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Abstract 
 
We study optimal nonlinear income taxation when earnings can differ because of both ability 
and luck, so the income tax has both a redistributive role and an insurance role. A substantial 
literature on optimal redistribution in the absence of uncertainty has evolved since Mirrlees’ 
original contribution. The literature on the income tax as a social insurance device is more 
limited. It has largely assumed that households are ex ante identical so unequal earnings are 
due to uncertainty alone. We provide a general treatment of the optimal income tax under 
uncertainty when households differ in ability. We characterize optimal marginal tax rates and 
interpret them in terms of redistribution, insurance and incentive effects. The case of ex ante 
identical households and the no-risk case with heterogeneous abilities come out as special 
cases. 
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1 Introduction
Redistributive income taxation serves to mitigate the social welfare consequences of market-

generated inequalities in earnings. These inequalities can be characterized as having two different

sources. As emphasized in the traditional optimal income tax literature following from Mirrlees

(1971), they can be a result of differences in the endowed ability or productivity of households.

The inability of the government to observe each household’s ability constrains the benevolent gov-

ernment from achieving a first-best outcome, and limits considerably the progressivity of the tax

system. Alternatively, as Varian (1980) and Tuomala (1984) studied, inequality might be a result

of uncertainty in the earnings obtained from a given effort. In the absence of market-provided

earnings insurance, the income tax system acts as a social insurance device, albeit an imperfect

one because of the inability of the government to observe individual effort, a sort of moral haz-

ard. Here, too, progressivity will be compromised by imperfect information. If the government

were fully informed and uncertainty was the only source of inequality, the tax system would mimic

full insurance and have 100 percent marginal tax rates, which would be highly progressive indeed.

The inability to observe individual effort precludes that, and, as in the optimal income tax case,

constrains progressivity considerably.1

The design of optimal redistributive taxation to address ability differences and to address

earnings uncertainty have largely been studied separately. The former literature is vast, and is

summarized in Atkinson and Stiglitz (1980), Tuomala (1990), Myles (1995) and Kaplow (2008).

Given the complexity of the modeling, simulation techniques are usually relied on to shed light

on the optimal income tax structure. They typically result in optimal marginal tax rates that are

relatively constant except at the two ends of the ability distribution, where they fall to zero.

The literature on optimal income taxation to deal with earnings uncertainty is much more

limited, and has generally assumed away ability differences. Thus, Tuomala (1984) and Low and

Maldoom (2004) assume that all households are ex ante identical, so supply the same amount

of labor, but differ in earnings because of some innate idiosyncratic uncertainty that is resolved

after labor is supplied. Tuomala’s (1984) simulation analysis seems to indicate that the optimal

degree of progressivity to address earnings uncertainty is qualitatively comparable to that found by

Mirrlees (1971) (and confirmed by Tuomala 1990) to address earnings inequality arising from ability

differences. Low and Maldoom show how the degree of progressivity reflects a trade-off between

an insurance effect, which favors progressivity in the sense of increasing marginal tax rates, and

1 A third source of earnings inequality we do not consider arises from differences in preferences for work
among households. This raises difficult issues with respect to how social preferences should treat per-
sons with different preferences, summarized in Fleurbaey and Maniquet (2006, 2007). Different views
on that can change redistribution policy significantly, as illustrated in Boadway, cuff and Marchand
(2000) and Cuff (2000).

1



an incentive effect, which works against such progressivity. There is no general presumption that

on balance marginal tax rates will be increasing. Cremer and Gahvari (1999) also assume ex ante

identical individuals facing uncertain wages where the government sets redistribution, or social

insurance, policy before the uncertainty is resolved. They consider cases in which labor supply

and/or commodity purchases can be made either before or after the uncertainty is resolved.

There has been relatively little attention devoted to studying optimal income taxation when

both ability differences and earnings uncertainty are present. A well-known exception is Eaton and

Rosen (1980a). They considered the choice of a linear progressive income tax in a model with two

ability-types and uncertain earnings. Their interest was in learning whether adding uncertainty to

the earnings-generation process would increase or decrease the progressivity of the linear tax. Given

the difficulty of obtaining analytical results in even this simple setting, they resorted to a series

of simulations. The results turned out to be agnostic. Depending on the parameters chosen, such

as the degree of risk aversion, adding uncertainty to the standard optimal redistribution problem

with two ability-types could either increase or decrease the optimal linear tax rate. Their models

were exploratory, and they made no attempt to calibrate them to an actual economy. Diamond,

Helms and Mirrlees (1980) also study optimal policy when individuals of different ability face

earnings uncertainty. Their policy is also restricted to linear progressive income taxation, and their

uncertainty takes a particularly simple form in which persons are either able or not able to work

in the second period.

There is another, more recent, literature on the effect of uncertainty on optimal redistribution

policy. In the self-labeled new dynamic public finance literature, the emphasis is on uncertainty

in an intertemporal setting (Golosov, Tsyvinski and Werning 2007; Kocherlakota 2010). Ability

is heterogeneous, but evolves in a stochastic manner period-by-period. In each period, households

choose their labor supply and their saving knowing their current skills, but having only expectations

of their future skills. Much of the emphasis in this literature is on the implications for the taxation of

capital income, with the typical finding that capital income should face positive taxation, especially

in the case where there are borrowing constraints (Aiyagari 1995; Conesa, Kitao and Krueger 2009).

A lower level of saving makes it more difficult for persons who turn out to be high-skilled to mimic

those with lower skills.

In a related context, Cremer and Gahvari (1995) show that with wage uncertainty, a case

can be made for giving preferential commodity tax treatment to consumer durables. They assume

that ex ante identical households choose their labor supply after the wage has been revealed, and

then allocate their disposable income to many goods. Some goods purchases can be chosen after

wages are known, while others — durables — must be chosen before wage uncertainty is resolved.

Subsidizing the purchase of consumer durables then makes it more difficult for the high-skilled
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to mimic the low-skilled. Our analysis does not touch directly on these issues, since we focus on

uncertainty of earnings that is resolved only after labor is supplied. However, we shall consider the

taxation of consumer durables in our model.

In this paper, we revisit the optimal nonlinear income tax problem in a Mirrleesian setting but

with earnings uncertainty added. The purpose is partly to synthesis and generalize the existing

analysis, and partly to uncover the various influences that bear on the progressivity of the tax. The

analysis is inherently more complicated than the standard problem of Mirrlees (1971) and than the

pure insurance problem of Tuomala (1984) because there are elements of both settings at work.

These include an equity effect familiar from the standard problem, an incentive effect common to

both problems, and an insurance effect from the pure insurance problem. Our analysis uncovers

how each of these affects the structure of marginal tax rates. The standard approach and the pure

insurance approach naturally emerge as special cases.

The analysis differs from the standard approach in a fundamental way. Because of earnings

uncertainty, a given amount of earnings will be associated with different amounts of effective labor

supply by households of differing ability. This implies that we cannot use the standard mechanism

design approach to optimal income taxation because the revelation principle does not apply. The

approach we adopt is analogous to the general principal-agent problem of moral hazard set out by

Mirrlees (1974). To simplify matters, we assume the first-order approach can be used, which leads

to some useful restrictions on certain functions along the line proposed by Jewitt (1988), following

Rogerson (1985).

We proceed by setting out the basic model we are using in the next section. This is followed

by solving the government’s optimal redistribution planning problem. The implementation of this

planning outcome using an income tax function is then considered, and the ex ante identical house-

hold case is shown as a special case. Next, an alternative formulation of the problem is considered

which has the advantage of being directly comparable to the standard approach. The standard

approach falls out as a special case of this formulation when risk vanishes. Finally, we confirm that,

when there is more than one consumer good, the Atkinson and Stiglitz (1976) Theorem continues

to apply with uncertainty, unless some goods must be purchased before uncertainty is resolved.

2 Basic Setting
The economy is populated by a continuum of workers with different earning abilities a, distributed

according to F (a) for a 6 a 6 a, with density F ′(a) = f(a) > 0 for all a. They are exposed to an

exogenous earnings shock ε that is idiosyncratic and occurs after labor supply or effort ` is decided.

Define effective labor supply for a person of ability a by z ≡ a`. Actual earnings, denoted by y,

are stochastic and are given by the function y(z, ε), which is increasing in effective labor supply z

and the shock ε. This general form accommodates the special cases where the shock is additive, so
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y = z + ε, or multiplicative, so y = εz. By assumption, the distribution of the wage shock does not

depend on earning ability a.

It is useful, following Tuomala (1984), to invert the earnings function to yield the shock function

ε(y, z), which is increasing in y and decreasing in z. The shock is drawn from the distribution

function G(ε), which given ε(y, z) can be written equivalently as G(y, z), where Gy(y, z) > 0 and

Gz(y, z) 6 0. Thus, given effective labor supply z, G(y, z) is the proportion who earn no more than

y, Gy(y, z) is the density of workers with income y, and Gz(y, z) is the change in the proportion

of workers who earn no more than y as z increases. We assume that the distribution of earnings is

bounded in the sense that for any value of effective labor supply z, there will be an upper bound

on earnings, y(z), such that G
(
y(z), z

)
= 1, so Gy(y, z) = 0 for all y > y(z). Earnings will also be

bounded below by y(z) > 0. Given that higher effective labor supply leads to higher earnings on

average, we assume Gzz > 0 for y < y(z). In the absence of risk, y = z for certain, so G(ỹ, z) = 0

for ỹ < z and G(ỹ, z) = 1 for ỹ > z.

The government can observe realized income y, and imposes a nonlinear income tax function

T (y). It cannot observe a household’s type a or either the actual labor ` or the effective labor z it

supplies. Household disposable income, or consumption, is given by c(y) = y−T (y). For a worker of

type a, a given amount of effective labor supplied z = a` is associated with a distribution of realized

incomes y. This implies that workers of different ability-types will end up earning the same income

and will thus be treated alike by the income tax system. There will not be a separating equilibrium

as in the standard optimal nonlinear income tax case, and the usual incentive constraints will not

be binding.

Individual decisions are made before the shock is revealed. Let expected utility for a type-a

worker choosing an effective labor supply z = a` be:

v(a) =
∫

y

u
(
c(y)

)
Gy(y, z)dy − z/a (1)

where, following Lollivier and Rochet (1983), Weymark (1986) and Boadway, Cuff and Marchand

(2000), we assume for simplicity that utility is quasilinear in labor (or leisure). This utility function

is useful because it isolates individuals’ risk aversion by making it depend only on consumption.

Consider the behavior of a type-a worker. The worker chooses z to maximize v(a) in (1). The

first-order condition, assuming an interior solution, is:

1
a

=
∫

y

u
(
c(y)

)
Gyz(y, z)dy = −

∫
y

u′
(
c(y)

)
c′(y)Gz(y, z)dy (2)

where the second equality is obtained by integrating by parts.2 The second-order condition is

2 More precisely, partial integration yields
∫ y

y
u(c)Gyzdy +

∫ y

y
u′(c)c′Gzdy = [u(c)Gz ]yy. Since G(y, z) =

0 and G(y, z) = 1, where y and y are the lower and upper bounds on income, Gz(y, z) = 0 at both

ends.
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obtained by differentiating either of the two forms of first-order condition in (2) to give:∫
y

u
(
c(y)

)
Gyzzdy < 0, or −

∫
y

u′
(
c(y)

)
c′(y)Gzzdy < 0 (3)

We assume the second-order conditions are satisfied. Sufficient conditions would be c′(y) > 0 and

Gzz(y, z) > 0, which we have assumed above. In principle, c′(y) need not be positive for all values

of y for the second-order conditions to be satisfied. Moreover, given that Gz < 0, (2) requires only

that on average c′(y) > 0 for an interior solution, so does not preclude the possibility that for some

values of y, c′(y) < 0. Since the budget constraint faced by all households is c(y) = y − T (y),

c′(y) < 0 implies T ′(y) > 1, so the marginal tax rate might be greater than 100 percent at some

income levels without violating the second-order conditions. We return to this possibility when we

investigate the optimal income tax structure.

Note that in the full-information case where the government can observe ability a, the redis-

tributive tax will be based on a and there will be full insurance, or equivalently a 100 percent tax

on income. In this case, c′(y(a)) = 0. This is not feasible with asymmetric information because of

the adverse incentive effect that such a tax would have on effort.

It is useful to define the likelihood ratio of the distribution of y conditional on z as follows:

h(y, z) ≡ Gyz(y, z)
Gy(y, z)

(4)

We assume that hy > 0, with hy > 0 for y < y(z). This follows Low and Maldoom, who assume

hy > 0 in their setting with ex ante identical individuals. The property hy > 0 is the so-called

monotone likelihood ratio property (Milgrom 1981), and is one of the sufficient conditions that

Jewitt (1988) shows will validate the first-order approach to the government’s problem in the next

section. We summarize these assumptions as follows for use later.

Assumption 1: hy > 0 and Gzz(y, z) > 0, with Gzz(y, z) > 0 for y < y(z).

Note, however, that h(y, z), or equivalently Gyz, can be positive or negative. This follows from the

fact that
∫

y
Gy(y, z)dy = 1, so

∫
y
Gyzdy = 0. This will be important in interpreting our results

below.

The solution to (2) yields the supply of effective labor z(a), given the tax system in place.

Differentiating (2), we obtain:

ż(a) ≡ dz(a)
da

= −
∫

y
u
(
c(y)

)
Gyz(y, z(a))dy

a
∫

y
u
(
c(y)

)
Gyzz

(
y, z(a)

)
dy

= − 1
a2
∫

y
u(c(y))Gyzz(y, z(a))dy

(5)

The second-order condition (3) requires the denominator in (5) to be positive, and the numerator

is positive by (2). This implies the following lemma.
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Lemma 1. Assuming the second-order condition for the worker’s choice of z(a) is satisfied, effective

labor supply z(a) is increasing in ability a.

Note that since workers of any type a choose the optimal level of effective labor supply z(a), they

have no incentive to mimic z(a′) for any other type a′ 6= a. Therefore, the only incentive constraint

the policymaker faces is (2), which is like a moral hazard condition.

Suppose for simplicity that the government is purely redistributive so has no net revenue

requirements. Then, its budget constraint may be written:∫
y

(
y − c(y)

)(∫
a

Gy

(
y, z(a)

)
f(a)da

)
dy = 0 (6)

where
∫

a
Gy

(
y, z(a)

)
f(a)da is the number of workers (of all ability-types) earning an ex post in-

come of y. We assume that the population is large enough such that the government budget is

deterministic.

3 The Government’s Optimal Income Tax Problem
We begin by solving the planning solution for the optimal redistribution problem, which involves

the government planner choosing optimal quantities. In the following sections, we consider how this

planning solution can be implemented using a nonlinear income tax. We assume the government is

benevolent and its objective function takes the general form of a weighted utilitarian social welfare

function:3

W =
∫

a

β(a)v(a)f(a)da, with β̇(a) 6 0

The assumption of nonincreasing welfare weights β(a) ensures that the government has some redis-

tribution motive. The government maximizes social welfare subject to its revenue constraint (6),

the definition of v(a) in (1), and an incentive constraint. We assume that the conditions for a first-

order approach to this principle-agent problem are satisfied, for example along the lines of Jewitt

(1988). In that case, the incentive constraint for a type-a worker is given by the worker’s first-order

condition (2). This is a straightforward constrained optimization problem with government control

variables v(a), z(a) and c(y).

The Lagrangian function can be written:

L =
∫

a

β(a)v(a)f(a)da + λ

∫
y

(
y − c(y)

)(∫
a

Gy

(
y, z(a)

)
f(a)da

)
dy (7)

+
∫

a

µ(a)
(∫

y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a
− v(a)

)
da +

∫
a

γ(a)
(∫

y

u
(
c(y)

)
Gyz

(
y, z(a)

)
dy − 1

a

)
da

3 The use of a weighted-sum social welfare function is for analytical convenience. A more conventional
form would be W =

∫
a

w(v(a))f(a)da, where w(·) is a concave social utility function. This would give

qualitatively similar results.
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where λ is the shadow value of government revenues, and µ(a) and γ(a) are the type-specific shadow

prices of individual utility and incentive constraints. The first-order conditions with respect to v(a),

z(a) and c(y) respectively may be written:

β(a)f(a)− µ(a) = 0 (8)

λf(a)
∫

y

(
y − c(y)

)
Gyz

(
y, z(a)

)
dy + γ(a)

∫
y

u
(
c(y)

)
Gyzz

(
y, z(a)

)
dy = 0 (9)

−λ

∫
a

Gy

(
y, z(a)

)
f(a)da + u′(c(y))

(∫
a

µ(a)Gy

(
y, z(a)

)
da +

∫
a

γ(a)Gyz

(
y, z(a)

)
da
)

= 0 (10)

To interpret these conditions, first rearrange (9) to obtain:

−λ

∫
y

(
y − c(y)

)
Gyz

(
y, z(a)

)
dy∫

y
u
(
c(y)

)
Gyzz

(
y, z(a)

)
dy

=
γ(a)
f(a)

≡ θ(a) (11)

The variable θ(a) is a modified version of the Lagrangian multiplier γ(a) on the incentive or moral

hazard constraint of type-a persons. Note that the denominator on the lefthand side is positive

if the second-order condition for the individual’s choice of effective labor supply z(a) is satisfied.

Then, using the definition of the likelihood ratio in (4) and the first-order condition (8), condition

(10) can be written:

λ

u′
(
c(y)

) =
1∫

a
Gy

(
y, z(a)

)
f(a)da

∫
a

(
β(a) + θ(a)h

(
y, z(a)

))
Gy

(
y, z(a)

)
f(a)da (12)

Suppose we normalize the social welfare weights such that
∫

a
β(a)f(a)da = 1, which is innocuous

since social welfare is simply an ordering. From (12), we can deduce the following proposition. The

proof is in the Appendix.

Proposition 1. Assuming
∫

a
β(a)f(a)da = 1, then

E
[ λ

u′(c(y))

]
= 1 (13)

The ratio λ/u′(c(y)) is analogous to the marginal cost of public funds in a standard optimal com-

modity tax setting (Atkinson and Stern 1974): the value of an increment of revenue to the govern-

ment relative to an increment of revenue in the hands of an individual. Proposition 1 says that the

expected value of the marginal cost of public funds is unity.

Eq. (12) incorporates all three first-order conditions of the government’s problem: (8), (9) and

(10). It can be simplified further by defining the proportion of workers at income level y who are

type-a as follows:

φ(a, y) ≡
Gy

(
y, z(a)

)
f(a)∫

a
Gy

(
y, z(ã)

)
f(ã)dã

=
Gy

(
y, z(a)

)
f(a)

E
[
Gy(y, z(ã))|y

] (14)
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For future reference, let Φ(a, y) ≡
∫ a

a
φ(ã, y)dã with Φ(a, y) = 1 and Φ(a, y) = 0, recalling that

a and a are the upper and lower bounds on skills. Thus, Φ(a, y) is the proportion of workers at

income level y who are of ability-type a or less. Given the presumption that higher income levels

draw in higher ability-types, the following assumption is reasonable:

Assumption 2: Φy(a, y) < 0 for a in the interior of the ability distribution.

Note that Φy(a, y) = Φy(a, y) = 0 at the boundaries.

Given the definition of φ(a) in (14), (12) can be rewritten:

λ

u′
(
c(y)

) =
∫

a

(
β(a) + θ(a)h

(
y, z(a)

))
φ(a, y)da (15)

This equation indicates how the marginal utility of consumption varies with income, and takes

into account both the redistributive role of government policy, reflected in the social weights β(a),

and the constraint on its insurance role, reflected in θ(a), given that redistribution involves moral

hazard. It is useful for subsequent comparisons to rewrite (15) in the following way (omitting

arguments of functions for simplicity):4

λ

u′
(
c(y)

) =
∫

a

(
1 + θh

)
f(a)da︸ ︷︷ ︸

Insurance

−
(
1− E[β|y]

)︸ ︷︷ ︸
Equity

+Cov
[
θh,

Gy

E
[
Gy|y

]]︸ ︷︷ ︸
Distribution of θh

(16)

The first term is an insurance term, indicating how the incentive constraint favors a deviation of

u′
(
c(y)

)
from uniformity. The second term is an equity term that will be positive for low income

levels where E[β|y] > 1, and vice versa at high incomes. The third term indicates how the incentive

effect varies with income.

We next consider how this planning solution can be implemented in a decentralized economy

using an income tax function. It is useful for what follows to make the following further assumption.

Assumption 3: θ(a) > 0 for all a.

That is, the incentive constraint is binding for all workers. This assumption also implies that an

increase in z(a) increases average tax revenue. To see this, note that the numerator of (11) is the

increase in tax revenue from an increase in z(a), which is positive if θ(a) > 0.5

4 To see this, rewrite (15) using (14) and
∫

a
f(a)da = 1 to give:

λ

u′(c(y))
= E[β|y] +

∫
a

(θh(φ − f(a)))da +

∫
a

θhf(a)da

=

∫
a

(1 + θh)f(a)da − (1 − E[β|y] +

∫
a

(
θh
(

Gy

E[Gy|y]
− 1
))

f(a)da

which is equivalent to (16).
5 The numerator can be written as

∫
y

T (y)Gyzdy = −
∫

y
T ′(y)Gzdy, with Gz < 0.
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4 Marginal Income Tax Rates
As usual, the first-order conditions for the planning problem can be interpreted in terms of tax

wedges, or marginal tax rates. The tax liability of a person with income y is T (y) = y − c(y), so

the marginal tax rate is T ′(y) = 1− c′(y), which we assume to be uniquely defined. To determine

the pattern of marginal tax rates in the optimum, we can differentiate (15) with respect to y. It is

useful to start with a benchmark case in which all workers are ex ante identical, before turning to

the more general case.

Workers Ex Ante Identical

Suppose all workers have the same ability level, which we normalize to a = 1. This corresponds

with the case considered by Low and Maldoom (2004). In this case, assuming β(1) = 1, (15) or

(16) reduce to:
λ

u′
(
c(y)

) = 1 + θh(y, z) (17)

where θ = γ, the Lagrange multiplier on the incentive constraint. As mentioned earlier, h(y, z) can

be positive or negative, so λ/u′
(
c(y)

)
, the marginal cost of public funds, can be greater than or

less than unity at any given income level. Since Proposition 1 still applies, its average value over

all income levels will be unity. Differentiating (17) with respect to y and using c′(y) = 1 − T ′(y),

we obtain (deleting the arguments of functions for simplicity):6

T ′ = 1−
(−u′′

u′

)
︸ ︷︷ ︸

A

−1

· u′

λ︸︷︷︸
B

· θhy︸︷︷︸
C

(18)

The marginal tax rate depends on three effects, labeled A, B and C. Given that u′′(c) < 0 and

hy > 0, all three terms are positive, which implies that T ′(y) < 1 in this identical-worker case.

Equivalently, c′(y) > 0 in this case, which guarantees that the second-order conditions for the

workers’ optimal choice of z are satisfied. Consider each of the three terms in turn.

The first one, A = −(u′′/u′)−1 > 0, is the reciprocal coefficient of absolute risk aversion and

represents an individual insurance effect. The more risk-averse are individuals, the higher is the

marginal tax rate T ′(y), that is, the more insurance the tax system provides to them. Suppose

further that the coefficient of absolute risk aversion is decreasing in income, as is commonly assumed.

This would work in favor of T ′(y) falling with income, though the overall effect depends on what

happens to B and C as income rises.

The second term, B = u′/λ > 0, or B = u′E
[
1/u′

]
by (13), reflects the marginal utility

of consumption at a given income level relative to its average. The larger it is, the smaller is the

marginal tax rate. It can be thought of as an ex post equity effect, or a social insurance effect, since

6 This is (8) in Low and Maldoom (2004).
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the government puts a higher social value on income of individuals whose marginal utility of income

is higher. Given our assumption that hy > 0, u′/λ is decreasing in income by (17). Therefore,

term B tends to cause the marginal tax rate to rise with income, possibly working against the risk

aversion effect noted above. In effect, B is a measure of the deviation of the outcome from the first

best, where u′
(
c(y)

)
= λ for all y. At low income levels, u′ > λ, so B works to reduce the marginal

tax rate, and vice versa.

The third term, C = θhy > 0, positive by Assumptions 1 and 3, is an incentive or efficiency

effect, given that θ is the shadow price of the incentive constraint and the likelihood ratio h(y, z) =

Gyz/Gy reflects the responsiveness of the distribution of outcomes to effort. A higher value of θhy

contributes to a lower marginal tax rate, so less consumption smoothing. Indeed, it is possible that

the marginal tax rate is negative at some income levels, for example, if the coefficient of absolute

risk aversion is small enough. Note that (18) confirms the fact that in the full-information case

where the government can observe ex post wage rates, earnings risk is fully insured. In this case,

the incentive constraint is not binding, so θ = 0, leading to a marginal tax rate of 100 percent.7

In general, the way in which the marginal tax rate changes with income is ambiguous. Following

Low and Maldoom (2004), we can see how T ′(y) varies with income by differentiating (18) to obtain:

T ′′ =
(−u′′

u′

)−1 θ

1 + θh

( θh2
y

1 + θh

(
P − 2 + hyy

))

where P = −u′′′

u′′

/
u′′

u′

Thus, if P (c(y)) is large enough, the marginal tax rate will be increasing in income. The expression

for P (c(y)) is the ratio of a precautionary effect, reflecting the desire of a household to supply labor

for precautionary purposes given the uncertainty of outcomes, to a risk-aversion effect. A relatively

strong precautionary effect leads to increasing marginal tax rates, while strong risk-aversion leads

to declining marginal tax rates. If the utility function exhibits constant relative risk aversion, one

obtains P = 1 + 1/σ, where σ = −u′′c/u′ is the coefficient of relative risk aversion. Higher σ

reduces P and therefore reduces progressivity.

7 Cremer and Gahvari (1999) show that if all workers are ex ante identical and choose their labor supply
before their wage rate is revealed, the full-information outcome can be achieved if the government can
commit to a punitive enough tax rate for individuals who deviate from full-information labor supply.
Specifically, suppose that a = 1 for all individuals and z∗ = `∗ is the full-information labor supply.
Let y∗ be the minimum income that can be earned when labor supply is `∗. Then, the government
imposes a tax of T (y) = y − E[y] for all y > y∗, and T (y) = y for y < y∗. Full insurance is provided
for those who choose `∗, while for those with ` < `∗, there is a possibility that c(y) = T (y) − y = 0.
As long as u(0) is sufficiently low, all individuals will choose ` = `∗. The same result applies to our
model with ex ante identical individuals, though not to our general case with ex ante heterogeneity.
We choose not to emphasize it because we view the ex ante identical case as simply a limiting case of
use for illustrating the intuition of the more general case.
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Workers Differ in Ability

Turn now to the more general case where workers differ in ability a, but face the same distribution

of earnings shocks, G(y, z). Differentiating (15) with respect to y and using c′(y) = 1 − T ′(y), we

obtain:

−u′′(c(y))
u′
(
c(y)

) λ

u′
(
c(y)

)(1− T ′(y)
)

=
∫

a

θ(a)
(
hy(·)φ(a, y) + h(·)φy(a, y)

)
da +

∫
a

β(a)φy(a, y)da (19)

which can be written in the following form comparable to (18):

T ′ = 1−
(−u′′

u′

)
︸ ︷︷ ︸

A

−1

· u′

λ︸︷︷︸
B

·

(
E
[
θhy|y

]︸ ︷︷ ︸
C

+
∫

a

βφyda︸ ︷︷ ︸
D

+
∫

a

θhφyda︸ ︷︷ ︸
E

)
(20)

where 1/λ = E[1/u′] by Proposition 1.

The terms A and B are the analogs of the same terms in (18), where there was only one

ability-type. The term C in (20) is simply the expected value of C in (18). These terms have the

same interpretation as in the case where workers are ex ante identical. All three are positive. A

higher value of absolute risk aversion tends to increase the marginal tax rate, while higher values

of deviations from the first-best and of the average incentive effect tend to reduce it. These are

intuitive.

The expression for T ′(y) in the heterogeneous-ability case differs from the identical-ability

case by the addition of the terms D and E. Term D is an enhanced equity effect, reflecting the

influence of the social welfare weights β(a). By partial integration, the equity effect can be written

equivalently as follows:8

D =
∫

a

β(a)φy(a, y)da = −
∫

a

β̇(a)Φy(a, y)da

This implies that D 6 0 since β̇ 6 0 and Φy < 0 by Assumption 2. Not surprisingly, the more does

the equity weight β(a) decline with a, the larger is the marginal tax rate.

In the special case of a utilitarian social welfare function, β̇(a) = 0, so this term disappears.

In that case, the government’s redistributive objective will be reflected solely in term B: marginal

tax rates will be higher for persons with higher incomes (lower values of u′), which will include

disproportionately higher-ability persons. The marginal tax rate in (20) then becomes T = 1 −

8 Proof: Term D =
∫

a
β(a)φy(a, y)da can be written:∫

a

β(a)
d

da
Φy(a, y)da = [β(a)Φy(a, y)]aa −

∫
a

β̇(a)Φy(a, y)da, with [β(a)Φy(·)]aa = 0.
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AB(C + E), where A is an individual insurance effect, B is a social insurance effect and C + E is

an enhanced efficiency or incentive effect.

At the other extreme, in the maximin case, the government objective function is W = v(a), so

β(a) = 1 and β(a) = 0 for a > a. The term D then becomes φy(a, y). Given that the distribution

is truncated so there is a maximum income that households earn given their effort, then D = 0

when φ(a, y) = 0, that is, at income levels above the maximum that can be attained by type-a

households. The manner in which D changes as income changes before that maximum is reached

depends on how φy(a, y) changes with y. As shown in the Appendix, if the density function Gy(y, z)

is single-peaked for given z, φy(a, y) might be expected to rise starting at the lowest-income level

and may eventually fall after the mode of density distribution of the type-a worker. In this case, the

term D will influence the marginal tax rate to fall starting at the lowest income level, and perhaps

rise later on. In the standard case with no uncertainty and under reasonable assumptions about the

ability distribution, the marginal tax rate tends to fall throughout the income distribution under a

maximin social welfare function (Boadway and Jacquet 2008).

The term E =
∫

a
θ(a)h(y, z(a))φy(a, y)da captures the change in the value of the weight on the

incentive effect when y changes, given that a higher y contains a higher proportion of high-ability

workers. As shown in the Appendix, if the density function Gy(y, z) is single-peaked in y for given

z, which is reasonable, h(y, z(a)) will be negative for low values of y and positive at high values,

while φy(a, y) will be positive for low y and negative for high y. Their product will tend to be

negative, implying, since θ(a) > 0, that E will tend to be negative.

Given that A and B are both positive, the sign of the marginal tax rate will depend on the

relative magnitudes of C, D and E, where the first two terms represent the classic trade-off between

incentives and equity. The equity effect, D < 0, tends to increase the marginal tax rate relative to

the identical-worker case, and this is reinforced by E < 0. There is no guarantee that the sum of

the terms C, D and E will be positive at all income levels. That is, T ′(y) could be greater than

one, so c′(y) < 0, for at least some values of y. In an interior solution to the consumer’s optimal

choice of effective labor supply z effort, the average value of c′(y) must be less than one as we have

seen. But neither that nor the second-order condition for the choice of z(a) precludes it from being

greater than one for some income levels. For example, if β(a) is sufficiently high at low ability-levels

and hy is sufficiently low, D might be high enough relative to C to make C + D + E < 0. A simple

two-type example is given in the Appendix that shows that the marginal tax rate can be greater

than unity.

In the standard model, a well-known result is that as long as the distribution of skills is

bounded, the marginal tax rate at the top is zero (Seade 1977). Consider the top of the income

distribution in this model. Let y be the maximum level of income that can be earned, given the
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effective labor supply z(a). Given that the distribution G(y, z) is common for all ability-types and

that effective labor supply is increasing in ability by Lemma 1, the income y will only be earned

by the type-a person. Then, φ(a, y) = 1 and φy(a, y) = 0, while φ(a, y) = 0 for all a < a. Using

(20), the marginal tax rate at the top becomes:

T ′(y) = 1−
(−u′′

(
c(y)

)
u′
(
c(y)

) )−1

· u′(c(y))
λ

· θ(a)hy

(
y, z(a)

)
(21)

This has the same interpretation as (17) above. Following the same reasoning, T ′(y) < 1, but it

can take a positive or negative value.

The same argument can be applied at the bottom. As Seade (1977) has shown, if there is no

bunching at the bottom, the marginal tax rate will be zero there as well (unless the social welfare

function is maximin). Bunching at the bottom can occur either because a non-negative labor supply

constraint is binding for low-ability workers, or because the second-order incentive constraints are

binding. In the absence of bunching at the bottom, the lowest income level, y, will be earned by

those of ability a. An equation similar to (21) will apply for a = a. Again, the marginal tax rate

will be less than 100 percent, but it can be positive or negative.

We can summarize these results for the heterogeneous-household case in the following propo-

sition.

Proposition 2. When households are ex ante heterogeneous, the marginal tax rate is given by (20).

Given Assumptions 1–3, and assuming the distribution of G(y, z) is single-peaked in y, A, B and C

are all positive, D is non-positive and E is generally negative. Marginal tax rates at lower-income

levels will tend to be higher than in the case of ex ante identical households, though not necessarily

at higher-income levels. The marginal tax rates at the top and bottom can be positive or negative.

The marginal tax rate could exceed 100 percent at some income levels.

5 An Alternative Formulation
Further insight can be obtained by reformulating the government’s problem in way that is closer to

the standard deterministic approach following Mirrlees (1971). To do so, we transform the incentive

constraint (2) as follows. Differentiate the definition of utility (1) with respect to a to obtain:

v̇(a) =
z(a)
a2

+
(∫

y

u
(
c(y)

)
Gyz

(
y, z(a)

)
dy − 1

a

)
ż(a)

Since the second term is zero by (2), v(a) satisfies the following equation of motion:

v̇(a) =
z(a)
a2

(22)

We use this as our incentive constraint rather than (2). It is analogous to the first-order incentive

constraint in the standard Mirrlees optimal income tax problem The endpoints of this differential
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equation, v(a) and v(a), are constrained by:

v(a) =
∫

y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a
and v(a) =

∫
y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a

where z(a) and z(a) are chosen by ability-types a and a to satisfy (2). The Lagrangian func-

tion (7) can therefore be rewritten as follows, using the fact that integration by parts implies

−
∫

a
π(a)v̇(a)da =

∫
a
π̇(a)v(a)da + π(a)v(a)− π(a)v(a):

L =
∫

a

β(a)v(a)f(a)da + λ

∫
y

(
y − c(y)

)( ∫
a

Gy

(
y, z(a)

)
f(a)da

)
dy

+
∫

a

µ̂(a)
(∫

y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a
− v(a)

)
da (23)

+ρ
(∫

y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a
− v(a)

)
+ ρ
(∫

y

u
(
c(y)

)
Gy

(
y, z(a)

)
dy − z(a)

a
− v(a)

)
+
∫

a

π(a)
z(a)
a2

da +
∫

a

π̇(a)v(a)da + π(a)v(a)− π(a)v(a)

The control variables are now z(a) (including z(a) and z(a)), c(y), v(a) and v(a), while v(a) is a

state variable. The first-order conditions on these variables are given by:

λf(a)
∫

y

(
y − c(y)

)
Gyz

(
y, z(a)

)
dy +

π(a)
a2

= 0 (24)

−λ

∫
a

Gy

(
y, z(a)

)
f(a)da + u′

(
c(y)

) ∫
a

µ̂(a)Gy

(
y, z(a)

)
da

+u′
(
c(y)

)(
ρGy

(
y, z(a)

)
+ ρGy

(
y, z(a)

))
= 0 (25)

−ρ + π(a) = −ρ− π(a) = 0 (26)

β(a)f(a)− µ̂(a) + π̇(a) = 0 (27)

The following lemma is proven in the Appendix.

Lemma 2. The problems characterized by the Lagrangian functions (7) and (23) are equivalent when

π(a) = −γ(a)/ż(a) and µ(a) = µ̂(a)− π̇(a).

To interpret these necessary conditions, it is useful to begin with the case where there is no

risk.

The Case with No Risk

This alternative formulation reduces to the standard optimal nonlinear income tax case in the

Mirrlees (1971) tradition when risk vanishes. In the absence of risk, effective labor supply and
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earnings are identical, so y(a) = z(a), and consumption for a type-a person can be written c(a).

The utility function (2) simplifies to v(a) = u
(
c(a)

)
− z(a)/a, and the budget constraint (5) may

be written
∫

a

(
z(a)− c(a)

)
f(a)da = 0. The incentive constraint (22) still applies.

The first-order condition (24) on z(a) may be written as follows:

−λf(a)
∫

y

T ′(y)Gz

(
y, z(a)

)
dy +

π(a)
a2

= 0

In the absence of uncertainty, y = z(a) and Gz = −1, so this equation simplifies to λf(a)T ′
(
z(a)

)
+

π(a)/a2 = 0, or:

T ′
(
y(a)

)
= 1− 1

au′
(
c(a)

) = − 1
λ

π(a)
a2f(a)

(28)

where the middle term follows from the individual’s optimal choice of z(a). This is analogous to

the marginal tax rate — or the tax wedge — for this quasilinear-in-labor case derived in Boadway,

Cuff and Marchand (2000).9 The marginal tax rate is decreasing in the skill level a and in the

value of skills af(a), and is increasing in the shadow price of the incentive constraint π(a), which

is negative by Lemma 2, given that γ(a) > 0. The value of π(a) is determined by the first-order

condition on v(a), (27), which says −π̇(a) = β(a)f(a) − µ̂(a). It captures the equity effect of the

tax system.

The first-order condition on c(y), (25), can be written as follows for y(a) in the interior, using

the fact that Gy

(
y(a), z(a)

)
= 1 and Gy

(
y(a), z(a)

)
= Gy(y(a), z(a)) = 0:

−λf(a) + µ̂(a)u′
(
c(a)

)
= 0 (29)

Taking the limit of (29) as a → a, we obtain −λf(a) + µ̂(a)u′
(
c(a)

)
= 0. However, evaluating (25)

at a, using (26), yields −λf(a) + µ̂(a)u′(c(a)) − π(a)u′(c(a))f(a) = 0. Therefore, π(a) = 0. By a

parallel argument, π(a) = 0. Therefore, by (28), the marginal tax rates at the top and bottom are

zero. Thus, not surprisingly, our problem with risk reduces to the no-risk problem when the risk

vanishes. For future reference, (29) can be rewritten as follows:

T ′
(
y(a)

)
= 1− 1

au′
(
c(a)

) = 1− µ̂(a)
aλf(a)

(30)

The Case with Risk

When earnings are risky, so is the marginal tax rate an individual expects to face. The expected

tax rate turns out to be a straightforward generalization of the tax rate when there is no risk. To

see this, rewrite the first-order condition (24) on z(a) as follows:∫
y

T (y)Gyz

(
y, z(a)

)
dy = −

∫
y

T ′(y)Gz

(
y, z(a)

)
dy = − 1

λ

π(a)
a2f(a)

9 Their equation (12) differs from (28) by having only a in the denominator rather than a2. That is
because they transform their utility function to V (a) = av(a) = au(c) − z. That implies that their
π(a) is equivalent to π(a)/a in our formulation.
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or, equivalently, (recalling the Gz < 0),

E
[
T ′(y)|a

]
= − 1

λ

π(a)
a2f(a)

(31)

This is a straightforward generalization of (28) to take account of risk. It says the expected marginal

tax rate of a type-a person is −π(a)/
(
λa2f(a)

)
, which has the same interpretation as above.10 The

expected marginal tax rates in (31) can follow different patterns as in the no-risk model. In the case

of a maximin social welfare function, π̇(a) = µ̂(a) > 0 by (27) since β(a) = 0 for a > a. Therefore,

given that π(a) < 0, the expected marginal tax rate will be declining in a, as in the standard model

(Boadway and Jacquet 2008).

Equation (31) gives the expected marginal tax rate for a person of type a. We can also derive

an expected tax wedge for a given income level y, which includes persons of different abilities. The

first-order condition (25) on c(y) can be written as follows, using (14) and (26) and the fact that∫
a
φ(a, y)da = 1:

1
u′

=
∫

a

µ̂(a)
λf(a)

φ(a, y)da− π(a)a
λf(a)

φ(a, y) +
π(a)a
λf(a)

φ(a, y)

This can be rewritten as follows, after dividing by E[a|y]:

1− 1
E[a|y]u′

= 1−
∫

a

1
E[a|y]

µ̂(a)
λf(a)

φ(a, y)da− Ω(y)
E[a|y]λ

(32)

where E[a|y] =
∫

a
ãφ(ã, y)dã and Ω(y) ≡ π(a)f(a)φ(a, y)/f(a)− π(a)φ(a, y)/f(a).

As can be seen, (32) is a generalization of the no-risk tax wedge in (30) to the case where a

given income can be earned by persons of differing ability. The lefthand side can be interpreted

as the expected or average tax wedge at income level y, taking account that the size of the wedge

varies with ability. The first term on the righthand side is analogous to the expected value of the

righthand side of (30), while the term involving Ω(y) takes account of the end-point conditions. It

applies only when uncertainty is present, since π(a) = π(a) = 0 in the no-risk case, so Ω(y) = 0.

With uncertainty, the sign of Ω(y) is ambiguous since π(a) is non-positive by Lemma 2. For those

values of y such that φ(a, y) = 0, Ω(y) 6 0, which works to raise the marginal tax wedge, while

Ω(y) > 0 for y such that φ(a, y) = 0.

We can summarize these results in the following proposition.

Proposition 3. Expected tax wedges under uncertainty are generalizations of the no-risk marginal

tax rate as follows:

10 The sign of π(a) follows from (24),
∫

y
T (y)Gyz(y, z(a))dy = −π(a)/(λa2f(a)). Assuming that in-

creases in z(a) are revenue-enhancing, this implies that π(a) < 0 in the interior of the ability
distribution.
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i. The expression for expected marginal tax rate for a type-a person, E
[
T ′(y)|a

]
, is analogous to

the no-risk marginal tax rate, T ′(y(a)).

ii. The expression for the expected tax wedge for earnings y, 1 − 1/E[a|y]u′, is analogous to the

expected value of the no-risk marginal tax rate, taking account of the possibility of a non-zero

expected tax wedge at the endpoints.

Finally, as shown in the Appendix, further insight into the expected tax wedge at a given

income level is found by manipulating (32) to obtain:

1− 1
E[a|y]u′

(
c(y)

) =
1
λ

(
1

E[a|y]
E
[π(a)
f(a)

h
(
y, z(a)

)
ż(a)

∣∣∣y]︸ ︷︷ ︸
I

+λ− E[β(a)|y]
E[a|y]︸ ︷︷ ︸
II

− Ω(y)
E[a|y]︸ ︷︷ ︸

III

)
(33)

The first term, I, is an incentive effect. Given that π(a) < 0 and ż(a) > 0, it will be negative if

h
(
y, z(a)

)
> 0, and vice versa. As we argued above, h(·) will tend to be negative where incomes

are low, and positive above that. Thus, at low-income levels, I > 0, so this incentive effect will

tend to increase the tax wedge. At high-income levels, it will lower it. The second term, II, is an

equity effect. It will be larger for higher levels of income, so will tend to cause the tax wedge to

increase with income. It could take on a negative value at low-income levels. Thus, generally the

terms I and II work in opposite directions. As mentioned, the term III takes account of endpoint

conditions. It tends to be negative for low-income levels and positive at high incomes.

The Effect of an Increase in Risk

Eaton and Rosen (1980a) studied whether the addition of uncertainty increased or decreased pro-

gressivity, and found it to be ambiguous even in their simple setting with two ability-types and

linear taxation. Analyzing the effects of an increase in uncertainty in our context would be much

more complicated. We can, however, derive the first-order effect of an increase in uncertainty

starting with the no-risk optimum.

In the absence of uncertainty, the marginal tax rate at income level y(a), denoted by T ′0
(
y(a)

)
,

can be written, using (30), as

T ′0
(
y(a)

)
= 1− µ̂(a)

aλf(a)

Suppose we hold the values of all Lagrange multipliers constant at their no-risk levels, and introduce

a small amount of risk. Then, since Ω(y) = 0 in the no-risk optimum, (32) may be written

1− 1
E[a|y]u′

(
c(y)

) =
∫

a

ã

E[a|y]
T ′0(ã)φ(ã, y)dã (34)

Take a first-order Taylor approximation of T ′0(ã) around E[a|y] to yield:

T ′0(ã) ≈ T ′0
(
E[a|y]

)
+ T ′′0

(
E[a|y]

)(
ã− E[a|y]

)
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Substituting this into (34), we obtain:

1− 1
E[a|y]u′

(
c(y)

) ≈ T ′0
(
E[a|y]

)
+

T ′′0
(
E[a|y]

)
E[a|y]

∫
a

ã
(
ã− E[a|y]

)
φ(ã, y)dã

= T ′0
(
E[a|y]

)
+ T ′′0

(
E[a|y]

)Var[a|y]
E[a|y]

The following proposition follows immediately.

Proposition 4 Let a(y) ≡ E[a|y] where a(y) is the inverse of y(a) in the absence of risk. Introducing

a small amount of risk while holding the no-risk Lagrange multipliers fixed raises the expected tax

wedge if and only if T ′′0
(
a(y)

)
> 0.

Of course, this result is both local and approximate since it is derived holding the Lagrange multi-

pliers constant.

6 The Atkinson-Stiglitz Theorem
Suppose we now allow for two consumer goods in the model. Let c(y) be disposable income, which

can be allocated to two goods, x and q, after the state of the world is revealed. Let ex post utility

from these two goods be given by b(x, q). The overall utility function is still quasilinear in labor,

so the weak separability condition required for the Atkinson and Stiglitz (1976) Theorem in the

standard model is satisfied. Producer prices for the two goods are unity, and a tax at the rate τ

can be imposed on good x, so its consumer price is 1 + τ .11

Consider first the ex post problem of a given household. Once the state is revealed, disposable

income is c(y), and the household’s budget is c(y) = (1 + τ)x + q. The household chooses x to

maximize b
(
x, c(y)− (1 + τ)x

)
. The solution to this problem is x

(
c(y), τ

)
, and the indirect ex post

utility function is u
(
c(y), τ

)
. The envelope theorem gives:

uc

(
c(y), τ

)
= bq(·), uτ

(
c(y), τ

)
= −bq(·)x = −uc

(
c(y), τ

)
x (35)

Revising the Lagrangian (7) for the government to take account of the possible tax on x, we

have:

L =
∫

a

β(a)v(a)f(a)da + λ

∫
y

(
y − c(y) + τx

(
c(y), τ

))(∫
a

Gy

(
y, z(a)

)
f(a)da

)
dy

+
∫

a

µ(a)
(∫

y

u(c(y), τ)Gy

(
y, z(a)

)
dy−z(a)

a
−v(a)

)
da+

∫
a

γ(a)
(∫

y

u
(
c(y), τ

)
Gyz

(
y, z(a)

)
dy−1

a

)
da

11 We can dispense with a tax on good q since proportional taxes on x and q are equivalent to a pro-
portional tax on income so can be absorbed into the income tax. A non-negative value of τ can be
interpreted as a differential set of commodity taxes on x and q.
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Suppose τ is given, and let W (τ) be the value function of the solution to this problem for the

optimal income tax. Apply the envelope theorem to W (τ) at τ = 0 and using (35) yields:

dW

dτ

∣∣∣
τ=0

= λ

∫
y

x
(∫

a

Gyf(a)da
)
dy −

∫
a

µ(a)
(∫

y

ucxGydy
)
da−

∫
a

γ(a)
(∫

y

ucxGyzdy
)
da (36)

The first-order condition on c(y) can be written:

λ

∫
a

Gyf(a)da +
∫

a

µ(a)ucGyda +
∫

a

γ(a)ucGyzda = 0 (37)

Eqs. (36) and (37) imply that
dW

dτ

∣∣∣∣
τ=0

= 0

Therefore, the following proposition applies.

Proposition 5. The Atkinson-Stiglitz Theorem applies if goods purchases are made after earnings

are known.

We have assumed that, although households supply labor before uncertainty is resolved, their

goods’ purchases are chosen ex post.12 Goods of a durable nature, such as housing, might have to be

chosen before earnings are known. Cremer and Gahvari (1995, 1999) have studied this problem in a

setting in which individuals are ex ante identical and subject to wage rate uncertainty, and choose

labor after their wage rate is revealed. They show that if durable goods must be purchased before

wage rates are revealed, the Atkinson-Stiglitz Theorem does not hold. When the income tax applies

optimally to ex post income, taxing durable goods at preferential rates will be welfare-improving.

To investigate this case in our context, suppose x is a durable good and must be purchased

before earnings are revealed. Good q continues to be purchased after y is known. Now, the individ-

ual must choose both z and x ex ante. Using the same notation as above, the value of transformed

expected utility for a type-a person is now given by v(a) =
∫

y
b
(
x, c(y)− (1+ τ)x

)
Gy(y, z)dy− z/a.

The choice of z satisfies the analog of (2) as before, while optimal x satisfies the first-order condition

from maximizing v(a):∫
y

bx(x, c(y)− (1 + τ)x
)
Gy(y, z)dy − (1 + τ)

∫
y

bq(x, c(y)− (1 + τ)x
)
Gy(y, z)dy = 0 (38)

Let x(a) be the solution to (38), and write indirect ex post utility as u
(
c(y), τ, x(a)

)
. Assuming

that the second-order conditions for the choice of x are satisfied, the following is shown in the

Appendix.

12 Cremer and Gahvari (1999) refer to this as the case where households can commit to labor supply,
but not to goods purchases.
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Lemma 3. Assuming the second-order condition for the worker’s choice of x(a) is satisfied, ẋ(a) >

0.

In solving the government’s problem, we treat x(a) as a control variable and add as a constraint

(38), or equivalently,
∫

y
ux

(
c(y), τ, x(a)

)
Gy

(
y, z(a)

)
dy = 0. The Lagrangian expression can be

written:

L =
∫

a

β(a)v(a)f(a)da + λ

(∫
y

(
y − c(y)

)( ∫
a

Gy

(
y, z(a)

)
f(a)da

)
dy + τ

∫
a

x(a)f(a)da

)

+
∫

a

µ(a)
(∫

y

u
(
c(y), τ, x(a)

)
Gy

(
y, z(a)

)
dy − z(a)

a
− v(a)

)
da

+
∫

a

γ(a)
(∫

y

u
(
c(y), τ, x(a)

)
Gyz

(
y, z(a)

)
dy− 1

a

)
da+

∫
a

δ(a)
(∫

y

ux

(
c(y), τ, x(a)

)
Gy

(
y, z(a)

)
dy
)
da

The first-order conditions with respect to x(a) and c(y)are as follows:

λτf(a) + γ(a)
∫

y

uxGyzdy + δ(a)
∫

y

uxxGydy = 0 (39)

−λ

∫
a

Gyf(a)da +
∫

a

µ(a)ucGyda +
∫

a

γ(a)ucGyzda +
∫

a

δ(a)uxcGyda = 0 (40)

Using partial integration and the definition of θ(a) in (11), (39) can be written:13(
λτ + θ(a)Cov

[
ux, h(y, z(a))

])
f(a) + δ(a)

∫
y

uxxGydy = 0 (41)

From this we infer the following lemma.14

Lemma 4. Given θ(a) > 0 by Assumption 3, δ(a) > 0 at τ = 0.

That is, the incentive constraint on x(a) is binding for all ability-types.

The effect of a change in τ on the value of the Lagrangian expression is:

∂L
∂τ

= λx(a) +
∫

a

µ(a)
(∫

y

uτGydy
)
da +

∫
a

γ(a)
(∫

y

uτGyzdy
)
da +

∫
a

δ(a)
(∫

y

uxτGydy
)
da (42)

where x =
∫

a
x(a)f(a)da. Using the first-order conditions (39) and (40) on x(a) and c(y) and

evaluating (42) at τ = 0, we obtain the following proposition, as shown in the Appendix.

Proposition 6. The welfare effect of introducing a tax on the durable good is given by:

∂L
∂τ

∣∣∣
τ=0

= −Cov
[
x(a), β(a)Ey[uc|a]

]︸ ︷︷ ︸
equity

−Cov
[
x(a), θ(a)Ey

[ du

dm
h(y, z(a))

∣∣∣a]]︸ ︷︷ ︸
incentive

R 0

13 That is,
∫

y
uxGyzdy =

∫
y

uxhGydy = E[uxh|a] = Cov[ux, h] since E[ux|a] = E[h|a] = 0.

14 By Assumption 1, h(y) > 0, and dux/dy = uxqc′(y) > 0. Since both hy and ux are increasing in y,
Cov[ux, h] > 0, the lemma follows.
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where
d

dm

(
u
(
c(y) + m, τ, x(a)

))
= uc + ux

dx(a)
dm

represents the change in ex post utility from an increase in income m in all states.

The first term is an equity effect. Since x(a) is increasing in a and β(a) is decreasing in a, the

equity term will be negative if Ey[uc|a] is decreasing in a, thereby tending to make τ negative.

The second term involves an incentive effect and can be positive or negative. Thus, the sign of the

optimal tax on x is ambiguous.

Assume, following Cremer and Gahvari (1995, 1999), that individuals are ex ante identical

with a = 1. In this case, x(a) = x so the covariance terms in Proposition 6 are both zero. The

following corollary is apparent.

Corollary 6.1. If individuals are ex ante identical, the optimal tax rate on the durable good is zero,

τ = 0.

This result differs from that of Cremer and Gahvari (1995), who find that the durable good should

be taxed preferentially compared with goods purchased after the wage rate becomes known. The

reason is rather subtle, and is as follows. In Cremer and Gahvari, labor supply is chosen after wage

rates are revealed. Persons who plan to mimic low-wage workers in the event that they turn out to

be high-wage will demand less of the durable good than persons who do not intend to mimic. In

these circumstances, subsidizing purchases of the durable good makes it less attractive to mimic,

so the incentive constraint is relaxed. In our model where labor is chosen before uncertainty is

resolved, there is no binding incentive constraint that precludes high-wage persons from pretending

to be low-wage persons so this argument does not arise. Moreover, there is no redistributive reason

for taxing the durable good since all persons are ex ante identical.

7 Concluding Remarks
In this paper, we have provided a fairly general treatment of optimal income taxation when differ-

ences in income can be due to both ability differences and uncertainty (luck). We derived a general

formula for the marginal income tax rate and disaggregated its determinants into factors involving

incentive, equity and insurance effects. The cases of no uncertainty and no ability differences came

out as special cases. We also showed that the Atkinson-Stiglitz Theorem continues to be satisfied

when earnings are uncertain, as long as goods’ purchases can be delayed until after the state is

revealed.

Our analysis was facilitated by some simplifying assumptions. Preferences were assumed to be

quasilinear in leisure, which eliminates income effects in the demand for consumption. The concept

of risk-aversion is transparent in this case since it depends only on consumption and not on labor

supply.
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We also assumed that labor supply varied only along the intensive margin. Introducing an

extensive margin along the lines of Diamond (1980) and Saez (2002) would involve restricting the

effective labor supply in each job and focusing on participation and job choice decisions, but it

would be a useful extension.

We assumed that the same earnings distribution function applied to the effective labor supply

of all workers regardless of their ability. Allowing earnings risk to vary with ability would be an

interesting extension, although it is not clear what one would assume about the relation between

risk and ability. One could also let risk aversion vary with ability as in Eaton and Rosen (1980a),

though again it is not obvious how attitudes to risk would be expected to vary with ability.

Finally, we assumed that ability was exogenous. There is a substantial literature on abil-

ity being affected by human capital or education investments, and these naturally raise issues of

uncertainty. Seminal papers include Eaton and Rosen (1980b) and Hamilton (1987), and more

recent papers include Anderberg and Andersson (2003), Da Costa and Maestri (2007) and Jacobs,

Schindler and Yang (2010). For a fuller summary of these, see Schindler and Yang (2010).
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Appendix
I. Proofs

Proof of Proposition 1

From (12), integrating over income y yields:

λ

∫
y

1
u′
(
c(y)

)( ∫
a

Gy(·)f(a)da
)
dy =

∫
a

∫
y

(
β(a)Gy(·) + θ(a)Gyz(·)

)
f(a)dady

or, since
∫

a
Gyf(a)da is the number of persons earning income y,

λE
[ 1
u′
(
c(y)

)] =
∫

a

β(a)
(∫

y

Gy(·)dy
)
f(a)da +

∫
a

θ(a)
(∫

y

Gyz(·)dy
)
f(a)da

=
∫

a

β(a)f(a)da since
∫

y

Gydy = 1 and
∫

y

Gyzdy = 0.

Since
∫

a
β(a)f(a)da = 1, (13) follows.

The Value of D in the Maximin Case

With a maximin social welfare function, D = φy(a, y). Using (14), we have:

φ(a, y) =
Gy(y, z(a))f(a)∫

a
Gy(y, z(ã))f(ã)dã

=
Gyf(a)
E
[
Gy|y

]
Differentiating this with respect to y, we have:

φy(a, y) =
Gyy(y, z(a))f(a)

E
[
Gy|y

] − Gy(y, z(a))f(a)(
E
[
Gy|y

])2 E
[
Gyy|y

]

= φ(a, y)

(
Gyy(y, z(a))
Gy(y, z(a))

−
E
[
Gyy|y

]
E
[
Gy|y

] )
If we assume that G(y, z(a)) is single-peaked in y for given z(a), Gyy(y, z(a))/Gy(y, z(a)) is pos-

itive for low values of y, and becomes negative after the mode. Since E
[
φ(y, a)|y

]
= 1, we have

E
[
φy(a, y)|y

]
= 0. This would suggest that φy(a, y) takes a positive and increasing value for low

y. It may eventually begin to fall after the mode depending on the value of income at which

E
[
Gyy|y

]
/E
[
Gy|y

]
peaks.

The Sign of E

Recall that E =
∫

a
θhφyda. Given that θ(a) is positive, the sign of E will depend on the signs of

h(y, z(a)) and φy(a, y), where by (4) and (14):

h(y, z) =
Gyz(y, z)
Gy(y, z)

, φ(a, y) =
Gy(y, z(a))f(a)∫

a
Gy(y, z(ã))f(ã)dã

=
Gyf(a)
E
[
Gy|y

]
23



Given z(a), we assume that Gy is single-peaked. An increase in z(a) causes the density function Gy

to shift right. Therefore, Gyz is negative for low values of y and then becomes positive for higher

values, implying that h(y, z(a)) is also negative for low y and positive for higher values.

Next, differentiating φ(a, y) with respect to y, we obtain:

φy(a, y) =
Gyyf(a)
E
[
Gy|y

] − Gyf(a)(
E
[
Gy|y

])2 E
[
Gyy|y

]
= φ(a, y)

(
Gyy

Gy
−

E
[
Gyy|y

]
E
[
Gy|y

] )

We know that E
[
φy(a, y)|y

]
= 0. Since we assume that G(y, a) is single-peaked in y for given a, this

would suggest that φy takes a positive value for low y and a negative value for high y. Therefore,

E, which involves the product of h(y, z(a)) and φy(a, y) will tend to be negative over the range of

a, leading to a presumption that E will be negative.

Proof of Lemma 2

Substituting (5) into (9) and using π(a) = −γ(a)/ż(a) yields (24).

Substituting µ(a) = µ̂(a)− π̇(a) into (27) yields (8).

Substituting µ(a) = µ̂(a)− π̇(a) and (26) into (25) yields:

−λ

∫
a

Gyf(a)da + u′
∫

a

(
µ(a) + π̇(a)

)
Gyda + u′

(
π(a)Gy(a)− π(a)Gy(a)

)
= 0

The term involving π̇(a) may be partially integrated to yield:∫
a

π̇(a)Gyda = −
∫

a

π(a)Gyz żda +
[
π(a)Gy

]a
a

Using π(a) = −γ(a)/ż(a), and substituting this into the above equation yields (10).

Derivation of (33)

Using (27), (32) may be written:

1− 1
E[a|y]u′

= 1−
∫

a

1
E[a|y]

(β(a)f(a) + π̇(a)
λf(a)

)
φ(a, y)da− Ω(y)

E[a|y]λ

= −
∫

a

1
E[a|y]

π̇(a)
λf(a)

φ(a, y)da + 1− E[β(a)|y]
E[a|y]λ

− Ω(y)
E[a|y]λ

Partially integrating the first term and using (14),

1− 1
E[a|y]u′

=
∫

a

1
E[a|y]λ

π(a)Gyz ż(a)
E[Gy|y]

da + 1− E[β(a)|y]
E[a|y]λ

− Ω(y)
E[a|y]λ

Using (4), this may be written:

1− 1
E[a|y]u′

=
∫

a

1
E[a|y]λ

π(a)h(y, z(a))Gy ż(a)
f(a)E[Gy|y]

f(a)da + 1− E[β(a)|y]
E[a|y]λ

− Ω(y)
E[a|y]λ
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which immediately reduces to (33).

Proof of Lemma 3

Differentiating (38) with respect to a yields:

ẋ(a)
∫

y

(∂
(
bx − (1 + τ)bq

)
∂x

)
Gydy + ż(a)

∫
y

(
bx − (1 + τ)bq

)
Gyzdy = 0

The term multiplying ẋ(a) is negative by the second-order conditions, and ż(a) > 0 by Lemma 1.

The term multiplying ż(a) may be written, using partial integration:∫
y

uxGyzdy =
[
uxGz

]y
y
−
∫

y

dux

dy
Gzdy = −

∫
y

uxcc
′(y)Gzdy

Since Gz < 0, uxc > 0 and c′(y) > 0, the result follows.

Proof of Proposition 6

Integrating (40) over y, multiplying by x and using
∫

y
Gydy = 1:

−λx

∫
a

f(a)da +
∫

a

µ(a)
(∫

y

xucGydy
)
da +

∫
a

γ(a)
(∫

y

xucGyzdy
)
da

+
∫

a

δ(a)
(∫

y

xuxcGydy
)
da = 0

Combining this with (42) and using uτ = −xuc, uxτ = −xuxc and h = Gyz/Gy:

∂L
∂τ

= −
∫

a

µ(a)(x− x)
(∫

y

ucGydy
)
da−

∫
a

γ(a)(x− x)
(∫

y

uchGydy
)
da

−
∫

a

δ(a)(x− x)
(∫

y

uxcGydy
)
da

Since γ(a) = θ(a)f(a) by (11) and µ(a) = β(a)f(a) by the first-order condition with respect to

v(a), this may be written:

∂L
∂τ

= −Cov
[
x, β(a)Ey[uc|a]

]
− Cov

[
x, θ(a)Ey[uch|a]

]
− Cov

[
x,

δ(a)
f(a)

Ey[uxc|a]
]

At τ = 0, (41) can be written, using (11) and footnote 10,

θ(a)f(a)E
[
uxh|a

]
= −δ(a)

∫
y

uxxGydy = −δ(a)Ey

[
uxx|a

]
Therefore, using this for δ(a)/f(a), we obtain:

∂L
∂τ

∣∣∣∣
τ=0

= −Cov
[
x, β(a)Ey[uc|a]

]
− Cov

[
x, θ(a)

(
Ey

[
uch|a

]
−

E
[
uxc|a

]
Ey

[
uxx|a

]Ey[uxh|a]
)]
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Eq. (38) may be written
∫

y
ux

(
c(y) + m, τ, x

)
Gydy = 0. Differentiation yields

dx

dm
= −

∫
uxcGydy∫
uxxGydy

= −Ey[uxc|a]
Ey[uxx|a]

, so

∂L
∂τ

∣∣∣∣
τ=0

= −Cov
[
x, β(a)Ey[uc|a]

]
− Cov

[
x, θ(a)

(
Ey

[
uch|a

]
+

dx

dm
Ey[uxh|a]

)]
= −Cov

[
x, β(a)Ey[uc|a]

]
− Cov

[
x, θ(a)

(
Ey

[ d

dm
(u(c(y), τ, x)h|a

])]

II. Example where the Marginal Tax Rate Exceeds Unity
Assume two ability-types, a2 > a1. Let y1 be type-1’s maximum income, so y > y1 implies

G
(
y, z(a1)

)
= 1, φ(a1, y) = 0 and φ(a2, y) = 1. Eq. (15) can be written as:

λ

u′
(
c(y)

) =


∑

i=1,2

(
β(ai) + θ(ai)h

(
y, z(ai)

))
φ(ai, y) if y 6 y1

β(a2) + θ(a2)h
(
y, z(a2)

)
if y > y1

(15′)

where β(a1) > β(a2), and θ(ai) > 0 for i = 1, 2 by Assumption 3. Assume that h
(
y1, z(a2)

)
< 0

or Gyz

(
y1, z(a2)

)
< 0, which implies that h

(
y1, z(a1)

)
> 0 (since

∫
h(y, z)Gydy = 0 and hy > 0 by

Assumption 1). Then,

lim
y→y1−

λ

u′
(
c(y)

) = lim
y→y1−

∑
i=1,2

(
β(ai) + θ(ai)h

(
y, z(ai)

))
φ(ai, y)

> β(a2) + θ(a2)h
(
y1, z(a2)

)
= lim

y→y1+

λ

u′
(
c(y)

)
Therefore,

lim
y→y1−

c(y) > lim
y→y1+

c(y), or lim
y→y1−

(
y − T (y)

)
> lim

y→y1+

(
y − T (y)

)
This implies that T ′(y) > 1 at y = y1. Note than h

(
y1, z(a2)

)
< 0 is a sufficient condition for this

demonstration, but it is not necessary. The marginal tax rate will still be greater than 100 percent

as long as θ(a1)h
(
y1, z(a1)

)
> θ(a2)h

(
y1, z(a2)

)
. Furthermore, y1 could be endogenous and based

on z(a1) chosen by type-1’s in the optimum.
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