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Abstract

The security level models of Gilboa (1988) and of Ja¤ray (1988) as well as the

security and potential level model of Cohen (1992) and Essid (1997) successfully

accommodate classical Allais paradoxes while they o¤er an interesting explanation

for their occurrence. However, experimental data suggest a systematic violation

of these models when lotteries with low probabilities of bad or good outcomes are

involved. In our opinion, one promising candidate for the explanation of these

violations is the assumption of thresholds in the perception of security and poten-

tial levels. The present paper develops an axiomatic model that allows for such

thresholds, so that the derived representation of preferences can accommodate the

observed violations of the original security and potential level models.
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1 Introduction

In a well-known study on the psychology of decision making under risk, Lopes (1987)

concluded that a decision maker takes into account three di¤erent factors while evalu-

ating lotteries: What is the expected utility of this lottery? What is the worst outcome

I can end up with by choosing this lottery (i.e., what is the security level of this lot-

tery)? What is the best outcome I can end up with (i.e., what is the potential level)?

This conclusion motivated Cohen (1992) to develop a three-criteria decision model which

generalizes expected utility by allowing for security level and potential level (=SL-PL)

considerations. An extension of this model has been provided by Essid (1997). Earlier

models of Gilboa (1988) and Ja¤ray (1988) are very similar to Cohen�s model but restrict

attention to the security level alone. All three approaches explain Allais paradoxes (cf.

Allais (1979)) by discontinuities of preferences resulting from the di¤erent security and

potential levels of the lotteries involved. More recently, Chateauneuf et al. (2004), build-

ing upon earlier work of Dow and Werlang (1994) and Eichberger and Kelsey (1999),

have integrated Cohen�s ideas in a model of decision making under uncertainty.

The accommodation of Allais paradoxes by the SL-PL models is in our view intu-

itively very appealing. However, SL-PL models exhibit two major problems. First, they

perform descriptively rather poorly when they are confronted with experimental data

that go beyond the classical Allais paradoxes. Since SL-PL models reduce to expected

utility preferences in the interior of the Marschak-Machina triangle, typical violations of

expected utility theory elicited in the interior of the Marschak-Machina triangle can not

be accommodated by the original SL-PL models. Of course a model which could explain

all possible violations of expected utility would be so general that it has no behavioral

implications. However, one of our goals is to show that a slight generalization of the

original SL-PL models already improves their empirical performance substantially. A

second and somewhat more fundamental problem can be characterized as follows: in

real life there is always an (arbitrarily) small chance of immediate death and also a tiny

chance of �nding a suitcase on the street containing a huge cash amount of say ten

billion dollars. Thus, it may be argued that in all decision problems death is always the

security level while the amount of ten billion dollars is the potential level. If the security

and potential levels are, however, identical in all lotteries, SL-PL models simply reduce

to expected utility theory. So it may be criticized that for real world applications there

is no di¤erence between expected utility and SL-PL models.

It turns out that both problems can be solved by a slight generalization of the original

SL-PL models with respect to their assumption that security and potential considera-

tions refer exclusively to the worst, respectively best, outcome in the support of a lottery,

regardless of how small their probability actually is. Consequently, our model extends
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existing SL-PL models by so-called thresholds so that security or potential considera-

tions become only relevant when the probabilities of bad, respectively good, outcomes

are not below some perceptual threshold level. Extreme outcomes with probabilities

beyond these thresholds will be disregarded in our model. For example, a lottery may

be still perceived as very secure as long as bad outcomes occur with very small probabil-

ity. Accordingly, a lottery may be associated with a low potential when the probability

of a high outcome is only small for this lottery. As our formal main result, we derive

a representation theorem for a generalized SL-PL model which involves two additional

parameters: a threshold probability " up to which a decision maker perceives the proba-

bility of a bad outcome as rather insigni�cant and a threshold probability � up to which

she perceives the probability of a good outcome as negligible. Good or bad outcomes

beyond these thresholds are ignored for the calculation of utility.1

Empirical observations, which suggest that people often neglect very small probabili-

ties (cf. Sjöberg (1999), (2000) and Stone, Yates, and Parker (1994)), can be regarded as

further evidence in favor of thresholds: if the worst (respectively best) outcome has a very

small probability, it seems unreasonable that people attach psychological importance to

this outcome by regarding it as security (respectively potential) level and, at the same

time, neglect its probability. Also the editing phase of prospect theory (Kahneman and

Tversky, 1979) suggests that outcomes with very small probabilities are ignored. More-

over, Birnbaum and Navarrete�s (1998, p. 52f.) �recipe�for generating violations of �rst

order stochastic dominance in class-room experiments seemingly exploits di¢ culties of

decision makers in discriminating between lotteries whose cumulative probability of bad

outcomes falls below some threshold value.

An analogous concept to our notion of thresholds can be seen in the Value-at-Risk

(VaR) which is de�ned as the worst loss for a given con�dence level (mostly 99%). More

precisely, for a con�dence level of 99% the VaR of a lottery equals x if the cumulative

probability of outcomes smaller than x is given by 1%. The VaR has recently become

very popular as a risk measure and it seems reasonable to consider the VaR as security

level which is perfectly consistent with our model but not compatible with the original

SL-PL models.

The introduction of thresholds appears to us as a natural extension of SL-PL models,

and it can successfully explain the most persistent choice patterns that are inconsistent

with the original SL-PL models. Thus, the main contribution of this paper is to improve

the descriptive power of SL-PL models by formalizing the idea that extremely bad, re-

spectively good, outcomes only in�uence preferences when their cumulative, respectively

1Note that it is beyond the scope of our paper to develop a psychological theory that actually explains

the existence of perception thresholds.
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decumulative, probabilities exceed a threshold.

Clearly, besides SL-PL models there exist other alternatives to expected utility which

can explain Allais paradoxes and further violations of expected utility. Nowadays, cu-

mulative prospect theory (Tversky and Kahneman, 1992) seems to be most prominent.

Schmidt (2000) has shown that the main idea of SL-PL models can be integrated in the

framework of cumulative prospect theory and can be considered as a special case result-

ing from a particular shape of the probability weighting function. If we take this view

- also supported by the paper of Chateauneuf et al. (2004) - SL-PL models have less

descriptive �exibility since they are less general but, conversely, they have more concrete

implications in theoretical applications. For instance, Zimper (2006) demonstrates that

under SL-PL preferences equilibria in beliefs may fail to exist for �nite strategic games

whereas there always exist such equilibria when preferences allow for a continuous utility

representation (cf. Crawford, 1990). As another theoretical application, the assumption

of SL-PL preferences may avoid Rabin�s (2000) calibration-paradox, which - originally es-

tablished for EU preferences - also applies to various standard alternatives to EU theory

that consider �nal-wealth levels as outcomes (cf. Safra and Segal (2005), (2006)). So,

our model may provides a better trade o¤between parsimony and predictive power than

the original SL-PL models. However, despite the appealing psychological foundation of

our SL-PL model, it is of course �nally an empirical question which class of models may

provide a better organization of the data.

The paper proceeds as follows. The next section introduces the original SL-PLmodels

and presents the typical experimental designs in which violations of these models have

been observed. Section 3 introduces our proposal for a partition of a set of lotteries

into subsets of di¤erent security and potential levels with respect to thresholds. In

section 4 we introduce our axioms and state our representation theorem. In section 5 we

conclude by demonstrating how the evidence against the original SL-PL models can be

accommodated within our framework. All formal proofs are relegated to the appendix.

2 The Original SL-PL Models

In contrast to other alternatives to expected utility theory like models with the betweenness-

property or rank dependent utility models with continuous weighting functions (see, e.g.,

Karni and Schmeidler (1991), Starmer (2000), Schmidt (2004), and Sugden (2004) for

surveys), SL-PL models presume that discontinuities in the preferences describe best

what is psychologically happening when decision makers commit Allais paradoxes. As

an extension to expected utility, security and potential factors allow for jumps in the

4



preferences so that a secure (respectively high potential) lottery now dominates all inse-

cure (respectively low potential) lotteries that are su¢ ciently close in the sense of some

mathematically de�ned neighborhood.

Consider a �nite set X = fx1; :::; xng - interpreted as set of outcomes - and let 4
denote the set of all probability distributions, i.e., lotteries, overX where a lottery p 2 4
yields outcome xk with probability pk. Further, denote by xm and xM the worst and

best outcomes of the lottery p. Then the evaluation of a lottery p in the model of Cohen

(1992) and Essid (1997) is basically given by

U(p) = a(m;M)
nX
k=1

pku (xk) + b(m;M), (1)

where
Pn

k=1 pku (xk) is the standard expected utility of p with respect to some utility

indices u : X ! R while the real numbers a(m;M) and b(m;M) with a(m;M) > 0

depend on the given security level (m) and potential level (M) of p. Moreover, Cohen

(1992) shows that such a utility representation satis�es monotonicity with respect to

�rst order stochastic dominance, if and only if, for all m; k;M;m0;M 0 2 f1; ::; ng with
m � m0 and M �M 0,

min
m�k�M

[a (m0;M 0)� a (m;M)]u (xk) + b (m0;M 0)� b (m;M) � 0. (2)

The models of Gilboa (1988) and Ja¤ray (1988) are similar but restrict attention to the

security level m alone.

If a (�; �) and b (�; �) in (1) assume di¤erent values for di¤erent security- and potential
levels, then the utility representation (1) is discontinuous at lotteries where the prob-

ability of the worst (best) outcome drops to zero since Cohen identi�es the security

(potential) level of a lottery with its worst (best) outcome. As a consequence, original

SL-PL models are able to re�ect jumps in the preferences that occur at the edges of

the Marschak-Machina triangle. However, when we restrict attention to lotteries in the

interior of the Marschak-Machina triangle all lotteries have identical security level (=the

worst outcome in X) and potential level (=the best outcome in X), so that the utility

representation (1) reduces to expected utility theory.

Based on a statistical analysis of experimental data of elicited preferences, Harless

and Camerer (1994) investigate the question whether Allais paradoxes are persistently

committed within the interior of the Marschak-Machina triangle or if they have to include

lotteries at the edges. They conclude: �The conjecture that EU violations disappear in

the interior appears to be false.� In what follows, we present results from two studies

reported in Harless and Camerer (1994), by which preferences over lotteries in the interior
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of the Marschak-Machina triangle were elicited. In our opinion, these data reveal very

speci�c preference patterns by which expected utility theory - and therefore original

SL-PL models - are signi�cantly violated.

Problem 1. Consider the following pairs of lotteries Sk;Rk, k 2 f1; :::; 5g, for which
the respective probabilities of the outcomes $0, $1 � 106, $5 � 106 are given as follows:

S1 = (:01; :98; :01) R1 = (:02; :87; :11)

S2 = (:80; :19; :01) R2 = (:81; :08; :11)

S3 = (:01; :19; :80) R3 = (:02; :08; :90)

S4 = (:70; :19; :11) R4 = (:71; :08; :21)

S5 = (:02; :87; :11) R5 = (:03; :76; :21)

Observe that all line segments Sk;Rk , k 2 f1; :::; 5g, lie in the interior of the
Marschak-Machina triangle. Since the line segments Sk;Rk are parallel for all k 2
f1; :::; 5g, the original SL-PL models - analogously to expected utility preferences - are
therefore only consistent with strict preferences where the decision maker must either

prefer Sk to Rk for all k 2 f1; :::; 5g or vice versa. But from 184 subjects confronted with
this task, 17 subjects strictly preferred Sk to Rk for all k 2 f1; :::; 5g and 61 subjects
strictly preferred Rk to Sk for all k 2 f1; :::; 5g. Hence, a vast majority of elicited
preferences is neither compatible with expected utility theory nor with the original SL-

PLmodels. Most of the subjects (21 individuals) who did not comply to these preferences

expressed the following preference pattern:

Sk preferred to Rk for k = 1 (3)

Rk preferred to Sk for k 2 f2; :::; 5g .

Is there some plausible reason why these individuals choose the pairs Sk;Rk for

k 2 f2; :::; 5g, in accordance with expected utility theory, whereas they strictly prefer
S1 to R1, thereby violating expected utility theory as well as the original SL-PL mod-

els? Compared to lotteries Sk, k 2 f2; :::; 5g, a peculiar feature of lottery S1 is the
small probability of the worst and the best outcome. For this reason, we think that

an appealing �explanation�of the occurrence of preferences (3) has to stress the role of

small probabilities in decision making. In section 5, we demonstrate that our model can

accommodate preferences (3) by stipulating the existence of some small threshold for

the perception of security levels.
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Problem 2. Now consider the following pairs of lotteries Sk;Rk, k 2 f1; :::; 4g, for
which the respective probabilities of outcomes $0, $3, $6 are given as follows:

S1 = (:84; :14; :02) R1 = (:89; :01; :10)

S2 = (:04; :94; :02) R2 = (:09; :81; :10)

S3 = (:44; :14; :42) R3 = (:49; :01; :5)

S4 = (:04; :14; :82) R4 = (:09; :01; :9)

As in problem 1, all line segments Sk;Rk , k 2 f1; :::; 4g, lie in the interior of the
Marschak-Machina triangle and are parallel. Thus, the original SL-PL models as well as

expected utility preferences can only accommodate the strict preference patterns where

the decision maker must either prefer Sk to Rk for all k 2 f1; :::; 4g or vice versa.
From 84 subjects, 10 subjects strictly preferred Sk to Rk for all k 2 f1; :::; 4g and
26 subjects strictly preferred Rk to Sk for all k 2 f1; :::; 4g, so that a vast majority
of subjects violates expected utility theory and the original SL-PL models. The most

often reported preference pattern (10 individuals), violating expected utility theory and

existing SL-PL models, is

Rk preferred to Sk for k 2 f1; 2g (4)

Sk preferred to Rk for k 2 f3; 4g .

Compared to the remaining lotteries, the lotteries S1 and S2 have the peculiar feature

that the best outcome appears only with a very small probability. Again, we think that

this negligible probability of a good outcome in lotteries S1 and S2 may be the reason

why so many individuals prefer Rk to Sk for k 2 f1; 2g while they simultaneously prefer
Sk to Rk for k 2 f3; 4g where the good outcome occurs with non-negligible probability.
We will accommodate in section 5 the preferences (4) by assuming the existence of some

small threshold for the perception of potential levels..

Let us sum up. While SL-PL models may accommodate the occurrence of classical

Allais paradoxes involving lotteries at the edges of the Marschak-Machina triangle, they

can no longer explain deviations from expected utility theory when we move from the

edges into the interior of the Marschak-Machina triangle. A closer examination of prob-

lem 1 and of problem 2 reveals that original SL-PL models are most persistently violated

when lotteries are involved for which bad outcomes or good outcomes occur with rather

small probability. That is, the typically observed violations of SL-PL models involve
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lotteries that are very close to the edges of the Marschak-Machina triangle but that do

not actually belong to it.

Therefore, we think that the key for solving these systematic violations of SL-PL

models is a departure from the assumption that a lottery is not secure, or is a high

potential lottery, just because bad, respectively good, outcomes occur with positive

probability. In contrast, our SL-PL model with thresholds will allow decisionmakers to

perceive lotteries as secure (of low potential) when the bad (good) outcomes occurs only

with su¢ ciently small probabilities.

3 Security and Potential Levels with Thresholds

The objective for our particular formalism of thresholds has been threefold. First, we

wanted to keep the model as simple as possible. As a consequence we introduce only

two new parameters to the original SL-PL models, a threshold for security levels and

a threshold for potential levels, whereby the security level and the potential level of a

lottery is then easily determined by its cumulative and decumulative distribution func-

tions. More sophisticated SL-PL models with thresholds could be constructed, however,

we are willingly trading o¤ richness of the model for a simple formalism that captures

well the basic idea.

Second, we formalize the idea that the decision maker is ignorant with respect to

extreme outcomes (=tail outcomes) whose cumulated probabilities fall below the stipu-

lated threshold values. For example, if there exists a security threshold of 0:02 for the

preferences elicited in problem 1 (Section 2), then our decision maker is assumed to be

indi¤erent between, e.g., the lotteries

S6 = (:01; :01; :98) R6 = (0; :02; :98).

In this case, the decision maker of our model perceives the di¤erences between the

small probabilities of the worst and second worst outcomes as irrelevant to his comparison

of both lotteries. Similarly, for a potential threshold of 0:02 we stipulate indi¤erence

between the lotteries

S7 = (:98; :01; :01) R7 = (:98; :02; 0).
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Both examples demonstrate that the preferences of our model violate monotonicity

with respect to �rst-order stochastic dominance (FOSD) in its strict version. In con-

trast, the original SL-PL models, which do not consider thresholds, do not violate this

fundamental requirement for rational decision makers. Although the empirical literature

has observed violations of monotonicity (see, e.g., Birnbaum and Navarrete, 1998), our

third objective is to restrict the violation of monotonicity with respect to FOSD in our

model to the exclusive case where the decision maker is ignorant to the probabilities of

extreme outcomes whenever their total probability is below the thresholds.

Denote by Ik the degenerate lottery that yields outcome xk with probability one.

Compound lotteries are supposed to reduce to lotteries in the standard way and we

alternatively write p1I1 + :::+ pnIn for the lottery p.

Let F [p] (xk) denote the cumulative and D [p] (xk) the decumulative distribution

function of lottery p evaluated at outcome xk. For "; � 2 (0; 1) with "+ � < 1 and m;M
with 1 � m �M � n de�ne 4 (m;M; "; �) as the set of all lotteries p 2 4 such that

F [p] (xm�1) < " AND F [p] (xm) � " AND D [p] (xM+1) < � AND D [p] (xM) � �.

Observation: For any thresholds "; � 2 (0; 1) with " + � < 1, the collection of sets,

(4 (m;M; "; �))m2f1;:::;ng;M�m, is a partition of 4 into non-empty convex cells.

We call 4 (m;M; "; �) a SL,PL-subset and we say that a lottery p 2 4 (m;M; "; �)
has security level m and potential level M . The threshold-value " for security levels

guarantees that worse outcomes than xm occur for a lottery of security level m with

probability less than ". Accordingly, better outcomes than xM occur for a lottery of

potential levelM with probability less than �. For the sake of notational convenience, we

henceforth simply write 4 (m;M) instead of 4 (m;M; "; �); (though the reader should
keep in mind that all sets 4 (m;M) are de�ned with respect to the �xed perception
thresholds " and �).

4 Axiomatic Analysis

Under the assumption that unlikely realizations of bad or good outcomes do not in�uence

the perceived security- and potential level of a lottery, we present in this section our

formal axioms and derive a corresponding representation theorem.
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A1. Weak Ordering: There exists a transitive and complete preference relation %
on 4 such that Ik+1 � Ik for k 2 f1; :::; n� 1g.

The following axiom formulates our second objective, namely, that the probabilities

of tail outcomes are ignored if their cumulated probability is below the threshold for the

security level (lower tail) respectively below the perception threshold for the potential

level (upper tail). In particular, we assume that strictly worse outcomes than xm are

irrelevant for the perception of a lottery�s security level as long as they occur with a

probability strictly smaller than ". Accordingly, strictly better outcomes than xM are

supposed to be irrelevant for the perception of a lottery�s potential level as long as they

occur with a probability strictly smaller than �.

A2. Perception Indi¤erence: If p; q 2 4 (m;M) such that

F [p] (xm) = F [q] (xm) AND D [p] (xM) = D [q] (xM) ,

pk = qk for all k with m < k < M ,

then p � q.

Now de�ne the set

P (m;M) = fp 2 4 (m;M) j F [p] (xm�1) = 0 AND D [p] (xM+1) = 0g ,

which collects all the lotteries of4 (m;M) that do not contain strictly worse, respectively
strictly better, outcomes than xm, respectively xM , in their support.

A3. P-Restricted Archimedean Axiom: For all p; q; r 2 P (m;M) such that
p � r � q, there exist �; � 2 (0; 1) such that

�p+ (1� �) q � r � �p+ (1� �) q.

A4. P-Subset Restricted Independence: For all p; q; r 2 P (m;M), p % q if and
only if

�p+ (1� �) r % �q + (1� �) r

for all � 2 (0; 1).
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Recall the de�nition of �rst-order stochastic dominance (=FOSD): a lottery p dom-

inates a lottery q w.r.t. FOSD, i.e., p �FOSD q, if and only if F [p] (x) � F [q] (x) for

all x 2 X. Moreover, if additionally F [p] (x) < F [q] (x) for some x 2 X we say that p

strictly dominates a lottery q w.r.t. FOSD and we write p �FOSD q.
Monotonicity w.r.t. FOSD - in its strict version - would require that p � q whenever

p �FOSD q. However, axiom A2 implies the existence of lotteries p; q 2 4 (m;M) with
m 6= 1 and M 6= n such that p � q while p �FOSD q. This violation of monotonicity
w.r.t. FOSD in its strict version is a natural consequence of our assumption that the

probabilities of tail outcomes are ignored if their probability falls below the thresholds.

Nevertheless, we want to impose monotonicity w.r.t. FOSD - even in its strict version

- as a valid axiom whenever we compare lotteries of di¤erent subsets P (m;M) and
P (m0;M 0) where the ignorance towards small probabilities of extreme outcomes has no

e¤ect.

A5. Restricted Monotonicity with respect to FOSD: For all p 2 P (m;M) and
all p0 2 P (m0;M 0), if p �FOSD p0 then p � p0; and if p �FOSD p0 then p � p0.

A6. Reinforced Weak Independence: For all p; q 2 P (m;M) and all p0; q0 2
P (m0;M 0),

if p % p0 and q % q0 then �p+ (1� �) q % �p0 + (1� �) q0 for all � 2 (0; 1);
if p � p0 and q � q0 then �p+ (1� �) q � �p0 + (1� �) q0 for all � 2 (0; 1).

We say that preferences overlap between two sets P (m;M) and P (m0;M 0), with

m < M and m0 < M 0, if there is a non-empty open set O � P (m;M) such that there
exists for every p 2 O some p0 2 P (m0;M 0) such that p � p0. For the case m = M and

m0 < M 0 we say that preferences between P (m;M) and P (m0;M 0) overlap if Im � p0

for some p0 2 P (m0;M 0).

A7. Connected Preferences: There exists a sequence of pairs f(m;M)igi=1;:::;n(n+1)
2

with m � M such that (m;M)1 = (1; 1), (m;M)n = (n; n), (m;M)i 6= (m;M)i+1
for all i 2

n
1; :::; n(n+1)

2

o
, and preferences between P (m;M)i and P (m;M)i+1

overlap for all i 2
n
2; :::; n(n+1)

2
� 1
o
.
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The intuition for axiom (A7), �Connected Preferences�, is that security- and potential

level considerations should have no extreme e¤ect on the evaluation of lotteries. Except

for the extreme security and potential levels (1; 1) and (n; n), there exist by axiom (A7)

for all security and potential levels (m;M) lotteries p 2 P (m;M) such that the decision
maker is indi¤erent between these lotteries and lotteries that have a di¤erent security

and potential level (m0;M 0). As one implication of axiom (A7), we exclude preferences

that are lexicographic with respect to the security or/and the potential level.

Representation Theorem: Preferences that satisfy the axioms (A1)-(A7) are repre-
sentable by U : 4! R such that, for p 2 4 (m;M) with m < M ,

U (p) = a (m;M)

"
F [p] (xm)u (xm) +D [p] (xM)u (xM) +

M�1X
k=m+1

pku (xk)

#
+b (m;M) , (5)

and for p 2 4 (m;M) with m =M ,

U (p) = a (m;M)u (xm) + b (m;M) ,

where u : X ! R is a strictly increasing function. The functions U and u are

unique up to a positive a¢ ne transformation. The coe¢ cients of the representation

satisfy the following conditions:

(i) a (m;M) ; b (m;M) 2 R with a (m;M) > 0;
(ii) Axiom (A7) requires for any two sets P (m;M) and P (m0;M 0) for which

preferences overlap,

a (m;M) ["u (xm) + (1� ")u (xM)] + b (m;M) (6)

> a (m0;M 0) [(1� �)u (xm0) + �u (xM 0)] + b (m0;M 0)

and

a (m0;M 0) ["u (xm0) + (1� ")u (xM 0)] + b (m0;M 0) (7)

> a (m;M) [(1� �)u (xm) + �u (xM)] + b (m;M)

if m < M and m0 < M 0; and

a (m0;M 0) ["u (xm0) + (1� ")u (xM 0)] + b (m0;M 0) (8)

� a (m;M)u (xm) + b (m;M)

� a (m0;M 0) [(1� �)u (xm0) + �u (xM 0)] + b (m0;M 0)

if m =M and m0 < M 0;

12



(iii) Axiom (A5) requires

for all m;M 2 f1; :::; ng with m �M and m > 1,

min
fk2Njm�k�Mg

(a (m;M)� a (m� 1;M)) ["u (xm) + (1� "� �)u (xk) + �u (xM)]

+b (m;M)� b (m� 1;M)
� a (m� 1;M) " (u (xm�1)� u (xm)) , (9)

for all m;M 2 f1; :::; ng with m �M and M > 1,

min
fk2Njm�k�M�1g

(a (m;M)� a (m;M � 1)) ["u (xm) + (1� "� �)u (xk) + �u (xM�1)]

+b (m;M)� b (m;M � 1)
� a (m;M) � (u (xM�1)� u (xM)) . (10)

Proof: The proof - relegated to the Appendix - proceeds in several steps. In the �rst
step it is shown, by adopting an argument of Cohen (1992), that the axioms (A1), (A3),

and (A4) admit for the construction of an expected utility functional which represents

preferences on lotteries within a given set P (m;M). In a second step, the representation
of preferences is extended from the set P (m;M) to the set 4 (m;M) by employing the
indi¤erence conditions of axiom (A2). Step 3 mentions a result by Cohen (1992), which

extends, by axioms (A6) and (A7), the utility representation to the whole domain 4.
Step 4 establishes that u is strictly increasing. In step 5 it is demonstrated that axiom

(A7) requires the conditions (6) - (8) to hold. Finally, in step 6 the conditions (9) and

(10) are derived under the assumption that axiom A5 is satis�ed.

Remark. Although the original SL,PL-model of Cohen is not a special case of our
model - we assume the existence of strictly positive perception thresholds for security

and potential levels - Cohen�s representation (1) obtains as the limiting case of our

representation when we let the perception thresholds " and � converge towards zero.

Namely, for the limiting case of our utility representation (5) it obtains that

lim
";�!0

a (m;M)

"
F [p] (xm)u (xm) +D [p] (xM)u (xM) +

M�1X
k=m+1

pku (xk)

#
+ b (m;M)

= a (m;M)
MX
k=m

pku (xk) + b (m;M) ,

since

lim
"!0

F [p] (xm) = pm

lim
�!0

F [p] (xM) = pM .

13



Moreover, our conditions (9) and (10) coincide in the limit with the condition (2) which

ensures that monotonicity w.r.t. FOSD holds in the original SL,PL-model of Cohen.

5 Accommodating the Experimental Evidence

We have focused on our simple concept of security and potential preferences with thresh-

olds, with only two parameters more than Cohen�s original model, because we wanted to

obtain a model which is as simple as possible while it can solve the two major problems

concerning the original SL-PL models mentioned in the introduction. Our formalism

of thresholds presented in section 3 is clearly a very idealized concept and, therefore,

it seems unreasonable to expect that this concept could capture all empirical choice

patterns which may be associated with the existence of thresholds in a decision maker�s

evaluation of lotteries. Nevertheless, we believe that our SL-PL model with thresholds

o¤ers indeed a convincing explanation within the reasoning of SL-PL models for the two

most persistent violations of expected utility theory when lotteries are involved that lie

in the interior of the Marschak-Machina triangle but are very close to its edges:

Lotteries with only small probabilities of bad outcomes may be perceived as comparably

favorable (problem 1).

Lotteries with only small probabilities of good outcomes may be perceived as compa-

rably inferior (problem 2).

In the remainder of this section, we demonstrate that our model of SL-PL preferences

with thresholds can indeed accommodate the observed preference patterns of the two

problems presented in section 2 which violate the original SL-PL models.

Problem 1. In a �rst step, we specify our utility representation, so that we obtain
the desired preference pattern (3) for an appropriately chosen security threshold ". In a

second step, we show that this utility representation satis�es monotonicity with respect

to �rst order stochastic dominance.

For

xm 2 f$0g and xM 2
�
$0; $1 � 106; $5 � 106

	
(11)

xm0 2
�
$1 � 106; $5 � 106

	
and xM 0 2

�
$1 � 106; $5 � 106

	
with xm0 � xM 0

de�ne

a(m;M) = b (m0;M 0) = 1

a (m0;M 0) = b (m;M) = 0:8

14



and

u ($0) = 0

u
�
$1 � 106

�
= 0:25

u
�
$5 � 106

�
= 1.

Furthermore, assume the existence of some security threshold " such that 0:01 < " �
0:02, so that the two lotteries S1 and S3 are associated with the high security level for

outcome $1 � 106 whereas the remaining lotteries S2, S4, S5, and Rk, for k 2 f1; ::; 5g
are associated with the low security level for outcome $0. Computing utilities then gives

the preference pattern (3):

U (S1) = 1:206 U (R1) = 1:1275

U (S2) = 0:8575 U (R2) = 0:93

U (S3) = 1:68 U (R3) = 1:72

U (S4) = 0:9575 U (R4) = 1:03

U (S5) = 1:1275 U (R5) = 1:2

Since the r.h.s. of (9) is strictly less than zero, condition (9) is satis�ed if

min
fk2Njm�k�Mg

(a (m;M)� a (m� 1;M)) ["u (xm) + (1� "� �)u (xk) + �u (xM)]

� b (m� 1;M)� b (m;M) ,

where m > 1. This inequality becomes for m = 2

min
fk2Njm�k�Mg

"u (xm) + (1� "� �)u (xk) + �u (xM) � 1,

and for m = 3, 0 � 0. Both inequalities are obviously satis�ed, so that condition (9)

holds for the above utility representation.

Similarly, condition (10) is satis�ed if

min
fk2Njm�k�M�1g

(a (m;M)� a (m;M � 1)) ["u (xm) + (1� "� �)u (xk) + �u (xM�1)]

� b (m;M � 1)� b (m;M) ,

with M > 1. For M = 3 we have 0 � 0, and for M = 2 we have

min
fk2Njm�k�M�1g

"u (xm) + (1� "� �)u (xk) + �u (xM) � 1.

Again, both inequalities are satis�ed, so that condition (10) also holds for the above

utility representation.
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Problem 2. Now assume the existence of some potential threshold � such that

0:02 < � � 0:1. Furthermore, suppose that the parameters of our utility representation
are given as follows:

u ($0) = 0

u ($3) = 0:75

u ($6) = 1

and

a(m;M) = a (m0;M 0) = 1

b (m;M) = 0

b (m0;M 0) = 0:1

for

xm 2 f$0; $3g and xM 2 f$0; $3g with xm � xM (12)

xm0 2 f$0; $3; $6g and xM 0 2 f$6g .

Thus, only the two lotteries S1 and S2 are associated with the low potential level

for outcome $3 whereas the remaining lotteries are associated with the high potential

level for outcome $6. Computing utilities then gives the preference pattern (4):

U (S1) = 0:12 U (R1) = 0:2075

U (S2) = 0:72 U (R2) = 0:8075

U (S3) = 0:625 U (R3) = 0:6075

U (S4) = 1:025 U (R4) = 1:0075

Finally, it can be immediately veri�ed that this utility representation satis�es the

conditions (9) and (10).
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Appendix: Proof of the Representation Theorem

Step 1. We prove the following lemma:

Lemma 1: If preferences satisfy the axioms (A1), (A3) and (A4), then there exists a
function u (�;P (m;M)) : X ! R - unique up to some positive a¢ ne transforma-
tion - such that for all p; q 2 P (m;M),

p % q ,
MX
k=m

pku (xk;P (m;M)) �
MX
k=m

qku (xk;P (m;M)) (13)

Proof: Our proof of lemma 1 proceeds along the lines of Cohen�s (1992) proof of
proposition 1 (cf. pp. 122-125) whereby we have to consider subsets P (m;M) instead
of Cohen�s de�nition of security- and potential level subsets.

(i) Consider lotteries

r : = (1� �) Im + �IM 2 P (m;M)
r0 : = (1� �0) Im + �0IM 2 P (m;M)

with �0 6= �. Furthermore, assume that �; �0 � � so that r; r0 2 P (m;M). It is well
known (cf. Fishburn, 1988) that the axioms (A1), (A3) and (A4) imply the existence of a

linear utility V0 on P (m;M) which is unique up to some positive a¢ ne transformation.
As a consequence, there exists a unique utility U0 - resulting from an positive a¢ ne

transformation of V0 - on P (m;M) such that

U0 (r) = �

U0 (r
0) = �0.

Let

� :=

�
"+

1� � � "
2

�
Im +

�
� +

1� � � "
2

�
IM 2 P (m;M)

and de�ne, for some k 2 fm; :::;Mg, the lottery

rk (�) := �Ik + (1� �) �.

17



Furthermore, suppose that � satis�es

(1� �)
�
1� � + "

2

�
� " AND (1� �)

�
1 + � � "

2

�
� � (14a)

if k 2 fm+ 1; :::;M � 1g ;

�+ (1� �)
�
1� � + "

2

�
� " AND (1� �)

�
1 + � � "

2

�
� � (14b)

if k = m;

(1� �)
�
1� � + "

2

�
� " AND �+ (1� �)

�
1 + � � "

2

�
� � (14c)

if k =M ,

implying that rk (�) 2 P (m;M). Observe that, by our assumption � + " < 1, there

exists some non-empty closed interval I � [0; 1] such that all � 2 I satisfy (14a) - (14c).
Now �x

u (xm;P (m;M)) = 0

u (xM ;P (m;M)) = 1,

so that, e.g.,

U0 (�) =
1 + � � "

2
.

De�ne the function u� : fxm; :::; xMg ! R such that

u� (xk) =
U0
�
rk (�)

�
� (1� �)U0 (�)
�

and consider �; �0 2 I implying that rk (�) ; rk (�0) 2 P (m;M). W.l.o.g let � < �0 and
observe that

rk (�) =
�

�0
rk (�0) +

�
1� �

�0

�
�.

Since rk (�) ; rk (�0) ; � 2 P (m;M), we have, by linearity of U0 on P (m;M),

U0
�
rk (�)

�
=

�

�0
U0
�
rk (�0)

�
+
�
1� �

�0

�
U0 (�),

U0
�
rk (�)

�
� (1� �)U0 (�)
�

=
U0
�
rk (�0)

�
� (1� �0)U0 (�)
�0

.

Thus, for any rk (�) ; rk (�0) 2 P (m;M), we have u� (xk) = u�0 (xk) for xk 2 fxm; :::; xMg
so that we can write

U0 (�Ik + (1� �) �) = �u (xk;P (m;M)) + (1� �)
�
1 + � � "

2

�
where u (xk;P (m;M)) = u� (xk).
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(ii) Notice that every p 2 P (m;M) can be written as

p = qmIm + :::+ qMIM + (1� �) �

where

(1� �)
�
1 + � � "

2

�
+ qM = pM

(1� �)
�
1� � + "

2

�
+ qm = pm

qk = pk for k 2 fm+ 1; :::;M � 1g

for some � which must satisfy

(1� �)
�
1� � + "

2

�
+ qm � " AND (1� �)

�
1 + � � "

2

�
+ qM � �. (15)

Notice that
MX
k=m

qk
�
= 1 so that we can rewrite p 2 P (m;M) as

p =
MX
k=m

qk
�
[�Ik + (1� �) �] .

Observe that whenever � satis�es condition (15), the conditions (14a) - (14c) must also

be satis�ed for all �Ik + (1� �) � such that m � k � M since qM ; qm � �. That is,

whenever p 2 P (m;M) we also have �Ik + (1� �) � 2 P (m;M) for all k such that
m � k �M . By the existence of the linear utility U0 on P (m;M), we therefore obtain

U0 (p) =
MX
k=m

qk
�
U0 (�Ik + (1� �) �)

=
MX
k=m

qk
�
�u (xk;P (m;M)) +

MX
k=m

qk
�
(1� �)

�
1 + � � "

2

�

=
MX
k=m

qk
�
�u (xk;P (m;M)) + (1� �)

�
1 + � � "

2

�

=

M�1X
k=m+1

qku (xk;P (m;M)) +
�
(1� �)

�
1� � + "

2

�
+ qm

�
u (xm;P (m;M))

+

�
(1� �)

�
1 + � � "

2

�
+ qM

�
u (xM ;P (m;M))

=

MX
k=m

pku (xk;P (m;M)) ,
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whereby we have exploited the fact that

u (xm;P (m;M)) = 0

u (xM ;P (m;M)) = 1.

Finally, since V0 is unique up to some positive a¢ ne transformation so must be

u (�;P (m;M)).�

Step 2. By step 1, we have derived a utility representation - satisfying axioms (A1),
(A3), (A4) - for lotteries within a given set P (m;M). By axiom (A2), every lottery

p 2 4 (m;M) is indi¤erent to the lottery p0 2 P (m;M) where

F [p] (xm) = p0m and D [p] (xM) = p
0
M ,

pk = p0k for all k with m < k < M

if m < M , and p0 = Im if m = M . Thus, we can extend the utility representation to

lotteries within a given set 4 (m;M):

Lemma 2: If preferences satisfy the axioms (A1)-(A4), then there exists a function
u (�;4 (m;M)) : X ! R - unique up to some positive a¢ ne transformation - such
that, for all p; q 2 4 (m;M) with m < M , p % q if and only if

F [p] (xm)u (xm;4 (m;M)) +D [p] (xM)u (xM ;4 (m;M))

+
M�1X
k=m+1

pku (xk;4 (m;M))

� F [q] (xm)u (xm;4 (m;M)) +D [q] (xM)u (xM ;4 (m;M))

+
M�1X
k=m+1

qku (xk;4 (m;M)) .

Step 3. We leave it to the reader to verify that the proof of proposition 6 in Cohen
(1992, p. 115) together with lemma 2 immediately establishes the following lemma.

(Notice that the corresponding proof employs the axioms A6 and A7.)

Lemma 3: If preferences satisfy the axioms (A1)-(A4) and (A6),(A7) then any utility
representation U : 4! R must satisfy, for p 2 4 (m;M) with m < M ,

U (p) = a (m;M)

"
F [p] (xm)u (xm) +D [p] (xM)u (xM) +

M�1X
k=m+1

pku (xk)

#
+b (m;M) ,
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and for p 2 4 (m;M) with m =M ,

U (p) = a (m;M)u (xm) + b (m;M) ,

where u : X ! R is unique up to some positive a¢ ne transformation and a (m;M) ; b (m;M) 2
R with a (m;M) > 0.

Step 4. We establish that if the axioms (A1)-(A6) hold, then u : X ! R is strictly
increasing.

Observe that

p : = "I1 + (1� "� �) Ik + �In 2 P (1; n)
q : = "I1 + (1� "� �) Ik+1 + �In 2 P (1; n)

for 1 � k � n� 1 so that, by axiom A5,

p � q.

Thus, by lemma 3,

a (m;M)
MX
k=1

pku (xk) + b (m;M) > a (m;M)
MX
k=1

qku (xk) + b (m;M),

u (xk+1) > u (xk) ,

which proves the claim. �

Step 5. We demonstrate that our axiom (A7) implies the conditions (6) - (8).

Consider at �rst the case m < M and m0 < M 0. Then there are overlapping preferences

between the two sets P (m;M)and P (m0;M 0) if and only if

max
fp2P(m;M)g

U (p) > min
fp02P(m0;M 0)g

U (p0) (16)

max
fp02P(m0;M 0)g

U (p0) > min
fp2P(m;M)g

U (p) . (17)

Observe that

max
fp2P(m;M)g

a (m;M)
MX
k=m

pku (xk) + b (m;M) = a (m;M) ["u (xm) + (1� ")u (xM)] + b (m;M) ,

min
fp2P(m;M)g

a (m;M)
MX
k=m

pku (xk) + b (m;M) = a (m;M) [(1� �)u (xm) + �u (xM)] + b (m;M)
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so that (16) is equivalent to (6) and (17) is equivalent to (7).

Consider now the case that m = M and m0 < M 0. Then preferences between the

two sets P (m;M)and P (m0;M 0) overlap if and only if

max
fp02P(m0;M 0)g

U (p0) � U (Im) � min
fp02P(m0;M 0)g

U (p0) ,

i.e.,

a (m0;M 0) ["u (xm0) + (1� ")u (xM 0)] + b (m0;M 0)

� a (m;M)u (xm) + b (m;M)

� a (m0;M 0) [(1� �)u (xm0) + �u (xM 0)] + b (m0;M 0) ,

which is condition (8).

Finally observe that, by Axiom A5, there cannot be overlapping preferences between

sets P (m;M) and P (m0;M 0) where m =M and m0 =M 0.�

Step 6. The strictly increasing function u : X ! R ensures that monotonicity

w.r.t. FOSD is satis�ed for all lotteries within a given set P (m;M). It remains to be
shown that monotonicity w.r.t. FOSD is also satis�ed for all lotteries from di¤erent sets

P (m;M) and P (m0;M 0), i.e., axiom A5, if and only if the conditions (9) and (10) are

satis�ed.

At �rst consider any two sets P (m;M)and P (m� 1;M). Given a strictly increasing
function u : X ! R, axiom A5 is satis�ed for preferences on P (m;M) [ P (m� 1;M)
if and only if, for all p 2 P (m;M),

a (m;M)

MX
k=m

pku (xk) + b (m;M) (18)

� sup
fp02P(m�1;M)jp�FOSDp0g

a (m� 1;M)
MX

k=m�1

p0ku (xk) + b (m� 1;M) .

By construction,

sup
fp02P(m�1;M)jp�FOSDp0g

a (m� 1;M)
MX

k=m�1

p0ku (xk) + b (m� 1;M) (19)

= a (m� 1;M)
"
"u (xm�1) + (pm � ")u (xm) +

MX
k=m+1

pku (xk)

#
+ b (m� 1;M)

since the lottery "Im�1 + (pm � ") Im + ::: + pMIM 2 P (m� 1;M) gives the greatest
utility of all lotteries in P (m� 1;M) that are dominated w.r.t. FOSD by lottery p.
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Combining (18) and (19) gives

(a (m;M)� a (m� 1;M))
MX
k=m

pku (xk) + b (m;M)� b (m� 1;M) (20)

� a (m� 1;M) " (u (xm�1)� u (xm)) .

Since every lottery p 2 P (m;M) can be represented as a convex combination of lotteries

"u (xm) + (1� "� �)u (xk) + �u (xM) 2 P (m;M)

with m � k �M , inequality (20) is satis�ed for all p 2 P (m;M) if and only if

min
fk2Njm�k�Mg

(a (m;M)� a (m� 1;M)) ["u (xm) + (1� "� �)u (xk) + �u (xM)]

+b (m;M)� b (m� 1;M)
� a (m� 1;M) " (u (xm�1)� u (xm)) .

This proves condition (9).

Consider now any two sets P (m;M)and P (m;M � 1). Given a strictly increasing
function u : X ! R, axiom A5 is satis�ed for preferences on P (m;M) [ P (m;M � 1)
if and only if, for all p0 2 P (m;M � 1),

inf
fp2P(m;M)jp�FOSDp0g

a (m;M)
MX
k=m

pku (xk)+b (m;M) � a (m;M � 1)
M�1X
k=m

p0ku (xk)+b (m;M � 1) .

(21)

By construction,

inf
fp2P(m;M)jp�FOSDp0g

a (m;M)

MX
k=m

pku (xk) + b (m;M) (22)

= a (m;M)

"
MX
k=m

p0ku (xk) +
�
p0M�1 � �

�
u (xM�1) + �u (xM)

#
+ b (m;M)

since the lottery p0mIm + ::: +
�
p0M�1 � �

�
IM�1 + �IM 2 P (m;M) gives the smallest

utility of all lotteries in P (m;M) that dominate lottery p0 2 P (m;M � 1) w.r.t. FOSD.
Combining (21) and (22) gives

(a (m;M)� a (m;M � 1))
M�1X
k=m

p0ku (xk) + b (m;M)� b (m� 1;M) (23)

� a (m;M) � (u (xM�1)� u (xM)) .
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Since every lottery p0 2 P (m;M � 1) can be represented as a convex combination of
lotteries

"u (xm) + (1� "� �)u (xk) + �u (xM�1) 2 P (m;M � 1)

with m � k �M � 1, inequality (23) is satis�ed for all p0 2 P (m;M � 1) if and only if

min
fk2Njm�k�M�1g

(a (m;M)� a (m;M � 1)) ["u (xm) + (1� "� �)u (xk) + �u (xM�1)]

+b (m;M)� b (m;M � 1)
� a (m;M) � (u (xM�1)� u (xM)) .

Finally, notice that monotonicity w.r.t. FOSD between arbitrary sets P (m;M) and
P (m0;M 0) is satis�ed if and only if monotonicity w.r.t. FOSD between

(i) sets P (m;M) and P (m� 1;M) for all m;M 2 f1; :::; ng withm �M andm > 1

and

(ii) sets P (m;M) and P (m;M � 1) for all m;M 2 f1; :::; ng with m � M and

M > 1,

is satis�ed, since p �FOSD p0 implies p 2 P (m;M) and p0 2 P (m0;M 0) where

m0 � m and M 0 �M .
��
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