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SET INFERENCE IN LATENT VARIABLES MODELS

ISMAEL MOURIFIÉ AND MARC HENRY

Abstract. We propose a methodology for constructing valid confidence regions

in incomplete models with latent variables satisfying moment equality restrictions.

These include moment equality and inequality models with latent variables. The

confidence regions are obtained by inverting tests based on the characterization of

the identified set derived in Ekeland, Galichon, and Henry (2010). A valid boot-

strap approximation of the distribution of the test statistic is derived under mild

conditions and the confidence regions are shown to have correct asymptotic size.

Keywords: incomplete models, latent variables, partial identification, confidence regions.

JEL subject classification: C13, C72

Introduction

In areas of economic investigation with structural data insufficiencies or incompletely specified

economic mechanisms, the hypothesized structure fails to identify a unique possible data generat-

ing mechanism for the data that is actually observed. In such cases, many traditional estimation

and testing techniques become inapplicable and a framework for inference in incomplete models is

developing, with an initial focus on estimation of the set of structural parameters compatible with

true data distribution (hereafter identified set). A question of particular relevance in applied work

is how to construct valid confidence regions for the identified set. Formal methodological proposals

abound since the seminal work of Chernozhukov, Hong, and Tamer (2007), but they concentrate on

models defined by moment inequality restrictions (or criterion minimization) on the observables.
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Most structural economic models, however, involve latent variables and take the form f(Y, U ; θ) ≤
0, with f a function of an observable vector of variables Y , a latent vector of variables U and an

unknown vector of deterministic parameters θ (or equivalently Y ∈ G(U ; θ), where G is a many-to-

many mapping, or correspondence). Inference on such structures was considered by Andrews, Berry,

and Jia (2003), Ciliberto and Tamer (2009) and Bajari, Hong, and Ryan (2010) in the special case,

where f(Y,U ; θ) ≤ 0 defines the set of equilibria of a game, and more generally by Galichon and

Henry (2009) and Henry, Méango, and Queyranne (2010), but always with a parametric restriction

on the distribution of latent variables. Matzkin (1994) (and references therein) considers the case,

where the implicit function theorem can be applied and Y is a function of U and θ, but does not

consider the case of interest here, where the resulting relation between Y and U is many-to-many.

Finally, Chesher (2010) considers set inference in the special case of single equation instrumental

variable models for discrete outcomes, and the frameworks of Chernozhukov, Lee, and Rosen (2009),

Menzel (2009) and Andrews and Shi (2010) encompass cases where the latent variable model can

be transformed into intersection bounds or a continuum of moment inequality restrictions on the

observables.

Here we consider the general case, where only moment restrictions are entertained for the latent

variables, and thereby include in particular all models defined by moment equalities and inequalities

with latent variables and models defined by the equilibrium correspondence of a games, without

parametric assumptions on player types or other unobserved heterogeneity. The confidence regions

we propose are based on the characterization of the identified set in general incomplete models with

latent variables given in Ekeland, Galichon, and Henry (2010). The confidence region is obtained

by inverting a test of the null hypothesis H0(θ) characterizing the identified set ΘI in the sense

that ΘI = {θ : H0(θ) holds}. The limit distribution of the test statistic is achieved with the

construction of a local empirical process. In that sense, the method of proof is related to that of

Chernozhukov, Hong, and Tamer (2007) and particularly Galichon and Henry (2009). However,

replacing parametric restrictions on latent variables by moment equality restrictions requires the

construction of a completely different local empirical process and also raises new issues in showing

weak convergence, as the test statistic involves a supremum over a random class of functions.

The limiting distribution obtained is not distribution free, but a version of the test statistic,

where the empirical process is replaced by a bootstrapped version is shown to provide a valid

approximation, and the confidence region is shown to have asymptotic correct size (in a uniform

sense). The procedure is explained and illustrated on a revealed preference example.
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The rest of the paper is organized as follows. The next section describes the econometric frame-

work and defines the identified set. The following section explains the construction and shows validity

of the confidence region. The last section concludes and proofs are collected in the appendix.

1. Econometric framework and identified set

We consider the problem of inference on the structural parameters of an economic model, when

the latter are (possibly) only partially identified. The economic structure is defined as in Jovanovic

(1989), which generalizes Koopmans and Reiersol (1950). Variables under consideration are divided

into two groups. Latent variables U capture unobserved heterogeneity in the model. They are typi-

cally not observed by the analyst, but some of their components may be observed by the economic

actors. Observable variables Y include outcome variables and other observable heterogeneity. They

are observed by the analyst and the economic actors. We call observable distribution P the true

probability distribution generating the observable variables. The econometric structure under con-

sideration is given by a binary relation between observable and latent variables, i.e. a subset of Y×U ,

which can be written without loss of generality as a many-to-many mapping (or correspondence) G

from U to Y.

Assumption 1 (Econometric specification). Observable variables Y , with realizations y ∈ Y ⊆ Rdy

and latent variables U , with realizations u ∈ U ⊆ Rdu , are defined on a common probability space

(Ω,F ,P) and satisfy the relation: Y ∈ G(U) ⊆ Y almost surely.

Example 1 (Games). A family of examples of our framework arises with parametric games. Let

N players with observable characteristics X = (X1, . . . , XN ) and unobservable characteristics U =

(U1, . . . , UN ) have strategies Z = (Z1, . . . , ZN ) and payoffs parameterized by X,U,Z and θ. For

a given choice of equilibrium concept in pure strategies, call C(X,U, θ) the equilibrium correspon-

dence, i.e. the set of pure strategy equilibrium profiles. Then the empirical content of the game is

characterized by Z ∈ C(X, U, θ), which can be equivalently rewritten Y ∈ G(U ; θ) with Y = (Z, X).

We assume a parametric structure for the model linking unobserved heterogeneity variables to

observable ones and a set of moment equality restrictions for unobserved heterogeneity.

Assumption 2 (Correspondence). The correspondence G is known by the analyst up to a finite

dimensional vector of parameters θ ∈ Θ ⊆ Rdθ . It is denoted G(·; θ). For all θ ∈ Θ, G(·; θ) is

measurable (i.e. the set {G(U ; θ)∩A 6= ∅} is measurable for each open subset A of Y) and has non

empty values.
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Note that the measurability and closed values assumptions are very mild conditions. The assump-

tion that the correspondence is non-empty, however, may be restrictive. In the revealed preferences

example, we require that the demand correspondence be non empty. In the games example, we

require existence of equilibrium.

Assumption 3 (Latent variables). The unobservable variables U is assumed to satisfy Em(U ; θ) =

0, θ ∈ Θ and m(u; θ) ∈ Rdm . The same notation is used for the parameters of ν and G to highlight

the fact that they may have components in common.

Example 2 (Moment inequalities). Moment inequality models are a special case of assumptions 1, 2

and 3. Call G the correspondence defined for all u ∈ U by G(u; θ) = {y ∈ Y : φ(y; θ) ≤ u}. Note that

G satisfies assumption 2. Suppose further that unobserved heterogeneity U satisfies assumption 3, i.e.

Em(U ; θ) = 0 where m is the identity. Then, under assumption 1, the model satisfies Eφ(Y ; θ) ≤ 0.

Extension to conditional moment inequality models is also possible with an extension of lemma 2.

Example 3 (Moment equalities and inequalities with latent variables). Moment equality models

with latent variables is also a special case of assumptions 1, 2 and 3. Indeed, if the relevant model

takes the form Eφ(Y, U1; θ) = 0, set φ(Y, U1; θ) = U2 with EU2 = 0 (U1 and U2 are both unobservable

random vectors). Call u = (u1, u2). Define the correspondence G : U ⇒ Y such that φ(y, u1; θ) = u2

is equivalent to y ∈ G(u; θ) (without loss of generality). Finally define m(u) = u2 (the function

returns the last components of the vector u). We see therefore that the moment equality model with

latent variables satisfies assumptions 1 and 3. An easy sufficient condition for assumption 2 is

continuity of φ. Note that the same construction applies for moment inequality models with latent

variables, setting φ(y, u1; θ) ≤ u2 instead.

The pair of random vectors (Y,U) involved in the model is generated by a probability distribu-

tion, that we denote π. Since the vector U is unobservable, the probability distribution π is not

directly identifiable from the data. However, the econometric model imposes restrictions on π. The

distribution of its component Y is the observable distribution P . The distribution of its component

U satisfies assumption 3. Finally, the joint distribution is further restricted by the fact that it gives

mass 0 to the event that the relation Y ∈ G(U ; θ) is violated. For any given value of the structural

parameter vector θ, a joint distribution satisfying all these restrictions may or may not exist. If it

does, it is generally non unique. The identified set ΘI is the collection of values of the structural

parameter vector θ for which such a joint probability distribution does indeed exist.

• If ΘI = ∅, the model is rejected.
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• If ΘI is a singleton, the parameter vector θ is point identified.

• Otherwise, the parameter θ is set identified.

The set ΘI , first formalized in this way in Galichon and Henry (2008) is sometimes called “sharp

identification region” to emphasize the fact that it exhausts all the information on the parameter

available in the model. No value θ ∈ ΘI could be rejected on the basis of the knowledge of the model

and the observable distribution P only. Take a parameter value θ ∈ Θ. It belongs to the identified

set ΘI if and only if there exists a joint distribution satisfying the required restrictions, in other

words, if and only if there exists a random vector Ũ satisfying assumption 3, such that Y ∈ G(Ũ ; θ)

with probability 1. Hence, denoting by X ∼ µ the statement “the random vector X has probability

distribution µ,” we can characterize the identified set in the following way, which we take as our

formal definition.

Definition 1 (Identified set).

ΘI =
{

θ ∈ Θ | ∃Ỹ ∼ P, Ũ satisfying assumption 3 : P(Ỹ /∈ G(Ũ ; θ)) = 0
}

The identified set is therefore the set of parameter values such that the minimum over all joint

distributions for (Ỹ , Ũ) satisfying 3 of the quantity P(Ỹ /∈ G(Ũ ; θ)) is zero. This optimization

problem is shown in Ekeland, Galichon, and Henry (2010) to be equal to its dual under the following

regularity conditions for each θ.

Assumption 4 (Duality conditions). (Uniform integrability) The family {‖m(U ; θ)‖ : U satisfies

assumption 3} is uniformly integrable. (Tightness) For each K ≥ 0, {u ∈ U : ‖m(u; θ)‖ ≤ K}
is included in a compact set (in all that follows, we assume the simple sufficient condition that m

is continuous and U compact). (Closed graph) The graph {(y, u) ∈ Y × U : y ∈ G(u; θ)} of the

correspondence G is closed.

Ekeland, Galichon, and Henry (2010) show that the characterization of parameter values θ in the

identified set ΘI is equivalent to the dual version

H0(θ) : sup
λ∈Rdm

Efλ(Y ; θ) ≤ 0,

where fλ(y; θ) = supu∈U [1{y/∈G(u;θ)} − λ′m(u)] with 1A denoting the indicator function of a set A.

Proposition 1 (Dual characterization). Under assumption 4, the identified set ΘI of definition 1

is equal to the set of θ ∈ Θ such that H0(θ) holds.
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The dual characterization, proved in Ekeland, Galichon, and Henry (2010) will be the basis for a

test of assumption H0(θ), which we invert to obtain confidence regions for the identified set.

2. Confidence region for the identified set

2.1. Inference strategy. We consider now the construction of valid confidence regions for partially

identified models, based on a sample of realizations of the observable variables.

Assumption 5 (Sampling). Let (Y1, . . . , Yn) be a sample of independent and identically distributed

random vectors with distribution P and let Pn =
∑n

j=1 δYj
be the empirical distribution associated

with the sample.

We propose to construct confidence regions for each element of the identified set ΘI of definition 1.

Definition 2 (Confidence region). A valid α-confidence region for the identified set ΘI is a sequence

of random regions Θα
n satisfying for each θ, P (θ ∈ Θα

n) → 1− α.

The confidence regions derived here will be obtained by inverting tests of H0(θ). For simplicity,

we drop θ from the notation. The test statistic will be based on an empirical counterpart of H0,

i.e. T̆n :=
√

n supλ∈Rdm Enfλ(Y ), where En is the expectation relative to the empirical distribution

Pn. Calling Gn :=
√

n(En − E) the empirical process relative to the sample, we can write: T̆n =

supλ∈Rdm [Gnfλ(Y ) +
√

nEfλ(Y )] . Heuristically, under H0, which rules out Efλ(Y ) > 0, the second

term in the brackets will either be equal to 0 if Efλ(Y ) = 0 or diverge to −∞ if Efλ(Y ) < 0. Hence,

we would expect T̆n to converge weakly to the supremum of a Gaussian process over the restricted

set Λ0 of λ such that Efλ(Y ) = 0. Similar decompositions arise in Chernozhukov, Hong, and Tamer

(2007), Galichon and Henry (2009) and Andrews and Soares (2010). However, the class of functions

fλ, λ ∈ Rdm may not be P -Donsker, so that the weak convergence result would fail to hold. Instead,

we consider the test statistic

Tn := sup
λ∈Λ(hn)

√
nEnfλ(Y ),

where hn ↓ 0 and for l ≥ 0, Λ(l) = {λ ∈ Rdm : Efλ(Y ) ≥ −l} and show that the class of functions

F l := {fλ(·) : λ ∈ Λ(l)} is a P -Donsker class for l ≥ 0 (lemma 2 in the appendix). The idea of

replacing T̆n by Tn to obtain a Donsker class is similar to the strategy employed in Bugni (2010)

to apply the bootstrap in moment inequality models and it allows us to show the desired weak

convergence result of the test statistic Tn to the supremum of a Gaussian process GP over the class
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of functions F0 := {fλ(·) : λ ∈ Λ0} (proposition 2 in the appendix). However, basing a test of H0

on this convergence result is infeasible for two reasons.

First: The test statistic Tn is infeasible, since the definition of Λ(hn) involves the population

expectation Efλ(Y ). This leads to replacing Tn by T̃n := supλ∈Λn(hn)

√
nEnfλ(Y ), where Λn(hn) =

{λ ∈ Rdm : Enfλ(Y ) ≥ −hn} and showing that T̃n has the same limit as Tn. The latter is more

involved since the class of functions Fhn
n := {fλ(·) : λ ∈ Λn(hn)} is now random.

Second: The limit supλ∈Λ0
GP fλ(Y ) is not distribution free, as it depends on the population distri-

bution P of Y through the limiting process GP and the definition of Λ0. This leads to considering a

bootstrapped version of the empirical process, G∗n :=
√

n(E∗n−En), where E∗n is the expectation rel-

ative to the empirical distribution of a bootstrapped sample, and showing that supλ∈Λn(hn)G∗nfλ(Y )

has the same limit as Tn conditionally almost surely.

The next section summarizes the proposed inference procedure and the theoretical results on its

validity.

2.2. Description and validity of the procedure.

2.2.1. Summary of the procedure: The proposed confidence regions for the identified set ΘI are

constructed as follows.

1. For a given value of the parameter vector θ and a sequence hn ↓ 0 (e.g. hn = ln n) compute

the test statistic

T̃n(θ) = sup
λ∈Λn(hn)

(1/
√

n)
n∑

j=1

fλ(Yj),

with Λn(l) = {λ ∈ Rdm :
∑n

j=1 fλ(Yj) ≥ −nl} and fλ(y) = infu∈U [1{y/∈G(u;θ)} − λ′m(u)].

2. Compute the 1− α quantile c∗α of the distribution of

T ∗n(θ) := sup
λ∈Λn(hn)

(1/
√

n)
n∑

j=1

[fλ(Y ∗
j )− fλ(Yj)],

where (Y ∗
1 , . . . , Y ∗

n ) is a bootstrapped sampled.

3. Include θ in ΘCR if and only if T̃n(θ) ≤ c∗α.

Steps 1 and 2 are saddle point optimizations. As is customary in inference for partially identified

models, search in the parameter space is the most computationally costly step in the construction

of the confidence region.
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2.2.2. Validity of the confidence regions: To show that the confidence region ΘCR has the correct

asymptotic size, we need further regularity assumptions on the correspondence G, the moment

functions m and a rate assumption for the approximation of Λ0 by Λn(hn).

Assumption 6 (LIL). hn satisfies hn ln lnn + h−1
n

√
ln ln n/n → 0 as n →∞.

Assumption 6 ensures that the terms
√

nEfλ(Y ) (which are negative under H0) are dominated

by the oscillations of the empirical process Gnfλ(Y ) on the class Fhn
n := {fλ : λ ∈ Λn(hn)}, so

that supλ∈Λn(hn) Enfλ(Y ) is indeed close to supλ∈Λ0
Gnfλ(Y ). The law of iterated logarithm for

the oscillations of the empirical process was first invoked in a related context in Hansen (2005) and

appears also in Galichon and Henry (2009) and Andrews and Soares (2010).

Assumption 7 (Regularity). (i) The domain of m(U ; θ) contains a closed ball B(0, η) in Rdm

for some η > 0. (ii) The support function λ 7→ sup{λ′z : z ∈ m ◦ G−1(y; θ)} of m ◦ G−1(y; θ) is

continuous for almost all y, where m◦G−1(y; θ) = {z ∈ Rdm : ∃u ∈ U , z = m(u; θ) and y ∈ G(u; θ)}.

Assumption 7(i) can always be achieved by renormalization (i.e. an observationally equivalent

definition of m and G) unless the domain of m(U ; θ) is degenerate. If the set m ◦G−1(y; θ) = {z ∈
Rdm : ∃u ∈ U , z = m(u; θ) and y ∈ G(u; θ)} is convex, it is closed in m(U ; θ) hence compact, by

assumption 4, so that its support function supz∈m◦G−1(y;θ) λ′z is continuous and assumption 7(ii)

holds.

Theorem 1 (Size). Under assumptions 2 to 7, P∗(T̃n ≤ c∗α|H0) → 1− α almost surely.

Defining the alternative hypothesis Ha as the violation of H0, we have consistency of the proposed

test.

Theorem 2 (Power). Under the assumptions of theorem 1, P∗(T̃n > c∗α|Ha) → 1 almost surely.

By Theorem 1 and 2, we therefore immediately see that for all θ ∈ ΘI , the probability that

θ ∈ ΘCR tends to 1 − α, whereas for all θ /∈ ΘI , that same probability tends to 0. In addition,

the confidence region provides uniform coverage in the sense that lim infn infθ∈ΘI P(T̃n(θ) ≤ cα(θ) |
H0) ≥ 1 − α, where cα(θ) is the quantile of T̂n(θ), for which c∗α(θ) is a valid approximation. This

follows immediately from the proof of theorem 1, which shows the validity of c∗α as a quantile for T̂n

and inequality T̃n(θ) ≤ T̂n(θ) shown for all θ ∈ ΘI in step 1 of the proof of proposition 2.
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2.2.3. Illustration with a revealed preferences example: Consider for instance revealed preferences

in voting behaviour. The spatial model of voting (Downs (1957) and Black (1958)) postulates a

common ideological space. Voters face simultaneous elections indexed by e (here e ∈ {1, 2, 3})
and each voter chooses exactly one candidate je among the candidates competing in election e

(here two candidates je and ke for each election e). All candidates je are characterized by their

position xje

in the ideological space, which is observed by the voters and the econometrician.

Voters are said to “vote ideologically” if their preferences are satiated at an unobservable bliss

point xi for voter i in the ideological space and if they maximize in each election utility function

U(je) = −d(x, xje

; θ)2 + uje

where d(x, y; θ)2 = (x − y)tθ(x − y) and θ is a conformable matrix.

The spatial model captures the effect of ideological dimensions through −d(y, yj ; θ)2, where uje

is

a random utility term and the vector u of (uje− uke

) for e ∈ {1, 2, 3} is bounded in norm by ū.

The voting profiles Y are observed for a sample of voters, but the ideological position of voters

is unobserved, so that the empirical content of the model is Y ∈ G(U ; θ), where G is the set of

profiles compatible with spatial utility maximization. By lemma 1 of Henry and Mourifié (2010),

there exist six voting profiles among the eight possible voting profiles which belong to the corre-

spondence equilibrium G(U ; θ) for all realizations of U and for all values of θ ∈ Θ and exactly one

of the remaining two voting profiles {v̄, v} is excluded from G(U ; θ). The function fλ takes the form

fλ(y) = (1−ū‖λ‖)1{v̄,v}c+inf‖u‖≤ū[1{v̄ /∈G(U ;θ)}−λ′u]1{v̄}+inf‖u‖≤ū[1{v/∈G(U ;θ)}−λ′u]1{v}. The iden-

tified set is the set of all values θ such that supλ∈R3{(1−ū‖λ‖)(1−p(v̄)−p(v))+inf‖u‖≤ū[1{v̄ /∈G(U ;θ)}−
λ′u]p(v̄)+ inf‖u‖≤ū[1{v/∈G(U ;θ)}−λ′u]p(v)} ≤ 0 where p(v̄) and p(v) are the population probabilities

that the observable voting profile takes respective values v̄ and v. The test statistic therefore takes

the form T̃n = supλ∈Λn(hn)(1/
√

n)
∑n

j=1[(1 − ū‖λ‖)1Yj /∈{v̄,v} + inf‖u‖≤ū[1{v̄ /∈G(U ;θ)} − λ′u]1Yj=v̄ +

inf‖u‖≤ū[1{v/∈G(U ;θ)} − λ′u]1Yj=v] with Λn(hn) the set of λ such that the sum in the previous ex-

pression is larger than −hn. The procedure delivers a confidence region for θ, which defines voters’

utility, and allows to test the pure spatial model of voting (when the identity matrix belongs to the

confidence region) or hypotheses of the form voters value dislike distance in the liberal-conservative

dimension of the ideological space more than distance in the dimension of social issues (see Henry

and Mourifié (2010) for details).

Conclusion

This paper provides the only methodology for inference in incomplete models with latent variables,

where observable variables Y are related to latent variables U by the many-to-many mapping Y ∈
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G(U) and no parametric assumption is entertained on U . This includes moment inequalities (and

equalities) with latent variables. Feasible valid confidence regions are derived under continuity of the

support function of m ◦G−1(y; θ), which is satisfied in particular when m ◦G−1 has convex values.

More work is needed to fully understand the scope of this regularity assumption in specific models

beyond the convex case. Confidence regions based on equivalent characterizations of the identified

set should also be explored for greater computational efficiency.

Appendix A. Additional results

Proposition 2 (Weak convergence of test statistics). Under the assumptions of theorem 1, the

statistics Tn, T̃n and T̂n = supλ∈Λn(hn)Gnfλ(Y ) converge weakly (i.e. in distribution) to the same

limit supλ∈Λ0
GP fλ(Y ), where GP is a Gaussian process.

Proof of proposition 2. Call ζn the indicator function of the event {supλ∈Λ(ln)Gn ≤ (ln − hn)
√

n},
with ln and hn satisfying assumption 2 and ln > hn and (ln − hn)−1

√
ln ln n/n → 0. We will prove

the theorem in 3 steps:

• First show that supλ∈Λ0
Gnfλ(Y ) ≤ Tn ≤ T̃n ≤ T̂n and ζnT̂n ≤ ζn supλ∈Λ(ln)Gnfλ(Y ).

• Show that ζn →p 1.

• Finally show that supλ∈Λ0
Gnfλ(Y ) and supλ∈Λ(ln)Gnfλ(Y ) converge weakly to the same

limit supλ∈Λ0
GP fλ(Y ).

First step: We have

sup
λ∈Λ0

Gnfλ(Y ) = sup
λ∈Λ0

(
Gnfλ(Y ) +

√
nEfλ(Y )

)

≤ sup
λ∈Λ(hn)

√
nEnfλ(Y ) = Tn

≤ sup
λ∈Λn(hn)

√
nEnfλ(Y ) = T̃n

≤ sup
λ∈Λn(hn)

Gnfλ(Y ) = T̂n,

where the first inequality above holds because Λ0 ⊆ Λ(hn), the second holds because Enfλ(Y ) ≥
−hn on Λn(hn) and Enfλ(Y ) < −hn on Λ(hn) \ Λn(hn) and the third inequality holds under the

maintained null hypothesis Efλ(Y ) ≤ 0. Finally, we have

ζnT̂n ≤ ζn sup
λ∈Λ(ln)

Gnfλ(Y ).
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Indeed, when ζn = 1 we have the following implications: λ ∈ Λn(hn) ⇒ Enfλ(Y ) ≥ −hn ⇒
Gnfλ(Y )/

√
n+Efλ(Y ) ≥ −hn ⇒ Efλ(Y ) ≥ −hn−Gnfλ(Y )/

√
n. Since −hn−Gnfλ(Y )/

√
n > −ln

when ζn = 1, we have λ ∈ Λ(ln). So Λn(hn) ⊆ Λ(ln) if ζn = 1 and the result follows.

Second step: Let F ln = {fλ(y) = infu∈U [1{y/∈G(u)} − λ′m(u)], λ ∈ Λ(ln)}. By lemma 2, F ln is a

P -Donsker class and the law of iterated logarithm holds. Hence supλ∈Λ(ln)Gnfλ(Y )/
√

ln lnn →a.s.

C > 0. Since
√

n(ln − hn)/
√

ln ln n → +∞, we have, for any ε ∈ (0, 1),

P(|ζn − 1| > ε) = P(ζn = 0) = P

(
sup

λ∈Λ(ln)

Gnfλ(Y )/
√

ln ln n >
√

n(ln − hn)/
√

ln ln n

)
→ 0.

Third step: By lemma 2, F0 ⊆ F ln is a P-Donsker class. Hence, supλ∈Λ0
Gnfλ(Y ) converges weakly

to supλ∈Λ0
GP fλ(Y ), where GP is a Gaussian process. Taking λ0 ∈ Λ0 (the latter is non-empty

since 0 ∈ Λ0) , we have: supλ∈Λ(ln)Gnfλ(Y ) = Gnfλ0(Y ) + supλ∈Λ(ln)[Gnfλ(Y ) − Gnfλ0(Y )] ≤
supλ∈Λ0

Gnfλ(Y ) + supλ∈Λ(ln)[Gnfλ(Y ) − Gnfλ0(Y )]. Λ0 ⊆ Λ(ln) implies supλ∈Λ0
Gnfλ(Y ) ≤

supλ∈Λ(ln)Gnfλ(Y ). Hence the desired result will follow from supλ∈Λ(ln)[Gnfλ(Y )−Gnfλ0(Y )] →P

0. Again, by lemma 2, F ln is a P-Donsker class. Now, in view of theorem 1.5.7 of van der Vaart and

Wellner (1996), a class F is P-Donsker if and only F is totally bounded and asymptotically equicon-

tinuous. Recall that an empirical process is asymptotically equicontinuous if for every sequence

δn → 0, ‖Gn‖Fδn
→P 0 where Fδn = {f − g : f, g ∈ F , ρ(f − g) < δn} and ρ(f) = (E(f − Ef)2)1/2.

By lemma 3, for each λ ∈ Λ(ln), there exists a λ0 ∈ Λ0 such that ρ(fλ− fλ0) < Kln for some K > 0

independent of λ, hence by asymptotic equicontinuity, supλ∈Λ(ln)[Gnfλ(Y )−Gnfλ0(Y )] →P 0, which

completes our proof. ¤

Lemma 1. Λ(l) = {λ ∈ Rl : Efλ(Y ) ≥ −l} ⊆ {λ ∈ Rl : ‖λ‖ ≤ (1 + l)/η}.

Proof of Lemma 1. Define u∗(λ) such that supu∈U λ′m(u) = λ′m(u∗(λ)) (existence is guaranteed by

assumption 4).

• If y /∈ G(u∗(λ)) then fλ(y) = min(1− λ′m(u∗(λ)),− supy∈G(u) λ′m(u)).

• If y ∈ G(u∗(λ)), then fλ(y) = min(−λ′m(u∗(λ)),− supy/∈G(u) λ′m(u)) = −λ′m(u∗(λ).

By assumption 7(i), there exists η > 0 such that dom(m(u)) ⊇ B(0, η), so that λ′m(u∗(λ)) ≥ ‖λ‖η.

Hence we have −λ′m(u∗(λ)) ≤ fλ(y) ≤ 1− ‖λ‖η < −l for all λ ∈ Rl such that ‖λ‖ > (1 + l)/η. We

therefore have Efλ(Y ) < −l for all λ such that ‖λ‖ > (1 + l)/η, and the result follows. ¤

Lemma 2. The class F l = {fλ(·), λ ∈ Λ(l)} is P-Donsker.
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Proof of Lemma 2. By lemma 1, for all λ ∈ Λ(l) and y ∈ Y, we have −(1 + l)M/η ≤ fλ(y) ≤ 1,

where M = supu∈U ‖m(u)‖. Fix ε > 0. Consider the sequence x0 = −(1 + l)M/η, . . . , xk = 1.

Consider a bracket of the form [xi−1, xi] with the property (xi − xi−1) < ε for each i. Hence we

have F l ⊆ ∪k
i=1([xi−1, xi]). This bracket has L1 and L2-size ε since [(xi − xi−1)2] < ε2. The

total number k of such brackets can be chosen smaller than 2(1 + (1 + l)M/η)/ε. Then we have

N[](ε,F , L2) ≤ 2(1 + (1 + l)M/η)/ε ⇒ J[](1,F , L2) ≤
∫ 1

0

√
log(2(1 + (1 + l)M/η)/ε)dε < ∞. By

theorem 19.5 page 270 of van der Vaart (1998), we have F l ∈ CLT (P ), which is the desired result. ¤

Lemma 3. There exist a constant K > 0 such that for all λ ∈ Λ(l) and 0 < l < 1 sufficiently small,

there exists λ0 ∈ Λ0 such that ρ(fλ − fλ0) < Kl, where ρ(f) = (E(f − Ef)2)1/2.

Proof of Lemma 3. As before, set u∗(λ) = argmax λ′m(u). Consider the partition Y(1) ∪ Y(2) ∪
Y(3) of Y where Y(1)(λ) = {y ∈ Y : y ∈ G(u∗(λ))}, Y(2)(λ) = {y ∈ Y : y /∈ G(u∗(λ)) and 1 −
λ′m(u∗(λ) < − supy∈G(u) λ′m(u)} and Y(3)(λ) = {y ∈ Y : y /∈ G(u∗(λ)) and 1 − λ′m(u∗(λ) ≥
− supy∈G(u) λ′m(u)}. For each λ ∈ Λ(l), there exists under H0, 0 ≤ c ≤ 1 such that Efλ(Y ) =

−λ′m(u∗(λ))P(Y1(λ)) + (1− λ′m(u∗(λ)))P(Y2(λ))+
∫

y∈Y3(λ)
− supy∈G(u) λ′m(u)dP(y) = −cl. If λ0

can be chosen equal to (1− h)λ with h > 0 small enough, we show in claim 1 that u∗(λ0) = u∗(λ)

and Yi(λ) = Yi(λ0) for i = 1, 2, 3. Hence,

fλ0(y) = −λ′0m(u∗(λ0))1Y1(λ0) + (1− λ′0m(u∗(λ0)))1Y2(λ0) − sup
y∈G(u)

λ′0m(u0)1Y3(λ0)

= −(1− h)λ′m(u∗(λ))1Y1(λ) + (1− (1− h)λ′m(u∗(λ)))1Y2(λ)

− sup
y∈G(u)

(1− h)λ′m(u)1Y3(λ).

So we have

fλ(y)− fλ0(y) = −hλ′m(u∗(λ))1Y(1)(λ) − hλ′m(u∗(λ))1Y(2)(λ) − h sup
y∈G(u)

λ′m(u)1Y3(λ)

= h[fλ(y)− 1Y(2)(λ)]

=
h

1− h
[fλ0(y)− 1{Y(2)(λ)}]

for h < 1 and

Efλ0(Y ) = Efλ(Y )− h[Efλ(Y )− P(Y2(λ))] = −cl + h[cl + P(Y2(λ))],
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where the last equality holds because we set Efλ(Y ) = −cl. For h < 1, we also have

E(fλ0(Y )− fλ(Y ))2 =
h2

(1− h)2
E(fλ0(Y )− 1{Y(2)(λ)})2

=
h2

(1− h)2
(Ef2

λ0
(Y ) + P(Y2(λ))− 2E[fλ0(Y )1{Y(2)(λ)}])

=
h2

(1− h)2
(Ef2

λ0
(Y ) + P(Y2(λ))− 2E[(1− λ′0m(u∗(λ)))1{Y(2)(λ)}])

=
h2

(1− h)2
(Ef2

λ0
(Y )− P(Y2(λ)) + 2λ′0m(u∗(λ))P(Y2(λ))

≤ h2

(1− h)2

(
1 +

(1 + l)M
η

)
(1 + l)M

η
,

where the last inequality holds because −(1 + l)M/η ≤ fλ(y) ≤ 1 for all y, ‖λ‖ ≤ (1 + l)/η for all

λ ∈ Λ(l) with M = supu∈U ‖m(u)‖. If P(Y2(λ)) 6= 0 and we choose h = cl/[(cl + P(Y2(λ))], then

h → 0 as l → 0 and we have Efλ0(Y ) = 0 hence λ0 ∈ Λ0 and E(fλ0(Y )− fλ(Y ))2 → 0 when l → 0.

The proof is complete in case P(Y2(λ)) 6= 0.

In the case when P(Y2(λ)) = 0, define f̃λ(y) = −λ′m(u∗(λ))1{Y1(λ)}−supy∈G(u) λ′m(u)1{Y3(λ)} =

− supy∈G(u) λ′m(u) and λ0 = Hλ with H = Id − diag(h) and h = (h1, ..., hdm)′ −→ 0d when

l → 0. Since G−1 has closed values under the closed graph condition of assumption 4 and m is

continuous, also by assumption 4, λ 7→ E supu∈G−1(Y ) λ′m(u) is continuous. So for l small enough,

we can find a vector (h1, ..., hdm) such that λ0 = Hλ and λ0 ∈ Λ0. There remains to show that

E(f̃λ0(Y )− f̃λ(Y ))2 → 0 when l → 0. Define now u∗(y, λ) = argmaxy∈G(u)λ
′m(u). The latter exists

because G−1 has closed values and m is continuous. Now, E(f̃λ0(Y )− f̃λ(Y ))2 = E(λ′0m(u∗(y, λ0))−
λ′m(u∗(y, λ)))2 which tends to 0 when l → 0 by assumption 7(ii) and the dominated convergence

theorem. This completes the proof. ¤

Claim 1. For h > 0 sufficiently small, we have Yi(λ) = Yi(λ0) for i = 1, 2, 3.

Proof of claim 1.

First step: Since u∗(λ0) = argmax λ′0m(u) = argmax λ′m(u) = u∗(λ), we have Y1(λ) = Y1(λ0).
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Second step:

y ∈ Y2(λ) ⇔ 1− λ′m(u∗(λ)) < − sup
y∈G(u)

λ′m(u)

⇔ 1− h− λ′m(u∗(λ)) < − sup
y∈G(u)

λ′0m(u)

⇔ 1− λ′m(u∗(λ0)) < − sup
y∈G(u)

λ′0m(u)

⇔ y ∈ Y2(λ0).

The third equivalence holds for h > 0 sufficiently small and we have Y2(λ) = Y2(λ0).

Third step:

y ∈ Y3(λ) ⇒ 1− λ′m(u∗(λ)) ≥ − sup
y∈G(u)

λ′m(u)

⇒ 1− h− λ′m(u∗(λ)) ≥ − sup
y∈G(u)

λ′0m(u)

⇒ 1− λ′m(u∗(λ0)) ≥ − sup
y∈G(u)

λ′0m(u)

⇒ y ∈ Y3(λ0)

The third implication holds because h > 0. Steps one and two imply that Y3(λ) = Y3(λ0). This

completes the proof of claim 1. ¤

Appendix B. Proof of results in the main text

Proof of Theorem 1. The goal of this proof is to show that T̃n = supλ∈Λn(hn)

√
nEnfλ(Y ) and

supλ∈Λn(hn)G∗nfλ(Y ) have the same limit in distribution, where G∗n is the bootstrapped empirical

process. As in the proof of proposition 2, Call ζn the indicator function of the event {supλ∈Λ(ln)Gn ≤
(ln − hn)

√
n}, with ln and hn satisfying assumption 2 and ln > hn and (ln − hn)−1

√
ln ln n/n → 0.

In addition, define ζ0
n = {supλ∈Λ0

Gn ≥ −hn
√

n}. We will prove the theorem in 5 steps.

First step: As shown in the proof of proposition 2, T̃n converges in distribution to supλ∈Λ0
GP fλ(Y ).

Second step: By construction, Λ0 ⊆ Λ(ln). Hence F0 ⊆ F ln which is a P-Donsker class

by lemma 2. Since Λ(ln) is bounded by lemma 1, F0 and F ln admit a square integrable en-

velope, so by Theorem 2.4 page 857 of Giné and Zinn (1990), the bootstrapped empirical pro-

cess G∗n converges uniformly (over F ln , hence also F0) to GP conditionally almost surely and

supλ∈Λ0
G∗nfλ(Y ) and supλ∈Λ(ln)G∗nfλ(Y ) have the same respective limits (conditionally almost

surely) as supλ∈Λ0
Gnfλ(Y ) and supλ∈Λ(ln)Gnfλ(Y ). The latter both converge to supλ∈Λ0

GP fλ(Y )

by the proof of proposition 2.
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Third step: We have

λ ∈ Λ0 ⇒ Efλ(Y ) = 0

⇒ Gnfλ(Y )/
√

n− Enfλ(Y ) = 0

⇒ Enfλ(Y ) = Gnfλ(Y )/
√

n

⇒ Enfλ(Y ) ≥ −hn if ζ0
n = 1

⇒ λ ∈ Λn(hn) if ζ0
n = 1.

Hence Λ0 ⊆ Λn(hn) if ζ0
n = 1. So ζ0

n supλ∈Λ0
G∗nfλ(Y ) ≤ ζ0

n supλ∈Λn(hn)G∗nfλ(Y ).

Fourth step: In the first step of proposition 2, we showed that Λn(hn) ⊆ Λ(ln) if ζn = 1. Hence,

ζn supλ∈Λn(hn)G∗nfλ(Y ) ≤ ζn supλ∈Λ(ln)G∗nfλ(Y ).

Fifth step: As seen in step 2, F0 is a P-Donsker class, so the law of iterated logarithm holds and

supλ∈Λ0
Gnfλ(Y )/

√
ln ln n →a.s constant, since −√nhn/

√
ln ln n → −∞. We have for any ε ∈ (0, 1),

P(|ζ0
n − 1| > ε) = P(ζ0

n = 0) = P(supλ∈Λ0
Gnfλ(Y )/

√
ln lnn < −√nhn/

√
ln lnn) → 0. So we have

ζ0
n →p 1.

By steps 1 to 5, supλ∈Λn(hn)G∗nfλ(Y ) converges to supλ∈Λ0
GP fλ(Y ) conditionally almost surely,

which completes the proof. ¤

Proof of Theorem 2. Under Ha, there is a λa ∈ Λ(hn) such that Efλa(Y ) > 0 . T̃n ≥ Tn =

supλ∈Λ(hn)

√
nEnfλ(Y ) = supλ∈Λ(hn)Gnfλ(Y ) +

√
nEfλ(Y ) ≥ Gnfλa(Y ) +

√
nEfλa(Y ). The first

inequality is shown in the first step of the proof of proposition 2. Hence, T̃n−supλ∈Λn(hn)G∗fλ(Y ) ≥
Gnfλa(Y ) +

√
nEfλa(Y ) − supλ∈Λn(hn)Gnfλ(Y ) + (supλ∈Λn(hn)Gnfλ(Y ) − supλ∈Λn(hn)G∗fλ(Y )).

Since Efλa(Y ) > 0 we have
√

nEfλa(Y ) → +∞.

We have also supλ∈Λn(hn)Gnfλ(Y ) − supλ∈Λn(hn)G∗fλ(Y ) = Op(1), since we showed in the

proof of theorem 1 that supλ∈Λn(hn)Gnfλ(Y ) and supλ∈Λn(hn)G∗fλ(Y ) have a same weak limit

supλ∈Λ0
G(fλ(Y )). Hence, since Gnfλa(Y )− supλ∈Λn(hn)Gnfλ(Y ) is a tight sequence (this is can be

derived from exponential bounds in 2.14.9 page 246 of van der Vaart and Wellner (1996)), we have

the desired result. ¤
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