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Abstract 

 

Environmental agreements such as the Kyoto Protocol aim to stabilize the amount of carbon in 

the atmosphere, which is mainly caused by the burning of nonrenewable resources such as coal. 

We characterize the solution to the textbook Hotelling model when there is a ceiling on the stock 

of emissions. We consider both increasing and decreasing demand for energy. We show that 

when the ceiling is binding, both the low-cost nonrenewable resource and the high-cost 

renewable resource may be used jointly. A key implication is that if energy demand were to 

decline in the long run, we may supplement energy supply through ''clean'' renewables to meet 

the environmental standard, but then revert back to using only ''dirty'' fossil fuels in the future 

when the ceiling has become non-binding. That is, the much heralded societal ''transition'' to 

clean energy resources may be somewhat short-lived. 
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1. Introduction 

Many nonrenewable resources, such as coal, oil and natural gas, pollute the atmosphere through 

emissions of carbon, sulphur and other compounds. Environmental agreements such as the Kyoto 

Protocol have tended to control such pollution by proposing a target pollution concentration, or 

equivalently, an upper bound on the stock of pollution.2 The Montreal Protocol, which aims to 

phase out the stock of chemicals that deplete the ozone layer, adopts a similar approach, with an 

eventual goal of a complete phase-out of the stock of these harmful chemicals. 

 

In this paper, we ask how a ceiling on the stock of emissions affects the standard Hotelling model 

(Hotelling, 1931). We consider a polluting nonrenewable resource and a clean renewable 

resource. As in Hotelling, it is clear that there will be an eventual transition from the 

nonrenewable to the renewable resource. What is not so clear is the dynamics of this transition, 

which is the focus of our analysis. 

 

Little attention has been paid to the problem of how a limit on the stock of emissions may alter 

the sequence of extraction of a fossil fuel and the backstop resource over time. The theoretical 

literature has mainly relied on models that specify damage functions caused by the use of 

nonrenewable resources.3 Forster (1980) first examined pollution in a model of nonrenewable 

resources. Pollution has a negative effect on the utility function, but the clean substitute plays no 

role except in the terminal phase. Other studies such as Sinclair (1994) and Ulph and Ulph (1994) 

have examined the time profile of the carbon tax in an infinite horizon framework but without a 

                                                 
2The Kyoto Protocol (now a treaty) aims at staying below an exogenous upper bound, although country 

commitments are formulated in terms of emission flows. 

3A ceiling on the stock of emissions may be considered a special case of an increasing and convex damage function 

for which damages are negligible until the stock reaches a threshold level (the ceiling) and sufficiently high beyond. 

In general, there is a high degree of uncertainty with respect to the precise shape of the damage function because the 

actual costs of climate change are difficult to estimate (McKibbin and Wilcoxen, 2002). Another justification for 

using a ceiling is that most operational climate change models have used ceilings to examine the economic effects of 

global warming (e.g., see Zhang and Folmer, 1998). 
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backstop resource.4 Hoel and Kverndokk (1996) and Tahvonen (1997) analyze the path of 

optimal carbon taxes in a model with a nonrenewable resource and a clean backstop. Using stock-

dependent extraction costs, they show that there may be a period of simultaneous extraction of 

the nonrenewable and renewable resource. Toman and Withagen (2000) use a general 

equilibrium framework to examine the role of economic incentives in managing the stock of 

pollution arising from use of a polluting input but they do not have resource scarcity in their 

model. Fisher et al. (2004) also do not consider resource scarcity in modeling the relationship 

between the pollution stock and the development of a clean technology. On the other hand, most 

empirical work on global warming either assumes a general equilibrium framework that does not 

explicitly recognize the scarcity of fossil fuels or models the problem by imposing exogenous 

carbon taxes (e.g., see Manne and Richels, 1991, Nordhaus and Yang, 1996, and Chakravorty et 

al. 1997). 

 

This paper combines two features that are important in the assessment of the long-run impacts of 

any international agreement to limit fossil fuel emissions. The first is the scarcity of the 

nonrenewable resource, which drives up its price over time. The second is the ceiling placed on 

aggregate emissions from consumption of the resource. As we shall see below, the scarcity of the 

fossil fuel drives the dynamics of pollution accumulation and the ultimate transition to the cleaner 

backstop. However, the constraint on the stock of emissions causes the renewable resource to be 

used even though the cheaper nonrenewable has not yet been exhausted. Once this constraint is 

no longer binding, the solution reverts to the benchmark Hotelling case. 

 

We first consider stationary demand for energy. We show that the nonrenewable resource is used 

until the stock of pollution reaches the ceiling. At the ceiling, one of two things may happen. The 

fossil fuel may be extracted at a constant rate until it becomes scarce and its extraction rate begins 

to fall. At some point the ceiling ceases to be binding and nonrenewable resource use follows a 

Hotelling-like path until exhaustion. However, if the cost of the renewable is relatively low, we 

                                                 
4Farzin (1996) and Gjerde et al. (1999) address the optimal timing of a carbon tax under threshold effects beyond 

which the damages become irreversible. 
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get an alternative solution in which both resources are extracted simultaneously at the ceiling 

until the non-renewable resource gets exhausted. 

 

We then examine non-stationary demand. When demand for energy is increasing over time, as is 

likely to happen in the short run from increases in per capita consumption or growth in 

population, the sequence of resource use depends upon the relative costs of the nonrenewable and 

renewable resource, the abundance of the former, whether it is highly (or mildly) polluting, and 

whether the imposed ceiling is high or low. Only the fossil fuel may be used when the ceiling is 

binding, or both resources may be used jointly. Or the ceiling may begin with the exclusive use of 

the nonrenewable and end with joint extraction of both resources. In many of the cases examined, 

we show that the costly renewable is likely to kick in before the nonrenewable resource is 

exhausted. These results provide a point of departure from the standard Hotelling notion of a 

switch from a cheap nonrenewable to a costly renewable resource. 

 

A sharper result is obtained when energy demand decreases over time, which may be a plausible 

scenario to consider in the long run.5 The nonrenewable resource is used at first, then both 

resources are used at the ceiling, followed again by exclusive use of the nonrenewable resource 

until it is exhausted and finally, a complete transition to the renewable. That is, the more 

expensive renewable resource is used at the ceiling even though the cheaper nonrenewable 

resource has not yet been exhausted. However, when the ceiling is no longer binding, the 

renewable resource is temporarily abandoned until the nonrenewable resource is completely 

depleted.6 

 

                                                 
5For example, demand may decrease if there is a decline in global population and the inevitable levelling off of per 

capita energy consumption in the developing countries. Recent population projections have significantly downgraded 

earlier estimates of global population growth and the level from which world population will begin a steady decline 

(United Nations, 2002, Lutz et al., 2001). 

6This result violates Herfindahl's (1967) theorem of ''least cost first,'' which suggests that in partial equilibrium, 

resources must be used in order of increasing extraction cost (see Amigues et al., 1998 for another violation of 

Herfindahl’s theorem). 
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When emissions can be abated at constant unit cost such as through sequestration by forests or 

pollution reduction at source, we show that it is never optimal to abate as well as use the 

renewable resource simultaneously. If the unit cost of abatement is higher than the cost of the 

renewable resource, there will never be any abatement. In general, however cheap abatement may 

be, it is never done before the pollution ceiling is attained or when the ceiling ceases to be 

binding. Abatement takes place only at the ceiling. The timing of abatement depends on how 

demand may be changing with time. When demand is stationary or decreasing, abatement begins 

exactly when the stock of emissions reaches the ceiling. When demand is increasing, the period 

of abatement may be at the beginning or the end of the ceiling period, or in the strict interior.  

 

The analysis suggests that if an agreement such as the Kyoto Protocol were to be implemented, 

we may see the joint use of fossil fuels and renewable energy. Renewables such as solar energy 

may be employed in electricity generation even though they are costly relative to coal. However, 

if global populations and energy demand peak and then begin a steady decline, the pollution 

ceiling may not be binding any longer. We may then abandon the expensive solar energy and 

revert back to using fossil fuels exclusively. The relative abundance of coal over the other fossil 

fuels (oil and natural gas) may suggest that the second period with exclusive use of coal may be 

an extended one. Renewable energy may be used in the short run to complement fossil fuels and 

meet environmental targets, but they may be abandoned in the long run when energy demand 

falls.  

 

Section 2 describes the Hotelling model with an exogenous ceiling on the stock of pollution. 

Section 3 develops intuition by focusing on stationary demand. Sections 4 and 5 deal with 

increasing and decreasing demand, respectively. Section 6 concludes the paper. 

 

2. The Hotelling Model with a Ceiling on the Stock of Pollution 

Suppose the economy uses two resources for power generation: a polluting non-renewable 

resource (e.g., a fossil fuel such as coal) and a clean renewable resource (e.g., solar energy). For 

ease of exposition we will call them coal and solar energy, respectively. They are perfect 

substitutes. If tx and ty are their respective extraction (consumption) rates, then aggregate energy 

consumption at time t is given by ttt yxq += . The instantaneous gross surplus or utility from 
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energy consumption at time t is ),( tqu t . We assume that u: +++ → RR2  is of class C3, strictly 

increasing and strictly concave in q , i.e., ( ) ( ) 0/,,1 >≡ ttt qtqutqu δδ  and 

( ) ( ) .0,0  ,0/,, 22
11 >><≡ tqqtqutqu tttt δδ  

 

The short-run scenario in which energy demand is increasing over time is denoted ID and is 

compared to stationary demand (SD) and decreasing demand (DD).7 Demand is increasing 

(stationary, decreasing) if utility and marginal utility are both increasing (constant, decreasing) 

and if u is bounded from above (below) by ( )uu . That is, for any ,0>tq 0≥t , 

( ) ( ) ( ) ( ) ( ) ( )0, 0/,, ,0, 0/,, 2
122 <=>∂∂∂≡<=>∂∂≡ tqtqutquttqutqu ttttt  and ( ) ( )( ).),( lim tttt

ququtqu =
+∞↑

 

 

We also make the following regularity assumption which will be useful later. For ID (SD, DD), 

given any ,0>tq 0≥t , let ( ) ( ) ( ).0, 0,/ , 122
23 >=<≡∂∂∂ tqutqtqu ttt  This implies that the marginal 

utility at a given qt is an increasing and concave function of time for ID and a decreasing and 

convex function for DD. These assumptions suggest that when demand is increasing, marginal 

utility must increase over time ( 012 >u ), but at a decreasing rate ( 0122 <u ). The restriction on the 

upper bound of utility suggests that aggregate energy consumption is bounded. It will be satisfied 

if aggregate population and per capita energy consumption are bounded from above. In the 

decreasing demand case, the above assumptions imply marginal utility of energy consumption 

decreasing at an increasing rate.   

 

Initial reserves of coal are assumed known and denoted X0, the constant average extraction cost8 

of coal to the user is ce and the pollution per unit of coal consumed is given byζ . Let Xt be the 

amount of coal available at time t, so that tt xX −=
•

. Coal is assumed to be scarce even in the DD 

case. That is, let ctx be the quantity such that the marginal utility from coal is equal to its marginal 

cost, ect ctxu =),(1 . Then scarcity implies that the stock necessary to sustain this path (infinite for 

                                                 
7The latter may happen with a decline in world population in the long run so that aggregate energy consumption falls 

even with the expected increases in per capita energy demand in the developing countries. 

8The extraction cost is essentially a delivery cost, i.e., includes processing and transportation. 
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both SD and ID) is higher than X0. Mathematically, .lim 00
Xdxc

t

t
>∫+∞↑

ττ  

 

Let Zt be the stock of pollution. The gross emission of pollution zt is assumed to be proportional 

to the consumption of coal, tt xz ζ= , where ζ is some constant. As is standard in the literature, we 

also assume that the natural regeneration capacity of the atmosphere is proportional to the stock 

of pollution Zt (see e.g., Kolstad and Krautkraemer, 1993). However, the stock of pollution can 

be reduced through costly abatement. Let at be the instantaneous rate of abatement. Then the rate 

of change of Zt is given by .0  ,0 , ≥>−−=
•

tZaxZ tttt ααζ Let ca be the unit cost of abatement 

assumed to be constant so that the total abatement cost at time t is ca at.9  

 

Define Z  to be the ceiling on the pollutant stock imposed exogenously by the regulator. This 

may be the outcome of an environmental agreement such as the Kyoto Protocol. Then 0≥− tZZ . 

Let )( tax be the maximum consumption rate of coal if Zt is at its upper bound Z , and abatement 

is equal to at. That is, ζα /)()( Zaax tt += . Let )( tet ap  be the corresponding marginal utility 

defined by ( )taxuap ttet ),()( 1= . Since ( )taxutap ttet ),(/)( 12=∂∂  and )),((/)( 122
22 taxutap ttet =∂∂ , 

then for any given at , )( tax  is increasing and concave for ID, constant for SD, and decreasing 

and convex for DD. When there is no active abatement, )0(x  and )0(etp  are simply denoted by x  

and etp , respectively. If ret cp <  for ID, or if ret cp >  for DD, we denote by η  the date at 

which ret cp = , if such a time exists. 

 

Let y  be the instantaneous rate of solar energy available. It is nonstorable so that the part tyy −  

which is not immediately used, is lost. Define cr as the constant average delivery cost of solar 

energy. This cost is higher than the cost of coal, er cc > . We assume that the marginal utility at 

small consumption rates is higher than cr even for DD, so that solar energy has to be used once 

                                                 
9Abatement can be done in two ways. Carbon emissions from coal can be reduced at source through scrubbing. 

Alternatively, the stock can be reduced through increasing the forest area. We abstract from these considerations by 

assuming that the cost per unit abatement is the same for both methods, and equals ca.   
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coal is exhausted, and as we shall show, sometimes before. That is, there exists an 0>ε such that 

+∞↑t
lim ( ) ,,1 ε+≥ rt ctqu .0≥t  

For convenience, solar energy is assumed to be abundant even for ID. Define yct as the 

consumption rate for which the marginal utility equals the marginal cost of solar energy, 

( ) ,,1 rct ctyu = 0≥t . Then yct is time increasing for ID, constant for SD, and decreasing for DD. 

The abundance assumption could be written as ,yyct ≤ .0≥t 10 

 

The Optimization Problem 

The social planner maximizes welfare by choosing the quantities of coal and solar energy as well 

as carbon abated at any given instant: 

 

( )
( ){ } dteycacxctyxu t

trtatetttayx ttt

ρ−+∞

≥
−−−+∫ ,max 0}0 ,,,{

   (1a) 

,0  given,    , .. 0 ≥−=
•

ttt XXxXts      (1b) 

,0≥tx         (1c) 

,0≥ta         (1d) 

,0  given,   , 0 ≥−<−−=
•

ttttt ZZZZZaxZ αζ    (1e) 

.0≥ty         (1f) 

 

The Lagrangian Lt is given by 

 

                                                 
10 Since the focus of the paper is on the effect of the ceiling on the extraction path of the nonrenewable and 

renewable resource, we consider the simple case of an abundant renewable resource available at constant cost. This 

excludes plausible backstop technologies such as nuclear power, which itself is generated from a nonrenewable 

resource (uranium) that can also be recycled. Including these features will make our model complicated and so this 

task is left for future work. For an empirical model with nuclear power see Chakravorty, Magné and Moreaux 

(2005). 
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[ ]
[ ] ,

),(

trttattettt

tttttttrtatettt

yaxZZ
ZaxxycacxctyxuL

γγγν

αζμλ

+++−+

−−+−−−−+=
 

 

and the first order conditions are 

 

,0        0 1 =++−−⇔=
∂
∂

ettte
t

t cu
x
L

γζμλ     (2) 

,0        0 1 =+−⇔=
∂
∂

rtr
t

t cu
y
L

γ   and     (3) 

,0        0 =+−−⇔=
∂
∂

atta
t

t c
a
L

γμ      (4) 

 

together with the complementary slackness conditions 

 

[ ] ,0   and  ,0 =−≥ ttt ZZνν       (5) 

,0   and  ,0 =≥ tetet xγγ       (6) 

0   and  ,0 =≥ trtrt yγγ , and     (7) 

0   and  ,0 =≥ tatat aγγ .      (8) 

 

The dynamics of the costate variables are determined by 

 

and ,              0
t

ttt
t

t
tt e

X
L ρλλρλλρλλ =⇒=⇔

∂
∂

−=
••

   (9) 

 

( ) .        ttt
t

tt Z
L νμαρμρμμ ++=⇔

∂
∂

−=
••

    (10) 

 

The costate variable tμ  is non-positive. If ZZt <  over some time interval [ ],, 21 tt  then 0=tν  

over that interval and ( ) ,)( 1

1

tt
tt e −+= αρμμ  [ ]21, ttt∈ . Lastly, the transversality conditions at infinity 

are given by 
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,0limlim 0 ==
+∞↑

−

+∞↑ tttt
t

t
XXe λλρ       (11) 

 and  

.0lim =−

+∞↑ tt
t

t
Ze νρ        (12) 

 

Price Paths for Coal  

It is useful to obtain some insight by considering the "pure" Hotelling price path. For any initial 

scarcity rent ( )er cc −∈ ,00λ  , let tx~  be the solution to the equation t
t

et pectxu ~),( 01 ≡+= ρλ , if it 

exists, zero otherwise.11 Then tx~  is the extraction rate of coal with the ceiling non-binding at time 

t and never tight at any time t>τ  , provided that rt cp <~  and 0λ  is the right initial scarcity rent. 

The time derivative of tx~  cannot be signed for ID since ( )
( )txu

etxu
t
x

t

t
tt

,~
,~~

11

012
ρρλ+−

=
∂
∂  which is 

indeterminate. But  0/~ <∂∂ txt  for SD and DD. Extraction must decline with an increase in price 

under stationary and decreasing demand. Further, tx~  decreases with 0λ , 0/~
0 <∂∂ λtx  and  

ctt xx =
↓

~lim
00λ

. 

 

Define θ~  as the time at which the Hotelling price equals the cost of solar energy, i.e., rt cp =~ . 

Then ( )[ ]0
1 loglog~ λρθ −−= −

er cc . We denote by τ~  the time at which ett pp =~ .12 Absent the 

ceiling constraint, the optimal value of ,0λ  denoted by ,0
fλ  is the solution to the cumulative 

demand/supply balance equation ∫ =
θ

λ
~

0 00 )(~ Xdtxt . 

 

Let tZ~  be the pollution stock induced by tx~  when the initial stock is at Z0. That is 

                                                 
11This caveat holds for future definitions and is not repeated. 

12In general, we use θ to denote the time at which a price or a marginal cost equals cr andτ the time at which a price 

or a marginal cost equals etp . When ret cp = , the corresponding time is denoted by .δ   
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ttt ZxdtZd ~~/~ αζ −=  and .~
00 ZZ =  Then ( )f

tZ 0
~ λ  is the trajectory of the pollution stock in the time 

interval ( )⎥⎦⎤⎢⎣
⎡ f

0
~,0 λθ  in the absence of the ceiling constraint. Beyond time ( )f

0
~ λθ , no coal is used so 

emissions are zero and the stock Zt declines to zero. In what follows, we assume that the ceiling 

constraint is always binding along the standard Hotelling path, that is 

( ) ( ) .~,0,~max 00 ZtZ ff
t >

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡∈ λθλ The extraction path tx~  is not optimal at the beginning of the 

planning horizon.  

 

When abatement occurs, atat c γμ +−=  by (4). Suppose the ceiling constraint is binding, then we 

have ZZt = . If xxt > , then there must be abatement of surplus emissions so that ta equals 

)( xxt −ζ  and 0=atγ from (8). Thus at c−=μ . From (6), 0=etγ so using (9) and substituting into 

(2), the social marginal cost of a unit of coal ),(1 txu t is given by t
ae ecc ρλζ 0++ . Call this tp( , 

with tx(  as the solution to .),(1 tt ptxu (=  Then tx(  is the optimal extraction rate of coal if at time t 

the ceiling is binding, part of the emission flow is abated and rt cp <( . The derivative of tx(  with 

respect to time cannot be signed for ID, is zero for SD and negative for DD. 

 

Defineθ
(

as the time at which the above price rt cp =( so that ]log)[log( 0
1 λζρθ −−−= −

aer ccc
(

. 

Let τ(  be the time at which ,ett pp =(  if such a time exists and is unique over ).,0[ ∞  If two such 

instants of time exist, we denote them by 1τ
(  and 2τ

( , with 21 ττ (( < . When the ceiling is not binding 

but will in the future, ZZt < and by (5), 0=tν so that from (10) the absolute value of tμ must 

grow at the rate .αρ +  From (6), 0=etγ . Then for [ ]er cc −∈ ,00λ  and 

[ ]( ),0 , / )( 00 ζλμ +−−∈ er cc  define tp̂ as the corresponding marginal cost of coal where from 

(2), we have ( )tt
et eecp αρρ ζμλ +−+= 0ˆ . Let tx̂ be the extraction rate for coal at which the marginal 

utility equals this marginal cost, i.e., that is, tx̂ is the solution to ( ) tptxu ˆ,1 = . Thus tx̂  is the 

optimal extraction rate of coal if at time t the ceiling is not binding, has never been earlier, but 

will be in the future. The time derivative of tx̂  cannot be signed for ID but is negative for SD and 

DD. 
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Denote byθ̂ the time at which rt cp =ˆ . Then ( ) . ]log)[log(ˆ
00

1 ζμλρθ −−−= −
er cc  Define tẐ  as 

the pollution stock generated by tx̂ , starting from Z0, so that ttt ZxtZ ˆˆ/ˆ αζ −=∂∂    and   .ˆ
00 ZZ =  

For any [ ]ee cp −∈ 00 ,0λ  and [ ]( ),0 , / )( 000 ζλμ +−−∈ ee cp  letτ̂ be the time at which ett pp =ˆ . 

Lastly, for any [ ]ee cp −∈ 00 ,0λ  and [ ]( ),0 , / )( 00 ζλμ +−−∈ er cc  denote byδ the time at 

which tt pp (=ˆ . Under the regularity assumptions, δ is well-defined and unique. 

 

3. The Stationary Demand Case 

In order to develop intuition, we first explore the simple case of stationary demand. When 

demand does not change with time, tet xp ,  and yct are constant, so the time subscript can be 

deleted. There are two cases to consider, re cp < and re cp > . 

 

Case re cp <  

The price of coal at the ceiling when there is no abatement is equal to ep . The inequality 

condition suggests that the price of energy will never exceed rc , since the entire demand at price 

rc can be met by the clean backstop, as shown in fig.1. However, the price of energy may exceed 

ep  in which case only coal may be used. The condition re cp < may occur if coal is relatively 

clean, energy demand is low or the ceiling is high. If the abatement cost ca is low enough, then 

abatement must be done over some time interval during which the ceiling constraint is tight. 

There is no gain from abating when the stock is strictly below the ceiling. Specifically, abatement 

occurs iff et pp =~  sufficiently early in the time horizon. If not, the incremental cost of 

abatement acζ would be higher than the marginal utility at the ceiling over the entire time period. 

It will not be optimal to abate. 

 

[Fig. 1 here] 

 

The optimal sequence of resource use has five phases. Since ZZ <0 , the ceiling is non-binding in 

the first phase and only coal is used. The ceiling constraint binds in the future so in the first phase 

the shadow price tμ−  grows at the rate αρ + , and tt pp ˆ= . The quantity of coal extracted is 
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more than at the ceiling, xxt >ˆ , so emissions exceed natural dilution hence the pollution stock 

accumulates over time. At the end of this period, the ceiling is attained. We then have tt pp (=ˆ , 

since the price path must be continuous. 

 

In the second phase given by the time interval [ )τδ (, , it is economical to abate since et pp <( . The 

price of coal is given by tp( . Extraction is higher than x , xxt >
(  and the excess is abated, 

( ).xxa tt −= (  At time τ( , et pp =(  and abatement becomes too costly. In the third phase [ )ττ ~,( , 

there is no abatement and only coal is used at the ceiling, xqt = . The price of coal is constant at 

ep .  

 

In the next phase the ceiling is no longer relevant, so resource use is strictly Hotelling starting 

from the residual stock at timeτ~ . In the interval ⎟
⎠
⎞

⎢⎣
⎡ θτ ~,~ , tt pp ~= , coal price increases and 

extraction declines from the ceiling level. At time ,~τ  the stock is at the ceiling but with declining 

extraction, the ceiling constraint is no more binding. In this phase, 0=tμ  and the price of coal is 

pure Hotelling, given by t
e ec ρλ0+ . At time θ~ coal is exhausted while the use of solar energy 

jumps from 0 to cy to ensure continuity of the price path. In the terminal phase ⎟
⎠
⎞

⎢⎣
⎡ +∞,~θ , only 

solar energy is used. 

 

Even if the unit cost of abatement ca is small (but not zero), we must have a phase during which 

coal is used at the ceiling but there is no abatement. This is an immediate implication of the fact 

that the tp(  curve is a vertical translation of the tp~  curve by the distance acζ . Thus ττ ~<(  and the 

phase [ ]ττ ~,(  never disappears, except in the limiting case when ca=0. Of course, if abatement 

costs are zero, the ceiling itself is of no relevance and the entire extraction program will proceed 

according to Hotelling. Excess emissions will be abated costlessly. 

 

If abatement cost ac is high enough, the curve tp(  will lie above the ep  line over the time interval 

[ )τ̂,0  during which et pp <ˆ  (see fig. 1). Then the marginal cost of coal with abatement is always 
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higher than the marginal utility of consumption even when the pollution stock is constrained. In 

this case the phase [ )τδ (,  during which the ceiling is binding and abatement occurs will disappear. 

The solution for this case is formally presented in Appendix A.13 

 

Case re cp >  
In this case solar energy becomes economical at a price below the price of energy when the 

ceiling is tight and there is no abatement (see fig. 2). The demand for energy at rc  is higher then 

at the ceiling price ep . This implies that the price ep will never be reached since solar energy is 

already economical at a lower price. In fact the price of energy will never exceed the price of the 

backstop rc . As in the previous case, if abatement cost ca is sufficiently low, abatement begins at 

time δ , the start of the ceiling period. With abatement, coal can be used at a rate higher than x . 

Abatement ends at time θ
(

 when rt cp =(  and solar energy becomes competitive. Abatement is 

replaced by use of the renewable resource, while coal continues to be extracted at the maximum 

rate x . This phase ends at time θ~  when coal is exhausted and the consumption of solar energy 

jumps from xyc −  to cy  while maintaining the continuity of the price path. Observe that in this 

model, once abatement is complete, the ceiling price must be at rc , since at lower prices, coal 

alone cannot satisfy the entire demand. Another general observation is that abatement of 

emissions and use of solar energy are strict substitutes and cannot be used jointly over any non-

degenerate interval of time. This is because the cost of energy with abatement rises over time 

while the cost of solar energy is constant. They cannot be equal except at a point.  

 

[Fig. 2 here] 

 

4. Increasing Demand for Energy in the Short Run 

Global demand for energy is increasing because of population growth and increases in 

consumption per capita, mainly in the developing countries. In this section we examine this short 

run scenario of increasing demand. Now etp is no longer constant but is increasing over time and 

                                                 
13 The technical statement of the solutions discussed here are given in Appendix A. Here we focus on the graphical 

exposition. 



 15

concave. We classify according to whether etp is everywhere lower than rc , cuts it from below, or 

everywhere higher than rc . We consider these cases below. 

 

Case re cp <∞  
The two possible solutions are illustrated in figs. 3 and 4 for sufficiently low unit abatement 

costs. The solution in fig. 3 is similar to the one shown in fig.1 except that because of increasing 

demand, during the interval [ )ττ ~,(  when the ceiling is binding and there is no abatement, the price 

etp is increasing. However the quantity of coal extracted during this phase must be constant since 

the ceiling binds. At the ceiling given by the time interval [ )τδ ~, , there are two phases, one with 

active abatement followed by no abatement.  

 

[Fig. 3 here] 

 

The case shown in fig. 4 only occurs under increasing demand, as will become clear later. The 

time interval [ )τδ ~,  during which the ceiling binds is split into three: a first and a third phase with 

no abatement, and a middle phase [ )21,ττ ((  with active abatement. This solution can not occur in 

the SD case because there the etp curve is constant and the price with abatement tp(  must occur at 

the beginning of the ceiling period, if at all (see fig. 1). 

 

[Fig. 4 here] 

 

If unit abatement cost ca is low, the distance between the curves tp(  and tp~ , given by acζ , is 

small. In the first phase where the price of coal is given by tp̂  and the pollution stock is 

accumulating, the tp̂ curve will intersect the tp(  curve before intersecting the etp  curve (see fig. 

4). For a given etp  curve and acζ sufficiently low, ∞= epp0
(  and at the same time 00ˆ pp (< . Thus 

for sufficiently low abatement costs, the best policy is to abate immediately when the ceiling 

constraint is binding. As in the SD case, even if ca is very small, as long as it is positive, there 

must exist a second phase at the ceiling without abatement during which the price of coal equals 

etp . 
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These two phases at the ceiling may occur up to some critical value of unit abatement cost 

beyond which this initial abatement phase disappears (see fig. 3). We may then have the three 

phase pattern at the ceiling depicted in fig. 4, where abatement occurs strictly interior to the 

ceiling period. For even higher values of ac , this intermediate phase with abatement, [ )21,ττ ((  itself 

may disappear and abatement may occur at the end of the ceiling period as in fig. 7. There exist 

two critical values of the abatement cost denoted by '
ac  and ''

ac , with '''
aa cc < . The precise 

solution depends entirely on parameter values. 

 

Case ∞<< ere pcp 0   
Since demand is increasing and hence etp is increasing, the time path of etp may cut cr from 

below. We then get a pattern similar to the one illustrated in fig. 2 for the SD case. It is sufficient 

that the etp  curve be higher than the tp̂  curve over the interval [ )δ,0 , higher than the tp( curve 

over the interval ⎟
⎠
⎞

⎢⎣
⎡ θδ

(
,  and lower than cr over some interval [ )δ,0  with θδ

(
< . We may also 

obtain the sequence discussed in the preceding case re cp <∞ , provided that the time η  at which 

ret cp =  be later than the time θ~ at which rt cp =~  (See figs. 3 and 4). 

 

The solutions that are truly unique to the present case are illustrated in figs. 5, 6 and 7. They 

differ in terms of the location of the abatement period within the interval when the ceiling is 

binding. In the case of fig. 5, the pollution stock increases to ZZ =δ  during the first phase. At 

time δ , tt pp (=ˆ  and the ceiling binds with active abatement given by [ ]xxa tt −= (ζ . At time τ( , 

ett pp =(  and abatement becomes too costly. During the next phase at the ceiling without 

abatement [ )ητ ,( , only coal is used at its maximum limit and its price increases over time. At the 

beginning of the next phase ⎟
⎠
⎞

⎢⎣
⎡ θη ~, , solar energy becomes economical, the ceiling is still binding 

and the price is equal to etr pc < , so that energy demand is more than what coal can provide, or 

xyq ctt >= . Since coal is the cheaper resource, it is used at the maximum level x  and solar 

supplies the residual, xyct − . The use of solar power increases during this phase since energy 
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demand continues to increase. At θ~ , rt cp =~  and coal ceases to be competitive. So it must be 

exhausted at this instant, with a corresponding jump in solar energy use to ensure continuity of 

the price path. 

  

[Fig. 5 here] 

 

In fig. 6 the solution is similar to the last one except that here the phase with active abatement is 

sandwiched between two phases during which no abatement takes place.  

 

[Fig. 6 here] 

 

Yet another pattern is shown in fig. 7, in which the abatement period occurs at the end of the 

ceiling and right before the deployment of solar energy. During a first phase [ )ττ (,ˆ  at the ceiling, 

only coal is used. This is followed by active abatement during the interval ⎟
⎠
⎞

⎢⎣
⎡ θτ

((,  which in turn is 

followed by a phase ⎟
⎠
⎞

⎢⎣
⎡ θθ ~,
(

 in which both resources are consumed. At time θ
(

 the extraction rate 

of coal falls from θ
(

cy  to x , the number of units of pollution abated declines from 

( )xya c −= θθ ζ ((  to 0 and use of solar energy jumps from 0 to xyc −θ
( . Solar energy partly 

substitutes for coal and abatement activity. Coal use is constant during the period ⎟
⎠
⎞

⎢⎣
⎡ θθ ~,
(

until it is 

exhausted at time θ~ . Since the cost of coal under abatement rises with time, this case of an 

abatement period at the end of the ceiling can only arise in the increasing demand case. It can not 

occur under stationary demand, or as we shall see below, for decreasing demand. 

 

[Fig. 7 here] 

 

Case re cp >0  
Since etp increases with time, it may be above the cost of solar energy everywhere. The solution 
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is analogous to that of re cp > under stationary demand.14  

 

5. Decreasing Demand for Energy in the Long Run 

In the long run energy demand may decrease over time if global population declines due to lower 

fertility rates and energy consumption per capita reaches a plateau. Recent population projections 

suggest this trend (Lutz, Sanderson and Scherbov, 2001).15 In terms of our framework, falling 

demand implies that etp  is decreasing and convex. Again, it is convenient to classify cases 

depending upon whether etp  is always higher or lower than the cost of solar energy rc , or cuts it 

from above. Since the first case ( etp is higher than rc ) is similar to the case last discussed, we 

focus on the remaining two: re cp <0 and ∞>> ere pcp 0 . 

 

Case re cp <0   
When the unit abatement cost is sufficiently low, the extraction pattern is shown in fig. 8. It is 

exactly the same as in the stationary model with re cp < , except that when abatement does not 

occur, the price of energy at the ceiling is not constant but decreasing, since etp  is decreasing 

exogenously. Coal extraction in this phase is constant at the maximum level x . Thus the price of 

coal is increasing in the first two phases, then decreasing and increasing again during the 

Hotelling phase. It is clear from this figure that in general, when demand is decreasing abatement 

must be done at the beginning of the ceiling, and not in the strict interior or at the end, as we saw 

under increasing demand. Intuitively, the cost of coal under abatement rises over time, and with 

demand declining exogenously, it is valuable to abate earlier in the ceiling period if at all, and not 

later. 

                                                 
14 except that yct replaces yc in equations (A14) and (A15) in Appendix A.This case is also similar to re cp >∞ , 

i.e., ret cp > , 0≥t  under decreasing demand, which is discussed below.  

15 World population is expected to rise from the current 6 billion to 9 billion in 2070 then decline to 8.4 billion in 

2100. Fertility rates are falling below replacement levels not only in the developed countries but in some 71 

intermediate-fertility developing countries. Energy demand is likely to follow this declining trend, albeit with a time 

lag that accounts for the near-term increase in energy consumption per capita in the developing countries.  
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[Fig. 8 here] 

 

Case ∞>> ere pcp 0  
If demand were decreasing slowly, so that the time η  at which the etp curve cuts rc  beyond 

timeθ~ (see fig. 9), then the sequence of extraction will be exactly as in the stationary demand 

case of fig. 2. If demand for energy were to be moderately high initially and then decline rapidly 

then too we may obtain a trajectory similar to that in fig. 2. More specifically the etp̂  curve may 

cross cr before time θ
(

(see fig. 9).16 

 

Finally when energy demand is sufficiently high but declining rapidly, we may obtain the unique 

extraction sequence shown in fig. 9. At the ceiling, pollution is abated initially during the interval 

⎟
⎠
⎞

⎢⎣
⎡ θδ

(
, . At time θ

(
, abatement stops and is replaced by use of solar energy during ⎟

⎠
⎞

⎢⎣
⎡ ηθ ,
(

. In this 

time period, coal is used at the maximum level x supplemented by solar energy. However 

because the demand curve is shifting exogenously, overall energy consumption is declining and 

hence the residual use of solar cty is decreasing. At the end of the phase ret cp =  and a new phase 

[ )τη ~,  begins in which etp  is decreasing so that solar energy becomes too expensive and is no 

longer used, i.e., rt cp < . The price of energy at the ceiling decreases, and coal use is maintained 

at the maximum allowable limit x . This phase ends at time τ~  when the etp  graph intersects the 

Hotelling path tp~ . During the next period ⎟
⎠
⎞

⎢⎣
⎡ θτ ~,~ , the ceiling constraint is no longer binding and 

extraction is according to Hotelling. Coal price increases until it is exhausted at time θ~  to be 

replaced by use of the backstop solar energy. What is unique about this extraction sequence is 

that solar energy is used during two disjoint time periods. When demand is high, solar is used at 

the ceiling to supplement coal use, but when demand declines, this expensive backstop is no 

longer necessary. All energy is supplied by coal, until it is exhausted and solar energy is deployed 

                                                 
16 Another way to see this is from fig. 8. Imagine that re cp >0  but that the etp̂  curve is crossing the cr line at a 

time prior to τ̂ . 
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a second time in the terminal phase.   

 

[Fig. 9 here] 

 

6. Concluding Remarks 

This paper is a first attempt at extending Hotelling theory to the case when the stock of pollution 

from using a nonrenewable resource is constrained. The pollution stock has an upper bound, 

possibly the result of an international agreement. As in standard Hotelling models, an expensive 

backstop such as solar energy can provide clean energy. The question is: what is the sequence of 

extraction of coal and solar energy given the possibility of costly abatement and exogenously 

changing demand for energy? We consider the simple but restrictive case of stationary demand, 

and two likely scenarios: increasing demand for energy in the short run and falling demand in the 

long run. 

 

One general result is that in all cases, coal is used exclusively in the initial period and the stock of 

pollution builds up over time, followed by an interval in which the ceiling is binding. Beyond this 

interval, the emission stock declines to zero as energy supply shifts from the exclusive use of the 

nonrenewable to that of the backstop resource. However, the details of this transition differ 

markedly from case to case. If solar energy is cheap or coal is highly polluting, or the imposed 

ceiling is low, both resources may be used exactly at the instant the ceiling is attained. This 

pattern is maintained until the nonrenewable resource is exhausted. Alternatively when coal is 

abundant or mildly polluting, or solar energy is expensive, the supply of energy at the ceiling is 

provided only by coal, followed by a Hotelling phase when the ceiling is non-binding in which 

extraction declines until coal is exhausted and is replaced by the backstop resource. A unique 

pattern is obtained when energy demand is decreasing. Both resources may be used at the ceiling, 

followed by the exclusive use of coal, and finally exclusive use of the backstop in the terminal 

period. It suggests two disjoint periods of time when the clean backstop may be used.  

 

When emissions can be abated at constant cost, such as through carbon sequestration by forests, 

abatement does not occur if its cost is sufficiently high. If the cost is sufficiently low, abatement 

is only done when the stock is at the ceiling. Under stationary and decreasing demand, abatement 
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must only be done at the beginning of the ceiling period. However, when demand is increasing, 

as the unit cost of abatement rises, abatement may be done at the beginning of the ceiling period, 

strictly in the interior or at the very end. Abatement competes with the clean backstop resource 

and only one or the other is employed at any given time. 

 

Useful policy insights can be obtained even from the stylized model developed here. One 

implication is that the standard Hotelling solution of a transition from a polluting fossil fuel to a 

clean renewable resource may be overly simplistic when there is a ceiling on the stock of 

emissions. There may be a strong case for use of the renewable resource during the period when 

the ceiling is tight, even though the cost of the backstop is higher than that of the fossil fuel and 

the latter has not been exhausted. Thus, solar or other renewable technologies may need to be 

used to supplement the use of fossil fuel resources, even if they are not economical in terms of 

the unit cost of energy.17 Since coal is relatively more abundant than oil and gas, and it is realistic 

to expect global energy demand to peak and then decline over the long-term, the joint extraction 

of fossil fuels and solar energy may be feasible under an international agreement. For instance, in 

order to achieve compliance with environmental targets mandated by the Kyoto Treaty, we may 

use expensive solar energy for a time when the ceiling is binding. Then as energy demand 

declines over time, abandon solar and revert back to a ''Hotelling'' world with coal as the primary 

source of energy, only to transition completely to solar energy when coal is exhausted. Empirical 

work needs to be done using this Hotelling framework to see which of the cases considered in the 

paper are likely given plausible parameter values.   

 

Modeling a nonrenewable resource with a pollution ceiling is a first step towards developing 

theory that can examine substitution across multiple energy resources (oil, coal, natural gas and 

renewables) under alternative environmental targets. Empirical trends such as the recent 

transition from coal burning to the cleaner natural gas in power generation can be better 

examined in a model with multiple nonrenewable resources each with different emission 

characteristics. For example, one can study the optimal extraction sequence with two scarce 

                                                 
17Conventional wisdom, which suggests that renewables cannot be used because they are currently costlier than fossil 

fuels, may be somewhat misplaced. 
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resources - a cheap polluting resource (e.g., coal) and a costly clean resource (e.g., natural gas). 

In future work, one could specify nonlinear abatement (e.g., the unit cost of bringing land under 

forests may rise with volume abated) and cost structures for the backstop resource, in which case 

both these options may be used simultaneously at the ceiling. The cost of the clean backstop itself 

may be the outcome of a research and development process. Yet another possible extension could 

include the endogenous choice of a ceiling and its welfare and political economy implications. It 

may be realistic to expect the ceiling to become more stringent over time as societies become 

more sensitive to environmental externalities. In a model with multiple countries, the choice of a 

ceiling may be the outcome of an explicit bargaining process. 
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Appendix A 

 

Stationary Demand: re cp <  

When abatement costs are sufficiently low, there are six unknowns: ττδμλ ~,,,, 00
(

and θ~ , with six equations as 

follows: 

- the supply/cumulative demand balance for coal: 

( ) ( ) [ ] ( ) ,~~,ˆ 0

~

~ 000 00 Xdzxxdzxdzx zzz =+−++ ∫∫∫
θ

τ

τ

δ

δ
λττλμλ

(
((

    (A1) 

- continuity of the pollution stock at the ceiling: 

( ) ,,ˆ
00 ZZ =μλδ      (A2) 

- and continuity of the price path: 

( ) ( ),,ˆ 000 λμλ δδ pp =    ( ) ,0 epp =λτ(
(

   ( ) ,~
0~ epp =λτ    and   ( ) .~

0~ rcp =λθ   (A3) 

When abatement costs are high, the problem will have five unknowns, ττμλ ~,ˆ,, 00 and θ~ , which solve the 

following five equations system: 

- the supply/cumulative demand balance for coal: 

( ) [ ] ( ) ,~~,ˆ 0

~

~ 0

ˆ

0 00 Xdzxxdzx zz =+−+ ∫∫
θ

τ

τ
λττμλ (

    (A4) 

- continuity of the pollution stock at the ceiling: 

( ) ,,ˆ
00ˆ ZZ =μλτ      (A5) 

- and continuity of the price path: 

( ) ,,ˆ 00ˆ epp =μλτ    ( ) ,~
0~ epp =λτ    and   ( ) .~

0~ rcp =λθ    (A6) 

 

How large does the abatement cost ca have to be for no abatement to occur? First we solve the problem without 

abatement. Let ***
0

*
0

~,ˆ,, τθμλ  and *~θ  be the solution. Next consider *
tp( defined as the solution to 

a
t

et cecp ζλ ρ ++= *
0

*( . Then either tt pp ˆ* ≥(
, )ˆ,0[ *θ∈t , in which case the solution has no abatement, or there 
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exists some subinterval of )ˆ,0[ *θ  during which ** ˆ tt pp <(
 and abatement occurs. There exists a critical value of the 

abatement cost ac , with abatement always occurring at lower values of ac and no abatement at higher values. In 

Appendix B we show that if there exist ττδμλ ~,,,, 00
(

 and θ~  satisfying (A1)-(A3) or ττμλ ~,ˆ,, 00  and θ~  

satisfying (A4)-(A6), all the necessary conditions (2)-(12) are satisfied. We summarize: 

 

Proposition 1: For SD with re cp < , there exists a critical value ac  of the abatement cost such that: 

a. either aa cc ≥  and the optimal path has four phases with ττμλ ~,ˆ,, 00  and θ~  satisfying (A4)-(A6) and 
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b. or aa cc <  and the optimal path has five phases with characteristics ττδμλ ~,,,, 00
(

 and θ~  satisfying 

(A4)-(A6) and 
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Stationary Demand: re cp >  

With active abatement, there are five unknowns θδμλ
(

,,, 00  and θ~ , and five equations: 

- the supply/cumulative demand balance for coal: 

( ) ( ) [ ] ,~,,ˆ 0000 00 Xxdzxdzx zz =−++∫∫
θ

δ

δ
θθμλμλ

( ((
   (A9) 

- continuity of the pollution stock at the ceiling, identical to (A2), 

- and continuity of the price path: 
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( ) ),(,ˆ 000 λμλδ tpp (=    ( ) .0 rcp =λθ
(
(

   and   ( ) .~
0~ rcp =λθ   (A10) 

 

As before, when ca is large enough, the tp(  curve lies above the tp̂  curve over the time interval )ˆ,0[ θ (see fig. 2). 

The abatement phase will disappear. The optimal sequence involves four unknowns θμλ ˆ,, 00  and θ~ and four 

equations: 

 

- the supply/cumulative demand balance for coal: 

( ) [ ] ,ˆ~,ˆ 0

ˆ

0 00 Xxdzxz =−+∫ θθμλ
θ

    (A11) 

- continuity of the pollution stock at the ceiling, ( ) ,,ˆ
00ˆ ZZ =μλ

θ
         (A12) 

- and continuity of the price path: 

( ) rcp =00ˆ ,ˆ μλ
θ

   and   ( ) .~
0~ rcp =λθ     (A13) 

 

Whether abatement occurs can be determined as before. Let **
0

*
0

ˆ,, θμλ  and *~θ  be the solution to the problem 

absent active abatement and let a
t

et cecp ζλ ρ ++= *
0

*( . Then either ** ˆ tt pp ≥(
, )ˆ,0[ *θ∈t  and it is optimal not to 

abate or there exists some subinterval of )ˆ,0[ *θ during which ** ˆ tt pp <(
 and active abatement occurs. Clearly there 

exists a critical abatement cost ac  such that there is no abatement if aa cc ≥  and active abatement if aa cc < . We 

can summarize: 

 

Proposition 2: For SD with re cp > , there exists a critical value ac  of the abatement cost such that: 

a. either aa cc ≥  and the solution has three phases with θμλ ˆ,, 00  and θ~  satisfying (A11)-(A13) and 
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b. or aa cc <  with a solution with four phases with θδμλ
(

,,, 00  and θ~  satisfying (A2) ,(A9) and (A10) and 
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Increasing Demand: re cp <∞  

For the case shown in fig. 3, ττδμλ ~,,,, 00
(

 and θ~  are the solution of a system of equations similar to (A1)-(A3) 

and the extraction sequence is determined by (A8) (Proposition 1b) with cty  instead of cy . 

 

For fig. 4, the sequence has six phases: tt pp ˆ=  and xxq tt >= ˆ  for [ )δ,0∈t , ett pp =  and xxq tt ==  for 

[ ) [ )τττδ ~,, 21
(( ∪∈t , tt pp (= , xxxq ttt >== (

 and [ ]xxa tt −= (ζ  for [ )21,ττ ((∈t , tt pp ~=  and tt qq ~=  

for )~,~[ θτ∈t , and lastly rt cp =  and cttt yyq ==  for ),~[ ∞∈ θt . The seven characteristics of the sequence, 

τττδμλ ~,,,,, 2100
((

 and θ~  are the solution to the following system of seven equations: 

- the supply/cumulative demand balance for coal: 

( ) ( ) ( )[ ] ( ) ( ) ,~,~,ˆ 0
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~ 000210 00
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1

Xdzxdzxxdzx zzz =++−+−+ ∫∫∫
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(((
  (A16) 

- the continuity of the pollution stock at time δ given by (A2), 

- and continuity of the price path:18 

( ) δδ μλ epp =00 ,ˆ ,   
11 ττ ((

(ppe = ,   
22 ττ ((

(ppe = ττ ~~
~ppe = ,   and   .~~ rcp =θ    (A17) 

 

For sufficiently high abatement costs the curve tp(  is located above tp̂ over the time interval [ )τ̂,0  during which 

tet pp ˆ> , and above the curve etp  over the time interval [ )ττ ~,ˆ . Hence the phase during which it would be optimal 

                                                 
18 Since etp is concave and tp( is convex, they may cross at most twice. 
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to abate disappears and the optimal sequence of resource use has four phases: tt pp ˆ= , xxq tt ==  and tt ZZ ˆ=  

for [ )τ~,0∈t , ett pp = , xxq tt ==  and tt ZZ =  for [ )ττ ~,ˆ∈t , tt pp ~=  and ttt xxq ~==  for ⎟
⎠
⎞

⎢⎣
⎡∈ θτ ~,~t , 

and rt cp =  and cttt yyq ==  for ⎟
⎠
⎞

⎢⎣
⎡ ∞∈ ,~θt . The values of the five variables characterizing the sequence 

ττμλ ~,ˆ,, 00  and θ~ are the solution to the following system of five equations: 

- the supply/cumulative demand balance for coal which is formally identical to equation (A4), 

- continuity of the pollution stock given by (A5) since the ceiling is attained at τ̂ , 

- and continuity of the price path given by (A6) with etp  instead of ep : 

( ) ττ μλ ˆ00ˆ ,ˆ epp = ,   ( ) ττ λ ~0~
~

epp =    and   ( ) .~
0~ rcp =λθ    (A18) 

We can state 

 

Proposition 3: For ID with re cp <∞ : 

a. either there exists a critical value of the abatement cost ac , such that: 

a.1 for aa cc ≥  the optimal path has four phases with ττμλ ~,ˆ,, 00  and θ~ , satisfying (A4), (A5) and (A8), 

the optimal policy being given by (A7) with yct instead of yc, 

a.2 for aa cc >  the optimal path has five phases with ττδμλ ~,,,, 00
(

 and θ~ , satisfying (A2), (A16) and 

(A17), the optimal policy being given by (A8) with yct instead of yc, 

 

b. or there exist two critical values of the abatement cost, '
ac  and ''

ac , with '''
aa cc < , such that: 

b.1 for ''
aa cc ≥  the optimal path is the pattern characterized in a.1, 

b.2 for '''
aaa ccc ≥> , the optimal path has six phases with characteristics τττδμλ ~,,,,, 2100

((
 and θ~  

satisfying (A2), (A16) and (A17), the optimal policy being given by: 
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b.3 for aa cc >'  the optimal pattern is the pattern characterized in a.2. 

 

Increasing Demand: ∞<< ere pcp 0   

This five phase sequence (see fig. 5) is characterized by the values of the six variables ητδμλ ,,,, 00
(

 and θ~ , 

solution to the following system of six equations: 

 

- the supply/cumulative demand balance for coal: 

( ) [ ] ,~,ˆ 00 00 Xxdzxz =−+∫ δθμλ
δ

    (A20) 

- continuity of the pollution stock at δ given by (A2), 

- and the price path continuity equations: 

( ) ( )000 ,ˆ λμλ δδ pp (= ,   ( ) ττ λ ~0 epp =(
(

,   re cp =η    and   ( ) .~
0~ rcp =λθ   (A21) 

 

For fig. 6, the sequence is characterized by the values of the seven variables ητττμλ 2100 ,,ˆ,, ((
 and θ~ , solution of 

the following system of seven equations: 

 

- the supply/cumulative demand balance for coal: 

( ) [ ] ,ˆ~,ˆ 0

ˆ

0 00 Xxdzxz =−+∫ τθμλ
τ

    (A22) 

- continuity of the pollution stock at τ̂  given by (A5), 

- and the price path continuity equations: 
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( ) ττ μλ ˆ00ˆ ,ˆ epp = ,   ( )011
λττ ((

(ppe = ,   ( )0ˆ 22
λττ (

(ppe = ,   re cp =η    and   ( ) .~
0~ rcp =λθ  (A23) 

Finally for fig. 7, the five phase sequence is characterized by the values of the six variables θττμλ
((,,ˆ,, 00  and θ~ , 

solution of the following system of six equations: 

 

- the supply/cumulative demand balance for coal identical to (A22), 

- continuity of the pollution stock equation at τ̂ , that is equation (A5), and 

- and the price path continuity equations: 

( ) ττ μλ ˆ00ˆ ,ˆ epp = ,   ττ ((
(ppe = ,   re cp =θ

(
(

   and   ( ) .~
0~ rcp =λθ    (A24) 

 

Several patterns may emerge as ac increases from zero, the free abatement case, to the other extreme of a high ac in 

which there is no abatement. Proposition 4 summarizes the discussion. 

 

Proposition 4: For ID with ∞<< ere pcp 0 , we may have the following sequence of phases: 

a. the same pattern as in SD characterized in Proposition 2, 

b. the same pattern as in ID with re cp <∞  characterized in Proposition 3, 

c. the patterns illustrated in Figures 5,6 and 7, which are, respectively: 

c.1 The five phase sequence with characteristics ητδμλ ,,,, 00
(

 and θ~ , satisfying the equations (A2), 

(A20) and (A21), the optimal policy being given by  
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c.2 The six phase pattern with ητττμλ 2100 ,,ˆ,, ((
 and θ~ , satisfying the equations (A5), (A22) and (A23), 

the optimal policy being given by  
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and 

c.3 The five phase sequence with θττμλ
((,,ˆ,, 00  and θ~ , satisfying the equations (A5), (A22) and (A24), 

the optimal policy being given by  
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(A27)  

  

Increasing Demand: re cp >0  

Proposition 5: For ID with re cp >0  and for DD with re cp >∞  the optimal sequence is the same as in Proposition 

2 with yct instead of yc in equations (A8) and (A9). 

 

Decreasing Demand: re cp <0   

Proposition 6: For DD with re cp <0 , the optimal sequence is the same as in Proposition 1 with etp and cty  

substituted for ep  and cy , respectively. 

 

Decreasing Demand: ∞>> ere pcp 0  
The sequence is characterized by the values of the seven variables x~,,,,, 00 ηθδμλ

(
 and θ~ , the solution to the 

following system of seven equations: 

 

- the supply/cumulative demand balance for coal: 
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( ) ( ) [ ] ( ) ,~~,,ˆ 0

~

~ 0000 00 Xdzxxdzxdzx zzz =+−++ ∫∫∫
θ

τ

θ

δ

δ
λητμλμλ

(
(

  (A28) 

- continuity of the pollution stock at time δ given by (A2), 

- and the price path continuity equations: 

( ) ( )000 ,ˆ λμλ δδ pp (= ,   rcp =θ
(
(

,   re cp =η ,   ( ) ττ λ ~0~
~ pp =    and   ( ) .~

0~ rcp =λθ   (A29) 

 

Two different types of paths may be optimal for very low abatement costs. If abatement is costless, the price path 

would be pure Hotelling with as much abatement at any instant of time as necessary. Since there would be no 

restriction on the extraction rate, the rent must be higher than the optimal rent under a strictly positive abatement 

cost. 

 

The optimal rent in the zero cost of abatement case may be 0
'
0

λλ >  (see fig. 9), generating the Hotelling price path 

t
et ecp ρλ'

0
'~ += , crossing the curve etp  at a time at which ret cp = . Then for positive but very small abatement 

costs, the optimal price path is very close to the path '~
tp  with an extraction sequence as depicted in fig. 8. For higher 

abatement costs we may obtain the sequence just described (equations (A2), (A28) and (A29)). But an even higher 

scarcity rent in the costless abatement case, say '''
00

λλ > may generate a path t
et ecp ρλ ''

0
''~ +=  which crosses the 

etp  curve at a time when ret cp >  (see fig. 9). For positive but very low abatement costs, the optimal price path is 

now very close to the path ''~
tp , but of the type depicted in fig. 2, that is never decreasing. For higher abatement costs 

it is the price path described previously (equations (A2), (A28) and (A29)) 

 

If the abatement cost is very high, abatement is always too costly, hence the active abatement phase ⎟
⎠
⎞

⎢⎣
⎡ θδ

(
,  

disappears because the curve tp(  is located above the curve tp̂  over the time interval )ˆ,0[ θ during which rt cp <ˆ . 

Then the optimal sequence has five phases as shown in fig. 9. The six characteristics of the sequence, 

τηθμλ ~,,ˆ,, 00  and θ~  are the solution of the following system of six equations: 
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- the supply/cumulative demand balance for coal: 

( ) [ ] ( ) ,~ˆ~,ˆ 0

~

~ 0

ˆ

0 00 Xdzxxdzx zz =+−+ ∫∫
θ

τ

θ
λθτμλ    (A30) 

- continuity of the pollution stock at time θ̂  given by (A12), 

- and the price paths continuity equations: 

( ) rcp =00ˆ ,ˆ μλ
θ

,   re cp =η ,   ( )0~~
~ λττ ppe = ,   and   ( ) .~

0~ rcp =λθ   (A31) 

 

We summarize: 

Proposition 7: For DD with ∞>> ere pcp 0 : 

a. either there exists a critical value ac  of the abatement cost such that, depending upon whether aa cc ≥  or 

aa cc < ,  we have the sequence described in Proposition 6, 

b. or there exists a critical value ac  such that : 

b.1 For aa cc ≥ , the optimal sequence has five phases with characteristics τηθμλ ~,,ˆ,, 00  and θ~  

satisfying (A12), (A30) and (A31), and the optimal policy is : 
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b.2 For aa cc < , the optimal sequence has six phases with characteristics x~,,,,, 00 ηθδμλ
(

 and θ~ , 

satisfying (A2), (A28) and (A29), and the optimal policy is given by: 
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c. or lastly there exist two critical values of the abatement cost, '
ac  and ''

ac , '''
aa cc < , such that : 

c.1 For ''
aa cc ≥ , the optimal sequence is the same as in b.1, 

c.2 For ( )''' , aaa ccc ∈ , the optimal sequences is the same as in b.2, 

c.3 For '
aa cc ≤ , the optimal sequence is the same as in Proposition 2.b and (A15). 
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Appendix B 

 

B.1 Consider SD with re cp <  and assume first that there exist ττμλ ~,ˆ,, 00  and θ~  satisfying (A4)-(A6) and that 

the solution is given by (A7). It is easy to check that the non-negative functions atγ , etγ , rtγ , tμ−  and tν  defined 

below are such that the equations (2)-(12) are satisfied. Since coal is exhausted at time θ~ the transversality condition 

(11) is satisfied. It implies that 0lim =
+∞↑

tt
Z . Below we show that 0=tμ  for τ~≥t , so that the transversality 

condition (12) is satisfied. 
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B.2 Let there exist ττδμλ ~,,,, 00
(

 and θ~  such that (A1)-(A3) are satisfied and the solution is given by (A8). The 

same remarks as in B.1 suggest that the transversality conditions are satisfied. The values of the dual variables atγ , 

etγ , rtγ , tμ  and tν  for which  all the first order conditions (2)-(12) hold are now given by: 
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Fig. 1. Stationary Demand with re cp < : Only Coal is used at the Ceiling 
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Fig. 2. Stationary Demand with re cp > : Both Resources are used at the Ceiling 
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Fig. 3. Increasing Demand with re cp <∞ : Abatement Period at the Beginning of the Ceiling 

 

Fig. 4. Increasing Demand with re cp <∞ : Abatement Strictly in the Ceiling Interior 
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Fig. 5. Increasing Demand with ∞<< ere pcp 0 : Abatement at the Beginning of the Ceiling 
 

 

Fig. 6. Increasing Demand with ∞<< ere pcp 0 : Abatement Strictly in the Ceiling Interior 

τ(

rc

0
t

e0p

$

tp~tp(tp̂
etp

θ~ηδ τ̂

ae cc ζλ ++ 0

00 ζμλ −+ec

0λ+ec

2τ
(

rc

0
t

e0p

$

tp~tp(tp̂
etp

θ~ηδ 1τ
(

ae cc ζλ ++ 0

00 ζμλ −+ec

0λ+ec



 42

 

Fig. 7. Increasing Demand with ∞<< ere pcp 0 : Abatement at the End of the Ceiling 
 

 

Fig. 8. Decreasing Demand with re cp <0 : Only Coal is used at the Ceiling 
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Fig. 9. Decreasing Demand with ∞>> ere pcp 0 : Solar Energy is used during two Disjoint Time Periods 
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