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ABSTRACT: In this paper, some vital methodological issues of spatial microsimulation modelling for 
small area estimation have been addressed, with a particular emphasis given to the reweighting 
techniques. Most of the review articles in small area estimation have highlighted methodologies based on 
various statistical models and theories. However, spatial microsimulation modelling is emerging as a very 
useful alternative means of small area estimation. Our findings demonstrate that spatial microsimulation 

models are robust and have advantages over other type of models used for small area estimation. The 
technique uses different methodologies typically based on geographic models and various economic 
theories. In contrast to statistical model-based approaches, the spatial microsimulation model-based 

approaches can operate through reweighting techniques such as GREGWT and combinatorial 
optimization. A comparison between reweighting techniques reveals that they are using quite different 
iterative algorithms and that their properties also vary. The study also points out a new method for 
spatial microsimulation modelling 

 
Keywords: Bayesian prediction approach; combinatorial optimisation; GREGWT; microdata; small area 
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1. INTRODUCTION 

Small area estimation is the method of estimating 

reliable statistics at the small geographical area or 
a spatial micropopulation unit. Reliable statistics of 

interest at small area levels cannot be ordinarily 
and directly produced, due to certain limitations of 
the available data. For instance, a suitable sample 
that contains enough representative observations 

is typically not available for all small areas from 
national level survey data. A basic problem with 
national or state level surveys is that they are not 
designed for efficient estimation for small areas 
(Heady et al., 2003). In practice, small area 
estimates from these national sample surveys are 
statistically unreliable, due to sample observations 

being insufficient, or in many cases non-existent, 
where the domain of interest may fall outside the 
sample domains (Tanton, 2007). Given typical 

time and money constraints, it is usually 
impossible to conduct a sufficiently comprehensive 
survey to get enough data from every small area 
we are interested in.  

Nowadays indirect modelling approaches of small 
area estimation, such as spatial microsimulation 
models (SMMs), have received much attention, 
due to their usefulness and the increasing demand 
for reliable small area statistics from both private 
and public level organisations. In these 

approaches, one uses data from similar domains 
to estimate the statistics in a particular small area 
of interest, and this „borrowing of strength‟ is 
justified by assuming a model that relates the 

small area statistics (Meeden, 2003). Typically, 
indirect small area estimation is the process of 
using statistical models and/or geographic models 

to link survey outcome or response variables to a 
set of predictor variables known for small areas, in 
order to predict small area estimates. As a result 
of inadequate sample observations in small 
geographic areas, the conventional area-specific 
direct estimates may not provide enough 

statistical precision. In such a situation, an 
indirect model-based method can produce better 

results.  

Most of the review articles in small area 

estimation have highlighted the methodologies, 
which are fully based on various statistical models 
and theories (for example, Ghosh and Rao, 1994; 
Rao, 1999; Pfeffermann, 2002; Rao, 2002; Rao, 

2003a). However another type of technique called 
„spatial microsimulation modelling‟ has been used 
in providing small area estimates during the last 
decade (for instance, Williamson et al., 1998; 
Ballas et al., 2003; Taylor et al., 2004; Brown and 
Harding, 2005; Chin et al., 2005; Ballas et al., 
2006; Chin and Harding, 2006; Cullinan et al., 

2006; Lymer et al., 2006; Anderson, 2007; Chin 
and Harding, 2007; King, 2007; Tanton, 2007) . 
The SMMs are based on geographic and economic 

theories, and their methodologies are quite 
different from other statistical approaches. 
Although these approaches are frequently used in 
social and economic analysis, and seem to be a 

robust and rational indirect modelling tool, the 
mechanisms behind them are not always well 
documented. Also there are some important 
methodological issues where more research 
should improve the performance of SMMs and help 
in the validation of their estimates.  

This paper provides a brief synopsis of the overall 
methodologies for small area estimation and 
explicitly addresses some vital methodological 
issues of spatial microsimulation modelling, with a 

particular emphasis given to the reweighting 
techniques. It also proposes a new approach in 
the SMM methodologies. An application of the 

generalised regression based reweighting 
technique discussed in this article is studied by 
Tanton and Vidyattama under distinct features of 
the applicable data. This contribution is part of 
this special issue as well.      
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There are 5 sections within this paper. In Section 

2, a diagramic representation of the overall 

methodologies in small area estimation is provided 
with a synopsis of various direct and indirect 
statistical model based estimations, and highlights 
of spatial microsimulation modelling. In Section 3, 
some vital methodological issues in spatial 

microsimulation modelling are addressed, which 
include theories and numerical solutions of 
different reweighting techniques. In Section 4, a 
comparison between two reweighting techniques 
is presented with a new methodology for 
generating small area microdata. Finally, 
conclusions are given in Section 5. 

 

2. METHODS OF SMALL AREA ESTIMATION: 
AN OVERALL VIEW  

A diagramic representation of the overall 
methodologies for small area estimation is 
depicted in Figure 1. Traditionally there are two 
types of small area estimation – direct and indirect 

estimation. Direct small area estimation is based 
on survey design and includes three estimators  

called the Horvitz-Thompson estimator, GREG 

estimator and modified direct estimator. On the 

other hand, indirect approaches of small area 
estimation can be divided into two classes – 
statistical and geographic approaches. The 
statistical approach is mainly based on different 
statistical models and techniques. However, the 

geographic approach uses techniques such as 
SMMs. 
 

It is noted that implicit model based statistical 
approaches include three types of estimators, 
which are synthetic, composite and demographic 
estimators. Whereas, there are also three kinds of 
explicit models categorized as area level, unit level 

and general linear mixed models. Based on the 

type of study researchers are interested in, each 
of these models is widely applied to obtained small 
area indirect estimates by utilising the (empirical-) 
best linear unbiased prediction (E-BLUP), empirical 
Bayes (EB) and hierarchical Bayes (HB) methods. 

A very brief synopsis of different direct and 
indirect statistical model based small area 
estimation techniques is presented in Table 1 (for 
details, see Rahman, 2008a).

 
Figure 1 A summary of different techniques for small area estimation  
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Table 1 A brief summary of different methods for direct and indirect statistical model based small area estimation. 

Small Area Estimation Formula/model1 Methods/Comments Advantages  Disadvantages  Applications 
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Easy to calculate and 
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It is unreliable and can not 

use auxiliary data.  
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small area level, and 
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model unbiased. 

It could be negative in some 

cases and not a consistent 

estimator due to high 
residuals.  

When sample size is large 

and reliable auxiliary data 

are available at small area 
level.  
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large scale domain.  

Straightforward formula 

and very easy and 

inexpensive to calculate. 

All small areas are similar to 

large area assumption is not 

tenable & estimate is biased.  

Used in various areas in 

government and social 

statistics. 

Composite 

estimator 
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Rooted in data from 

census, and with time 
dependent variable. 

Easy to estimate, and the 

underlying theory is simple 
and straightforward. 

Only used for population 

estimates and affected by 
miscounts in census data. 

Used to find birth and death 

rates and various 
population estimates. 
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Based on a two stages 

model and known as the 
Fay-Herriot model. 

Can use area specific 

auxiliary data and direct 
estimator. 

Assumptions of normality 

with known variance may 
untenable at small sample.   

Various areas in statistics 

fitting with assumptions of 
the model. 

Unit level 
ijiijij exy    Based on unit level 

auxiliary data and a 

nested error model.  

Useful for continuous value 

variables, two stage and 

multivariate data. 

Validating is quite complex 

and unreliable. 

Used successfully in many 

areas of agricultural 

statistics. 

General 

linear mixed 
model 

eZXy    A general model, which 

encompasses all other 
small area models. 

Can allow correlation 

between small areas, AR(1) 
and time series data. 

Calculation and structure of 

matrix for area random 
effects are very complex.  

In all areas of statistics 

where data are useful for 
the general model. 

1 All usual notations are utilized (see Rahman, 2008a for details). 
2 Methods such as empirical best linear unbiased predictor (E-BLUP), empirical Bayes (EB) and hierarchical Bayes (HB) are frequently used in explicit model based small area estimation. An    

  excellent   discussion of each of these complex methods is given in Rao (2003), and also in Rahman (2008a). 
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However, in contrast to statistical approaches, the 

geographic approach is based on microsimulation 

models, which are essentially creating 
synthetic/simulated micro-population data to 
produce „simulated estimates‟ at small area level. 
To obtain reliable microdata at small area level is 
the key task for spatial microsimulation modelling. 

Synthetic reconstruction and reweighting are two 
commonly used methods in microsimulation, and 
each of them is stimulated by different techniques 
to produce simulated estimators. As the main 
objective of this paper is to discuss the 
methodological issues of spatial microsimulation 
modelling, the subsequent sections will encompass 

those methods for explicit treatments. 

2.1 SMM estimation 

The Spatial Microsimulation Model (SMM) 
approach to small area estimation harks back to 
the microsimulation modelling ideas pioneered in 
the middle of last century by Guy Orcutt (1957, 
2007). This approach is fully based on SMMs and 

also known as the geographic method. During the 
last two decadesmicrosimulation modelling has 
become a popular, cost-effective and accessible 
method for socioeconomic policy analysis, with the 
rapid development of increasingly powerful 
computer hardware; the wider availability of 

individual unit record datasets (Harding, 1993, 
1996); and  with the growing demand (Harding 

and Gupta, 2007) for small area estimates at 
government and private sectors.  

Microsimulation modelling was originally 
developed as a tool for economic policy analysis 
(Merz, 1991). Clarke and Holm (1987) provide a 

thorough presentation on how microsimulation 
methods can be applied in regional science and 
planning analysis.  According to Taylor et al. 
(2004), spatial microsimulation can be conducted 
by re-weighting a generally national level sample 
so as to estimate the detailed socio-economic 
characteristics of populations and households at a 

small area level. This modelling approach 

combines individual or household microdata, 
currently available only for large spatial areas, 
with spatially disaggregate data to create 
synthetic microdata estimates for small areas 
(Harding et al., 2003). Various microsimulation 

models such as static, dynamic and spatial 
microsimulation models are discussed in the 
literature (Harding, 1996; Harding and Gupta, 
2007). 

Although microsimulation techniques have become 
useful tools in the evaluation of socioeconomic 
policies, they involve some complex subsequent 

procedures. An overall process involved with 
spatial microsimulation is described in detail by 

Chin and Harding (2006). They classified two 
major steps within this process, which are first, to 
create household weights for small areas using a 
reweighing method and, second, to apply these 
household weights to the selected output variables 

to generate small area estimates of the selected 
variables. Further, each of these major steps 
involve several sub-steps (Chin and Harding 
2006). Ballas et al. (2005) outline four major 

steps involved with a microsimulation process, 

which are: 

 
 the construction of a „microdata‟ set (when this 

is not available); 
 Monte Carlo sampling from this data set to 

„create‟ a micro level population (or a 

„synthetic‟ population (see, Chin and Harding, 
2006)) for the interested domain; 

 what-if simulations, in which the impacts of 
alternative policy scenarios on the population 
are estimated; and 

 dynamic modelling to update a basic microdata 
set. 

The starting point for microsimulation models is a 

microdata file, which provides comprehensive 
information on different characteristics of 
individual persons, families or households in the 
file. In Australia, microdata are generally available 
in the form of confidentialised unit record files 
(CURFs) from the Australian Bureau of Statistics 

(ABS) national level surveys. Typically, the survey 
data provide a very large number of variables and 
an adequate sample size to allow statistically 
reliable estimates for only large domains (such as 
only at the broad level of the state or territory). 
Small area estimates from these national sample 

surveys are statistically unreliable because of 
sample observations being insufficient or in many 

cases non-existent where the domain of interest 
may fall out of the sample areas. For example if a 
land development agency wants to develop a new 
housing domain/suburb, then this new small 
domain should be out of the sample areas. Also, in 

order to protect the privacy of the survey 
respondents, national microdata often lack a 
geographical indicator which, if present, is often 
only at the wide level of the state or territory 
(Chin and Harding, 2006). Therefore spatial 
microdata are usually unavailable and they need 
to be synthesized (Chin et al., 2005). The lack of 

spatially explicit microdata has in the past 
constrained of SMM for modelling of social policies 

and human behaviour.    

One advantage of SMMs relative to the more 
traditional statistical small area estimation 
approaches is that the microsimulation models can 

be used for estimating the local or small area 
effects of policy change and future small area 
estimates of population characteristics and service 
needs (Williamson et al., 1998; Ballas et al., 
2003; Taylor et al., 2004; Brown and Harding, 
2005; Chin et al., 2005; Ballas et al., 2006; Chin 
and Harding, 2006; Cullinan et al., 2006; Lymer 

et al., 2006; Anderson, 2007; Chin and Harding, 
2007; King, 2007; Tanton, 2007). For instance, 
spatial microsimulation may be of value in 

estimating the distributions of different population 
characteristics such as income, tax and social 
security benefits, income deprivation, housing 
unaffordability, housing stress, housing demand, 

care needs, etc. at small area level, when 
contemporaneous census and/or survey data are 
unavailable (Taylor et al., 2004; Chin et al., 2005; 
Lymer et al., 2006; Anderson, 2007; Tanton, 
2007; Lymer et al., 2008; Harding et al., 2009). 
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This type of model is mainly intended to explore 

the relationships among regions and sub-regions 

and to project the spatial implications of economic 
development and policy changes at a more 
disaggregated level. Moreover spatial 
microsimulation modelling has some advanced 
features, which can be highlighted as: 

 
 spatial microsimulation models are flexible in 

terms of the choice of spatial scale; 
 they can allow data from various sources to 

create a microdata base file at the small area 
level; 

 the models store data efficiently as lists of 

objects; 
 spatial microdata have the potential for further 

aggregation or disaggregation; and 
 models allow for updating and projecting. 

Thus, from some points of view, spatial 
microsimulation exploits the benefits of object-
oriented planning, both as a tool and a concept. 

Spatial microsimulation frameworks use a list-
based approach to microdata representation 
where a household or an individual has a list of 
attributes that are stored as lists rather than as 
occupancy matrices (Williamson et al., 1996). 
From a computer programming perspective, the 

list-based approach uses the tools of object-
oriented programming because the individuals and 

households can be seen as objects with their 
attributes as associated instance variables. 
Alternatively, rather than using an object 
orientated programming approach, a 
programming language like SAS can also be used 

to run spatial microsimulation. For a technical 
discussion of the SAS-based environment used in 
the development of the STINMOD model and 
adapted to run other NATSEM regional level 
models, readers may refer to the technical paper 
by Chin and Harding (2006). Furthermore, by 
linking spatial microsimulation with static 

microsimulation we may be able to measure small 
area effects of policy changes, such as changes in 

government programs providing cash assistance 
to families with children (Harding et al., 2009). 
Another advantage of SMMs is the ability to 
estimate the geographical distribution of socio-

economic variables, which were previously 
unknown (Ballas, 2001).  

However spatial microsimulation adds to the 
simulation a spatial dimension, by creating and 
using synthetic microdata for small areas, such as 
SLA levels in Australia (Chin et al., 2005). There is 
often great difficulty in obtaining household 

microdata for small areas, since spatially 
disaggregate reliable data are not readily 
available. Even if these types of data are available 

in some form, they typically suffer from severe 
limitations – in either lack of characteristics or lack 
of geographical detail. Therefore, spatial 
microdata should be simulated, and that can be 

achieved by different probabilistic as well as 
deterministic methods. 
 
3. METHODOLOGICAL ISSUES IN SMM   

As mentioned calculating statistically reliable 

population estimates in a local area using survey 

microdata is challenging, due to the lack of 

enough sample observations. To create a synthetic 
spatial microdata set is one of the possible 
solutions. Simulation based methods can deal with 
such a problem by (re)weighting each respondent 
in the survey data, to create the synthetic spatial 

microdata. However, it is not easy process to 
create reliable spatial microdata. Complex 
methodologies are associated with the process. 
This section presents some of the vital 
methodological issues in spatial microsimulation 
modelling. 
 

3.1 Creation of synthetic spatial microdata 

Methods for creating synthetic spatial microdata 
are mainly classified into the synthetic 
reconstruction and reweighting methods. 
Synthetic reconstruction is an older method, which 
attempts to construct synthetic micro-populations 
at the small area level in such a way that all 

known constraints at the small area level are 
reproduced. There are two ways of undertaking 
synthetic reconstruction - data matching or fusion 
(Moriarity and Scheuren, 2003; ABS, 2004; 
Tranmer et al., 2005) and iterative proportional 
fitting (Birkin and Clarke, 1988; Duley, 1989; 

Williamson, 1992; Norman, 1999). In contrast, 
the reweighting method, which is a relatively new 

and popular method, mainly calibrates the 
sampling design weights to a set of new weights 
based on a distance measure, by using the 
available data at spatial scale. 

Data matching or fusion is a multiple imputation 

technique often useful to create complementary 
datasets for microsimulation models. Data 
collected from two different sources may be 
matched using variables (such as name and 
address or different IDs), which uniquely identify 
an individual or household.  This type of data 
matching is commonly known as „exact matching‟. 

But, due to data confidentiality constraints, these 
unique identifier variables may not be available in 

all cases (for example, sample units or households 
in microdata such as CURFs of the ABS used in 
NATSEM cannot be identified because of the 
existence of data privacy legislation when 

gathering data from the population). For such a 
case, records from different datasets can also be 
„matched‟ if they share a core set of common 
characteristics. In general, the data matching 
technique involves a few empirical steps: 
   
 adjusting available data files and variable 

transformations; 
 choosing the matching variables; 
 selecting the matching method and associated 

distance function; and 
 validating. 

A description of these empirical steps and theories 
behind them are available  elsewhere (Alegre et 

al., 2000; Rassler, 2002). Details about data 
matching techniques are given by Rodgers (1984). 
Moreover, this tool is used to create microdata 
files by researchers in many countries, such as 
Moriarity and Scheuren (2001, 2003) in the USA;  
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Table 2 Synthetic reconstruction versus the reweighting technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liu and Kovacevic (1997) in Canada; Alegre et al. 
(2000),  Tranmer et al. (2005),   Rassler (2004)  
in Europe; and  ABS  (2004)  in  Australia,  among 
many others.  

Besides, the iterative proportional fitting (IPF) tool 

initially proposed by Deming and Stephan (1940). 

The authors developed the method for adjusting 
cell frequencies in a contingency table based on 
sampled observations subject to known expected 
marginal totals. This method has been used for 
several decades to create synthetic microdata 

from a variety of aggregate data sources. The 
theoretical and practical considerations behind this 
method have been discussed in several studies 
(Fienberg, 1970; Evans and Kirby, 1974; Norman, 
1999), and the usefulness of this approach in 
spatial analysis and modelling has been revealed 
by Birkin and Clarke (1988), Wong (1992), Ballas 

et al. (1999) and Simpson and Tranmer (2005). 
The study by Wong (1992) also considers the 

reliability issues of using the IPF procedure and 
demonstrates that the estimates of individual level 
data generated by this process using data of 
equal-interval categories other than equal-size 
categories are more reliable, and the performance 

of the estimation can be improved by increasing 
sample size. 

Previous to the development of „reweighting‟ 
techniques, the iterative proportional fitting 
procedure was a very popular tool to generate 
small area microdata. A summary of literature 

using this technique has been provided by Norman 
(1999). It appears from the study that almost all 

of the researchers in the United Kingdom were 
devoted to using the iterative proportional fitting 
procedure in microsimulation modelling. But 
nowadays most of the researchers are claiming 
that reweighting procedures have some 

advantages over the synthetic reconstruction 
approach (Williamson et al., 1998; Huang and 
Williamson, 2001; Ballas et al., 2003). A summary 
of the key issues associated with the two 
approaches is shown in Table 2.  

Moreover, reweighting is a procedure used 
throughout the world to transform information 
contained in a sample survey to estimates for the 
micro population (Chin and Harding, 2006). For 
example, the Australian Bureau of Statistics 

calculates a weight (or „expansion factor‟) for each 

of the 6,892 households included in the 1998-99 
Household Expenditure Survey sample file (ABS, 
2002). Thus if household number 1 is given a 
weight of 1000 by the ABS, it means that the ABS 
considers that there are 1000 households with 

comparable characteristics to household number 1 
in Australia. These weights are used to move from 
the 6,892 households included in the HES sample 
to estimates for the 7.1 million households in 
Australia (Chin and Harding, 2006).  

There are two reweighting techniques for SMM, 
which are a generalised regression technique 

known as the GREGWT approach (Bell, 2000; Chin 
and Harding, 2006) and the combinatorial 

optimisation  technique (Williamson et al., 1998; 
Huang and Williamson, 2001; Ballas et al., 2003; 
Williamson, 2007). These techniques are widely 
used to create synthetic spatial microdata for the 
spatial microsimulation modelling approach of 

small area estimation. However, they have a 
different methodology. Details of these two 
reweighting methodologies are given in the 
following subsections 
 
3.2 GREGWT theory: How does it generate 

new weights? 

The GREGWT approach of reweighting is an 

iterative generalised regression algorithm written 
in SAS macros. Let us assume that a finite 
population is denoted by Ω = {1,2,..., k,..., N}, 
and a sample s  (s  Ω) is drawn from Ω with a 

given probability sampling design p(.). Suppose 
the inclusion probability k = Pr(k  s) is a strictly 

positive and known quantity. Now for the elements 
k  s, let (yk,xk) be a set of sample observations; 

where yk is the value of the variable of interest for 
the kth population unit and x'k = 

Synthetic reconstruction Reweighting technique  

o It is based on a sequential step by step 
process – where the characteristics of 

each sample unit are estimated by 
random sampling using a conditional 
probabilistic framework.    

o Ordering is essential in this process 
(each value should be generated in a 
fixed order). 

  

o Relatively more complex and time 

consuming.  
 

o The effects of inconsistency between 
constraining tables could be significant 
for this approach due to a mismatch in 

the table totals or subtotals. 

o It is an iterative process – where a 
suitable fitting between actual data and 

the selected sample of microdata 
should be obtained by minimizing 
distance errors. 

o Ordering is not an issue. However 
convergence is achievable by repeating 
the process many times or by some 

simple adjustment.  

o The technique is complex from a 

theoretical point of view, it is 
comparatively less time consuming. 

o Reweighting techniques can allow the 
choice of constraining tables to match 
with researcher and/or user 

requirements. 
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(xk,1...k,xk,j,...,xk,p) is a vector of auxiliary 

information associated y'k. Note that data for a 

range of auxiliary variables should be available for 
each unit of a sample s. In a particular case, 
suppose for an auxiliary variable j, the element xk,j 
= 1 in xk if the kth individual is not in workforce, 
and xk,j = 0 „otherwise‟. Thus the number of 

individuals in the sample who are not in the 
workforce is given by 


sk

jkx ,
.  

 

If the given sampling design weights are dk = 1/k 

(k  s) then the sample based population totals of 

auxiliary information,  





sk

kksx xdt ,
ˆ   

can be obtained for a p-elements auxiliary vector 
xk. But the true value of the population total of the 
auxiliary information Tx should be known from 
some other sources such as from the census or 

administrative records. In practice, t̂ x,s is far from 

Tx when the sample s is a bad or poorly 
representative of the population.  

For obtaining a more reliable small area estimate 

of population total of the variable of interest, we 
have to generate a new set of weights wk for k  

s, for which the calibration equation  





sk

xkk Txw                                          (1) 

must be  fitted and the new weights wk will be as 
close as possible to dk.  

The distance measure used in the GREGWT 
algorithm is known as truncated Chi-squared 
distance function and it can be defined as  

k

kk
k

d

dw
G

2

)( 22






; for k

k

k
k U

d

w
L          (2) 

where Lkand Ukare pre specified lower and upper 
bounds respectively for each unit k  s.  

For a simple special case the total of this type of 

distance measure can be defined as  







sk k

kk

d

dw
D .

)(

2

1
2

 

Hence the Lagrangean for the Chi-squared 
distance function is  

   
  














sk

p

j sk

jkkjx

k

kk xwT
d

dw
L

1

,,

2)(

2

1
  (3) 

where j (j=1,2,...,p) are the Lagrange multipliers, 

and Tx,j is the jth element of the vector of true 
values of known population total for the auxiliary 
information, Tx. 

By differentiating (3) with respect to wk and then 
applying the first order condition, we have  

0
1

, 








 








p

j

jkj

k

kk

k

x
d

dw

w

L
              (4) 

for k  s  Ω, along with the pth (j=1,2,...p) 

constraints conditions in equation (1). As earlier, 
for a simple representation it is convenient to write  


jkjk xx , .  

Hence the new weights can be formulated as  

kkkk xddw  .                                         (5) 

To find the values of the Lagrange multipliers, the 
equation (5) can be rearranged in a convenient 

form. After multiplying the equation by xk and 
then summing over k it can be written as 

  
  


sk sk sk

kkkkkkk xxdxdxw .  

Now since 
sx

sk

kk txd ,
ˆ



 and 



sk

xkk Txw  are  

known, the above equation can be expressed as 

sxx

sk

kkk tTxxd ,
ˆ












   (6) 

where the summing term in brackets is a p x p 
symmetric-square matrix. If the inverse of this 

matrix exists, the vector of Lagrange multipliers 
can be obtained by the following equation 

 sxx

sk

kkk tTxxd ,

1

ˆ













 ; for 0
sk

kkk xxd . (7) 

Hence using the resulting values of Lagrange 
multipliers, , one can easily calculate the new 

weights wk from equation in (5). Moreover to 
minimize the truncated Chi-squared distance 
function in (2), an iterative procedure known as 

the Newton-Raphson method (appendix A) is used 
in the GREGWT program (Bell, 2000). It adjusts 

the new weights in such a way that minimises 
equation (2) and produces generalised regression 
estimates or synthetic estimates of the variable of 
interest. 
  
Explicit numerical solution for a hypothetical data  
An explicit numerical solution of the above very 

simple case theory is given here. Let xk,j is the jth 
auxiliary variable linked with kth sample unit for 
which true population values Tx are available from 
census or other administrative records. Suppose in 
a hypothetical dataset, observations of 25 sample 
units for a set of 5 auxiliary variables such as age 

(1=16-30 years and 0= „otherwise‟), sex 
(1=female and 0=male), employment 
(1=unemployed and 0= „otherwise‟), income from 
unemployment benefits (in real unit values 0, 1, 2, 
3, 4 and 5) and location (1=rural and 0= urban) 
are available, and its associated auxiliary 
information matrix, sample design weights and the 

known population values vector are accordingly 
given as –  
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matrix of 









sk

kkk xxd A (say). Now we have to estimate sxt ,
ˆ  and the inverse 

By using mathematical formulas one can easily obtain, 

 











 
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kk

k

kksx xdxdxdxdxdt ( 46 42 69 206 64 )  , and  

 

A =  

 

 

where Ajj =  
 


25

1

25

1

2

,,,

k k

jkkjkjkk xdxxd  and Aij = 



25

1

,,

k

jkikk xxd ; for all i,j (=1,2,3,4,5) and i  j. 

The inverse matrix of A = 









sk

kkk xxd  can be obtained as A-1 = 
1













sk

kkk xxd   

             

 

                = 

 

 

 
 

Then by using the results in relationship (7), the Lagrange multipliers should be calculated for this simple 

particular example as: ( 0.14209475, 0.03501717, 0.18600019, -0.08176176, -0.00426682 ) . 

 
 
 
 

1 1 0 0 0 

1 0 1 3 1 

0 0 1 2 1 

1 1 1 5 0 

0 1 0 0 1 

0 0 1 1 0 

0 0 0 0 1 

1 0 1 4 0 

0 1 0 0 1 

1 0 0 0 1 

0 1 1 1 0 

1 1 1 3 1 

1 0 1 2 1 

0 0 1 5 1 

0 1 1 4 0 

0 0 0 0 0 

1 0 1 3 1 

0 1 0 0 0 

0 0 1 2 1 

1 0 1 4 0 

0 0 0 0 1 

0 0 1 5 1 

1 1 0 0 0 

0 1 1 1 0 

1 0 0 0 1 

4 

5 

6 

5 

3 

4 

6 

4 

5 

3 

5 

4 

3 

6 

4 

5 
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A11 A12 A13 A14 A15 

A21 A22 A23 A24 A25 

A31 A32 A33 A34 A35 

A41 A42 A43 A44 A45 

A51 A52 A53 A54 A55 

46 18 31 108 24 

18 42 22 62 12 

31 22 69 206 39 

108 62 206 750 120 

24 12 39 120 64 

0.03661582 -0.00901288 0.00228602 -0.00429437 

 

-0.00538212 

-0.00901288 0.03088625 -0.01214961 0.00183273 0.00155596 

0.00228602 -0.01214961 0.09100053 -0.02239201 -0.01204764 

-0.00429437 0.00183273 -0.02239201 0.00794951 0.00000656 

-0.00538212 0.00155596 -0.01204764 0.00000656 0.02468079 

Note: the 1st row of matrix 

X  represents a sample unit 

of age between 16 to 30 
years, female, in ‘otherwise’ 
employment categories that is 
may be in labour force or 

employed, with a real unit 
value of income from 
unemployment is 0 dollar, and 
living in an urban area. 

 

= 
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Table 3 New weights and its distance measures to sampling design weights 
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Now using this result in equation (5), the new 

weights or calibrated weights for the Chi-squared 
distance measure can be easily obtained. The 
calculated new weights and its distance measures 
to the sample design weights are given in Table 3. 

For the 16th unit of our hypothetical data, the new 
weight remains unchanged to the sampling design 
weight due to the fact that all entries for this unit 

are zero. However this is very rare in GREGWT 
reweighting. 

In addition, the total absolute distance (TAD) 
indicates higher quantity. While absolute distance 
has a higher value, the corresponding Chi-squared 
distance measure also indicates a higher value. 

However the fluctuations within absolute distances 
are remarkable compared to Chi-squared distance 
measures (see in Figure 2).  

Furthermore, when the TAD will zero the total Chi-

squared distance will also be zero, and in that 
situation the calibrated weights will remain same 
as the sampling design weights which indicates 

the sample data are fully representative to the 
small area population. Moreover, it is interesting 
to note that the values of a set of new weights 
vary greatly with the changing values of vector for 

differences between t̂ x,s  and Tx. These differences 

can come from the poorly representative data 
and/or the chosen benchmarks. Four random 

alternative cases of difference vectors  
 

C 1 = [4,3,1,–6,1]‟ ,  
 

C 2 = [8,3,1,–6,1]‟ ,  
 

C 3 = [12,3,1, –6,1]‟  

 
and  C 4 = [4,3,1,2,1]‟ , 
 

where Cj=[Tx– t̂ x,s] for j = 1,2,3,4 , 

  
have been considered and the resulting sets of 
new weights are plotted in Figure 3. The results 
show that the case C4 generates a more 
consistent set of new weights compared to the 

other cases. It is obvious that when the auxiliary 
information matrix provides quite rich sample data 

then the resulting difference vector between t̂ x,s  

and Tx will be fairly close. Hence the resulting set 
of calibrated weights will produce more accurate 
estimates.

 
 

4 4.70844769 0.70844769 0.06273727 

5 5.39271424 0.39271424 0.01542245 

6 6.10925911 0.10925911 0.00099480 

5 4.77151662 -0.22848338 0.00522047 

3 3.09225105 0.09225105 0.00141838 

4 4.41695372 0.41695372 0.02173130 

6 5.97439907 -0.02560093 0.00005462 

4 4.00419164 0.00419164 0.00000220 

5 5.15375174 0.15375174 0.00236396 

3 3.41348379 0.41348379 0.02849481 

5 5.69627800 0.69627800 0.04848031 

4 4.45424007 0.45424007 0.02579175 

3 3.48091381 0.48091381 0.03854635 

6 4.63754748 -1.36245252 0.15468974 

4 3.57588131 -0.42411869 0.02248458 

5 5.00000000 0 0 

6 6.47125708 0.47125708 0.01850694 

3 3.10505151 0.10505151 0.00183930 

6 6.10925911 0.10925911 0.00099480 

4 4.00419164 0.00419164 0.00000219 

5 4.97866589 -0.02133411 0.00004551 

3 2.31877374 -0.68122626 0.07734487 

5 5.88555961 0.88555961 0.07842158 

4 4.55702240 0.55702240 0.03878424 

3 3.41348379 0.41348379 0.02849481 

 
 

 
TAD = 9.21152591 D = 0.67286721 
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Figure 2 A comparison of absolute distance and Chi-squared distance measures 
 

 

Figure 3 Plots of sampling design weights and new weights for specific cases 

 

 
3.3 Combinatorial optimisation reweighting 
approach 

The combinatorial optimisation (CO) reweighting 

approach was first suggested in Williamson et al. 
(1998) as a new approach to create synthetic 
micro-populations for small domains. This 

reweighting method is mainly motivated towards 
selecting an appropriate combination of 
households from survey data to attain the known 
benchmark constraints at small area levels using 
an optimization tool. In the combinatorial 
optimisation algorithms, an iterative process 

begins with an initial set of households randomly 
selected from the survey data, to see the fit to the 
known benchmark constraints for each small 
domain.  Then a random household from the initial 
set of combinations is replaced by a randomly 

chosen new household from the remaining survey 
data to assess whether there is an improvement of 

fit. The iterative process continues until an 
appropriate combination of households that best 
fits known small area benchmarks is achieved 
(Williamson et al., 1998; Voas and Williamson, 
2000; Huang and Williamson, 2001; Tanton et al., 
2007). The overall process involves five steps 
which are as follows: 

1. collect a sample survey microdata file (such 
as CURFs in Australia) and small area 
benchmark constraints (for example, from 

census or administrative records); 
2. select a set of households randomly from the 

survey sample which will act as an initial 

combination of households from a small area; 
3. tabulate selected households and calculate 

total absolute difference from the known 
small area constraints; 

4. choose one of the selected households 
randomly and replace it with a new household 

drawn at random from the survey sample, 
and then follow step 3 for the new set of 
households combination; and 

5. repeat step 4 until no further reduction in 
total absolute difference is possible. 

Note that when an array based survey data set 
contains a finite number of households it is 

possible to calculate all possible combinations of 
households. In theory, it may also be possible to 
find the set of households‟ combination that best 
fits the known small area benchmarks. But, in 
practice, it is almost unachievable, due to 
computing constraints for a very large number of 
all possible solutions. For example, to select an 
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appropriate combination of households for a small 

area with 150 households from a survey sample of 

215789 households, the number of possible 
solutions greatly exceeds a billion (Williamson et 
al., 1998).  

To overcome this difficulty, the combinatorial 
optimisation approach uses several ways of 

performing „intelligent searching‟, effectively 
reducing the number of possible solutions. 
Williamson et al. (1998) provide a detailed 
discussion about three intelligent searching 
techniques: hill climbing, simulated annealing and 
genetic algorithms. Later on, to improve the 
accuracy and consistency of outputs, Voas and 

Williamson (2000) developed a „sequential fitting 

procedure‟, which can satisfy a level of minimum 
acceptable fit for every table used to constrain the 
selection of households from the survey sample 
data. The following section will address the 
simulated annealing method only. 
  

The simulated annealing method in CO 

Simulated annealing, an intelligent searching 
technique for optimisation problems, has been 
successfully used in the CO reweighting process to 
create spatial microdata. The method is based on 
a physical process of annealing – in which a solid 

material is first melted in a heat bath by 
increasing the temperature to a maximum value at 

which point all particles of the solid have high 
energies and the freedom to randomly arrange 
themselves in the liquid phase. The process is 
then followed by a cooling phase, in which the 
temperature of the heat bath is slowly lowered. 

When the maximum temperature is sufficiently 
high and the cooling is carried out sufficiently 
slowly then all the particles of the material 
eventually arrange themselves in a state of high 
density and minimum energy. Simulated annealing 
has been used in various combinatorial 
optimisation problems (Kirkpatrick et al., 1983; 

van Laarhoven and Aarts, 1987; Williamson et al., 
1998; Pham and Karaboga, 2000; Ballas, 2001).  

The simulated annealing algorithm used in the CO 
reweighting approach was originally based on the 
Metropolis algorithm, which had been proposed by 
Metropolis et al. (1953). To simulate the 

evaluation to „thermal equilibrium‟ of a solid for a 
fixed value of the temperature T the authors 

introduced an iterative method, which generates 

sequences of states of the solid in the following 
way. As mentioned in the book Simulated 
Annealing: Theory and Applications by van 
Laarhoven and Aarts (1987, p. 8): 
 

 “Given the current state of the solid, characterized 
by the position of its particles, a small, randomly 
generated, perturbation is applied by a small 
displacement of a randomly chosen particle. If the 

difference in energy, E , between the current 

state and the slightly perturbed one is negative, 
that is, if the perturbation results in a lower energy 
for the solid, then the process is continued with the 

new state. If 0E , then the probability of 

acceptance of the perturbed state is given by 

 TKE Bexp . This acceptance rule for new 

states is referred to as the Metropolis Criterion. 

Following this criterion, the system eventually 
evolves into thermal equilibrium, that is, after a 
large number of perturbations, using the 
aforementioned acceptance criterion, the probability 
distribution of the states approaches the Boltzmann 
distribution, given as 
 








 


TK

E

Tc
Ep

B

exp
)(

1
)(

 
 
where c(T) is a normalizing factor depending on the 
temperature T and KB is the Boltzmann constant.” 
 

To search an appropriate combination of 
households from a survey dataset that best fits 

the benchmark constraints at small area levels is a 
combinatorial optimisation problem, and solutions 

in a combinatorial optimisation problem are 
equivalent to states of a physical annealing 
process. In the process of CO reweighting by 
simulated annealing algorithm, a combination of 
households takes the role of the states of a solid 
while the total absolute distance (TAD) function 
and the control parameter (for example, rate of 

reduction) take the roles of energy and 
temperature respectively. According to Williamson 
et al. (1998), change in energy becomes potential 
change in households‟ combination performance 
(assessed by TAD) to meet the benchmarks, and 

temperature becomes a control for the maximum 
level of performance degradation (% of reduction) 

acceptable for the change of one element in a 
combination of households by a random element 
picks from the sample data. The control parameter 
is then lowered in steps, with the system being 
allowed to approach equilibrium for each step by 
generating a sequence of combinations by obeying 

the Metropolis criterion.  

In addition, the algorithm is terminated for some 
small value of the control parameter, for which 
practically no deteriorations are accepted. Hence 
the normalizing constant which is depending on 
the controlling factor as well as Boltzmann 

constant can be dropped from the probability 

distribution. In this particular case we have the 
equation:  

.exp)( 






 


T

E
Ep

 
 

There are two important features of this 

probability equation described by Williamson et al. 
(1998). One is that the smaller the value of 
difference in energy, E , the greater is the 

likelihood of a potential replacement being made 
in a combination. Another feature is that the 

smaller the value of controlling factor T, the 

smaller the change in performance likely to be 
accepted.  

A typical simulated annealing algorithm is depicted 
in Figure 4. The overall process consists of a series 
of iterations in which random shifting is occurring 

from an existing solution to a new solution among 
all possible solutions. To accept a new solution as 
the base solution for further iteration, a test of 
goodness-of-fit based on TAD is consistently 
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checked. The rules of the test are if the change of 

the difference in energy is negative, the newly 

simulated solution is accepted unconditionally; 
otherwise it is accepted satisfying the 
abovementioned Metropolis criterion. The 
simulated annealing algorithm may be able to 
avoid deceiving at local extremum in the solutions. 

Moreover, a solution or selected combination of 
households by this algorithm can generate real 
individuals living in actual households in a sense 
that individuals are from modelled outputs and not 
synthetically reconstructed (Ballas, 2001).  
 

 
Figure 4 A flowchart of the simulated annealing 
algorithm 
 
(after Pham and Karaboga, 2000) 

 

An illustration of CO process for hypothetical data   
A simplified combinatorial optimisation process is 
depicted in Figure 5. It is noted that in this 
process when the total absolute difference 
(aforementioned TAD) in gregwt section) is equal 
to zero, the selection of households‟ combination 

indicates the best fit. In other words, in this case 
the new weights give the actual households units 

from the survey sample microdata, which are the 
best representative combination. Thus it is a 
selection process of an appropriate combination of 
sample units, rather than calibrating the sampling 

design weights to a set of new weights. 

4. COMPARISON OF REWEIGHTING 

TECHNIQUES AND A NEW APPROACH 

In this section, a comparison of the two 
reweighting methodologies is given with a new 
approach to the creation of synthetic spatial 
microdata. 

4.1 Comparison of GREGWT and CO  

Although both the reweighting approaches are 
widely used in the creation of small area synthetic 
microdata, the methodology behind each approach 
is quite different. For instance, GREGWT is 
typically based on generalised linear regression 
and attempts to minimize a truncated Chi-squared 
distance function subject to the small area 

benchmarks. Combinatorial optimisation, on the 
other hand, is based on „intelligent searching‟ 
techniques and attempts to select a combination 
of appropriate households from a sample that best 
fits the benchmarks.  

Tanton et al. (2007) provide a comparison of 
these two approaches using a range of 

performance criteria. The study also covers the 
advantages and disadvantages of each method. 
Using the data of the 1998-99 Household 
Expenditure Survey from Australia, the study 
reveals that the GREGWT algorithm seems to be 
capable of producing good results. However the 

GREGWT algorithm has some limitations compared 

to the combinatorial optimisation algorithm. One 
of the drawbacks of GREGWT approach is that for 
some small areas, „convergence‟ does not exist. 
 
That means that the GREGWT algorithm is unable 
to produce estimates for those small areas, while 

the combinatorial optimisation algorithm is able to 
do so. In addition, the GREGWT algorithm takes 
more time to run compared to combinatorial 
optimisation, and it is still unclear whether that 
extra time is due to the different programming 
language (GREGWT is written in SAS code and CO 
uses compiled FORTRAN code) or the relative 

efficiencies of the underlying algorithms. Moreover 

the combinatorial optimisation routine has a 
tendency to include fewer households but give 
them higher weights – and, conversely, the 
GREGWT routine has a tendency to select more 
households but give them smaller weights.  

A comparison of the GREGWT and CO reweighting 
approaches is summarized in Table 4.  The focus is 
here mostly on methodological issues. However 
some entries are consistent with Tanton et al. 
(2007).   

Generate a 
new 

Combination 

Evaluate the 
performance  

Initial 
combination 

 

Accepted? 

 

Decrease 
Temperature 

Update the current 
combination 

 

Change 
temperature 

 

Terminate the 
search 

 

Final 
Combination 
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Figure 5 A simplified combinatorial optimisation process 
 

Step 1:  Obtain sample survey microdata and small area constraints. 

 

 

 

Step 2:  Randomly select two households from survey sample (for example, a & e) to act as an initial small area microdata estimate. 

Step 3:  Tabulate selected households and calculate absolute difference from known constants. 

Household size Estimated  Observed Absolute  Estimated Observed Absolute 

  frequency frequency  difference Age frequency frequency  difference 

 (1)  (2)  |(1)-(2)| (1) (2)  |(1)-(2)| 
 1  0 1 1 

 2  1 0 1 adult 4  3 1 

 3  1 0 1 child 1  2 1 

 4  0 1 1   Sub-total: 2 

 5+  0 0 0    

     Sub-total:   4  Total absolute difference = 4+2 = 6  

Step 4:  Randomly select one of the selected households (a or e). Then replace with another household selected at random from 

the survey sample, provided this leads to a reduced total absolute difference.  

Households selected: d & e (Household a replaced by d). Tabulate this new combination of households and calculate absolute 

difference from known constants. 

Household size Estimated  Observed Absolute  Estimated Observed Absolute 

  frequency frequency  difference Age frequency frequency  difference 
 (1)  (2)  |(1)-(2)| (1) (2)  |(1)-(2)| 

 1  1 1 0 

 2  0 0 0 adult 3  3 0 
 3  1 0 1 child 1  2 1 

 4  0 1 1   Sub-total: 1 
 5+  0 0 0    

     Sub-total:   2  Total absolute difference = 2+1 = 3  

Step 5:  Repeat step 4 until no further reduction in total absolute difference is possible.  

Result:  Final selected households are c &d (since this household combination best fits the small area benchmarks): 

Household size Estimated  Observed Absolute  Estimated Observed Absolute 

  frequency frequency  difference Age frequency frequency  difference 
 (1)  (2)  |(1)-(2)| (1) (2)  |(1)-(2)| 

 1  1 1 0 

 2  0 0 0 adult 3  3 0 
 3  0 0 0 child 2  2 0 

 4  1 1 0   Sub-total: 0 
 5+  0 0 0    

     Sub-total:   0  Total absolute difference = 0+0 = 0  

 

(after Huang and Williamson, 2001) 

 
 

  

Known small area constraints 

1. Household size 2. Age of occupants 

 Household size  Frequency     Type of person     Frequency 

 1 1 adult 3 

2 0 
3 0 

4 1  child 2 

5+ 0 

 Total 2 Total 5  

 

Survey Sample Microdata 

Household   Characteristics 
   size adult children 

 a 2 2 0 

 b 2 1 1 

 c 4 2 2 

 d 1 1 0 

 e 3 2 1 
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Table 4 A comparison of the GREGWT and CO reweighting methodologies 

 

 

4.2 Bayesian prediction approach of small 
area microdata simulation  

A new system for creating synthetic spatial 
microdata is offered in this subsection. It is noted 
that after the sample survey, a finite population 

usually has two parts - which are observed units in 
the sample called data and unobserved sampling 

units in the population (Figure 6). Suppose Ω 
represents a finite population in which Ωi (say) is 
the subpopulation of small area i. Now if  si 
denotes the observed sample units in the ith area 
then we have  

si  s
_

i = Ωi  Ω for i,  

where s
_

i denotes the unobserved units in the 

small area population. Let yij represents a variable 
of interest for the jth characteristic of the 
population at ith small area. Thus we always have 

the estimate of population total at ith small area 
  

 
 


i i

i

sj sj

ijijy yyt
.

.  

The main challenge in this process is to establish 
the link of observed data to the unobserved 

sampling units in the population. It is a kind of 
prediction problem, where a modeller tries to find 

a probability distribution of unobserved responses 
using the observed sample and the auxiliary data. 
The Bayesian methodology (see Ericson, 1969; Lo, 
1986; Little, 2007; Rahman, 2008b) can deal with 
such a prediction problem.  

The Bayesian prediction theory is very 
straightforward and mainly based on the Bayes‟s 

posterior distribution of unknown parameters 
(Rahman 2008c). Let y be a set of observed units 
from a model with a joint probability density 
p(y|), in which  is a set of model parameters. If 

a prior density of unknown parameters  is g, the 

posterior density of   for given y can be obtained 

by Bayes‟s theorem and defined as p(y|)  p(y|) 

g(). 

Now, if y
_
 is the set of unobserved units in a finite 

population, then under the Bayesian methodology 
its prediction distribution can be obtained by 

solving the integral  




 dypypyyp )|()|()|( ,  

where p(y
_

|) is the probability density of 

unobserved units. Details of the Bayesian 
prediction theory for various regression models 
are given in Rahman (2008c). 

GREGWT CO 

o An iterative process. o An iterative process. 

o Use the Newton-Raphson method of iteration.    o Use a stochastic approach of iteration MCMC.   

o Based on a distance function.  o Based on a combination of households. 

o Attempt to minimize the distance function 
subject   to the known benchmarks.  

o Attempt to select an appropriate combination that 
best fits the known benchmarks.  

o Use the Lagrange multipliers as minimisation 
tools for minimising the distance function.     

o Use different techniques as intelligent searching 
tools in optimizing combinations of households. 

o Weights are in fractions.  o Weights are in integers (but could be fractions). 

o Boundary condition is applied to new weights 
for achieving a solution.  

o There is no boundary condition to new weights.   

o The benchmark constraints at small area levels 

are fixed for the algorithms.       

o The algorithm is designed to optimize fit to a 

selected group of tables, which may or may not 
be the most appropriate ones. Hence there may 
be a choice of benchmark constraints.     

o Typically focus on simulating microdata at 
small area levels and aggregation is possible at 
larger domains.  

o Offers a flexibility and collective coherence of 
microdata, making it possible to perform mutually 
consistent analysis at any level of aggregation or 

sophistication.  

o All estimates have their own standard errors  
obtained by a group jackknife approach.    

o No information about this in literature. May be 
possible in theory but nothing available in 
practice. 

o In some cases convergence does not exist and 
this requires readjusting the boundary limits or 

a proxy indicator for this nonconvergence.   

o There are no convergence issues. However, the 
finally selected household combination may still 

fail to fit user-specified benchmark constraints.      

o There is no standard index to check the 
statistical reliability of the estimates.   

o There is no standard index to check the statistical 
reliability of the estimates.   

o The iteration procedure can be unstable near a 
horizontal asymptote or at local extremum. 

o The iteration algorithm may able to avoid 
deceiving at local extremum in the solutions. 
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For an ith small area, let a multivariate linear 

model for the observed sample units  

),...,,( 21


ini yyyY   

be iii EXY  
  

with errors distribution 

),,,0(~ ppnnpni iii
ITE   ,  

and for unobserved population units let  

  ),...,,( 21 ii nNi yyyY
 

be 
iii EXY     

with errors distribution 

),,,0(~ )()()( ppnNnNpnNi iiiiii
ITE   ,  

where all the notations are as usual (see Rahman 

2008c). 
  
Applying the Bayesian prediction theory under a 
prior distribution  

2/)1(
),(




p
p  ,  

we can derive the distribution of unobserved 

population units as 

   2)ˆ()ˆ(),,|(
kN

iiiiYii

i

i
XYHXYSCYYf



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where  
 

̂  is the OLS of  , 
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is the normalizing constant.  
 
The joint posterior density of parameters (say) 

),(   for the observed sample units Yi and 

unobserved population units Y
_

i can be determined 
as 
 

2

1

1
2

1

),|,(





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
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

   (8)  

 
where  
 

)()()()(  iiiiiiii XYXYXYXYQ  . 

 
Now by using the Markov Chain Monte Carlo 
simulation method to equation (8), we can obtain 
simulated copies of the micropopulation data for 
the ith small area.  

 
Figure 6 A diagram of a prospective tool for generating spatial microdata 

 

 

 

 

 

 

The main steps involved with this process of 

spatial microdata simulation are as follows:  

1. obtain a suitable joint prior distribution of the 
event under research Ei, say housing stress in 

the population at ithsmall area, that is p(Ei) 

for i; 

2. find the conditional distribution of unobserved 
sampling units, given the observed data, that 
is ):|:( iijiij sjysjyp   for 

i ; 

3. derive the posterior distribution using Bayes 
theorem, that is p( | s, X); Ei  , where  is 

the vector of model parameters and X is an 

auxiliary information vector; and 

4. get simulated copies of the entire population 
from this posterior distribution by the MCMC 
simulation technique. 

The key feature of this new method is that it can 
simulate complete scenarios of the whole micro-
population in a small area, which means it can 
produce more reliable small area estimates and 

their variance estimation. It is also able to create 
the statistical reliability measures (for example, 
the Bayes credible region or confidence interval) of 
spatial microsimulation models‟ estimates that are 
still unavailable in the literature.  
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However, in the new approach to find a suitable 

prior distribution for each interested event, as well 

as the appropriate model for linking between 
observed data and unobserved sampling units are 
difficult in practice. 
 
5. CONCLUSIONS  

This paper has briefly summarised the overall 
methods of small area estimation and explicitly 
described some methodological issues in the 
spatial microsimulation modelling arena. Review 
papers in small area estimation literature have 
regularly focused only methodologies on various 
statistical approaches including the area level and 

unit level modelling with E-BLUP, EB and HB 

methods. However, spatial microsimulation 
modelling has also been widely used in small area 
estimation, and recently classified as the 
geographic approach. Simulating a reliable 
synthetic spatial microdata is the key challenge in 
the indirect geographic approach of small area 

estimation. The review of different methodologies 
demonstrates that two reweighting methods – the 
GREGWT and CO are commonly used tools to 
produce small area microdata.  

The GREGWT technique utilizes a truncated Chi-
squared distance function and generates a set of 

new weights by minimising the total distance with 
respect to some constraint functions. The 

minimisation tool Lagrange multipliers has been 
used in the GREGWT process to minimise the 
distance function and it is based on the Newton-
Raphson iterative process. Results show that sets 
of new weights can vary substantially with 

changing values of the vector of difference 
between the benchmark totals and sample based 
estimated totals. On the other hand, the 
combinatorial optimisation technique uses an 
intelligent searching algorithm simulated annealing 
– which selects an appropriate set of households‟ 
from survey microdata that best fits to the 

benchmark constraints by minimising the total 
absolute error/distance with respect to the 

Metropolis Criterion. The new weights give the 
actual household units, which are the best 
representative combination. Thus, CO is a 
selection process to reach an appropriate 

combination of sample units rather than 
calibrating the sampling design weights to a set of 
new weights.  

Findings reveal that the GREGWT and CO are 
using quite different iterative algorithms and their 
properties also vary, but their performances are 
fairly similar from the standpoint of use in SMM. 

The Chi-squared distance measures show more 
smooth fluctuations than the absolute distance 
measures. Besides, SMMs techniques are robust 

and have significant advantages. In particular, 
since the spatial microsimulation framework uses 
a list-based approach to microdata representation, 
it is possible to use the microdata file for further 

analysis and updating. Also, by linking spatial 
microsimulation models with static 
microsimulation models, it is possible to measure 
small area effects of policy changes.  

Moreover, the study points out a new approach in 

the spatial microsimulation methodology. The new 

technique is based on the Bayesian prediction 
theory and can simulate complete scenarios of the 
whole population in each small area. As a result 
the process can yield more accurate and 
statistically reliable small area estimates compared 

to the estimates from the other reweighting 
techniques. Besides, the Bayesian prediction 
based microdata simulation is a probabilistic 
approach, which is quite different from the 
deterministic approach used in GREGWT and the 
intelligent searching tool simulated annealing used 
in CO. However, the new approach can use the 

generalised regression model operated in the 
GREGWT algorithm to link observed units in the 

sample and unobserved units in the population. In 
contrast, from the view point of the CO 
reweighting, it uses the MCMC simulation with a 
posterior density based iterative algorithm. 
Further account of the new approach and its 

practical applications on empirical data will be 
presented in our next manuscript. Future research 
may look into this option of methodological 
advancements by practicing it into all arenas of 
SMMs. 
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Appendix A: The Newton-Raphson iteration 
method 
 
The Newton-Raphson iteration method is a root-

finding algorithm for a nonlinear equation. The 
method is based on the first few terms of the 
Taylor series of a function. Let for a single variable 
nonlinear equation 0)( zf , the Taylor series of 

f(z) about the point z=z0+ε is expressed as  
 

...)()()()( 2

0000   zfzfzfzf   (a1)  

 
Where z0 is an initial assumed root of f(z) , f‟ 
represents the first order derivative and ε is a 
small arbitrary positive quantity. Keeping terms 
only to first order derivative, we have  

 

.)()()( 000  zfzfzf                        (a2) 

 

Now (a2) is the equation of tangent line to the 
curve of f(z) at the point {z0,f(z0)}, and hence 

(0,z0) is the interval where that tangent line 

intersects the horizontal axis at z1  (Fig. a-1). 

 
 
The expression in (a2) can be used to estimate the 
amount of adjustment for ε  should require to 
converge to the accepted root starting from an 

initial assumed root value, z0. From the relation in 
(a2), after setting f(z0+ε)=0 and considering an 
arbitrary quantity ε=ε0 we get  
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which is the first-order adjustment to the original 

root.  
 
Now by considering zi = zi-1 + εi-1 for i = 1,2,...,r, 
we can subsequently obtain a new εi, for which 
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Let the process should be repeated until (r+1) 
times when a value of the arbitrary quantity, ε

 
is 

reached to the accuracy level. In other words, the 
process should be repeated until (r+1) times when 
an estimated root of the function – (say) zr+1,   

will converge to a precisely stable number or to an 
accepted root value. Hence the following algorithm 
can be applied iteratively to obtain an accepted 
root 

  ,...3,2,1);()(
1

1 


 rzfzfzz rrrr .       (a4) 

 
The method uses this iterative equation in (a4) to 
approach one root of a function. A well-chosen 
initial root value can lead the convergence quickly 
(Fig. a-1). However the procedure can be unstable 
near a horizontal asymptote or a local extremum. 

Besides, this iteration method is easily adapted to 
deal with a set of equations for a function with 
vector variables when its second order derivative 

also exists.

 
 

 

Figure a-1 Graphical view of the Newton-Raphson iteration process 
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Now equation (6) in GREGWT theory can be 
written as a function of the vector   – 

 

 

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jkkkjj xxfdCl 01)()( ,

1    (a5) 

 
for pj ,...,2,1 ;  

 
where 
 

sxx tTC ,
ˆ  is a known vector, 

 

  1)(1  kk xfd  is a scalar,  

 
and the equation is nonlinear in the Lagrange 
multipliers vector, .  

 
The equation (a5) can be solved by the above 
Newton-Raphson iterative procedure. Hence the 
iteration algorithm can be expressed as  
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where 

  
[r] is the value of the vector  in the rth iteration, 

])([)(  
jll   

 
represents the Hessian matrix,  
 

and  
 
[l'()][r]  

 
defines the values of vector l'(), which are 

determined by the rth
 iteration values of vector 

[r].  

 
Note that GREGWT stops iteration process when 
the condition 
 

     0001.01  rrr   is satisfied 

 
or when a predefined maximum iteration has been 
reached.  
 

However, the εr can take any suitable positive 
arbitrary value and the choice is fully depending 
on our desired accuracy. 

 


