
Dilworth’s theorem revisited, an algorithmic proof

Wim Pijls Rob Potharst∗

Econometric Institute Report EI 2011-13

Abstract

Dilworth’s theorem establishes a link between a minimal path cover and a maximal
antichain in a digraph. A new proof for Dilworth’s theorem is given. Moreover an algorithm
to find both the path cover and the antichain, as considered in the theorem, is presented.

1 Introduction

Dilworth’s theorem establishes a link between a minimal path cover and a maximal antichain
in a digraph. There are multiple proofs of Dilworth’s theorem[3, 4, 8, 11]. Those proofs do not
show how an optimal path cover and optimal antichain are obtained for a given graph.
In the current paper we give a new proof, based upon an algorithm that constructs a minimal
path cover along with a maximal antichain. The key of the proof is the following observation.
Any path cover is a flow in an associated network and vice versa, so finding a minimal path
cover can be reduced to finding a minimal flow. The algorithm for a minimal flow generates
a cut (analogously to the famous maxflow/mincut connection), which is closely related to the
maximal antichain. So an algorithm is presented generating a path cover and an antichain which
are certificates of the correctness of Dilworth’s theorem.
For a variant of Dilworth’s theorem a similar proof was given in [5, section 4.9]. In [6] a
direct proof was presented for the proposition that any maximal cut corresponds to a maximal
antichain. The minimal flow construction was not involved in that proof.
One application of the maximal antichain problem is found in the field of data mining, see [9].

2 Path covers and flow networks

Path cover and antichain. A path cover in a digraph D(V, A) is a collection of paths such
that every node of V is included in at least one path. The number of paths is called the size of
the path cover.
In a digraph a starting node is a node without incoming arcs. Likewise, an end node is a node
without outgoing arcs. We assume that all paths of a path cover run from a starting node to an
end node. If this property is not satisfied in a given path cover, it can be introduced without
changing the size of the path cover. An antichain in D(V, A) is a set of nodes, no two of which
are included in any path of D(V, A). The core of this paper is the proof of Dilworth’s theorem:

∗Econometric Institute, Erasmus University Rotterdam, P.O.Box 1738, 3000 DR Rotterdam, The Netherlands,
e-mail: {pijls,potharst}ese.eur.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6429177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


±°
²¯
c

±°
²¯
d

±°
²¯
b

±°
²¯
a

±°
²¯
g

±°
²¯
f

±°
²¯
e

±°
²¯
`

±°
²¯
k

±°
²¯
j

±°
²¯
i

±°
²¯
h

-

-

»»»»»»:
-¡

¡
¡

¡
¡¡µ

-

-

½
½

½
½

½½>

-

»»»»»»:
©©©©©©*

Figure 1: A digraph.

Dilworth’s theorem: The minimal size of a path cover in a digraph D equals the maxi-
mal size of an antichain in D.

Flow network. A flow network is a digraph N(V,A) containing two special nodes s and t
being the single starting node and the single end node, and two functions ` and u, the lower and
the upper capacity respectively, mapping the arc set A into R. We call s and t the source and
the sink respectively. A flow f in a given network is a function f from A into R which obeys the
capacity constraint given by: `(a) ≤ f(a) ≤ u(a) for all a ∈ A. Moreover, a flow has to meet
the balance constraint defined by the equality

∑
(j,i)∈A f(j, i) =

∑
(i,k)∈A f(i, k) for any node

i, i 6= s, t. The balance constraint actually says that the incoming flow (inflow) must be equal
to the outgoing flow (outflow) in each node, except in the source and the sink. If the balance
constraint is met in every node, the outflow of s equals the inflow of t. This value is called the
value of the flow.
Next to a flow, the preflow is a known notion. For a preflow, the balance constraint is relaxed:
the inflow is larger than or equal to the outflow in each node (except the source).

Given a path cover C in a network, we define the function f(i, j) for an arc (i, j) as the number
of paths in C that go through arc (i, j). If the capacity constraint holds, f is a flow and its
value equals the size of C. Conversely, an integer-valued flow f in an acyclic network is easily
decomposed into a collection of paths (not necessarily constituting a path cover).

An associated flow network. From the theory of network flows it is known that any al-
gorithm generating a maxflow ends with a cut, inducing a set of arcs. Since Dilworth’s theorem
deals with nodes, we make an extra step. Each node v ∈ V is split up into two nodes v1 and v2

with an arc in between. To be more specific, we give the following definition.

Definition 1 Given a digraph D(V, A), an associated flow network N(V ′, A′) is constructed as
follows:

a) for each node v ∈ V , there are two nodes v1 and v2 in V ′ and an arc (v1, v2) in A′;

b) for each arc (v, w) ∈ A, there is an arc (v2, w1) in A′;

c) in addition to the node pairs (v1, v2) defined in a) the set V ′ contains a source node s and
a sink node t; there is an arc (s, v1) in V ′ for each starting node v ∈ V and an arc (v2, t)

2



for each end node v ∈ V ;
d) the lower capacity `(a′), a′ ∈ A′ equals 1 for the arcs a′ defined in a) and equals 0 for the

arcs a′ defined in b) or c); the upper capacity of each arc a′ equals +∞.

See Figures 1 and 2 for an example of a digraph and its associated flow network (ignore the
numbers of Figure 2 as yet). Since a (minimal) path cover corresponds to a (minimal) flow, the
minimal flow problem is studied in section 3.

3 Finding a minimal network flow

Minflow reduced to maxflow. The problem of finding a flow of minimal value (minflow
for short) does not receive much attention in the mathematical literature. Only a few refer-
ences can be given, e.g. [2] or [9, section 2.2]. On the other hand there is a vast literature
on maxflow algorithms. Almost any textbook on graph theory or combinatorial optimization
treats this problem, e.g. [1, Chapter 6-7], [7, Chapter 6] and [10, Chapter 10]. For finding a
minflow, we apply a method different from the above references. A given flow network N(V, A)
can be transformed into a network Ñ(V, A) by establishing new capacities ũ and ˜̀ as follows:
ũ(i, j) = −`(i, j) and ˜̀(i, j) = −u(i, j) for every arc (i, j) ∈ A. At any time the flow f̃ in the
transformed network Ñ(V, A) corresponds to a flow f in the original network N(V, A) according
to the equation f̃ = −f . Similarly, a maxflow in Ñ(V,A) corresponds to a minflow in N(V, A).
It is also possible to design a minflow algorithm in its own right. The operations of a maxflow
algorithm can easily be translated into operations working on the original minflow instance. The
augmenting paths of a maxflow algorithm can be converted into decreasing paths.

An initial flow. Two types of maxflow algorithms are distinguished: path augmenting al-
gorithms and preflow-push algorithms. Either type requires an initial flow or an initial preflow
respectively. Most of the literature assumes that all lower capacities are equal to 0 and in that
case establishing an initial (pre)flow is trivial.
However, the above transformation converts the capacities of the associated flow graph N(V ′, A′)
as defined in section 2 into negative upper and lower bounds. In that case, a different approach
for finding an initial flow is necessary. Constructing a path cover in an acyclic graph is straight-
forward. This path cover generates a flow f and the related flow f̃ = −f can be used as the
initial flow for the maxflow algorithm.

Note. In the context of Dilworth’s theorem we only consider networks that do not include
cycles. Suppose we have a network which does include cycles and some arcs (i, j have `(i, j) > 0
or u(i, j) < 0. In that case, the construction of an initial flow is not straightforward. See [1,
section 6.7] for this problem.

A cut in a network. Starting from the initial flow, the flow is repeatedly changed during
the running time of any maxflow algorithm. All algorithms work with an auxiliary graph, the
so-called residual graph. For a flow network N(V, A) with flow function f , the residual graph
Rf (V, Ā) is defined as follows. The node set remains the same. The arc set Ā consists of arcs
(i, j) (forward arcs) such that (i, j) ∈ A and f(i, j) < u(i, j), and arcs (j, i) (backwards arcs)
such that (i, j) ∈ A and f(i, j) > `(i, j). Any maxflow algorithm ends when the residual graph
Rf contains no path from s to t. As long as the residual graph contains such a path, the value
of the flow can be increased.
A cut (S, T ) in a flow network is a pair of sets S ⊂ V and T = V \S, such that s ∈ S and

3



ns ¡
¡

¡
¡

¡¡µ
4

@
@

@
@

@R

1 -

1

S
S

S
S

S
S
Sw

1 nc1 nc2-1

nd1
nd2

-
1

nb1
nb2

-1

na1 na2-4

ng1 ng2-2

nf1
nf2

-1

ne1 ne2-4

n n`1 `2
-2

n nk1 k2
-1

n nj1 j2
-
1

ni2ni1 -1

nh2
nh1

-2

-4

-1

»»»»»»:

0

-1¡
¡

¡
¡

¡µ

1

-

2

-

½
½

½
½

½½>

0

-

1

1
»»»»»»:1
½

½
½

½
½½>

2

nt

@
@

@
@

@@R
1

Z
Z

Z
Z

ZZ~

2

-

1

¡
¡

¡
¡

¡¡µ

1

S
S

S
S

S
S

SSw

2

Figure 2: The flow network associated to the graph of Figure 1. The numbers denote an arbitrary
flow function f .

t ∈ T . When the algorithm stops, one constructs a cut (S, T ) in the flow network using the final
residual graph. S is the set of nodes v ∈ V such that the final residual graph has a path from
s to v. Since there is no path from s to t, S does not include t and hence, the collection (S, T )
with T = V \S is a cut.
An arc (i, j) is called a crossing arc if i ∈ S and j ∈ T ; it is called an anti-crossing arc if i ∈ T
and j ∈ S. Given the definition of the residual graph and the construction of the cut, it is easily
derived that a maxflow f has the property:

f(i, j) = u(i, j) (1)

for each crossing arc (i, j) and f(i, j) = `(i, j) for each anti-crossing arc (i, j).

No anti-crossing arcs. The network N(V ′, A′) defined in section 2 has u(i, j) = +∞ for
every arc (i, j). So the corresponding maxflow instance has `(i, j) = −∞. Since each maxflow
algorithm terminates after a finite number of iterations (apart from some pathological excep-
tions), f(i, j) = `(i, j) = −∞ cannot happen. Consequently there are no anti-crossings arcs in
the final flow.
This property implies an important result for the final path cover: every path starting in S and
ending in T has exactly one crossing arc. Indeed, if a path contained two crossing arcs, an
anti-crossing arc would be somewhere in between.

Example. The flow in the network of Figure 2 has value 7, or, equivalently, the corresponding
path cover comprises seven paths from s to t. Notice that the path s, a1, a2, e1, e2, h1, h2, t is
counted twice. The final minflow with value 5 is shown in Figure 3. The above mentioned
path is counted once in this minflow. Furthermore, there is a new path in the induced path
cover: s, c1, c2, f1, f2, j1, j2, t. Due to this new path the number of paths covering the pieces
s, a1, a2, e1, e2, j1 and c2, g1, g2, `1, `2 has been reduced. The piece c2, f1, f2, j1 is contained in an
extra path. The reduction of the flow value from 7 to 5 is achieved by two steps in the related
max-flow algorithm using augmenting paths.
The resulting cut is given by S = {s, a1, a2, e1, e2, h1, i1, b1, c1, d1} and T = V \S.

4



ns ¡
¡

¡
¡

¡¡µ
2

@
@

@
@

@R

1 -

1

S
S

S
S

S
SSw

1 nc1 nc2-1

nd1
nd2

-
1

nb1
nb2

-1

na1 na2-2

ng1 ng2-1

nf1
nf2

-2

ne1 ne2-2

n n`1 `2
-1

n nk1 k2
-1

n nj1 j2
-
1

ni2ni1 -1

nh2
nh1

-1

-2

-1

»»»»»»:

1

-0¡
¡

¡
¡

¡µ

1

-

1

-

½
½

½
½

½½>

1

-

1

0
»»»»»»:1
½

½
½

½
½½>

1

nt

@
@

@
@

@@R
1

Z
Z

Z
Z

ZZ~

1

-

1

¡
¡

¡
¡

¡¡µ

1

S
S

S
S

S
S

SSw

1

Figure 3: The minimal flow or minimal path cover in the flow network of Figure 2. (The nodes
and arcs inside the S set are drawn in bold.)

4 Proof of Dilworth’s theorem

In this section Dilworth’s theorem is proved. The essential part of this proof is covered by
Lemma 1.

Lemma 1 The minimal flow in N(V ′, A′) induces a path cover and an antichain of equal size.

Proof The minimal flow f in N(V ′, A′) is integer-valued, since all capacities are integers. This
flow can be decomposed into a path cover C and the number of paths through arc (i, j) equals
f(i, j).
We mentioned in section 3 that any maxflow of minflow algorithm ends with a cut (S, T ). As
argued in section 3, every path starting in S and ending in T has exactly one crossing arc. So
the size of C, say n, equals the number of paths in the crossing arcs, or in formula:

n =
∑

i∈S,j∈T

f(i, j) (2)

The counterpart for minflow in N(V ′, A′) of (1) says that f(i, j) = `(i, j). Define Q′ as the set
of crossing arcs of the form (v1, v2). These arcs have `(v1, v2) = 1 and they are the only crossing
arcs with `-value 6= 0. Thus, (2) may be extended to

n =
∑

i∈S,j∈T

f(i, j) =
∑

i∈S,j∈T

`(i, j) =
∑

(v1,v2)∈Q′
1. (3)

Define Q = {v1 | (v1, v2) ∈ Q′}. The number of elements in Q′ and hence also in Q is equal to
n, due to (3). So the size of Q equals the size of a path cover.
We show by contradiction that Q is an antichain. Any path through a node v1 ∈ Q also con-
tains the crossing arc (v1, v2). If a path contained two nodes from Q, it would also contain two
crossing arcs, which is impossible as shown in section 3. 2

Proof of Dilworth’s theorem. According to the definition of an antichain, a path in a
path cover cannot include two nodes of an antichain. So the size of any path cover is larger than
or equal to the size of any antichain and hence:

minimum size of a path cover ≥ maximum size of a antichain. (4)

5



Equality in this relation is obtained thanks to Lemma 1. Now we have proved Dilworth’s the-
orem in N(V ′, A′). Due to the lower capacity `(v1, v2) = 1 in N(V ′, A′) for each arc associated
to a node v ∈ V , any path cover in N(V ′, A′) induces a path cover D(V, A). It is clear that an
antichain in N(V ′, A′) corresponds to an antichain in D(V, A). Hence, Dilworth’s theorem also
holds in D(V, A). 2

Example (continued). There are six crossing arcs: (b1, b2), (c1, c2), (d1, d2), (h1, h2), (i1, i2)
and (e2, j1), five of which make up the set Q′. So Q = {b1, c1, d1, h1, i1} and {b, c, d, h, i} is the
obtained maximal antichain in Figure 1.

5 Summary

Constructing a path cover and an antichain of equal size is the crux in the proof of Dilworth’s
theorem. The construction of such a path cover and antichain in a digraph D(V, A) is summa-
rized in the following steps.

1. Construct the associated network N(V ′, A′).
2. Construct in N(V ′, A′) an arbitrary path cover, which induces an initial flow f by super-

position.
3. Transform N(V ′, A′) into network Ñ(V ′, A′) having new upper and the lower capacities

(see section 3). The initial flow in Ñ(V ′, A′) is f̃ = −f .
4. Execute any maxflow algorithm in Ñ(V ′, A′); a derived product is a cut along with a set

of crossing arcs. Convert the maxflow into a minflow.
5. Decompose the minflow into a path cover for N(V ′, A′) and next for D(V,A).
6. Select the arcs of the type (v1, v2) from the crossing arcs obtained in step 4. The set of

corresponding nodes v is an antichain in D(V,A).

As mentioned in section 3, we can design a minflow algorithm in its own right. Hence, the above
steps 3 and 4 can be replaced with the statement: execute a minflow algorithm in N(V ′, A′).
Like a maxflow algorithm, a minflow algorithm starts with an initial flow. Notice that the initial
flow f of step 2 obeys the capacity constraints of N(V ′, A′).

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows: Theory, Algorithms, and Ap-
plications, Prentice Hall, 1993.

[2] E. Ciurea and L. Ciupala, Sequential and parallel algorithms for minimum flows, J. Appl.
Math. and Computing, Vol. 15(2004), No. 1 - 2, pp. 53 - 75.

[3] R.P. Dilworth, A decomposition theorem for partially ordered sets, Annals of Mathematics,
Vol. 51 (1951), pp. 161-166.

[4] F. Galvin, A Proof of Dilworth’s Chain Decomposition Theorem, American Mathematical
Monthly, Vol. 101, No. 4 (1994), pp. 352-353.

[5] E. Lawler, Combinatorial Optimization, 1976, reprint from Dover Publications, 2001.

[6] R.H. Moehring, Algorithmic aspects of comparability graphs and interval graphs. In:
Graphs and Order, 1985, Reidel, Dordrecht, pp. 41-101.

6



[7] Chr. Papadimitriou and K. Steiglitz, Combinatorial Optimization, 1982, reprint from Dover
Publications, 1998.

[8] M. Perles, A proof of Dilworth’s decomposition theorem for partially ordered sets, Israel
J. Math, 1963, pp. 105-107.

[9] M. Rademaker, Optimal resolution of reversed preference in multi-criteria data-sets, PhD
thesis Ghent University Belgium, 2009.

[10] A. Schrijver, Combinatorial Optimization, Polyhedra and Efficiency, Springer-Verlag, 2003.

[11] H. Tverberg, On Dilworth’s decomposition theorem for partially ordered sets, J. Combin.
theory, 1967, pp. 305-306.

7


