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Abstract

Ample psychological evidence suggests that people�s learning behavior is often

prone to a �myside bias�or �irrational belief persistence�in contrast to learning

behavior exclusively based on objective data. In the context of Bayesian learn-

ing such a bias may result in diverging posterior beliefs and attitude polarization

even if agents receive identical information. Such patterns cannot be explained by

the standard model of rational Bayesian learning that implies convergent beliefs.

As our key contribution, we therefore develop formal models of Bayesian learning

with psychological bias as alternatives to rational Bayesian learning. We derive

conditions under which beliefs may diverge in the learning process despite the fact

that all agents observe the same �arbitrarily large �sample, which is drawn from

an �objective�i.i.d. process. Furthermore, one of our learning scenarios results in

attitude polarization even in the case of common priors. Key to our approach is

the assumption of ambiguous beliefs that are formalized as non-additive probabil-

ity measures arising in Choquet expected utility theory. As a speci�c feature of

our approach, our models of Bayesian learning with psychological bias reduce to

rational Bayesian learning in the absence of ambiguity.
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1 Introduction

Several studies in the psychological literature demonstrate that people�s learning be-

havior is prone to e¤ects such as �myside bias� or �irrational belief persistence� (cf.,

e.g., Baron 2007, Chapter 9). For instance, in a famous experiment by Lord, Ross,

and Lepper (1979), subjects supporting and opposing capital punishment were exposed

to two purported studies, one con�rming and one discon�rming their existing beliefs

about the deterrent e¢ cacy of the death penalty. Despite the fact that both groups

received the same information, their learning behavior resulted in an increased �atti-

tude polarization�in the sense that their respective posterior beliefs, either in favor or

against the deterrent e¢ cacy of death penalty, further diverged. Analogous results on

diverging posterior beliefs in the face of identical information have earlier been reported

by Pitz, Downing, and Reinhold (1967), Pitz (1969) and Chapman (1973) in the con-

text of Bayesian updating of subjective probabilities. In violation of Bayes�update rule

the subjects in these experiments formed biased posteriors that supported their original

opinions rather than taking into account the evidence. The learning behavior elicited

in these experiments cannot be explained by the standard model of rational Bayesian

learning according to which di¤erences in agents�prior beliefs must decrease rather than

increase whenever the agents receive identical information. In the economics literature,

similar phenomena are reported by Kandel and Pearson (1995) who document di¤er-

ential interpretation of identical information through public announcements by traders

in stock markets. Models of rational Bayesian learning thus apparently ignore relevant

aspects of real-life people�s learning behavior.

In this paper we present closed-form models of Bayesian learning that allow for the

possibility of a �myside bias�as a generalization of a standard rational Bayesian learn-

ing model that was introduced to the economics literature by Tonks (1983), Viscusi and

O�Connor (1984) and Viscusi (1985). As our point of departure we assume that the par-

adigm of rational Bayesian learning may only be violated by agents who have ambiguous

beliefs. That is, the beliefs of these agents cannot be described by additive probability

measures alone but additionally re�ect the agent�s personal attitudes. The impact of

new information on an agent�s beliefs is then two-fold. On the one hand, we take into

account �rational�updating based on objective empirical evidence in accordance with

our standard model of rational Bayesian learning. On the other hand, however, we also

assume existence of a �myside bias�that results in an �irrational�enforcement of the

agents�personal attitudes.

In our formal model a decision maker resolves his uncertainty about the �true�

parameter value of a Bernoulli trial, e.g., the probability that a given coin turns up heads,

by some prior belief. In contrast to standard models of Bayesian learning, however, we
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consider a decision maker who is ambiguous whereby we formally describe ambiguity by

non-additive probability measures, i.e., capacities, that arise in Choquet Expected Utility

(CEU) theory (Schmeidler 1986,1989; Gilboa 1987).1 A decision maker�s prior estimate

of the parameter is then given as the Choquet expected value of possible parameter-

values with respect to such ambiguous beliefs. In order to focus our analysis, we further

restrict attention to neo-additive capacities in the sense of Chateauneuf, Eichberger and

Grant (2007) according to which an agent�s non-additive belief about the likelihood

of an event is a weighted average of an ambiguous part and an additive part. More

speci�cally, we assume that the additive part of the neo-additive capacity is described

by some distribution of the Beta-distributions family. Under these assumptions, the

decision maker�s prior belief about the true parameter value is a weighted average of

the ambiguous part and the expected value of the Beta-distribution. According to our

interpretation, the expected value of this Beta-distribution is the decision maker�s best

rational guess about the �true�value of the parameter. The ambiguous part of his prior

belief is relevant whenever the agent lacks absolute con�dence in this guess. This lack of

con�dence is resolved in our model by a parameter that measures the agent�s optimistic

versus pessimistic personal attitudes with respect to ambiguity.

In a next step we analyze how the decision maker revises his prior belief in light of

new information about the outcomes of i.i.d. Bernoulli trials. To this end we consider

a decision maker who uses some Bayesian update rule to generate a conditional non-

additive probability measure so that his posterior estimate about the parameter is given

as the Choquet expected value with respect to this posterior capacity. In the case of

non-additive probability measures there exist several perceivable Bayesian update rules

expressing di¤erent psychological attitudes towards the interpretation of new information

(Gilboa and Schmeidler 1993; Sarin and Wakker 1998). In particular, we analyze the

consequences of the so-called full Bayesian (Pires 2002; Eichberger, Grant, and Kelsey

2006; Siniscalchi 2001, 2006) as well as the optimistic and the pessimistic update rules

(Gilboa and Schmeidler 1993; Sarin and Wakker 1998). An application of these update

rules to some prior belief where the agent expresses ambiguity results in a Bayesian

learning process that di¤ers from rational Bayesian learning in that convergence to the

�true� probabilities of some objective random process will - in general - not emerge.

Rather, updating of beliefs reinforces optimistic, respectively pessimistic, attitudes of

the agent thereby giving rise to learning behavior with a �myside bias�.

Using this Bayesian learning model we then analyze the beliefs of two heterogeneous

agents who have some prior beliefs, receive identical information and then update their

1CEU theory was originally developed to describe ambiguity attitudes that may explain Ellsberg

paradoxes (Ellsberg 1961).
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beliefs according to some Bayesian update rule with psychological bias. Thereby, we

di¤erentiate between a weak and a strong form of myside bias. The weak form of

myside bias is characterized by diverging posterior beliefs of the agents under repeated

learning with identical information whereby the beliefs may move into the same direction.

According to our interpretation the strong form of myside bias is equivalent to attitude

polarization in the sense that the posterior estimates of the two agents move into opposite

directions under repeated learning with identical information. To derive our main results

we then consider two scenarios: In our �rst scenario the two agents have di¤erent initial

beliefs and update their beliefs based on the same information by applying the same

update rule. In our second scenario, the two agents receive the same information but

apply di¤erent update rules. In both scenarios the resulting posterior beliefs may exhibit

the weak as well as the strong form of myside bias. Notice that, in order to derive our

result in the second scenario, we do not require that the agents have di¤erent prior

beliefs.

The remainder of our analysis is structured as follows. In Section 2 we discuss

related literature. Section 3 presents our benchmark model of Bayesian learning with

non-ambiguous beliefs and Section 4 introduces ambiguous beliefs. Section 5 discusses

updating of ambiguous beliefs under the three di¤erent update rules � full Bayesian,

optimistic and pessimistic updating �that we consider in this paper. In Section 6 we

derive, under the assumption of Bayesian learning, long-run limit estimates that, in

general, do not converge to true probabilities. Section 7 then presents our main results

on weak and strong myside bias in the form of diverging beliefs and attitude polarization.

Finally, Section 8 concludes.

2 Related literature

2.1 Learning with additive beliefs

In our learning model agents revise their probability assessments about the parameters

of some stochastic process, e.g., about the probability that a given coin turns up heads

or tails, by Bayesian updating. Accordingly, agents have some prior beliefs and form

posterior beliefs given the relative frequencies observed in the data. In contrast, accord-

ing to the frequentist approach, agents learn probabilities by simply adopting relative

frequencies observed in a given data sample. Within the frequentist approach, diver-

gence of probability assessments of agents cannot occur if the data are drawn from a

stationary stochastic process. Against this background, Kurz (1994a,b, 1996) assumes a
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non-stationary stochastic process and thereby establishes conditions under which agents

may not agree about fundamentals in the long run even if they observe the same data

sample. However, the application of a frequentist learning rule in a non-stationary en-

vironment is not fully consistent because the rationale for agents to apply a frequentist

rule for inferring probabilities when the �underlying�probabilities cannot be learnt by

this rule is not clear.2

While divergence of beliefs can thus not occur within the frequentist framework in a

stationary environment, a similar observation holds true within the Bayesian framework

when restricted to additive beliefs. Part of our analysis below is based on a speci�c model

of Bayesian learning with additive beliefs according to which the agents�uncertainty with

respect to the parameter of a Binomial distribution is described by a Beta-distribution.

The fact that additive posteriors converge to the same limit belief in this model, however,

can be regarded as a special case of more general results on the consistency of (additive)

Bayesian estimates, in particular Doob�s consistency theorem (Doob 1949; for extensions

see Breiman, LeCam, and Schwartz 1964; Lijoi, Pruenster, and Walker 2004). We next

brie�y review some relevant convergence results.

Formally, consider a sequence of coordinate random variables (Xn)n�1 on some

measurable space (S1;S1) taking values in some complete separable metric space S.
In particular, let S1 = �1i=1S and let S1 denote the Borel �-algebra generated by

X1; X2; :::. Further consider a family of additive (conditional) probability measures

fQ (� j �) j � 2 �g on the space (S;S) with S denoting the Borel �-algebra in S. We
interpret the complete separable metric space � as the set of possible parameter values

and we assume that � 7! Q (� j �) is one-one. For given �, we denote by Q1 (� j �)
the product measure on (S1;S1). Let B denote the Borel �-algebra in � and de�ne

 = � � S1 and F = B 
 S1 for the standard product �-algebra. If � is an additive

probability measure on (�;B), then the additive probability measure P on (
;F) is
uniquely de�ned by

P (B � A) =

Z
B

Q1 (A j �)� (d�)

=

Z
B

nY
i=1

Q (Ai j �)� (d�)

for any B 2 B and A = A1 � ::: � An � S1 2 S1 for any n. The probability measure

� stands here for the agent�s prior (distribution) of the S1-measurable random variable

~� which captures the agent�s uncertainty about the true parameter value. The agent�s

posterior (distribution) of ~� given the observation, i.e., data, Xn (!) = X1 (!) � ::: �
2While agents in our model also apply learning rules by which they will not learn �underlying�prob-

abilities, we motivate the application of these rules by psychological and decision-theoretic arguments.
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Xn (!) is then, by Bayes�rule, de�ned as the conditional probability measure

� (B j Xn (!)) =

R
B

nQ
i=1

Q (Xi (!) j �)� (d�)R
�

nQ
i=1

Q (Xi (!) j �)� (d�)

for any B 2 B if the denominator is not zero. The pair (�; � (� j Xn)) is said to be

consistent i¤, for Q1 (� j �)-almost all sequences of observations, the posterior � (� j Xn)

converges in the weak topology to a probability measure putting probability mass one

on every neighborhood of �. That is, if the Bayesian posterior � (� j Xn) is consistent for

a given parameter value � then the Bayesian estimate for �, de�ned by the conditional

expected value E [~� j � (� j Xn)], converges with probability one to � as n gets large.

According to Doob�s consistency theorem (1949), the pair (�; � (� j Xn)) is consistent for

�-almost all values in �. Thus, only for parameter values in a subset of � with prior

probability of zero the Bayesian estimate may not converge to the true parameter value.

Moreover, Freedman (1963) establishes for �nite S that (�; � (� j Xn)) is consistent if

and only if � is in the support of the prior �. As a consequence, if the random variables

X1; X2; ::: can take on only �nitely many values, an agent�s Bayesian estimate will almost

surely converge to the true parameter value if his prior has full support on �.

Related to Doob�s consistency theorem is Blackwell and Dubins�(1962) convergence

theorem. While this convergence theorem does not explicitly refer to Bayesian posteriors,

it is relevant to the literature on attitude polarization because it investigates convergence

of two sequences of conditional probabilities that start out from di¤erent initial points.

More speci�cally, Blackwell and Dubins consider two di¤erent additive probability mea-

sures P and P 0 on the measurable space (S1;S1) as de�ned above. According to

Blackwell and Dubins, if these two agents agree on all events with probability zero, the

two conditional probability measures P (� j Xn) ; P
0 (� j Xn) almost surely merge in the

absolute variation norm. That is, if two agents start out with di¤erent beliefs about the

probability that governs the process (Xn)n�1, their conditional probabilities about future

events, i.e., P (Xn+1 �Xn+2 � ::: j Xn) and P 0 (Xn+1 �Xn+2 � ::: j Xn), almost surely

merge as n gets large. Diaconis and Freedman (1986, Theorem 3) establish a formal link

between Doob�s consistency theorem and Blackwell and Dubins�convergence theorem

by basically showing that the Bayesian posterior � (� j Xn) is consistent if and only if

the conditional probability measures P (� j Xn) ; P
0 (� j Xn) merge in the weak topology

for any P 0.

In light of the above convergence results it is practically impossible to establish (at

least for a �nite set S) attitude polarization, or even non-converging posteriors, within

the framework of Bayesian learners with additive beliefs if all agents observe the same
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sample information drawn from an i.i.d. process. In order to account for the empirical

phenomenon of non-converging posteriors or/and attitude polarization, however, several

authors have tried to circumvent these convergence results within the framework of

Bayesian learning with additive beliefs. One approach is to restrict attention to the

possibility of a short-run bias only, thereby deliberately ignoring long-run convergence

(e.g., Brav and Heaton 2002; Dixit and Weibull 2007). Another line of research is to look

into the possibility of weakening the i.i.d. assumption of the above framework. E.g.,

Lewellen and Shanken (2002) consider cases in which the mean of an exogenous dividend

process may not be constant over time. Consequently, the agent can never fully learn the

objective parameters of the underlying distribution because observed frequencies do not

admit any conclusions about objective probabilities even in the long run. Along the same

line, Weitzman (2007) considers a non-stationary exogenous stochastic process so that

there is no �true�parameter that could be learnt by the agents. Furthermore, within

the context of attitude polarization, Kandel and Pearson (1995) and, more recently,

Acemoglu, Chernozhukov and Yildiz (2007) consider two agents with di¤erent prior-

distributions about imprecise signals from an i.i.d. process. Since these di¤erent priors

imply di¤erent interpretation of new information, these authors avoid convergence of

both agents�posteriors according to Doob�s consistency theorem because these posteriors

are e¤ectively formed by observing two di¤erent stochastic processes.

2.2 Learning under ambiguity

While the above approaches try - in one way or another - to reconcile the possibility of

attitude polarization with Bayesian learning under the assumption of additive beliefs,

our approach drops the assumption of additive beliefs altogether. As a consequence,

Doob�s consistency theorem does not apply in our framework so that agents�non-additive

posteriors may diverge in the long-run despite the fact that they observe the same data

drawn from an i.i.d. process. Moreover, our approach may even allow for diverging

posteriors and attitude polarization in the case that agents start out with identical

priors. This is impossible for models of Bayesian learning with additive beliefs because

additivity implies a unique Bayesian update rule.

Related to our approach, Marinacci (1999) studies a learning environment with non-

additive beliefs whereby he considers a decision maker who observes an experiment

such that the outcomes at each trial are identically and independently distributed with

respect to the decision-maker�s non-additive belief.3 In this setup, Marinacci derives for

3Notice that there are several perceivable de�nitions of independence for capacities. Very loosely

speaking, in the context of conditional capacities Marinacci�s notion of independence corresponds to

the optimistic update rule, ensuring that � (A j B) = � (A) if A and B are independent with respect to
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(basically convex) capacities laws of large numbers as counterparts to the additive case

thereby admitting for the possibility that ambiguity does not vanish in the long-run.

While Marinacci�s approach may thus be regarded as a frequentist approach towards

non-additive probabilities, our approach is a Bayesian one according to which an agent

has a subjective prior belief over the whole event space while he uses sample information

from an objective process in order to update his subjective belief. In contrast to our

approach the learning behavior of di¤erent agents in Marinacci�s model must converge

to the same limit if they have identical priors. As a consequence there cannot occur

attitude polarization within Marinacci�s framework under the assumption of common

priors.

Epstein and Schneider (2007) also consider a model of learning under ambiguity which

shares with our learning model the feature that ambiguity does not necessarily vanish

in the long run. Their learning model is based on the recursive multiple priors approach

(Epstein and Wang 1994; Epstein and Schneider 2003) that restricts conditional max

min expected utility (MMEU) preferences of Gilboa and Schmeidler (1989) such that

dynamic consistency is satis�ed. While MMEU theory is closely related to CEU theory

restricted to convex capacities (e.g., neo-additive capacities for which the degree of opti-

mism is zero), the similarity between Epstein and Schneider�s approach and our learning

model ends here. As one main di¤erence, the restriction of Epstein and Schneider�s ap-

proach to dynamically consistent preferences excludes preferences that violate Savage�s

sure-thing principle as elicited in Ellsberg paradoxes (cf. observation 3 in this paper).

Since our learning model does not exclude dynamically inconsistent decision behavior,

it can accommodate a broader notion of ambiguity attitudes than the Epstein-Schneider

approach, including ambiguity attitudes that are not compatible with the sure-thing

principle. Furthermore, Epstein and Schneider establish long-run ambiguity, i.e., the

existence of multiple posteriors, under the assumption that the decision-maker perma-

nently receives ambiguous signals, which they formalize via a multitude of di¤erent

likelihood functions at each information stage in addition to the existence of multiple

priors.4 This introduction of multiple likelihoods is rather ad hoc and it would be inter-

esting to see an axiomatic or/and psychological foundation of this approach which goes

beyond the mere technical property that multiple likelihoods can sustain long-run am-

biguity in the recursive multiple priors framework. On the contrary, our �comparably

simple �axiomatically founded model of Bayesian learning with psychological attitudes

o¤ers a rather straightforward explanation for biased long-run beliefs even in the case

the capacity �.
4In the case of learning from ambiguous urns without multiple likelihoods, ambiguity obviously

vanishes in the learning process; (for a formal result see Marinachi 2002).
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that the decision-maker receives signals that are not ambiguous.

3 The benchmark case: Rational Bayesian learning

In this section we describe in detail a closed-form learning model with additive beliefs

as introduced to the economics literature by Viscusi and O�Connor (1984) and Viscusi

(1985). Consider the situation of an agent who is uncertain about the probability of

an outcome, H, but can observe a statistical experiment with n independent trials

where H, resp. T , is a possible outcome that occurs identical probability. Formally, we

consider a sequence of coordinate random variables (Xn)n�1 on the measurable space

(S1;S1) taking on values in S = f0; 1g which count how many times outcome H

occurs in the trial. Let S1 = �1i=1S and de�ne S1 as the power-set of S1. Our

parameter space is (�;B) such that � = [0; 1] is endowed with the Euclidean metric

and B denotes the Borel �-algebra in �. As family of additive (conditional) probability
measures fQ (� j �) j � 2 �g on the space (S;S) with S = 2S we consider the family of
Bernoulli distributions �

�x (1� �)x�1 j � 2 �
	
with x 2 S.

We further assume that the agent�s prior � of ~� is given by some Beta distribution,

which is, for given parameters �; � > 0, characterized by the density function

K�;��
��1 (1� �)��1 for 0 � � � 1
0 else

where K�;� is a normalizing constant.5

Observe now that the joint-probability measure P on (
;F) with 
 = �� S1 and

F = B 
 S1 is uniquely de�ned by

P (B � A) =
Z
B

nY
i=1

Q (Ai j �)� (d�)

for any B 2 B and A = A1 � ::: � An � S1 2 S1 for any n. For our purpose it is

convenient to denote by � the event in F such that � 2 � is the true probability of

outcome H, i.e.,

� = f! 2 
 j ~� (!) = �g .

Similarly, let Ikn denote the event in F such that outcome H has occurred k-times in the

n �rst trials. That is,

Ikn =
n
! 2 
 j ~In (!) = k

o
5In particular, K�;� =

�(�+�)
�(�)�(�) where � (y) =

1R
0

xy�1e�xdx for y > 0.
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whereby the Sn-measurable random variable ~In counts the number of occurrences of H.
Since the probability of receiving information Ikn for a given � (=likelihood function) is

in our i.i.d. Bernoulli-trial framework

�
�
Ikn j �

�
=

�
n

k

�
�k (1� �)n�k ,

we obtain by Bayes�rule the following posterior probability (density) that � is the true

value given information Ikn

�
�
� j Ikn

�
=

P
�
� � Ikn

�
P (�� Ikn)

=
Q
�
Ikn j �

�
� (�)

P (�� Ikn)
= K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1

whereby P
�
�� Ikn

�
=
R
[0;1]

Q
�
Ikn j �

�
� (d�) > 0.

The agent�s prior estimate for the true probability ofH is given by the expected value

of his prior on ~�, i.e., E [~�; �]. Accordingly, the agent�s posterior estimate for � given

information Ikn is given by the conditional expected value of the posterior distribution,

i.e., E
�
~�; �

�
� j Ikn

��
. In the case of a Beta prior we therefore obtain as prior estimate

E [~�; �] = �
�+�

. Furthermore, since the agent�s posterior �
�
� j Ikn

�
is a Beta-distribution

with parameters � + k; � + n � k, we have E
�
~�; �

�
� j Ikn

��
= �+k

�+�+n
as the agent�s

posterior estimate for � given information Ikn. Or equivalently

E
�
~�; �

�
� j Ikn

��
=

�
�+ �

�+ � + n

�
E [~�; �] +

�
n

�+ � + n

�
k

n
(1)

where k
n
is the sample mean. That is, the agent�s posterior estimate for the probability

of H is a weighted average of his prior estimate and the sample mean whereby the weight

attached to the sample mean increases in the number of trials.6 Let �� denote the �true�

probability of outcome H. If the number of trials approaches in�nity, i.e., n ! 1,
the sample mean information Ikn converges in probability to the sample information

I� according to which outcome H has occurred with relative frequency ��. That is, for

every c > 0, limn!1 prob
���Ikn � ���� � c� = 1. As a consequence, we obtain the following

consistency result for this speci�c model of Bayesian learning with additive beliefs.

Observation 1: The posterior estimates E
�
~�; �

�
� j Ikn

��
for the probability of outcome

H converge in probability to the true probability �� as n gets large.
6Tonks (1983) introduces a similar model of rational Bayesian learning in which the agent has a

normally distributed prior over the mean of some normal distribution and receives normally distributed

information.
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Apparently, this standard model of rational Bayesian learning cannot account for

the learning behavior of agents whose posterior beliefs systematically diverge while they

receive the same sample information drawn from an i.i.d. process.

Remark. Observe that if the agent�s information Ikn about the sample mean is

always precise in the sense that Ikn =
k
n
for all n, the limit information I� equals some

point in the unit-interval, implying � (I�) = 0 by the de�nition of a Beta-distribution. A

more interesting (and general) case would be to allow for imprecise information about

the sample mean, e.g., Ikn =
�
k
n
� "n; kn + "n

�
� [0; 1] so that we may have � (I�) � 0

since, e.g., I� = [�� � "�; �� + "�] with "� � 0. If, in addition, the agent�s estimate about
the sample mean, say E

�
xkn; '

k
n

�
(where 'kn is some subjective probability distribution

for the random variable xkn with support on I
k
n), always coincides with the true sample-

mean , i.e., E
�
xkn; '

k
n

�
= k

n
for all n, the limit results of observation 1 would identically

apply to this learning scenario with imprecise information. In the remainder of the paper

we will henceforth admit for the case that 0 � � (I�) < 1 while E [~�; � (� j I�)] = �� is
nevertheless satis�ed with probability one

4 Ambiguous beliefs

We assume that individuals exhibit ambiguity attitudes in the sense of Schmeidler (1989)

and who may thus, for example, commit paradoxes of the Ellsberg type (Ellsberg 1961).

Following Schmeidler (1989) and Gilboa (1987), we describe such individuals as Choquet

Expected Utility (CEU) decision makers, that is, they maximize expected utility with

respect to non-additive beliefs. Properties of non-additive beliefs are used in the litera-

ture for formal de�nitions of, e.g., ambiguity and uncertainty attitudes (Schmeidler 1989;

Epstein 1999; Ghirardato and Marinacchi 2002), pessimism and optimism (Eichberger

and Kelsey 1999; Wakker 2001; Chateauneuf, Eichberger, and Grant 2006), as well as

sensitivity to changes in likelihood (Wakker 2004). The Choquet expected value of a

bounded random variable Y : 
 ! R with respect to capacity � is formally de�ned as
the following Riemann integral extended to domain 
 (Schmeidler 1986):

E [Y; �] =

Z 0

�1
(� (f! 2 
 j Y (!) � zg)� 1) dz +

Z +1

0

� f! 2 
 j Y (!) � zg dz. (2)

Our own approach focuses on non-additive beliefs that are de�ned as neo-additive

capacities in the sense of Chateauneuf, Eichberger and Grant (2007).
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De�nition. For a given measurable space (
;F) the neo-additive capacity, �, is de-
�ned, for some �; � 2 [0; 1] by

� (A) = � � (� � !o (A) + (1� �) � !p (A)) + (1� �) � � (A) (3)

for all A 2 F such that � is some additive probability measure and we have for

the non-additive capacities !o

!o (A) = 1 if A 6= ;
!o (A) = 0 if A = ;

and !p respectively

!p (A) = 0 if A 6= 

!p (A) = 1 if A = 
.

The following observation extends a result (Lemma 3.1) of Chateauneuf, Eichberger,

and Grant (2007) for �nite random variables to the more general case of random variables

with a closed and bounded support.

Observation 2. Let Y be a closed and bounded random variable. Then the Choquet

expected value (2) of Y with respect to a neo-additive capacity (3) is given by

E [Y; �] = � (�maxY + (1� �)minY ) + (1� �)E [Y; �] . (4)

Proof: Relegated to the appendix.�

Neo-additive capacities can be interpreted as non-additive beliefs that stand for de-

viations from additive beliefs such that a parameter � (degree of ambiguity) measures

the lack of con�dence the decision maker has in some subjective additive probability

distribution �. Obviously, if there is no ambiguity, i.e., � = 0, (4) reduces to the stan-

dard subjective expected utility representation of Savage (1954). In case there is some

ambiguity, however, the second parameter � measures how much weight the decision

maker puts on the best possible outcome of Y when resolving his ambiguity. Conversely,

(1� �) is the weight he puts on the worst possible outcome of Y . As a consequence, we
interpret � as an �optimism under ambiguity�parameter whereby � = 1, resp. � = 0,

12



corresponds to extreme optimism, resp. extreme pessimism, with respect to resolving

ambiguity in the decision maker�s belief.

Finally, observe that for non-degenerate events, i.e., A =2 f;;
g, the neo-additive
capacity � in (3), simpli�es to

� (A) = � � �+ (1� �) � � (A) : (5)

5 Updating ambiguous beliefs

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

type which show that real-life decision-makers violate Savage�s sure-thing principle. In

this section we demonstrate that abandoning the sure-thing principle bears two impor-

tant implications for conditional CEU preferences over Savage-acts. First, in contrast

to Bayesian updating of additive probability measures, there exist several perceivable

Bayesian update rules for non-additive probability measures (cf. Gilboa and Schmeidler

1993, Sarin and Wakker 1998, Pires 2002, Eichberger, Grant and Kelsey 2006, Siniscalchi

2001, 2006). Second, any preferences that (strictly) violate the sure-thing principle can-

not be updated in a dynamically consistent way. That is, there does not exist any up-

dating rule for capacities such that ex-ante CEU preferences that (strictly) violate the

sure-thing principle are updated in a dynamically consistent manner to ex-post CEU

preferences.

To see this de�ne the Savage-act fBh : 
! X such that

fBh (!) =

(
f (!) for ! 2 B
h (!) for ! 2 :B

where B is some non-empty event. Recall that Savage�s sure-thing principle states that,

for all acts f; g; h; h0 and all events B 2 F ,

fBh � gBh implies fBh0 � gBh0. (6)

Let us interpret event B as new information received by the agent. The sure-thing princi-

ple then implies a straightforward way for deriving ex-post preferences �B, conditional
on the new information B, from the agent�s original preferences � over Savage-acts.

Namely, we have

f �B g if and only if fBh � gBh for any h, (7)

implying for a subjective EU decision-maker

f �B g , E [u (f) ; � (� j B)] � E [u (g) ; � (� j B)]

13



where u : X ! R is a von Neumann-Morgenstern utility function and � (� j B) is a
conditional additive probability measure de�ned, for all A;B 2 F such that � (B) > 0,

by

� (A j B) = � (A \B)
� (B)

.

It is well known that the updating of EU preferences satis�es dynamic consistency,

which - informally - states that there are no strict ex-post incentives for deviating from

an ex-ante optimal plan of actions. Formally, we de�ne dynamic consistency in terms of

update rules, i.e., rules that derive conditional preferences, f�Bg for all events B, from
an ex-ante preference ordering �.

De�nition: Dynamic Consistency. We speak of a dynamically consistent update
rule i¤ for all (�information�) partitions P � F and all Savage-acts f; g, f �B g
for all B 2 P implies f � g.

Observation 3. There does not exist any dynamically consistent update rule for pref-
erences � that strictly violate the sure-thing principle.

Proof: For preferences that strictly violate the sure-thing principle we have, for
some f and g,

fBh � gBh and gBh0 � fBh0 for some h 6= h0 and some B.

Observe that any update rule for preferences must result in conditional preferences

f �B g or g �B f . Consider at �rst the case f �B g. Since h0 �:B h0, dynamic

consistency implies fBh0 � gBh
0, a contradiction to gBh0 � fBh

0 by the de�nition of a

preference ordering. Now consider the case g �B f . Since h �:B h, dynamic consistency
implies gBh � fBh, a contradiction to fBh � gBh.�

In case the sure-thing principle does not hold, the speci�cation of act h in (7) is no

longer arbitrary so that there exist for CEU preferences several possibilities of deriving

ex post preferences from ex ante preferences. That is, in a CEU framework there exist

several perceivable ways of de�ning a conditional capacity � (� j B) such that

f �B g , E [u (f) ; � (� j B)] � E [u (g) ; � (� j B)] .
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Let us at �rst consider conditional CEU preferences satisfying, for all acts f; g,

f �B g if and only if fBh � gBh

where h is the so-called conditional certainty equivalent of g, i.e., h is the constant act

such that g �B h. The corresponding Bayesian update rule for the non-additive beliefs
of a CEU decision maker is the so-called full Bayesian update rule which is given as

follows (Eichberger, Grant, and Kelsey 2006)

�FB (A j B) = � (A \B)
� (A \B) + 1� � (A [ :B) (8)

where �FB (A j B) denotes the conditional capacity for event A 2 F given information

cell B 2 P.

Observation 4: An application of the full Bayesian update rule (8) to a prior belief
(5) results in the posterior belief=0

�FB (A j B) = �FBB � �+
�
1� �FBB

�
� � (A j B) (9)

such that

�FBB =
�

� + (1� �) � � (B) . (10)

Proof: Relegated to the appendix. �

In addition to the full Bayesian update rule we also consider so-called h-Bayesian

update rules for preferences � over Savage acts as introduced by Gilboa and Schmeidler
(1993). That is, we consider some collection of conditional preference orderings,

�
�hB
	

for all events B, such that for all acts f; g

f �hB g if and only if fBh � gBh (11)

where

h = (x�; E;x�;:E) ; (12)

with x� denoting the best and x� denoting the worst consequence possible and E 2 F .
For the so-called optimistic update rule h is the constant act where E = ;. That is,
under the optimistic update rule the null-event, :B, becomes associated with the worst
consequence possible. Gilboa and Schmeidler (1993) o¤er the following psychological

motivation for this update rule:
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�[...] when comparing two actions given a certain event B, the decision maker implicitly

assumes that had B not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given B [...] exhibits �happiness�that B

has occurred; the decisions are made as if we are always in �the best of all possible

worlds�.�

As corresponding optimistic Bayesian update rule for conditional beliefs of CEU

decision makers we obtain

�opt (A j B) = � (A \B)
� (B)

: (13)

Observation 5: An application of the optimistic update rule (13) to a prior belief (5)
such that

NOT (� = 1 AND � = 0) (14)

results in the conditional belief

�opt (A j B) = �optB +
�
1� �optB

�
� � (A j B)

with

�optB =
� � �

� � �+ (1� �) � � (B) .

Proof: Relegated to the appendix. �

For the pessimistic (or Dempster-Shafer) update rule h is the constant act where E =


, associating with the null-event,:B, the best consequence possible. The psychological
interpretation for this update rule according to Gilboa and Schmeidler (1993) is as

follows:

�[...] we consider a �pessimistic�decision maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.�

The corresponding pessimistic Bayesian update rule for CEU decision makers is

�pess (A j B) = � (A [ :B)� � (:B)
1� � (:B) : (15)
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Observation 6: An application of the pessimistic update rule (15) to a prior belief (5)
such that

NOT (� = 1 AND � = 1) (16)

results in the conditional belief

�pess (A j B) = (1� �pessB ) � � (A j B)

with

�pessB =
� � (1� �)

� � (1� �) + (1� �) � � (B) .

Proof: Relegated to the appendix. �

Remark. Observe that the conditions (14) and (16) are consistency conditions which
ensure that the denominator in the according conditional capacity is not zero so that the

conditional capacities are well-de�ned. In the remainder of the paper we will assume that

(14) and (16) hold without explicitly mentioning it. To see the intuition behind these

consistency conditions notice that (14), resp. (16), states that extremely pessimistic,

resp. optimistic, priors should not be updated by the optimistic, resp. pessimistic, rule.

6 Learning with ambiguous beliefs

In this section we formally link the updating of ambiguous beliefs to Bayesian learning

behavior. As a generalization of the Bayesian learning model discussed in Section 3, we

consider now a neo-additive prior about the unknown parameter � such that

� (�) =

(
��+ (1� �) �K�;��

��1 (1� �)��1 for 0 � � � 1
0 else

(17)

i.e., the additive part of this prior is some Beta-distribution. Accordingly, the agent�s

prior estimate for the true value of � is now given as the Choquet expected value of his

neo-additive prior, i.e.,

E [~�; �] = � (�max ~� + (1� �)min ~�) + (1� �)E [~�; �]
= ��+ (1� �)E [~�; �]

by observation 2 and the fact that ~� has full support on [0; 1]. The following lemma uses

our results (observations 4-6) on Bayesian updating of neo-additive capacities in order to

derive conditional neo-additive capacities for the special case (17). The corresponding
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conditional Choquet expected values stand for the agent�s posterior estimate of the

�true�probability of outcome H.

Lemma. Suppose the agent receives sample information Ikn 2 B � S. Contingent on
the applied update rule we obtain the following conditional neo-additive beliefs and

posterior estimates about parameter � whereby E
�
~�; �

�
� j Ikn

��
is given by (1).

(i) Full Bayesian updating.

�FB
�
� j Ikn

�
= �FBIkn �+

�
1� �FBIkn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1

with

�FBIkn =
�

� + (1� �) � � (Ikn)
so that

E
�
~�; �FB

�
� j Ikn

��
= �FBIkn �+

�
1� �FBIkn

�
� E
�
~�; �

�
� j Ikn

��
:

(ii) Optimistic Bayesian updating.

�opt
�
� j Ikn

�
= �opt

Ikn
+
�
1� �opt

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1

with

�opt
Ikn
=

� � �
� � �+ (1� �) � � (Ikn)

so that

E
�
~�; �opt

�
� j Ikn

��
= �opt

Ikn
+
�
1� �opt

Ikn

�
� E
�
~�; �

�
� j Ikn

��
:

(iii) Pessimistic Bayesian updating.

�pess
�
� j Ikn

�
=
�
1� �pess

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1

with

�pess
Ikn

=
� � (1� �)

� � (1� �) + (1� �) � � (Ikn)
so that

E
�
~�; �pess

�
� j Ikn

��
=
�
1� �pess

Ikn

�
� E
�
~�; �

�
� j Ikn

��
:
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In the limit of a Bayesian learning process the agent�s posterior estimates about � will

then converge to E [~�; � (� j I�)], whose value depends on the applied Bayesian update
rule. The following corollary to the above lemma characterizes these limit estimates.

Thereby, we use the fact that the additive part of the neo-additive beliefs converges in

probability to the true probability ��, i.e.,

lim
n!1

prob
���E �~�; � �� j Ikn��� ���� � c� = 1

for some c > 0.

Corollary. Let n ! 1. Contingent on the applied update rule the agent�s estimates
about the probability of outcome H converge in probability to the following posterior

estimates.

(i) Full Bayesian learning.

E
�
~�; �FB (� j I�)

�
= �FBI� �+

�
1� �FBI�

�
� ��

such that

�FBI� =
�

� + (1� �) � � (I�) :

(ii) Optimistic Bayesian learning.

E
�
~�; �opt (� j I�)

�
= �optI� +

�
1� �optI�

�
� ��

such that

�optI� =
� � �

� � �+ (1� �) � � (I�) :

(iii) Pessimistic Bayesian learning.

E [~�; �pess (� j I�)] = (1� �pessI� ) � ��

such that

�pessI� =
� � (1� �)

� � (1� �) + (1� �) � � (I�) .

Consider the situation that di¤erent learners start out with identical neo-additive

priors. The following result formally con�rms our intuition that a pessimistic learner will

end up with a smaller posterior estimate about � than a full Bayesian learner who in turn

ends up with a smaller posterior estimate than an optimistic learner. Furthermore, while
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an optimistic (pessimistic) learner will always overestimate (underestimate) the true

probability of the i.i.d. process, a full Bayesian learner will overestimate (underestimate)

this true probability if and only if it is smaller (greater) than his original degree of

optimism.

Observation 7: Suppose that � > 0 and � 2 (0; 1). Then

E [~�; �pess (� j I�)] < E
�
~�; �FB (� j I�)

�
< E

�
~�; �opt (� j I�)

�
.

Moreover, with respect to any �true�probability �� 2 (0; 1) we have for these limit
estimates

E [~�; �pess (� j I�)] < �� < E
�
~�; �opt (� j I�)

�
and

E
�
~�; �FB (� j I�)

�
� �� i¤ � � ��.

Proof: Relegated to the appendix. �

7 Diverging posteriors and attitude polarization

We are now ready to state and prove our main results whereby we suppose that agents

have received the same (limit) sample information from the statistical experiment. To

focus our analysis we only consider interesting di¤erences between the agents�learning

behavior. In particular, we di¤erentiate between two relevant cases of heterogenous

learning behavior. On the one hand, we consider full Bayesian learners who have di¤er-

ent initial attitudes with respect to optimism under ambiguity implying di¤erent prior

beliefs. On the other hand, we consider agents who may have identical prior beliefs but

have di¤erent, i.e., optimistic resp. pessimistic, attitudes with respect to the interpreta-

tion of new information.

Formally, consider a set of agents, I, such that, for every agent i 2 I, the prior about
the parameter � is given by

�i (�) =

(
�i�i + (1� �i) �K�i;�i�

�i�1 (1� �)�i�1 for 0 � � � 1
0 else.

For the sake of expositional clarity, we restrict attention to the case in which di¤erences

in initial beliefs of agents can only be due to their respective optimism parameters �i,

i 2 I, under ambiguity.
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Assumption 1. The priors of all agents i 2 I satisfy �i = �, �i = �, and �i = � for
some parameter values �; �; �.

By the following assumption we restrict attention to the interesting case of non-

degenerate objective probabilities.7

Assumption 2. The �true�probability �� is non-degenerate, i.e., �� 2 (0; 1).

As our �rst main result (proposition 1) we identify conditions under which posterior

beliefs diverge such that the directed distance between the posterior beliefs of the two

agents is strictly greater than the directed distance between their priors. That is, our

�rst result refers to diverging posteriors in the following sense.

De�nition (Diverging Posteriors). Let I = f1; 2g. We say that both agents�

posteriors strictly diverge i¤

E [~�; �1 (� j I�)]� E [~�; �2 (� j I�)] > E [~�; �1 (�)]� E [~�; �2 (�)] (18)

whereby

E [~�; �1 (�)] � E [~�; �2 (�)] . (19)

According to our concept of strictly diverging posteriors, the repeated learning of

identical information will widen any initial gap in prior beliefs whereby the posteriors

may move in the same direction. We also refer to this divergence in beliefs as a weak

form of myside bias.

Proposition 1. (Diverging Posteriors)

Let I = f1; 2g and suppose that assumptions 1 and 2 are satis�ed.

(i) Assume that both agents are full Bayesian learners. Then the agents�posteriors
strictly diverge if and only if � > 0 and �1 > �2.

7While an extension to the case �� 2 [0; 1] is straightforward, we avoid by assumption 2 the discussion
of tedious boundary conditions which would not add to the understanding of our general �ndings.
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(ii) Assume that agent 1 is an optimistic whereas agent 2 is a pessimistic Bayesian
learner. Then the agents�posteriors strictly diverge if and only if � > 0 and

�1 � �2.

Proof: Relegated to the appendix.

Our second main result (proposition 2) focuses on conditions that ensure attitude

polarization. Attitude polarization in our sense is a stronger concept than mere diver-

gence of posteriors in that it additionally requires that the posteriors move in opposite

directions. We also refer to this divergence in beliefs as a strong form of myside bias.

Formally, we consider the following de�nition of attitude polarization.

De�nition (Attitude Polarization). Let I = f1; 2g. We say that both agents�
attitudes become strictly polarized i¤

E [~�; �1 (� j I�)] > E [~�; �1 (�)] � E [~�; �2 (�)] > E [~�; �2 (� j I�)] . (20)

In order to further focus our analysis we restrict attention to the case in which the

additive part of the prior estimate coincides with the objective probability.

Assumption 3. The priors of all agents i 2 I satisfy E [~�; � (�)] = ��.

Proposition 2. (Attitude Polarization I)

Let I = f1; 2g and suppose that assumptions 1, 2, and 3 are satis�ed.

(i) Assume that both agents are full Bayesian learners. Then the agents�attitudes

become strictly polarized if and only if � 2 (0; 1), �1 > �2, and

�1 > �
� > �2. (21)

(ii) Assume that agent 1 is an optimistic whereas agent 2 is a pessimistic Bayesian
learner. Then the agents� attitudes become strictly polarized if and only if

� > 0 and �1 � �2.
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Proof: Relegated to the appendix.

Our formal de�nitions of �diverging posteriors�and �attitude polarization�capture

the idea that the agents�posteriors diverge rather than converge despite the fact that

they receive the same information. The results of propositions 1 and 2 demonstrate that

this weak, respectively strong, form of a myside bias may occur in di¤erent learning

scenarios. While the results of propositions 1(i) and 2(i) are driven by the initial gap in

prior beliefs, the results of propositions 1(ii) and 2(ii) build upon the di¤erent learning

rules of the agents. According to condition (21) attitude polarization for full Bayesian

learners rather occurs if the di¤erence in initial beliefs is large, i.e., strong optimism

of agent 1 versus strong pessimism of agent 2. Such a di¤erence in prior beliefs is not

necessary for attitude polarization in case the agents apply di¤erent learning rules. That

is, even agents with common priors may experience diverging posteriors and attitude

polarization if they interpret new information di¤erently.

Finally, the following proposition shows that whenever full Bayesian learners express

attitude polarization, the magnitude of attitude polarization between an optimistic and

a pessimistic learner will be even more signi�cant. This (intuitive) result is an immediate

consequence of observation 7.

Proposition 3. (Attitude Polarization II)

Let I = f1; :::; 4g and suppose that assumptions 1, 2, and 3 are satis�ed whereby we
have for the agents�priors

�1 = �3 > �2 = �4.

Further assume that agents 1 and 2 are full Bayesian learners whereas agent 3 is an

optimistic and agent 4 is a pessimistic Bayesian learner. If the attitudes of agents

1 and 2 become strictly polarized, then the attitudes of agents 3 and 4 are even

more polarized, i.e.,

E [~�; �3 (� j I�)] > E [~�; �1 (� j I�)] > E [~�; �2 (� j I�)] > E [~�; �4 (� j I�)] .

8 Conclusion

To account for the empirical phenomena of �myside bias� and �irrational belief per-

sistence� in people�s learning behavior we propose formal models of Bayesian learning

where the interpretation of new information is prone to psychological biases. Based on a
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simpli�ed representation of ambiguous beliefs we develop parsimonious representations

of the agent�s initial beliefs and updating processes. We thereby focus attention on

three alternative updating rules that are characterized by di¤erent degrees of optimism,

respectively pessimism, in the interpretation of new information. As a speci�c feature

of our approach, the resulting models of Bayesian learning with psychological attitudes

reduce to a standard model of rational Bayesian learning in the absence of ambiguity.

However, we show that this standard model of rational Bayesian learning alone results

in convergent beliefs and is therefore not a suitable framework to account for phenomena

such as a myside bias.

We then develop a two heterogeneous agents setting to derive divergent posterior

beliefs and attitude polarization for the agents� learning processes under ambiguity.

Attitude polarization is de�ned as a stronger condition than divergent beliefs in that the

posterior beliefs of the two agents move into opposite directions. While we assume that

the agents receive the same information, the agents may have di¤erent prior beliefs or

apply di¤erent learning rules. Two main �ndings emerge:

1. We may observe divergent posterior beliefs and attitude polarization for agents

who have identical attitudes with respect to the interpretation of new information

but have di¤erent initial attitudes with respect to optimism, resp. pessimism,

under ambiguity.

2. We may observe divergent posterior beliefs and attitude polarization in case the

agents have identical initial attitudes with respect to optimism, resp. pessimism,

under ambiguity but have di¤erent attitudes with respect to the interpretation of

new information.

Our stylized models of Bayesian thus formally accommodate two alternative scenar-

ios of a �myside bias�. In a �rst scenario, a �myside bias�arises because of personal

attitudes towards the resolution of ambiguity. In a second scenario, a �myside bias�

corresponds to personal attitudes towards the interpretation of information. While the

psychological studies quoted in the introduction provide empirical evidence for the phe-

nomenon of attitude polarization, they cannot di¤erentiate between these two alternative

explanations for the phenomenon. It would therefore be interesting to gather more em-

pirical evidence on updating and learning with non-additive beliefs. In this respect, our

formal model may be useful for designing experiments that speci�cally look at the issue

of Bayesian updating of ambiguous beliefs.

In future research we aim to apply our approach to topics in information economics

that are typically analyzed under the assumption of rational Bayesian learning such as

�ctitious play in strategic games (see, e.g., Fudenberg and Kreps 1993; Fudenberg and
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Levine 1995; Krishna and Sjostrom 1998) or no-trade results (see, e.g., Milgrom and

Stokey 1982; Morris 1994; Neeman 1996; Zimper 2007). Along the line of heterogeneous

agent models that depart from the rational expectations or rational Bayesian learning

paradigms, our approach may also have promising implications for asset pricing models

(see, e.g., Cecchetti, Lam, and Mark 2000; Abel 2002; Ludwig and Zimper 2007) and

theories of endogenous speculative bubbles (see, e.g., the discussion in Kurz 1996).
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Appendix

Proof of observation 2: By an argument in Schmeidler (1986), it su¢ ces to restrict
attention to a non-negative valued random variable Y so that

E [Y; �] =

Z +1

0

� f! 2 
 j Y (!) � zg dz,

which is equivalent to

E [Y; �] =

Z maxY

minY

� f! 2 
 j Y (!) � zg dz (22)

since Y is closed and bounded. We consider a partition Pn, n = 1; 2; :::, of 
 with

members

Akn = f! 2 
 j ak;n < X (!) � bk;ng for k = 1; :::; 2n

such that

ak;n = [maxY �minY ] � (k � 1)
2n

+minY

bk;n = [maxY �minY ] � k
2n
+minY .

De�ne the step functions an : 
! R and bn : 
! R such that, for ! 2 Akn, k = 1; :::; 2n,

an (!) = ak;n

bn (!) = bk;n.

Obviously,

E [an; �] � E [Y; �] � E [bn; �]

for all n and

lim
n!1

E [bn; �]� E [an; �] = 0.

That is, E [an; �] and E [bn; �] converge to E [Y; �] for n ! 1. Furthermore, observe
that

min an = minY for all n, and

max bn = maxY for all n.

Since limn!1min bn = limn!1min an and E [bn; �] is continuous in n, we have

lim
n!1

E [bn; �] = �
�
� lim
n!1

max bn + (1� �) lim
n!1

min bn

�
+ (1� �) lim

n!1
E [bn; �]

= � (�maxY + (1� �)minY ) + (1� �)E [Y; �] .
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In order to prove proposition 3, it therefore remains to be shown that, for all n,

E [bn; �] = � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

Since bn is a step function, (22) becomes

E [bn; �] =
X
Akn2Pn

�
�
A2

n

n [ ::: [ Akn
�
� (bk;n � bk�1;n)

=
X
Akn2Pn

bk;n �
�
�
�
A2

n

n [ ::: [ Akn
�
� �

�
A2

n

n [ ::: [ Ak�1n

��
,

implying for a neo-additive capacity

E [bn; �] = max bn
�
��+ (1� �)�

�
A2

n

n

��
+
2n�1X
k=2

bk;n (1� �)�
�
Akn
�

+min bn

"
1� ��� (1� �)

2nX
k=2

�
�
Akn
�#

= ��max bn + (1� �)
2nX
k=1

bk;n�
�
Akn
�
+min bn [� � ��]

= � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

�

Proof of observation 4: An application of the full Bayesian update rule to a
neo-additive capacity gives

�FB (A j B) =
� � �+ (1� �) � � (A \B)

� � �+ (1� �) � � (A \B) + 1� (� � �+ (1� �) � � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A)� � (:B) + � (A \ :B))

=
� � �+ (1� �) � � (A \B)
1 + (1� �) � (�� (:B))

=
� � �+ (1� �) � � (A \B)

� + (1� �) � � (B)

=
� � �

� + (1� �) � � (B) +
(1� �) � � (B)

� + (1� �) � � (B)� (A j B)

= �FBB � �+
�
1� �FBB

�
� � (A j B)

with �FBB given by (10).�
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Proof of observation 5: An application of the optimistic Bayesian update rule to
a neo-additive capacity gives

�opt (A j B) =
� � �+ (1� �) � � (A \B)
� � �+ (1� �) � � (B)

=
� � �

� � �+ (1� �) � � (B) +
(1� �) � � (B)

� � �+ (1� �) � � (B) � � (A j B)

= �optB +
�
1� �optB

�
� � (A j B)

such that

�optB =
� � �

� � �+ (1� �) � � (B) .

�

Proof of observation 6: An application of the pessimistic Bayesian update rule to
a neo-additive capacity gives

�pess (A j B) =
� (A [ :B)� � (:B)

1� � (:B)

=
� � �+ (1� �) � � (A [ :B)� � � �� (1� �) � � (:B)

1� � � �� (1� �) � � (:B)

=
(1� �) � � (: (:A \B))� (1� �) � � (:B)

1� � � �� (1� �) � � (:B)

=
(1� �) � (1� � (:A \B))� (1� �) � (1� � (B))

1� � � �� (1� �) � � (:B)

=
(1� �) � (� (B)� � (:A \B))
1� � � �� (1� �) � (� (:B))

=
(1� �) � (� (B)� � (B)� (:A j B))
1� � � �� (1� �) � (� (:B))

=
(1� �) � (� (B)� � (B) (1� � (A j B)))

1� � � �� (1� �) � � (:B)
= (1� �pessB ) � � (A j B)

such that

�pessB =
� (1� �)

� (1� �) + (1� �) � � (B) .

�

Proof of observation 7: At �rst observe that � > 0 and � 2 (0; 1) implies �FBI� >

�optI� as well as �
FB
I� > �pessI� . Consider the inequality

E
�
~�; �FB (� j I�)

�
< E

�
~�; �opt (� j I�)

�
,

�FBI� � � < �optI� +
�
�FBI� � �optI�

�
� ��,
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which holds, by �FBI� > �optI� , for all �
� i¤

�FBI� � � < �optI� ,
� � �

� + (1� �) � � (I�) <
� � �

� � �+ (1� �) � � (I�) ,

� < 1.

Turn now to the inequality

E [~�; �pess (� j I�)] < E
�
~�; �FB (� j I�)

�
,�

�FBI� � �pessI�

�
� �� < �FBI� � �,

which holds, by �FBI� > �pessI� , for all �� i¤�
�FBI� � �pessI�

�
< �FBI� � �,

�FBI� � (1� �) < �pessI� ,
� � (1� �)

� + (1� �) � � (I�) <
� � (1� �)

� � (1� �) + (1� �) � � (I�) ,

0 < �.

This proves the �rst part of the observation. The second part readily follows from the

assumption that � (I�) < 1.�

Proof of proposition 1.
Part (i). Observe at �rst that inequality (19) is satis�ed if and only if �1 � �2.

Obviously, if �1 = �2 then (18) must be violated. Thus we can restrict attention to

�1 > �2. Observe that, by the corollary, (18) writes as

�FBI� �1 +
�
1� �FBI�

�
� �� � �FBI� �2 +

�
1� �FBI�

�
� ��

> � � �1 + (1� �) � E [~�; � (�)]� (� � �2 + (1� �) � E [~�; � (�)]) ,

which is equivalent to

�FBI� > � ,
�

� + (1� �) � � (I�) > �,

and therefore holds if and only if � 2 (0; 1) since � (I�) < 1.�
Part (ii). Again, observe at �rst that inequality (19) is satis�ed if and only if

�1 � �2. By the corollary, (18) becomes

�optI� +
�
1� �optI�

�
� �� � (1� �pessI� ) � ��

> � � �1 + (1� �) � E [~�; � (�)]� (� � �2 + (1� �) � E [~�; � (�)])
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which is equivalent to

�optI� +
�
�pessI� � �optI�

�
� �� > � (�1 � �2) : (23)

If � = 0, the l.h.s. as well as the r.h.s. of (23) equal zero. Thus, � > 0 is a necessary

condition for (23) to hold. In what follows we prove that � > 0 is also a su¢ cient

condition. Let � > 0 and consider at �rst the case that

�pessI� � �optI� � 0. (24)

Since the l.h.s. of (23) is then continuously strictly decreasing in �� and, by assumption,

�� 2 (0; 1), (23) is satis�ed for all �� if and only if

�pessI� � � (�1 � �2),
1� �2

�(1� �2) + (1� �)�(I�)
� �1 � �2,

which is obviously true for all �1; �2 since

1� �2
�(1� �2) + (1� �)�(I�)

� 1� �2.

This proves the claim for case (24).

Let � > 0 and consider now the converse case

�pessI� � �optI� > 0. (25)

Since the l.h.s. of (23) is then continuously strictly increasing in �� 2 (0; 1), (23) is
satis�ed for all �� if and only if

�optI� +
�
�pessI� � �optI�

�
� � (�1 � �2),

�pessI� � � (�1 � �2),
1� �2

�(1� �2) + (1� �)�(I�)
� �1 � �2,

which is obviously true for all �1; �2. This proves that � > 0 is su¢ cient for (23) to hold.

��

Proof of proposition 2.
Part (i). By the corollary and the assumption that E [~�; � (�)] = �� equation (20)

implies

E [~�; �1 (� j I�)] > E [~�; �2 (� j I�)],
�FBI� �1 +

�
1� �FBI�

�
� �� > �FBI� �2 +

�
1� �FBI�

�
� ��
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which holds if and only if �1 > �2 so that the middle inequality in (20) is also strict.

Focus now on the inequalities

E [~�; �1 (� j I�)] > E [~�; �1 (�)],
�FBI� �1 +

�
1� �FBI�

�
� �� > � � �1 + (1� �) � ��

and

E [~�; �2 (�)] > E [~�; �2 (� j I�)],
� � �2 + (1� �) � �� > �FBI� �2 +

�
1� �FBI�

�
� ��

which are implied by (20) under the assumption thatE [~�; � (�)] = ��. Observe that these
inequalities require � 2 (0; 1) since � 2 f0; 1g would imply �FBI� = �. As a consequence

of � 2 (0; 1), we have from the corollary that �FBI� > � because � (I�) < 1 so that the

above inequalities hold if and only if

�1 > �
� > �2,

which proves the result. �
Part (ii). By the corollary, the inequality E [~�; �1 (�)] � E [~�; �2 (�)] in (20) holds if

and only if �1 � �2. Consider at �rst agent 1 and rewrite the relevant part in (20) as

E
�
~�; �opt1 (� j I�)

�
> E [~�; �1 (�)],

�optI� +
�
1� �optI�

�
� �� > � � �1 + (1� �) � E [~�; � (�)]

which, under the assumption that E [~�; � (�)] = �� is equivalent to

�optI� +
�
� � �optI�

�
� �� > � � �1: (26)

Observe that � > 0 is a necessary condition for (26) to hold. In what follows we prove

that � > 0 is also su¢ cient. Let � > 0 and consider at �rst the case that

� � �optI� � 0. (27)

Since the l.h.s. of (26) is then continuously strictly decreasing in �� 2 (0; 1), (26) is
satis�ed for all �� if and only if

�optI� � � � �1 ,
1

��1 + (1� �)�(I�)
� 1,

which is obviously satis�ed. This proves the claim for case (27).
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Let � > 0 and consider now the converse case

� � �optI� > 0. (28)

Since the l.h.s. of (26) is then continuously strictly increasing in �� 2 (0; 1), (26) is
satis�ed for all �� if and only if

� � � � �1,

which is obviously satis�ed. This proves our claim that � > 0 is a necessary and su¢ cient

condition for (26) to hold.��
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