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Abstract 
 
This paper is concerned with the statistical behavior of oil prices in two ways. It, firstly, 
applies a combined jump GARCH in order to characterize the behavior of daily, weekly as 
well as monthly oil prices. Secondly, it relates its empirical results to implications of 
Hotelling-type resource extraction models. The empirical analysis shows that oil prices are 
characterized by GARCH as well as conditional jump behavior and that a considerable 
portion of the total variance is triggered by sudden extreme price movements. This finding 
implies that, first, oil price signals are not reliable and, as a consequence, both finding optimal 
extraction paths and decisions regarding the transmission to alternative technologies are likely 
to be compromised. Second, this behavior is in stark contrast to the notion of deterministic 
trends in the price of oil. 
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1 Introduction

Oil prices have been carefully followed and analyzed by empirical and the-

oretical economists alike for more than three decades. A sufficient under-

standing of the signals that emanate from the price of oil is essential for

various reasons. Certainly not only short-run hedging strategies, but also

rather long-run decisions are based on information provided by the price of

this essential resource. Oil remains an important input factor influencing a

variety of investment decisions in virtually all economic sectors. As a fossil

fuel, furthermore, oil is among the main drivers of climate change. The de-

cision when to invest in back-stop technologies is of particular importance.

Standard economic theories suggest that also owners of oil resources base

their decision when to extract their resource on the price of oil.

This paper’s contribution to the oil price literature is twofold. It, firstly,

aims at characterizing the behavior of oil prices and, secondly, it discusses

how this behavior potentially affects resource extraction decisions as well as

decisions regarding the investment in alternative technologies.

The first issue is tackled by applying Chan and Maheu’s (2002) combined

jump GARCH model to daily, weekly as well as monthly oil price data. Jump

models, in general, have proven to be a useful tool for capturing extreme price

movements triggered by unexpected news. As the oil market considered be-

ing subject to various political influences, jump models lend themselves as

a method for modeling oil prices [Jorion, 1988]. Two variants of the model

are considered. The time-constant jump intensity model is the simplest way

to treat jumps and GARCH in a single approach and the application of this
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variant yields interesting insights regarding the role of extreme price move-

ments and which portion of the overall variance can be attributed to this

particular type of price change [Nimalendran, 1994]. The key results that

emerge from this exercise are that oil prices at all frequencies under consid-

eration are characterized by both GARCH and conditional jump behavior

and that a considerable part of the variance is attributable to jumps. Thus,

extreme price movements are present and the empirical distribution of oil

price changes has heavy tails.

The more complex time-varying jump intensity model allows one to study

changes in both the intensity of the sudden movements and their contribu-

tion to the total variance. Evidence of time-varying jump intensity is found

for daily oil prices. It is, furthermore, shown that price movements that are

captured by the jump component became less frequent in more recent years.

Thus, the portion of the variance triggered by jumps decreased. This finding

can be explained by a general increase of the volatility of oil prices. Informa-

tion criteria as well as likelihood ratio tests clearly indicate that the models

applied here provide a good fit to the data. These findings are a valuable

supplement to those obtained by Askari and Krichene (2008) and Lee et al.

(2010).

They, furthermore, suggest that it is doubtful that oil prices can reliably

provide the information they are supposed to do. Thus, finding the optimal

depletion path for oil as well the optimal transition to alternative technologies

are likely to be compromised.

The framework most widely used for modeling these essential economic

decisions goes back to Hotelling (1931). According to the well-known Hotelling
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rule, the price of an exhaustible resource, in optimum, grows at the rate of

interest. This framework currently celebrates a remarkable comeback - Sinn’s

(2008) influential paper on the so-called Green Paradox employs this frame-

work. Sinn emphasizes that oil is not just an exhaustible resource, but also

a fossil fuel and, thus, one of the main sources of carbon emissions. As a

consequence, the time path of oil extraction is crucial for the development of

the global climate. Sinn (2008) shows that ignoring global warming leads to

a current overextraction of oil. Various papers emerged in response to Sinn

(2008), see in particular contributions by Hoel (2010) and Withagen and van

der Ploeg (2011). Pindyck (1981), however, demonstrated that uncertainty

regarding oil prices affects the extraction path; he, however, left open the

question whether or not jumps are actually present.

Valuable insights regarding the decision on the development of alterna-

tive technologies emerge from Holland’s (2008) reconcilement of Hotelling

and peak oil models. He shows that oil prices are a better scarcity indica-

tor than oil production is, and, thus, provides information that is crucial

for decisions regarding the transition to alternative technologies. Holland,

however, expresses concerns regarding the high degree of short-run volatility.

This paper’s findings show that these concerns seem to be justified.

Difficulties in finding the optimal moment to switch to alternative tech-

nologies is likely to negatively influence not only the economic performance

of firms, but also the global climate. Thus, this paper’s findings point to

enormous potential for future research. Neither scientific papers nor applied

policy evaluation studies should rely on implausible assumptions regarding

the behavior of oil prices. Although this paper does not provide direct tests
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of hypotheses derived from the Hotelling framework, but rather a comparison

on an illustrative level, it still goes beyond the vast majority of econometric

studies of oil prices who are merely interested in the technical performance of

their models. In that respect it can be seen to be in the tradition of Pindyck

(1999).

The theories discussed above, moreover, imply that the oil price path is

generally upward trending. This led many researchers to study whether or

not deterministic trends are present in prices of exhaustible resources, see e.g.

Slade (1983) and Lee et al. (2006). The finding of jumps, however, is at odds

with this notion of deterministic trends in oil prices. The non-existence of a

long-run trend, however, implies that resource owners cannot assume that oil

prices will increase with a sufficient degree of certainty in the near future. In

consequence, there is an incentive to extract a larger amount of the resource

for every given remaining stock than indicated by the benchmark extraction

path following Hotelling (1931).

The notion that the behavior of oil prices is marked by a considerable

idiosyncrasy is also expressed by Hamilton (2008). His survey-paper sum-

marizes that “changes in the real price of oil have historically tended to be

(1) permanent, (2) difficult to predict, and (3) governed by very different

regimes at different points in time.” Similarly, Wirl (2008) emphasizes that

the development of oil prices contains many elements of surprise.

Many of the approaches used in a vast literature attempting to explain

oil prices, however, contradict each other. In addition to Hotelling’s (1931)

assertion that oil is an exhaustible resource and that the price of such a

resource, in optimum, grows with the rate of interest, papers such as Krichene
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(2002) and Dees et al. (2007) employ macroeconomic supply and demand

frameworks in order to explain the price of oil. Kaufmann et al. (2008) and

Kaufmann and Ullman (2009), what is more, investigate oil price behavior

in a more informal way and focus on issues such as OPEC power and the

role of speculation.

Oil prices, furthermore, is dealt with in an enormous amount of papers in

the area of financial econometrics. Issues under consideration there include

oil price volatility, hedging strategies as well as oil price forecasts. Recent pa-

pers by Agnolucci (2009), Vo (2009), Wei et al. (2010) as well as Chang et al

(2010) epitomize these concerted research efforts. These papers, mainly, use

daily oil price data and employ sophisticated empirical techniques. Even the

pure fact that techniques such as GARCH models, artificial neural networks

and jump-diffusion processes are used signals that the behavior of oil prices

is not easy to capture. Lee et al.’s (1995) application of GARCH models to

quarterly oil price data, moreover, indicates that this also applies to lower

data frequencies.

The remainder of this paper is organized as follows: the following Section

2 provides a descriptive analysis of the data and Section 3 outlines the Chan

and Maheu (2002) method. Sections 4 and 5 present the empirical results

and a discussion of which. Section 6, finally, concludes.

2 Data

The basis for the characterization of the behavior of oil prices (West Texas

Intermediate) and the discussion of its implications for important economic
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decisions is the application of a combined jump GARCH model to daily,

weekly as well as monthly data. The sample periods end in December 2010.

Due to data availability and in order to ensure that there are no undesired

effects of certain periods, the samples begin in April 1983 (daily), January

1977 (weekly) as well as February 1962 (monthly data). Growth rates of

nominal daily and real weekly as well as monthly oil prices are used in this

study; real oil prices are obtained by deflating the nominal series by the US

producer price index.1

The following brief descriptive analysis of the data used in this paper

vividly illustrates that the model used for modeling oil prices should be able

to capture extreme price movements. Figure 1’s time series plots of the

original data as well as the growth rates clearly indicates that - for all three

frequencies - phases with different degrees of volatility are present. Moreover,

during all phases sudden extreme price movements that exceed the respec-

tive current volatility are present. These extreme movements are associated

with famous incidents such as the oil crises, the OPEC collapse or the Gulf

War 1990/1991. The kernel density estimates and the quantile-quantile plots

displayed in Figure 2 confirm this impression. In both types of diagrams the

empirical distributions are plotted together with theoretical normal densities

fitted to the data. The deviations from this theoretical benchmark are obvi-

ous. There is evidence of heavy tails for all frequencies under consideration

here. However, a few interesting differences are also apparent. For the case

1The reason for this procedure is that the applied method requires the data to be
stationary. Moreover, the focus of this paper is on extreme oil price movements rather
than on extreme levels. Standard unit root tests clearly indicate that unit roots are present
in the log-price series. The detailed results can be obtained from the author upon request.
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Figure 1: Price of Oil
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of the daily data the mere number of extreme price movements seems to be

larger and there are more extreme negative movements than positive ones.

Both the weekly and the monthly data, in contrast, appear to have different

properties. Here, the extent of these extreme movements is larger, but there

are more intriguing positive price changes. In any case, the growth rates of

Figure 2: Descriptive graphs
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the price of oil do not seem to be governed by a normal distribution. Volatil-
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ity is changing over time and there is evidence of extreme price movements for

all frequencies under consideration and throughout the entire sample period.

This needs to be taken into account when it comes to empirically analyzing

oil price data. Models such as the ARJI-GARCH model proposed by Chan

and Maheu (2002) have proven to be useful in this regard. The following

section outlines this method.

3 Method

The Chan and Maheu (2002) method applied in this paper combines condi-

tional jump with frequently applied GARCH models. Consider the following

model:

yt = µ +
l∑

i=1

φiyt−i +
√

htzt +
nt∑

k=1

Xt,k (1)

with zt ∼ NID(0, 1). ht follows a GARCH(p,q) process [Bollerslev, 1986]:

ht = ω +
q∑

i=1

αiε
2
t−i +

p∑

i=1

βiht−i (2)

The conditional jump size Xt,k, given the history of observations Φt−1 =

{yt−1, . . . , y1}, is assumed to be normally distributed with mean θt and vari-

ance δ2
t ; nt describes the number of jumps that arrive between t − 1 and t

and follows a Poisson distribution with λt > 0:

P (nt = j|Φt−i) =
λj

t

j!
e−λt (3)

λt is called jump-intensity. Two variants of the model are applied: a con-

stant jump-intensity model with λt = λ, θt = θ, and δ2
t = δ2 and a time-
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varying jump-intensity model. For the latter, λt is assumed to follow the

auto-regressive process

λt = λ0 +
r∑

i=1

ρiλt−i +
s∑

i=1

γiξt−i. (4)

The jump-intensity residual ξt is calculated as

ξt−i ≡ E[nt−i|Φt−i]− λt−i =
∞∑

j=0

jP (nt−i|Φt−i)− λt−i. (5)

Using the observation xt and Bayes rule, the probability of the occurrence of

j jumps at time t can be written as

P (nt = j|Φt) =
f(xt|nt = j, Φt−1)P (nt = j|Φt−1)

P (xt|Φt−1)
(6)

Finally, let Σ2 denote the total variance of yt. According to Nimalendran

(1994), Σ2 can be decomposed in the diffusion-induced and the jump-induced

variance and be written as follows:

Σ2 = ht + λt(θ
2 + δ2). (7)

Chan and Maheu (2002)’s method (and bivariate extensions of which)

has been successfully applied to various types of financial market data, e.g.

stock market returns [Chan and Maheu, 2002], exchange rates [Chan, 2003;

Chan, 2004], and copper prices [Chan and Young, 2006]. There are two other

recent papers which use jump models in order to investigate the behavior of

oil price data. Askari and Krichene (2008), however, restrict themselves to
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applying a time-invariant jump intensity model and to using only daily data

from 2002-2006. Lee et al. (2010) also consider daily data only and do

not discuss economic implications of their results. Moreover, none of the

two papers considers the variance decomposition procedure put forward by

Nimalendram (1994).

4 Results

This section presents the results obtained from applying Chan and Maheu’s

(2002) method to oil price’s growth rate. Table 1 displays the estimates for

Table 1: Constant and time-varying jump-intensity models
Frequency Daily Weekly Monthly
Parameter Constant ARJI Constant Constant

3.6E-04 3.8E-04 4.8E-16 -1.7E-03
µ

(0.0542) (0.0284) (0.0001) (0.0001)
-0.0260 -0.0272 -0.2267 0.2022

φ1
(0.0327) (0.0208) (0.0001) (0.0001)
4.8E-07 4.0E-07 2.8E-31 1.6e-06

ω
(0.0224) (0.0415) (0.0001) (0.0030)
0.0631 0.0397 0.1637 0.3884

α
(0.0001) (0.0001) (0.0001) (0.0001)
0.9240 0.9464 0.8199 0.5236

β
(0.0001) (0.0001) (0.0001) (0.0001)
0.0411 0.0343 0.0383 0.0943

δ
(0.0001) (0.0001) (0.0001) (0.0001)
-6.1E-03 -4.3E-03 5.6e-03 0.0242

θ
(0.0279) (0.0229) (0.1094) (0.0310)
0.0644 0.0377 0.1375 0.1639

λ
(0.0001) (0.0002) (0.0001) (0.0001)

0.7048
ρ -

(0.0001)
- -

0.5661
γ -

(0.0001)
- -

Jump-induced variance(%) 17.58 31.58 13.24 27.14

Note: p-values in parentheses.

the constant and, for the daily data also the autoregressive, jump-intensity
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model. In each model, one lag of the endogenous variable as well as a con-

stant are included. The key messages that emerges from this exercise is

Table 2: Model performance

Model selection criteria
Daily Weekly Monthly

Criterion GARCH Constant ARJI GARCH Constant GARCH Constant
LogL 17,540.68 17,717.25 17,745.59 3,857.00 3,913.92 858.92 1,101.84
AIC -4.9606 -5.0097 -5.0171 -4.345 -4.411 -2.919 -3.740
BIC -4.9557 -5.0019 -5.0074 -4.331 -4.386 -2.882 -3.680
HQ -4.9589 -5.0070 -5.0138 -4.339 -4.402 -2.905 -3.716

Likelihood ratio test
Models Test statistic

CJI vs. GARCH 353.15∗∗∗ 113.83∗∗∗ 485.83∗∗∗
ARJI vs. GARCH 409.81∗∗∗

ARJI vs. CJI 56.66∗∗∗

Note: GARCH denotes a standard GARCH(1,1) model, CJI the time-constant jump in-
tensity model and ARJI the autoregressive jump intensity model.

that - with only one exception - all jump parameters are highly significant.

While for the weekly and monthly data evidence of constant jump intensity is

found, the daily data is characterized by time-varying jump intensity. Con-

sulting the parameter estimates provides further valuable insights. While

the average jump size θ is found to be negative for both models with daily

data, estimates for the two other frequencies suggest that an average jump is

positive. This result is anticipated from Section 2’s descriptive analysis. Em-

ploying the variance decomposition procedure put forward by Nimalendram

(1994) highlights the jump component’s impact: up to 30% of the variance

is attributable to jumps.

Finally, the usefulness of the jump models is further documented by both

the standard information criteria and the likelihood ratio test, see Table 2.

It is evident that the constant jump intensity GARCH model outperforms

a standard GARCH(1,1) model (estimated as benchmark). For the daily
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data, moreover, the ARJI model is found to outperform both the benchmark

GARCH(1,1) and the constant jump intensity GARCH model.

The finding of time-varying jump intensity for the daily data allows one to

investigate the jump behavior of oil prices in greater depth. In particular, it

is possible to infer whether different regimes are present.2 Figure 3 displays

plots of the level of oil prices as well as their growth rate together with,

first, the time-varying jump intensity and, second, the time-varying portion

of variance which is attributable to jumps. There are various findings: the

jump-intensity generally takes values between 0 and 2.5. Mostly it is close

to 0; only when large price movements occur the intensity does increase.

These increases exceed values of 0.5 only in rare cases. Taking a close look

at the development of the jump intensities shows that there is a change in

this behavior. Intensities of about 0.5 occur more often in the pre-Gulf War

period than in the subsequent more tranquil period. The beginning of the

oil price increase in 1998 marks another change in that regard. The extreme

jumps, in addition to that, also seem to be more frequent in earlier parts of the

sample. Moreover, the intensity does not return to its close-to-zero level in a

few cases only: after the OPEC collapse, during the oil price decline after the

Gulf War and during the price collapse witnessed in the second half of 2008.

Thus, the general behavior of oil prices has undergone a remarkable change:

earlier parts of the sample are generally characterized by a more tranquil

oil price behavior with only occasional large movements. These movements,

2This procedure takes care of the structural break analysis conducted by Lee et al.
(2010). The approach applied here, however, is more flexible as it does not rely on the
results of structural break tests. Moreover, Lee et al. (2010) consider data only up to the
end of 2007 and it is not unlikely that the number of breakpoints changed due to the oil
price hike observed in 2008.
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Figure 3: Jump intensities
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however, exceeded other price movements of that time to a larger extent and,

therefore, are regarded as jumps. During later periods, the general variability

of oil prices increased and, compared to that, the extent the extreme price

movements exceed other ones is smaller. In consequence, there are fewer

moments with extreme jump intensities.

These findings are also reflected by the time-varying portion of jump-

induced variance: In particular in earlier stages and after the Gulf War the

portion is found to be close to 100 %. With the beginning of the oil price

increase in 1998, the portion began to fluctuate between 20 and 70 per cent.

Noticeable are the decreases to values of less than 10 percent which occur

the same three times the jump intensity does not return to the close-to-zero

level. These three periods are marked by an extreme initial price movement.

In the aftermath of each of those, the market became generally more volatile,

but a larger portion of this volatility is captured by the GARCH component

of the model.

To summarize, there is a considerable degree of variability not only in

oil prices themselves, but also in the behavior. Chan and Maheu’s (2002)

combined jump GARCH model has proven to be a useful tool for capturing

the peculiar behavior of oil prices. The jump parameters are significant

and it is shown that the jump models provide a good fit to the data. In

other words, oil prices are not only characterized by time-varying volatility,

but also by extreme price movements which exceed the current respective

market volatility. These jumps capture extreme price movements which are

often driven by political influences. The portion of the variance attributable

to the jumps is considerably high, but lower in more recent periods than
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compared in the early 1980ies. This is explained by a general increase in the

volatility of oil prices.

Having summarized the empirical results, one specific characteristic of

the estimated model (Equation 1) is now highlighted. The model contains a

GARCH as well as a jump component, but no correction mechanism. Thus,

these sudden movements moves oil prices away from its previous level. Oil

prices do not exhibit a stable and predictable behavior, which implies that

price signals cannot be regarded as particularly reliable.

It is plausible to assume that this behavior influences important decisions

which are based on information provided by the price of oil. Among the most

important ones are the decision when to invest in alternative technologies

and when to extract oil. As oil is not just a normal input factor, but also

a exhaustible fossil resource, these decisions do not only affect economic

performances of firms, but also the further development of the global climate.

To better understand the possible effect of the behavior of the price of oil on

these decisions, the next section relates this paper’s empirical findings to the

theories by Hotelling (1931) and Holland (2008).

5 Discussion

The extent to which the problem of climate change is going to compound

largely depends on the development of the stock of carbon in the atmo-

sphere. This stock is mirrored by the amount of carbon in situ. Therefore,

the decision when to extract the fossil fuel resources and when to switch to

alternative technologies have important implications that go beyond those of
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other decisions considered in economic studies. The theoretical framework

predominantly used to model these decisions goes back to Hotelling (1931).

This seminal paper derived the famous Hotelling rule according to which the

price of oil, in optimum, grows with the rate of interest. This framework

currently celebrates a remarkable comeback. Sinn (2008) proposes an exten-

sion of a traditional Hotelling resource extraction model and links the issue

of resource extraction to that of climate change. He shows that the Pareto-

optimal extraction of oil under consideration of global warming is smaller

than without considering this issue. In other words, if resource owners do

not take global warming into account, there is a current overextraction of

oil.3 Sinn (2008), furthermore, shows that, under certain conditions, climate

policies can induce incentives for the resource owners to bring forward rather

than postpone the extraction of their oil. Sinn refers to this effect as Green

Paradox and his paper sparked enormous research efforts. The papers by

e.g. Withagen and van der Ploeg (2011) on the role of backstop technologies

as well as Hoel (2010) on carbon tax expectations epitomize the offshoot of

this literature.

The Hotelling-framework, however, has been criticized for not being able

to reproduce a pattern observed in actual extraction paths: a bell shaped

path with a unique production peak. Thus, Hotelling-type resource extrac-

tion models are at odds with the so-called peak oil literature which goes

back to Hubbert (1956). His seminal paper bases its considerations on geo-

logical properties of oil fields and was able to correctly predict the peak in

US oil production. This model class, however, ignores important economic

3For an earlier, “non-Hotelling” consideration of this issue see Withagen (1994).
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issues such as price effects. In order to reconcile these two areas of research,

Holland (2008) proposes four theoretical models that deal with issues such

as demand shifts, technological change, reserves growth and site develop-

ment. Holland’s (2008) core conclusion is derived from a combination of

these four models. According to that, oil prices are a better indicator of

resource scarcity than oil production is. This finding is of particular impor-

tance for decisions regarding the transition to alternative technologies. These

theoretical considerations, however, suggest that the oil price path is either

upward trending or U-shaped. Whether or not there is empirical support for

this feature can been investigated by testing for the existence of deterministic

trends in oil prices. The corresponding research efforts, however, did not yield

unambiguous results. While Slade (1988) finds evidence of stochastic trends,

Slade (1982) and Lee et al. (2006) conclude that quadratic trends and de-

terministic trends with structural breaks, respectively, are present. Pindyck

(1999), finally, promotes the view that the real oil price fluctuates around a

long-term trend which itself is fluctuating stochastically. These findings are

nicely summarized by Livornis (2009, p. 37): on the one hand, he finds, that

“overall one cannot conclude that the Hotelling Rule has been a significant

force governing the evolution of observed price paths for nonrenewable re-

sources”. On the other, “nothing we have observed in the evolution of prices

is inconsistent with the Hotelling Rule.”

Having sketched these considerations, the relationship between them and

this paper’s results is now discussed.4 By proceeding in this particular way

4Investigating the underlying causes of oil price volatility in general and extreme oil
price movements in particular falls outside the scope of this paper. Thus, no attempt
is undertaken to investigate whether or not the extreme movements reflect changes in
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this paper goes beyond many others papers that are concerned with the be-

havior of oil prices. In this regard, it is in the spirit of Pindyck (1999).

The empirical findings presented here suggest that assuming oil prices to

follow an upward trend is, at any rate, debatable. Strong evidence of condi-

tional heteroscedasticity and heavy tails in the empirical distribution of oil

price changes is found. What is more, there is also evidence of conditional

jumps, which implies that there are “discontinuous” price movements. As

the empirical model includes no correction mechanism for these jumps, their

occurrence is at odds with the notion of deterministic trends in oil prices. It

is, however, generally in line with Pindyck’s (1999) stochastically fluctuating

trends in real oil prices.5

It is not unlikely that this behavior of oil prices affects the decisions

when to extract the oil and when to invest in alternative technologies. This

conclusion is based on general insights that emerged from the real option

literature. Dixit and Pindyck’s (1994) consideration of different stochastic

processes in real option models clearly shows that assumptions regarding

this process are crucial for the optimal investment rule. This issue is also

addressed in Miller and Zhang (1996), Baker et al. (1998), Pindyck (1999),

and Postali and Picchetti (2006). Most certainly, decisions regarding oil

extraction paths and the transition to alternative technologies are not as

straightforward as suggested by Holland (2008). What is more, the non-

existence of a long-run trend is likely to cause a current overextraction of oil

fundamental values or are excessive. For discussions of sources of oil price volatility, see
e.g. Kaufmann (1995) as well as Wirl (2008).

5It should be noted that Pindyck’s (1999) empirical approach also allows for downward
sloping trends.
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compared to the benchmark path of the standard Hotelling model.

The theories by Hotelling (1931), Sinn (2008), and Holland (2008) need

to be extended by explicit assumptions about the resource price behavior.

In an earlier paper, Pindyck (1981) considers a resource extraction model

with resource prices that are assumed to fluctuate around a long-run upward

trend. It is shown that uncertainty about future prices clearly affects resource

extraction paths. Pindyck (1981) as well as Dixit and Pindyck (1994), how-

ever, leave the question open whether or not a jump-process should be used

to represent the price of oil. This paper serves as a delayed response to

this question and, at the same time, points to enormous potential for future

research.

6 Conclusions

The price of oil exhibits an idiosyncratic behavior for a few decades now.

Subsequent to the oil crises of the 1970s and the OPEC collapse in the mid-

1980s, a high-volatile, but horizontal movement has been apparent. The

2000s began with a long-lasting increase of oil prices, followed by the peak at

about 150 US Dollar per barrel, and the subsequent crash-like decline. The

most recent months are characterized by a slightly upward trending behavior.

Having a sufficient understanding of oil price dynamics is not only impor-

tant for short-term hedging strategies, also long-run decisions are influenced

by signals that emanate from oil prices. A strong link exists between un-

certainty about future oil prices and investment behavior. The irreversible

investment literature emphasizes the inverse relationship between uncertainty
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and investment caused by the option value of waiting for a better time to

invest [Bernanke, 1983; Dixit and Pindyck, 1994]. Furthermore, oil price

shocks make parts of the existing capital stock obsolete [Finn, 2000]; which,

naturally, also affects investment decisions.

Oil, however, is more than just an important input factor, it is also an

exhaustible fossil fuel. Thus, the usage of this type of resource is among

the main drivers of climate change. Sparked by Hotelling’s (1931) seminal

study, the question when to optimally extract exhaustible resources has been

investigated in a vast number of papers. Sinn’s (2008) discovery of the Green

Paradox is based on an extension of a standard Hotelling resource extraction

model. What is more, Holland (2008) reconciles the non-economic peak-oil

literature with Hotelling-type theories and shows that oil prices are a better

indicator of scarcity than oil production.

The aim of this paper is to characterize the behavior of oil prices and to

discuss the relationship to Hotelling-type resource extraction models. The

first issue is tackled by applying a combined jump GARCH model proposed

by Chan and Maheu (2002) to daily, weekly as well as monthly oil price

data. Jump models have proven to be a useful tool for modeling sudden

price changes that are due to unexpected news. As the global oil market is

subject to various political influences, this model class lends itself for mod-

elling oil prices’ behavior. The paper finds strong evidence of conditional

jump behavior at all frequencies under consideration. This implies that oil

prices are marked by “discontinuous” movements. Moreover, the portion of

variance attributable to jumps is found to be up to 30 %. For the daily

oil price data, furthermore, there is evidence of time-varying jump intensity.
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Based on this finding it is possible to identify different periods: while in the

1980s jumps were more frequent, they occur less often in more recent periods.

The explanation for this finding is the general increase in oil price volatility

since the end of the 1990s. The finding that discontinuous price movements

are present is at odds with the of deterministic trends in oil prices. In con-

trast, Pindyck’s (1999) notion of stochastically fluctuating trends appears

to have a better empirical foundation. This, however, implies that resource

owners cannot assume with a sufficient degree of certainty that oil prices will

increase in the near future. This non-existence of a long-term upward trend

is likely to cause a current overextraction of oil compared to the benchmark

Hotelling model.

Moreover, this paper’s findings create additional concerns regarding the

adequacy of Hotelling-type models for oil price modeling purposes. Holland

(2008), for instance, admits that, “given substantial short-run volatility in

oil prices, it may be difficult to identify the underlying, long-run price trend

from short-run changes in prices”. What is more, Hamilton (2008) even

concludes that “many economists often think of oil prices as historically

having been influenced little or none at all by the issue of exhaustibility”.

Even if one is not willing to go that far, this paper’s results indicate that

the behavior of oil prices is difficult to predict and that decisions based on

oil price signals are challenging tasks. These decisions, however, do not only

affect economic figures, they also have an influence on climate change. This

paper clearly indicates that researchers and politicians alike should be aware

of the behavior of the price of oil when designing and evaluating climate

policies.
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