5, 6, …, T. The true coefficients, )3.0,2.0,1(0
1 ′=β  and 

)2.0,5.0,3(0
2 ′=β , satisfy the stationarity condition.  

(iv) Markov-switching autoregression with small sample and high noise: Analogous to (ii), 

we investigate two variations from the settings in (iii).  

(v) Single state model: We investigate the case with 0N = 1 to examine whether MSC leads 

to spurious Markov-switching structure when the true model is a standard regression. For 
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fixed regressors, we use )3,2,1(0 ′=   β ; for autoregression, )3.0,2.0,1(0 ′=β .  

We conduct 1000 repetitions in each of the above settings to assess how often MSC selects the 

true model. 

We employ the following model selection procedure for each of the 20 state-variable 

combinations {(N, K): N  = 1, …, 4, K = 1, …, 5}.  First, we choose initial parameter values 

using the K-means method (MacQueen 1967) to classify observations in the matrix (y, X) into N 

states.  Then, we apply the EM algorithm to estimate the Markov-switching regression model.  

Next, we compute MSC in (15).  We also constrain the term )2ˆ( −− KT iii λδ  in (15) to exceed 

unity in each realization to ensure positive penalty.  Finally, we select the model that yields the 

smallest MSC value across all the 20 state-variable combinations. 

4.2 Monte Carlo results 

Here we present one figure and five tables to illustrate the accuracy and performance of 

MSC.  In addition, we substantiate the claim that AIC overestimates the number of states in 

Markov-switching models. 

Accuracy of MSC.  We assess the accuracy of MSC by computing its proximity to the 

true KL distance. To this end, we estimate the true KL distance KLd~  in (14) using the three steps: 

(a) randomly draw an estimation sample Y to obtain the EM estimates θ̂ ; (b) draw a holdout 

sample Y* to evaluate ))ˆ;(log( * θYf ; (c) perform 100 repetitions with different holdout samples 

Y*’s to estimate ))]ˆ;([log( *
* θYfE

Y
.  We repeat the steps (a)-(c) 100 times for different 

estimation samples Y to evaluate the double-expectation in (14).    

Figure 1 presents the proximity plots for the MSC values from (15) using Ni =λ  for the 

setting (i) in Section 4.1.  Panel A presents the results for state selection. It shows that both MSC 



 

 

 

15

and KLd~  achieve their minimum at the true number of states, i.e., N0 = 2. Furthermore, MSC and  

KLd~  are close when ,0NN ≤  while MSC exceeds KLd~  when .0NN >   In other words, MSC 

approximates KLd~  reasonably well and imposes a larger penalty when the number of states 

exceeds those in the data generating process. This larger penalty mitigates overestimation of the 

number of states.  Panel B, which presents the results for variable selection, depicts that MSC 

and KLd~  are uniformly close.  Thus, for the purposes of model selection, the proposed MSC 

reasonably approximates the Kullback-Leibler distance.   

Performance of MSC.  We investigate the simultaneous selection of states and variables 

in Markov-switching regression models (see the setting (i) in Section 4.1). We assess the 

performance of a criterion by the relative frequency of selecting various states and variables, 

while the measure of accuracy is how often the criterion selects the correct number of states 

that were used in the DGP. Table 1 reports the frequency of correct state and variable selection 

using MSC with λ = 1, N and 2N . (Note that the subscript i on λ is suppressed in the rest of the 

paper.)  For λ = 1, Panel A shows that incorrect model selection is asymmetric. Specifically, the 

zeros in Panel A reveal that MSCλ=1 never underestimates the number of states or variables.  But, 

MSCλ=1 correctly selects two states 360 times and three variables 666 times out of 1000 

occasions.  Consequently, the joint frequency of selecting the correct states and variables is only 

30.9%.  Despite this unsatisfactory performance, we note that the conditional frequency of 

variable selection ),,,0,0( 360
22

360
29

360
309  is satisfactory.  This finding can be explained using Panel B 

of Figure 1, which shows that MSC estimates the true KL distance accurately when the number 

of states is known.  More importantly, this finding underscores the insight that the model 

selection performance can be improved if we determine the true states accurately.  To this end, 
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we investigate the performance of MSC with λ = N and 2N  as stated in Remark 5.   

For λ = N, Panel B indicates a marked improvement in model selection performance.  

Specifically, MSCλ=N correctly selects the two-state model in each of the 1000 realizations.  We 

explain this improvement using Panel A of Figure 1, which exhibits that MSCλ=N imposes larger 

penalty than the KL distance, thus mitigating the tendency to fit too many states.  Moreover, we 

find diminishing returns to further increases in penalty via λ = 2N  because performance 

improves marginally beyond that due to MSCλ=N (see Panel C in Table 1).   

Table 2 demonstrates the robustness of these findings via the simulation setting (ii).  

When we increase the noise level from 5.00 =iσ  to 1, the performance of MSCλ=1 further 

deteriorates.  The joint frequency of correctly selecting both the states and variables decreases 

from 309 to 124.  In contrast, MSCλ=N and 2MSC
N=λ

 perform well, as evidenced by the small 

decrease in the joint frequency from 992 to 981 and from 1000 to 998, respectively.  In other 

words, these small decreases indicate that the performance of both the criteria do not deteriorate 

substantially as the noise level increases. We observe qualitatively similar findings when the 

sample size decreases from T = 250 to 100.  It is worth noting that MSCλ=N is less sensitive to 

noise level in small samples than 2MSC
N=λ

.  Specifically, as the noise level increases for T = 

100, the joint selection frequency of MSCλ=N decreases by 4.6% (from 951 to 907) compared to 

13.9% for 2MSC
N=λ

 (from 861 to 741).  In other words, MSCλ=N outperforms MSCλ=1 and 

2MSC
N=λ

 when both the sample size is small and the signal is weak.   

We repeat the above analyses for the Markov-switching autoregression models described 

in the setting (iii).  Table 3 reports the joint selection frequency by MSC with λ =1, N, and N2 in 

1000 realizations.  As before, incorrect model selection is asymmetric; MSCλ=1 never understates 
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the number of states and seldom underestimates the number of variables.  MSCλ=N outperforms 

MSCλ=1 with 979 correct selections out of 1000 occasions (see Panel B in Table 3).  This 

superior performance is due to the penalty imposed by MSCλ=N, which mitigates the tendency to 

fit excessive states.  We can marginally improve this performance from 979 to 984 by using a 

stronger penalty via λ = N2 (compare Panels B and C in Table 3).    

Table 4 shows that these findings are robust to various scenarios in the setting (iv).  As 

the noise level increases in large samples, MSCλ=1 performs poorly, whereas MSCλ=N and 

2MSC
N=λ

 perform satisfactorily as evidenced by smaller decreases in the joint frequency.  We 

obtain qualitatively similar results for the small sample case.  Moreover, MSCλ=N is less sensitive 

to the noise level in small samples than 2MSC
N=λ

; for example, the correct selection frequency 

of MSCλ=N decreases by 46% (from 744 to 402) compared to 99.4% for 2MSC
N=λ

 (from 171 to 

1).  Thus, MSCλ=N outperforms MSCλ=1 and 2MSC
N=λ

 when both the sample size is small and 

the signal is weak.   

Single-state model. While MSC detects Markov switching when it does exist, can MSC 

reject Markov switching when it does not exist?  To answer this question, we examine the setting 

(v) and use MSC to select the number of states (but not variables).  In Table 5, Panels A and B 

show the correct selection frequency for the fixed regressor and autoregression settings, 

respectively.  We find that MSCλ=1 performs poorly regardless of the noise level or the sample 

size.  However, the last two columns indicate that MSCλ=N and 2MSC
N=λ

 correctly select a 

single-state model more than 90% of the occasions.  Thus, MSCλ=N and 2MSC
N=λ

do not yield 

spurious Markov-switching structure when the true model is a standard regression. 

We close this section by substantiating the claim in the Introduction that the AIC-based 
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estimate of KL divergence retains too many states and variables.  We compute AIC 

dyf 2)ˆ,(log2 +−= θ , where )( 2NNKd +=  denotes the number of free parameters in θ .  For 

the sake of illustration, we use the low noise and large sample setting (ii), which is favorable for 

AIC. Table 6 reveals that AIC selects more states and variables than in the DGP and that the 

correct joint selection frequency is only 48.1%.  Thus, by using AIC in practical applications, 

users stand about equal chance to retain a correct or an incorrect model; when it is the latter, they 

would fit spurious regressions in non-existent states.  We next present two empirical examples to 

illustrate the usefulness of MSCλ=N in practice.  

 

5. Empirical examples 

We first study the business cycle in the US economy and then the effectiveness of media 

advertising.  

5.1 U.S. real GNP growth 

Hamilton (1989) was first to formulate the Markov-switching autoregression model to 

capture business cycles in real GNP.  In his formulation, the mean GNP growth rate switches 

between two states: recessions and expansions. Hansen (1992) extends this model to allow both 

the mean growth rate and the autoregressive coefficients to switch between states.  We study this 

extended model, which is given by equations (1) and (3), where ),,,,1( 4321 ′= −−−− ttttt yyyyx  and 

yt is quarterly real GNP growth in chained 1996 dollars.  We use seasonally adjusted data that 

span the period 1947:1 through 2002:4 (see http://www.bea.doc.gov).  We exclude 16 quarterly 

observations (1999:1 to 2002:4) from the estimation sample and use these excluded observations 

to evaluate one-quarter-ahead forecasts. The estimation sample comprises T = 203 observations 

because we also exclude 5 observations for computing the growth rate and the initial lagged 
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values.   

We apply the EM algorithm described in Section 2 to these data, and consider various 

state-variable combinations (N, K), where N = 1, …, 4 and K = 1, …, 5.  We estimate 20 

different N-state Markov-switching autoregression models and compute the two estimates of KL 

divergence: AIC and MSCλ=N.  Based on the minimum AIC value, we would select a model with 

N* = 4 and K* = 5, which is the largest model in this set of 20 candidate models.  This finding is 

consistent with the simulation evidence (see Table 6), which reveals AIC’s tendency to select 

more states and variables than necessary.   

On the other hand, the minimum value of MSCλ=N yields N* = 3 and K* = 1, indicating 

the retention of the three-state model with no autoregressive lags (i.e., intercepts only).  Table 7 

reports the parameter estimates for this retained model, which identifies one recessionary state (i 

= 1) and two expansionary states (i = 2, 3).  The estimated decline in real GNP during recessions 

is −0.10% per quarter; the mean growth rates during the two expansion states are 1.50% and 

0.85% per quarter.   

In Figure 2, we present the estimated smoothed probability sequence )ˆ,...,ˆ(ˆ
1 ′= Tiii ξξξ  

based on (7) and overlay it with the recessionary periods (in gray bars) noted by the National 

Bureau of Economic Research.  Panel A shows that the estimated probability of recession 

reasonably matches the actual recessions.  Panels B and C display the two types of expansions. 

The first type occurred exclusively before 1984, while the second occurred mostly during the 80s 

and the 90s.  Because 91.0ˆ42.0ˆ 23 =<= σσ , the recent expansionary state (i = 3) exhibits lower 

volatility than the previous one (i = 2).  This finding supports the phenomenon of great 

moderation  first discovered by Kim and Nelson (1999a) and McConnell and Perez-Quiros 

(2000)  which is characterized by a reduction in the variance of economic growth since 1984.  
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We compare the forecasting performance of this retained model to that of a benchmark 

model that specifies Ln(GNP) as a random walk with constant drift.  Over the period 1999-2002, 

the mean squared forecast errors are 0.351 and 0.433 for the retained model and the random walk 

model, respectively.  In addition, the mean absolute forecast error was 0.539 for the retained 

model and 0.546 for the random walk.  The retained three-state Markov-switching model 

performs well because it adapts to the recession in 2001, whereas the random walk model does 

not (see Figure 2).    

5.2 Advertising effectiveness  

In marketing, brand managers commonly use the advertising model, 

tttt yzy εβββ +++= −1
)2()1()0( , to determine the effectiveness of advertising (Bucklin and 

Gupta 1999, p. 262), where yt denotes brand sales at time t, zt represents advertising spending, 

and εt is the normal error term.  The coefficient )1(β  measures the effectiveness of current 

advertising; the coefficient )2(β , known as the carryover effect, captures the cumulative impact 

of past advertising reflected in the attained sales yt-1 (see, e.g., Palda 1964, p. 13).  We extend 

this advertising model by incorporating regime shifts so that the parameter vector  

),,( )2()1()0( ′= iiii ββββ  is specific to each regime i = 1, …, N.  This extension marks the first 

application of Markov-switching models in the advertising literature (see Feichtinger, Hartl and 

Sethi 1994, Mantrala 2002, Naik and Raman 2003).   

We apply this extended model to Lydia Pinkham company’s annual sales and advertising 

data from 1914 through 1960 (Palda 1964).  This classic data set exhibits a few unique features:  

relatively stable product design during this period; advertising primarily affects sales, given the 

absence of channel members or sales force; and the lack of close competitors.  These market 

conditions comport with the above advertising model.  Furthermore, after the second World War 
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ended, Lydia Pinkham management demonstrated the product’s efficacy to the Federal Trade 

Commission (FTC), which permitted them to make stronger claims in their advertising copy.  

Moreover, they switched from pure newspaper advertising to a mix of multiple media, which 

comprised newspaper, magazine, radio, and even television.  (See Palda 1964, pp. 25-26 for 

details.)   

Given these changes in market conditions, we consider the possibility of a distinct post-

war regime(s) by estimating various Markov-switching models with state-variable combinations 

(N, K), for N = 1, …, 4 and K = 1, …, 3.  Then we compute AIC and MSCλ=N for each 

combination.  AIC selects a model with N* = 3 states, which, given the simulation results in 

Table 6, is likely to be more than necessary.  In contrast, MSCλ=N retains two states (i.e., N* = 2).  

The smoothed probabilities )ˆ,...,ˆ(ˆ
1111 ′= Tξξξ  indicate that the first state persisted from 1914 

through 1945, whereas the second state lasted from 1946-1960.  This regime switch coincided 

with the FTC’s approval of stronger copy and the beginning of multiple media spending.   

Table 8 shows the different estimates of advertising effectiveness and carryover effects 

for the pre- and post-war regimes.  Specifically, advertising is more effective in the post-war era 

( 17.1ˆ )1(
2 =β  > 43.0ˆ )1(

1 =β ) due to stronger copy and multiple media.  In addition, the carryover 

effect is smaller in the post-war era ( 27.0ˆ )2(
2 =β  < 53.0ˆ )2(

1 =β ), given the shorter duration for 

the impact of past advertising to accumulate.  Thus, these new findings are not discernible from 

the standard regression model of advertising.   

 

6. Concluding remarks 

Markov-switching regression models provide an analytical framework to study both 

shifts in regimes and the differential impact of explanatory variables across regimes (or states).  
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In this paper, we investigate the problem of selecting an appropriate Markov-switching model by 

applying the principle of minimum Kullback-Leibler divergence. Specifically, we derive a new 

Markov-switching criterion, MSC, to jointly determine the number of states and variables to 

retain in the model. We find that MSC performs well not only in regression and autoregression 

models, but also in single and multiple states, small and large samples, and low and high noise.  

Furthermore, it provides valuable insights in empirical applications.  For example, it identifies 

three states — one recession and two expansions — in real GNP data; the second expansion 

exhibits slower growth, lower volatility and longer duration than the first one, an insight that is 

consistent with the notion of “great moderation” (Kim and Nelson 1999a, McConnell and Perez-

Quiros 2000, Stock and Watson 2003).  In the advertising study, MSC enables brand managers to 

detect shifts in market conditions and to estimate advertising and carryover effects specific to 

every identified market condition.   

We conclude by identifying four avenues for further research.  The first one is to extend 

MSC to the “mixed” switching regression case, where some coefficients do not change across 

states, while the others do.  The second is to allow different explanatory variables in each 

regime.  The third avenue is to incorporate non-linearity in (2) via the single-index model (e.g., 

Horowitz 1998); see Naik and Tsai (2001) for model selection in the single-state case.  Finally, 

we encourage research to investigate model selection for periodic regime-switching models 

(Ghysels, McCulloch and Tsay 1998) and state space models with time-varying coefficients 

(Kim and Nelson 1999b, Naik, Mantrala and Sawyer 1998).  We believe that such efforts would 

enhance the usefulness of Markov-switching regression models. 
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Appendix: Derivation of Markov-switching criterion 

Let )ˆ,ˆ,ˆ(ˆ Pvec σβθ =  be the MLE of θ computed from a realization Y that is independent 

of Y*.  In addition, let )];(log[minarg),,( *****
* θσβθ θ YfEPvec

Y
−==  and S* denote a 

realization from a Markov chain of dimension N with transition probability matrix P*.  Then the 

average KL information loss is 

( )))ˆ;(log(2~ *
* θYfEEd

YYKL −=  

    ( ))ˆ;(log2 *
, ** θYfEE SYY−=  
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where )(** , ⋅SYE  indicates the expectation under the joint density of (Y*, S*), and  
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We assume 0ˆ i >π  almost surely, i.e., the estimated probability that the process visits each state 

is positive.  Also, note that all expectations are conditional on xt, t = 1, 2, …, T.  The first term in 

(A.1) is 
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where TT ii
** π≡ , ][ **

tii sE=π  is the i-th element of the principal eigenvector of *** ππ =P , and 

***
itttii xy βεσ ′−= . Moreover, from Hamilton (1990), we have 0)|()|( **

, *** == ttitiYttitiSY xExsE εξε . 

Thus, the second term in (A.2) is  
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To evaluate (A.3), we first consider )ˆ()ˆ( **
iiii XX ββββ −′′− . Because yWXXWX iii
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and  
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)ˆˆˆ( 2
,,

−
−− iirttiirttiYE πξξεε , respectively.  Furthermore, iπ̂  and ( tiε , tiξ̂ ) are approximately 

independent because iπ̂  is the average of tiξ̂  over t.  Then, using this information and replacing 

tiξ̂  with *
tis , we obtain 
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Consequently, we have 
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Moreover, approximating )ˆ( XWX i′  with )(ˆ XXi ′π  as above, we obtain 
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( ) ( )( )iiiiiYiiiiYiY WXXXXWETWETE εεπεεπσ ˆˆˆˆˆ)ˆ( 121112 ′′′−′≈ −−−−−  
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Substituting (A.6) and (A.7) into (A.3) in conjunction with (A.2), we find that the average KL 

information loss in (A.1) is 
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Finally, replacing *
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we obtain an estimate of KLd~ : 
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Figure 1: Proximity of MSC to the KL distance 
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Figure 2: Smoothed state probabilities for GNP growth model 

 
 Panel A: Recession 

 
 
 
 

 
 
 
 
 

 

Panel B: Expansion (type one) 
 
 
 
 
 
 
 
 
 
 
 

Panel C: Expansion (type two) 
 
 
 
 
 
 
 
 

 
 

  
 NBER recession dates are indicated by gray bars.   



 

 

 

Table 1. Joint selection frequency in 1000 realizations (fixed regressors) 
 
 

Panel A.  MSCλ = 1 

 States (N) column 
Variables (K) 1 2 3 4 sum 

1 0 0 0 0 0 
2 0 0 0 0 0 

K0 = 3 0 309 190 167 666 
4 0 29 85 97 211 
5 0 22 47 54 123 

row sum 0 360 322 318 1000 
 

 

Panel B.  MSCλ = N 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 0 0 0 0 

K0 = 3 0 992 0 0 992 
4 0 8 0 0 8 
5 0 0 0 0 0 

row sum 0 1000 0 0 1000 
 
 

Panel C.  2MSC
N=λ

 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 0 0 0 0 

K0 = 3 0 1000 0 0 1000 
4 0 0 0 0 0 
5 0 0 0 0 0 

row sum 0 1000 0 0 1000 



 

 

 

Table 2.  Frequency of correctly selecting both states and variables in 1000 realizations 
(fixed regressors) 

 
 

   MSCλ = 1 MSCλ = N 2MSC
N=λ

  

 
 Large sample (T = 250)    
  Low noise (σ0 = 0.5) 309 992 1000 
  High noise (σ0 = 1) 124 981 998 
      
 Small sample (T = 100)    
  Low noise (σ0 = 0.5) 521 951 861 
  High noise (σ0 = 1) 393 907 741 

 

 

 



 

 

 

Table 3. Joint selection frequency in 1000 realizations (autoregression) 
 
 

Panel A. MSCλ = 1 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 0 0 1 1 

K0 = 3 0 524 169  78 771 
4 0 52 62 36 150 
5 0 26 33 19  78 

row sum 0 602 264 133 1000 
 

 

Panel B. MSCλ = N 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 3 0 0 3 

K0 = 3 0 979 1 0 980 
4 0 16 0 0 16 
5 0 1 0 0 1 

row sum 0 999 1 0 1000 
 
 

Panel C. 2MSC
N=λ

 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 14 0 0 14 

K0 = 3 0 984 0 0 984 
4 0 2 0 0 2 
5 0 0 0 0 0 

row sum 0 1000 0 0 1000 



 

 

 

Table 4.  Frequency of correctly selecting both states and variables in 1000 realizations 
(autoregression) 

 
 

   MSCλ = 1 MSCλ = N 2MSC
N=λ

 

 
 Large sample (T = 250)    
  Low noise (σ0 = 0.5) 524 979 984 
  High noise (σ0 = 1) 264 974 785 
      
 Small sample (T = 100)    
  Low noise (σ0 = 0.5) 648 744 171 
  High noise (σ0 = 1) 389 402 1 

 



 

 

 

Table 5.  Frequency of correctly selecting a single-state model in 1000 realizations 
 
 

   MSCλ = 1 MSCλ = N 2MSC
N=λ

 

 
Panel A.   Fixed Regressors 

 Large sample (T = 250)    
  Low noise (σ0 = 0.5) 92 992 999 
  High noise (σ0 = 1) 38 991 1000 
      
 Small sample (T = 100)    
  Low noise (σ0 = 0.5) 204 994 997 
  High noise (σ0 = 1) 258 998 1000 

 
Panel B.  Autoregression 

 Large sample (T = 250)    
  Low noise (σ0 = 0.5) 96 980 1000 
  High noise (σ0 = 1) 51 973 1000 
      
 Small sample (T = 100)    
  Low noise (σ0 = 0.5) 207 945 998 
  High noise (σ0 = 1) 78 923 999 

 

 



 

 

 

Table 6.  Joint selection frequency in 1000 realizations by AIC 
 

 States (N) column 
Variables (K) 1 N0 = 2 3 4 sum 

1 0 0 0 0 0 
2 0 0 0 0 0 

K0 = 3 0 481 106 30 617 
4 0 66 76 48 190 
5 0 34 97 62 193 

row sum 0 581 279 140 1000 
 



 

 

 

Table 7: Estimated parameters for the three-state model for the U.S. GNP growth 
 

Parameters for each state i State 1 State 2 State 3 

Mean Growth Rate, iβ̂  –0.10 (0.29) 1.50 (0.18) 0.85 (0.06) 

Noise level, iσ̂  0.95 (0.15) 0.91 (0.09) 0.42 (0.04) 
 
Transition Probability Matrix, P̂  

   

Pr(sti=1| st-1,1=1) 0.78 (0.11) 0.20 (0.10) 0.02 (0.04) 
Pr(sti=1| st-1,2=1) 0.12 (0.08) 0.85 (0.08) 0.03 (0.02) 
Pr(sti=1| st-1,3=1) 0.04 (0.05) 0.00 (0.07) 0.96 (0.05) 

 
Standard errors (in parentheses) were computed from the outer product of scores.  

 



 

 

 

Table 8: Estimated parameters for the two-state model for media advertising 
 

Parameters for each state i State 1 State 2 

Advertising effectiveness )1(ˆ
iβ  0.43 (0.17) 1.17 (0.23) 

Carryover effect, )2(ˆ
iβ  0.53 (0.14) 0.27 (0.09) 

Intercept, )0(ˆ
iβ  1.05 (0.45) 0.26 (0.20) 

Noise level, iσ̂  0.53 (0.09) 0.10 (0.02) 
 
Transition Probability Matrix, P̂  

  

Pr(sti=1| st-1,1=1) 0.96 (0.04) 0.04 (0.04) 
Pr(sti=1| st-1,2=1) 0.06 (0.07) 0.94 (0.07) 

 

Standard errors (in parentheses) were computed from the outer product of scores.  

 

 

 

 


