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Abstract
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in a Hilbert space. The estimator is shown to be consistent and asymptotically
normal. The optimal estimator is obtained by minimizing the norm of the moment
conditions in the reproducing kernel Hilbert space associated with the covariance.
We show an easy way to calculate this estimator. Finally, we study properties of a
speci�cation test using overidentifying restrictions. Results of this paper are useful
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1 Introduction

In his seminal paper, Hansen (1982) has extended the method of moments to overidenti�ed

models, i.e. models in which the number of moment conditions is greater than the number

of parameters. This method is now very popular and its properties are well established

(see Hall (1993) or Ogaki (1993) for a survey).

The objective of this paper is to consider the extension of the Generalized Method of

Moments (GMM) procedure to the case of a continuum of moment conditions together

with a �nite dimensional parameter. We will �rst examine the most general case where

the moment conditions are characterized by a relation

EP0 (h (X; �0)) = 0 (1)

where X is a random element, generated by the probability P0; �0 is the true value of a

vector of parameters and h is a function valued in a (�nite or in�nite dimensional) Hilbert

space. Let (x1; :::; xn) be a sample of X (i.i.d. or with some dynamic dependence). The

expectation in (1) is replaced in the estimation procedure by the empirical mean but the

overidenti�cation requires that Equation (1) become a minimization

�̂n = argmin
�

Bn
 
1

n

nX
i=1

h
�
xi; �

�! (2)

where the norm is determined in the Hilbert space and Bn converges to a linear operator

B. Asymptotic properties of the estimator derived from (2) are given in Section 2.

The question of optimal GMM estimation, i.e. of the optimal choice of B; is the main

topic of this paper. This problem is addressed in a more speci�c case where the Hilbert

space is the set of square integrable functions of t 2 [0; T ]: In other words, (1) is replaced
by

EP0 (ht (X; �0)) = 0 8t 2 [0; T ] (3)

where ht is a real valued function.

First, we are going to recall the usual de�nition of the GMM estimator. If T = 1,

a discretization of the interval [0; 1] at the points t = 1
m
; 2
m
; � � � ; 1 yields m moment

conditions. The ht(x
i); t = 1

m
; 2
m
; � � � ; 1 are stacked into a m-vector h(xi). For a given

random, positive de�nite symmetric m �m matrix An, the GMM estimators associated
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with An are the solutions to the problem:

�̂n = argmin
�
[�hn (�)]

0An[�hn (�)]

where �hn is the m-vector with j-th element �h j
m
(�) = 1

n

Pn
i=1 h j

m
(xi; �) :

Now assume that the full continuum of moment is available. The empirical counterpart

of (2) de�nes the following GMM estimator

�̂n = argmin
�

Z T

0

Z T

0

�ht (�) an(t; s)�hs (�) dt ds (4)

where �ht (�) =
1
n

Pn
i=1 ht (x

i; �) and an (t; s) converges to a (t; s) characterized by:

kB'k2 =
Z T

0

Z T

0

' (s) a (t; s)' (t) ds dt (5)

(4) looks like the limit of the usual GMM quadratic form as the interval between obser-

vations goes to zero. The search for an optimal GMM estimator requires an analysis of

the covariance operator K de�ned by:

(Kf) (t) =

Z T

0

EP0 (hsht) f (s) ds (6)

Section 3 considers the estimation ofK obtained by the substitution of 1
n

Pn
i=1 hs (x

i; �)ht (x
i; �)

for EP0 (hsht). Let Kn be this estimator where � has been replaced by a �rst stage con-

sistent estimate. Optimal GMM estimation is based on the use of K�1 which is the

counterpart of the inverse of the covariance matrix in the �nite dimensional framework.

But K is a compact operator and is not invertible on the full reference space. We have to

use a regularized estimator of K�1, denoted (K�n
n )

�1. This operator is constructed in the

following way. We �rst estimate the n eigenvalues, �
(n)
j , and eigenfunctions, �

(n)
j , of Kn

by solving the functional equation Kn� = ��. The eigenvalues �
(n)
j are perturbed by the

smoothing parameter �n 2 IR+ and replaced by
�
�
(n)
j

�2
+�n

�
(n)
j

. Then, the operator (K�n
n )

�1

satis�es :

�
(K�n

n )
�1 f

�
(t) =

nX
j=1

�
(n)
j�

�
(n)
j

�2
+ �n

�
f; �

(n)
j

�
�
(n)
j (t)

where ( :; : ) is the usual inner product between functions de�ned on [0; T ]. De�nitions

and properties of this estimator are studied in Section 4.
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The optimal GMM estimator satis�es the following condition

�̂n = argmin
�

nX
j=1

�
(n)
j�

�
(n)
j

�2
+ �n

�
�
(n)
j ;
�h (�)

�2
Section 5 establishes its consistency and

p
n�asymptotic normality.

Section 6 extends to the continuous case Hansen's test for overidentifying restrictions.

We give an interpretation of the speed of convergence of this test in terms of an implicit

number of principal components used in �nite samples.

A series of examples are analyzed in Section 7. These examples are oriented towards

three basic types of results. The �rst question is the relation between optimal GMM and

maximum likelihood estimation. It is natural that the e�ciency gap between these two

procedures vanishes when the number of moment conditions increases and this property

is veri�ed in some i.i.d. models, in counting processes and in some dynamic regression

models. This suggests that GMM is an interesting alternative to MLE when one does not

want to make distributional assumptions, for instance. Second, we consider a class of

examples for which continuous GMM provides an e�cient estimation method: models for

which conditional moment restrictions are satis�ed and scalar di�usion models. When the

e�cient instrument is unknown, one way to approach Chamberlain's e�ciency bound is to

use an in�nity of moments. This paper develops the tools to implement such an approach.

The third type of problem is related to tests of conditional moment restrictions. Methods

suggested in this paper permit one to construct speci�cation tests that have power against

any �xed alternative to the null hypothesis. However, these tests will not have power

against 1=
p
n local alternatives.

As illustrated by these examples continuous GMM estimation covers both cases in

which t represents the time index (inference on stochastic processes observed continuously)

and cases in which t is a more general index of moment conditions.

In Section 8, some concluding remarks are made. The basic de�nitions and properties

of operators are recalled in Appendix A. Proofs are in Appendix B.
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2 Consistency and asymptotic distribution of the GMM

estimator

The results of this section are not restricted to a particular indexation of the moment

conditions and hold under fairly general conditions. Let X be a random element (r.e.)

de�ned on a complete probability space (
;F ; P0) that takes its values in (S;S). Let H
be an Hilbert space with the inner product (.,.) that de�nes a norm k : k.
Assumption 1: The observed data fx1; :::; xng are independent realizations of the

stochastic process X.

Note that independence is not crucial and we shall discuss how to relax it later on.

Assumption 2: Let h be a function on S � � that takes its values in H where � is

a compact subset of IRq: h is a continuous function of �.

Assumption 3: h is integrable with respect to P0 for any � and the equation

EP0(h(X; �)) = 0

has a unique solution �0 which is an interior point of �.

Assumption 4: Let B be a nonrandom bounded linear operator de�ned onD(B) � H
valued in H. B does not depend on � but may depend on �0. E

P0(h(X; �)) 2 D(B); 8�.
Assumption 5: Let N(B) denote the null space of B; N(B) = ff 2 HjBf = 0g. We

assume that EP0(h(X; �)) 2 N(B) implies EP0(h(X; �)) = 0.

Remark 1. Assumption 5 is an identi�cation condition implied in particular by the

condition N(B) = f0g: In the �nite dimensional case, this condition reduces to a full rank
assumption on the weighting matrix B0B and is therefore natural. In the general case

and as illustrated in the following examples, N(B) = f0g is rarely satis�ed and hence is
replaced by Assumption 5:

The following examples are meant to illustrate Assumption 5. Assume that ht(Xt; �) =

Xt� �F (t) for any given di�erentiable function F; EP0(ht) = (�0� �)F (t). First consider
the operator B : (Bf) (t) = t

R T
0
f (s) ds: B is a bounded linear operator and N(B) =n

f j
R T
0
f (s) ds = 0

o
. Assumption 5 is satis�ed ,

R T
0
F (s) ds 6= 0: Consider now B a

di�erential operator Bf = df
dt
(:): B is a linear operator that is not bounded but the

example is useful since the optimal choice of B (discussed in Section 5) is not bounded.

N(B) is the set of constant functions. Then, Assumption 5 is satis�ed , F (t) is not a

constant function.
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Assumption 6: Let Bn be a sequence of random bounded linear operators. Bn :

D(Bn) � H ! H. Let �hn(�) =
1
n
�h(xi; �). We assume that �hn(�) 2 D(Bn); 8� and that

Qn =k Bn�hn(�) k is a continuous function of �.
Assumption 7: Qn ! Q =k BEP0(h(X; �)) k almost surely uniformly on �.
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De�nition 1 The (continuous) GMM estimators �̂n associated with Bn are de�ned by

�̂n = argmin
�
Qn

Theorem 1 Under Assumptions 1 to 7, the GMM estimator associated with Bn converges

to �0 almost surely.

Proof. The result follows from Theorem 3.4 of White (1994).

This framework encompasses at the same time GMM with a �nite number of moment

conditions and with a continuum of moment conditions.

i) In the case of J real moment conditions, H is taken equal to IRJ provided with the

usual Hilbert space structure so that B and Bn are J � J matrices.

ii) If the structural model speci�es J moment conditions at m dates ft1; :::tmg, H
becomes IRJm and the analysis reduces to the previous case.

iii) In the case of a univariate moment condition indexed by t 2 [0; T ]; H is now equal

to the Hilbert space of square integrable functions with respect to a given measure

which can be chosen equal to the Lebesgue measure. Let L2[0; T ] be this space, Bn

(and B) are linear operators and An = B�nBn (where B
�
n is the adjoint of Bn) is

de�ned through a kernel an(t; s) : (Anf)(t) =
R T
0
an(t; s)f(s)ds.

iv) Finally in presence of J moment conditions indexed by t 2 [0; T ]; H will be taken

equal to (L2[0; T ])J . An element of H is a vector (fj(t))j=1;:::;J of square integrable

functions. Let M be a real-valued positive de�nite symmetric J � J-matrix with
principal element mjk. We de�ne a norm by

kfk =
�Z T

0

f 0 (t)Mf (t) dt

�1=2
=

" X
j;k=1;:::;J

mjk

Z T

0

fj (t) fk (t) dt

#1=2
:

Notice that kfk 2 IR and that the usual L2-norm corresponds to a choice ofM = IJ ,

the identity matrix. Assume that B is an integral operator satisfying

(Bf) (t) =

 
JX
l=1

Z T

0

bjl (t; s) fl (s) ds

!
j=1;:::;J

:
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Hence we have

kBfk2 =
X

j;k=1;:::;J

mjk

Z T

0

 
JX
l=1

Z T

0

bjl (t; s) fl (s) ds

! 
JX
l0=1

Z T

0

bkl
0
(t; u) fl0 (u) du

!
dt

=
X

j;k=1;:::;J

mjk

Z T

0

ajk (s; u) fj (s) fk (u) dsdu

with

ajk (s; u) =
X

l;l0=1;:::;J

Z T

0

bjl (t; s) bkl
0
(t; u) dt:

Equivalently kBfk2 = (Bf;Bf) = (f;B�Bf) = (f; Af) where

(Af) (t) =

 
JX
l=1

Z 1

0

ajl (t; s) fl (s) ds

!
j=1;:::;J

:

In order to obtain the asymptotic distribution of our estimator, it is necessary to

add some extra assumptions. First we de�ne some notation. Let f = (f1; :::; fp) and

g = (g1; :::; gq) be elements of H
p and Hq respectively. We denote by (f; g) the p � q

matrix of principal elements (fj; gk) (j = 1; :::; p; k = 1; :::; q) : Using this notation, (f; f)

is a p� p matrix which will be denoted by kfk2 :

Assumption 8: h is di�erentiable1 with respect to � = (�j)j=1;:::;q;
@hn
@�j

2 D(Bn); 8j

and @
@�j
EP0(h(X; �)) = EP0

�
@h
@�j
(X; �)

�
2 D(B); 8j.

Moreover the q�q�matrix
�
BEP0

�
@h
@�0 (X; �)

�
; BEP0

�
@h
@�0 (X; �)

��
=k BEP0 @h

@�0 (X; �) k
2

is positive de�nite and symmetric.

Assumption 9: The inner product satis�es the following di�erentiation rule

@

@�0
(u(�); v(�)) =

�
@

@�0
u(�); v(�)

�
+

�
u(�);

@

@�0
v(�)

�
and B and Bn commute with the di�erential operator:

@

@�0
[Bu(�)] = B

�
@

@�0
u(�)

�
:

De�ne k B k= supkfk�1 k Bf k.
1We consider a function f (�) from IRq to H and di�erentiability means Frechet di�erentiability. The

di�erential in � is a linear function from IRq to H which can be written df�(�) =
Pq

j=1
@f
@�j
(�)�j . Let

@f
@�

denote the vector
�
@f
@�j

�
j=1;:::q

of elements of H.
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Assumption 10: k Bn �B k! 0 in probability.

Assumption 11:
p
n�hn(�0)! Y � N (0; K) in distribution onH as n goes to in�nity,

where N is the Gaussian random element of H which has a zero mean and a covariance

operator K. Y 2 D(B) with probability 1.

Remark 2. Assumption 11 involves a functional convergence and is stronger than the

asymptotic normality of
p
n
�
�hnt1 ; :::;

�hntp
�
to a normal vector (where �hnt =

1
n

Pn
i=1 ht (x

i; �))

for any �nite sequence t1; t2, ...,tp (see Billingsley, 1968): Such a functional convergence

requires a topological structure of the functional space (like Skohorod topology in the

case of right continuous distribution functions) which is here the Hilbert structure (see

Chen-White, 1998). Note that we directly assume asymptotic normality. An alternative

approach would be to specify assumptions on the data generating process (ergodicity,

mixing, ...) and on the function h in order to derive, through a functional central limit

theorem, the result given in Assumption 11.

Assumptions 10 and 11 imply that
p
nBn�hn(�0)! Z � N (0; BKB�). This result can

be found in Corollary 5.2 of Chen-White (1992).

Remark 3. A summary of de�nitions and results for H-valued r.e. can be found in

Chen-White (1998). The covariance operator K : H ! H associated with the H-valued

r.e. Y is de�ned as

Kf = E [(Y � E (Y ) ; f) [Y � E (Y )]]

where (:; :) corresponds to the inner product in H. In the particular case where H =

L2 [0; T ], K satis�es

(Kf) (t) =

Z T

0

E (YtYs) f (s) ds

for f 2 L2 [0; T ]. An H-valued r.e. Y has a Gaussian distribution on H if for all f 2 H,
the real valued random variable (Y; f) has a Gaussian distribution on IR:

Theorem 2 Under Assumptions 1 to 11, the asymptotic distribution of �̂n is given by

p
n(�̂n � �0)

n!1�! N (0; V )

with

V =

BEP0 @h@�0 (X; �0)
�2�BEP0 @h@�0 (X; �0); (BKB�)BEP0 @h@�0 (X; �0)

�BEP0 @h@�0 (X; �0)
�2 :
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Remark 4. If B is chosen such that BKB� is equal to the identity operator, V

reduces to
BEP0 @h

@�0 (X; �)
�2 : By analogy with the �nite dimensional case, this should

correspond to the estimator with minimal variance. This optimality result will be proved

in Section 5. But, the proof of Theorem 2 will be di�erent in that case because a normal

N (0; I) is not well de�ned in a Hilbert space since the operator identity is not a nuclear
operator (the sum of its eigenvalues is in�nite). Intuitively, BKB� equals the identity if

B is chosen equal to K� 1
2 . This choice is elementary in the �nite dimensional case (using

if necessary the generalized inverse of a matrix) but requires some care if H is a functional

space.

Remark 5. The hypothesis of independence between individuals is not crucial for

the proofs as long as a law of large numbers and a central limit theorem are guaranteed.

Di�erent types of dependence between individuals can be considered (see Davidson (1994))

so that we have:
1p
n

nX
i=1

h(xi)! N (0;
+1X
l=�1

EP0(h(X i)h(X i�l))

The results of Theorems 1 and 2 will be still valid. In Theorem 2, the kernel of the covari-

ance operator that was equal to EPo(hths) becomes
P+1

l=�1E
P0(ht(X

i)hs(X
i�l)) which

can be considered as a function of t and s: k(t; s). Then the choice of the optimal weight-

ing function requires as before inverting the operator K: f !
R T
0
k(t; s)f(s)ds. Since

the covariance is usually not analytically computable, it raises the problem of its estima-

tion. Several authors have proposed consistent positive de�nite estimators of covariance

matrices (Newey-West (1987), Andrews (1991)) for the �nite dimensional case.

3 Estimation of the covariance operator K

From now on, the reference space is H = L2[0; T ] the space of all square-integrable

functions de�ned on [0; T ]. The basic de�nitions and properties of operators are given in

Appendix A. In this section, we �rst explain how to estimate the covariance operator K,

as well as its eigenvalues and eigenfunctions. Next, we give the asymptotic distribution

of the estimators of the eigenvalues of K.

Consider the covariance operator with kernel:

k (t; s) = EP0 (ht (X; �)hs (X; �)) � EP0 (k (X; t; s)) :

Assumption 12: The covariance kernel k(t; s) is an L2 kernel.
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Assumption 12 insures that K is a compact Hilbert-Schmidt operator on L2 [0; T ] : In

addition, as the kernel is symmetric, the operator is self-adjoint.

We still assume that (x1; :::; xn) is an i.i.d. sample of X. Therefore, it is natural to

estimate K by Kn the integral operator

(Knf) (t) =

Z T

0

kn (t; s) f (s) dtds

with kernel

kn (t; s) =
1

n

nX
i=1

k
�
xi; t; s

�
=
1

n

nX
i=1

ht
�
xi; �0

�
hs
�
xi; �0

�
Let �̂1n be a n

1=2�consistent �rst step estimate of �0 such that �̂1n� �0 is Op (1=
p
n) : If

hit denotes ht(x
i; �̂1n); our estimate satis�es :

(Knf) (t) =
1

n

nX
i=1

hit

Z T

0

hisf(s) ds

The operator Kn has a degenerate kernel, and therefore, contrary to K, has a �nite

dimensional closed range. This space R (Kn) is the space spanned by fhitgi=1;:::;n. The
number of its eigenvalues and eigenfunctions is �nite and they can be computed by solving

a linear system. Let �(n) and �(n) denote an eigenfunction and eigenvalue of Kn. �
(n)

necessarily has the form 1
n

Pn
i=1 �ih

i
t, and the equation to solve becomes:

1

n

nX
i=1

hit

h 1
n

nX
j=1

�j

Z T

0

hjsh
i
s ds
i
= �(n)

1

n

nX
i=1

�ih
i
t:

�i, i = 1; :::n and �
(n) are solutions of the system of n equations:

1

n

nX
j=1

�jcij = �
(n)�i; with cij =

Z T

0

hjsh
i
s ds; i = 1; :::; n:

The solutions � = [�1; :::; �n]
0 and � are the eigenvectors and eigenvalues, respectively,

of the n � n matrix C of elements 1
n
cij. Let us denote f�j; �(n)j g, j = 1; :::; n, the set of

eigenvectors and eigenvalues of C. Hence, the eigenfunctions of Kn are �
(n)
j (t) =

1
n
ht�

j

where ht = [h
1
t ; h

2
t ; :::; h

n
t ] and its eigenvalues are �

(n)
j . From now on, �

(n)
j will denote the

orthonormalized eigenfunctions associated with the eigenvalues, �
(n)
j , ranked in decreasing

order.

In the following, we give the asymptotic distribution of the estimators of the eigenval-

ues assuming that ht (x
i; �0) is known, that is no �rst step estimator is used.

Assumption 13: E khk4 <1:
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Theorem 3 Under Assumptions 1 and 13, we have

p
n
�
�
(n)
j � �j

�
! N

�
0; �2j

�
with �2j = var

�
(h; �j)

2� :
When h is normal, �2j = 2�

2
j :This result, in the normal case, can be found in Dauxois

et al. (1982). We are now concerned with the convergence of the Hilbert-Schmidt norm,

that is, the convergence of kKnk2HS =
P1

j=1

�
�
(n)
j

�2
=

Z T

0

Z T

0

kn (t; s)
2 dtds to kKk2HS =P1

j=1 (�j)
2 =

Z T

0

Z T

0

k (t; s)2 dtds:

Theorem 4 Under Assumptions 1 and 13, we have

(i) kKn �Kk = Op
�
1p
n

�

(ii)
p
n

 1X
j=1

�
�
(n)
j

�2
�

1X
j=1

(�j)
2

!
! N

�
0; � 2

�
with � 2 = 4var

�Z T

0

Z T

0

k (t; s) k (X; t; s) dtds

�
:

Using a Taylor expansion, it can be shown that the n1=2�speed of convergence and
asymptotic normality obtained in Theorems 3 and 4 remain valid if �0 is replaced by

a n1=2�consistent �rst step estimate �̂1n provided that k (X; t; s) is di�erentiable with
respect to � (Assumptions 2 and 8.) However, the asymptotic variances, �2j and �

2; will

be di�erent.

4 Properties and estimation of the inverse to K

4.1 Existence of the inverse to K

The choice of the optimal estimator is related to the inverse of the covariance operator

K. Inverting K is equivalent to �nding the solution � to a Fredholm equation of the

�rst kind

K� = f (7)
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for a given f 2 L2[0; T ]. This equation is typically an ill-posed problem in contrast to

the well-posed problems. An equation is well-posed if it has a solution �, not more than

one for each f; and this unique solution depends continuously on f . In other words, �

is stable with respect to small changes of f . The three conditions: existence, uniqueness

and stability of the solution are not satis�ed in the case of a Fredholm integral equation

of the �rst kind. This problem is addressed in detail in Groetsch (1993). The aim of this

subsection is to determine the subset of L2[0; T ]; for which a solution to (7) exists.

Lemma 5 (Picard's criterion) The following conditions are necessary and su�cient

for a solution of (7) to exist: (i) f 2 R(K); the closure of R (K), and (ii)
1X
j=1

(f; �j)
2

�2j
<1:

Then, any function of the form

� =
1X
j=1

(f; �j)

�j
�j + '

where ' 2 N(K) is a solution of (7).

Note that R(K) is equal to N(K)? since K is self-adjoint. We see clearly that a

solution exists only for a restricted class of functions f and if it exists, it is unique only

if N(K) = f0g. To enlarge the class of functions for which a type of a \generalized"
solution � exists, we consider a least squares solution.

De�nition 2 A function � 2 L2[0; T ] is called the least squares solution of (7) for a
given f 2 L2[0; T ] if

k K�� f k= inffk Ku� f k: u 2 L2[0; T ]g:

A least squares solution exists if and only if f lies in the dense subspace R(K)+N(K)

of L2[0; T ]. Moreover, there is a unique least squares solution of smallest norm.

De�nition 3 The mapping, denoted K�1, which associates with a given f 2 R(K) +
N(K) the unique least squares solution having smallest norm, is called Moore-Penrose

generalized inverse of K and satis�es

K�1f =
1X
j=1

(f; �j)

�j
�j:

12



From the expression of K�1f above, we see that the Moore-Penrose inverse operator

is not bounded (because, in general, R(K) is not closed) and that the solution K�1f is

therefore not continuous in f . Even if we have enlarged the class of possible functions f ,

the existence of K�1f is not guaranteed. While, in discrete time, the optimal weighting

matrix is always computable, here K does not admit a generalized inverse over the entire

Hilbert space L2[0; T ]. To illustrate this point, we will consider a speci�c compact integral

operator.

Example 1. Let Wt be a scalar Brownian motion on [0; 1]. Its covariance kernel is

given by k (t; s) = min (t; s) � t ^ s: Consider the covariance operator associated with k

Kf (t) =

Z 1

0

(t ^ s) f (s) ds:

In this simple case, we can determine explicitly the inverse operator by solving the equa-

tion Kg = f using two successive di�erentiations. The inverse operator to K is a second

order di�erential operator, Lf = �f 00; with domain D(K�1) = ff 2 L2[0; 1] j f is twice
di�erentiable, f(0) = 0; f 0(1) = 0g. The eigenvalues, �j; and eigenfunctions, �j; of K are

solutions of
R 1
0
(t ^ s) �j(s)ds = �j�j(t) ,

R t
0
s �j(s)ds +

R 1
t
t �j(s)ds = �j�j(t): Using

two successive di�erentiations, we see that �j is solution of a second order di�erential

equation, �j(t) = ��j�00j (t); with boundary conditions �j(0) = 0 and �0j(1) = 0: Hence,
the set of �j(t) =

p
2 sin(�jt

2
), associated with the eigenvalue, �j =

4
�2j2

; j = 1; 3; 5; :::,

constitutes a set of orthonormal eigenfunctions. We can see that f (t) = t does not satisfy

Picard's criterion, while f (t) = 2t� t2 does.

Picard's criterion is therefore rather restrictive. In some cases, we need only that f

belongs to the domain of K� 1
2 instead of the domain of K�1. The former one is larger

than the latter. Following Wahba (1973) (see also Nashed and Wahba (1974)), we may

de�ne the square root K� 1
2 of K�1 by

K� 1
2f =

1X
j=1

(f; �j)p
�j

�j

with the convention 0=0 = 0. The domain of K� 1
2 is the set:

D(K� 1
2 ) = ff : f 2 L2[0; T ];

1X
j=1

(f; �j)
2

�j
<1g

Interestingly D(K� 1
2 ) coincides with the reproducing kernel Hilbert space (RKHS) asso-

ciated with K (see de�nition in Appendix A.)
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Proposition 6 (Nashed-Wahba, 1974) Let k be a nonnegative de�nite kernel and

f�jg ; f�jg be the eigenvalues and orthonormalized eigenfunctions of K: Then,

H(K) = ff : f 2 L2[0; T ];
1X
j=1

(f; �j)
2

�j
<1g

is the RKHS with kernel k: The inner product of H(K) is given by

(f; g)K =
1X
j=1

(f; �j)(g; �j)

�j
=
�
K� 1

2f;K� 1
2 g
�
=
�
f;K�1g

�
for all f; g 2 H(K):

We use the following notation k K� 1
2f k=k f kK where k : kK is the norm in H(K)

associated with (:; :)K . The domain of K� 1
2 is H(K). Following Nashed and Wahba

(1974), this domain is extended to H(K) + H(K)? using the convention that 1=p�j is
equal to zero if �j is equal to zero.

4.2 Estimation of K� 1
2

Being unbounded, the operator K� 1
2 must be handled with caution. Indeed, the solution

of the equation Kg = f is not stable for small variation of f; which can have dramatic

consequences since f will be estimated. To guarantee the stability of the solution, we are

going to use the Tikhonov method of regularization, see Groetsch (1993). The idea is to

replace the operator K by some nearby operator which has a bounded inverse. For � > 0;

the equation �
K2 + �I

�
g = Kf (8)

has a unique solution for each f 2 L2[0; T ]. Moreover, the solution depends continuously
on f since the operator (K2 + �I) has a bounded inverse. The Tikhonov approximation

of the generalized inverse to K, K�1, is given by

(K�)�1 =
�
K2 + �I

��1
K:

Equation (8) is also known as the solution to the Ridge regression problem (see, eg.,

Golub, Health, and Wahba, 1979):

min
g
kKg � fk2 + � kgk2 :

14



The regularized inverse permits the following decomposition:

(K�
n )
� 1
2 =

nX
j=1

q
�
(n)
jq

�
(n)2
j + �

�
f; �

(n)
j

�
�
(n)
j :

Clearly the choice of � is crucial. If � is too large the approximate solution (K�
n )
� 1
2f will

be far away from K� 1
2f and if � is too small the approximate solution will be unstable.

Therefore, � will be allowed to converge to zero at a certain rate given as a function of

the sample size n and will be denoted �n in the following. Hence the GMM objective

function to minimize is

k (K�n
n )

� 1
2h (�) k2=

nX
j=1

�
(n)
j

�
(n)2
j + �n

�
h (�) ; �

(n)
j

�2
�
h (�)2

K�n
n
: (9)

where k:k2K�n
n
denotes the norm in the RKHS associated withK�n

n : The moment conditions

ht intervene only through their inner product with �j (t) : In principal component analysis,

f�jg are called principal components and represent orthogonal directions that summarize
the information available in the moments ht:As the �j are ranked in decreasing order, �1 is

the most informative component, �2 is the second one, etc. The regularization parameter

�n is used to discard the least informative principal components, that is the one associated

with the smallest eigenvalues. In discrete GMM, it is well-known that the use of too many

moments tends to render the �nite-sample performance poor. Here, we circumvent this

problem by using the regularized method. An alternative approach would be to truncate

the sum in (9), that is, to sum up to a number mn < n indexed by the sample size n:

The truncation is used e.g. by DeJong-Bierens (1994). This point will be illustrated in

Remark 12 and Example 7.4.

The following theorem gives some hints on the acceptable rates of �n: But, it does not

actually provide a rule to select �n in practice:Many statistical papers present cross-

validation methods for choosing the regularization parameter, see, e.g., Golub et al.

(1979), Groetsch (1993), Hansen P.C. (1992). This issue will not be discussed further.

Theorem 7 Consider f and fn such that kfn � fk = Op
�

1p
n

�
.

(i) Assume that f 2 H(K) +H(K)?: Then(K�n
n )

� 1
2 fn �K� 1

2f
! 0
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in probability as n and n�
3
2
n go to in�nity and �n goes to zero.

(ii) Assume that f 2 D(K�1):Then(K�n
n )

�1 fn �K�1f
! 0

in probability as n and n�3n go to in�nity and �n goes to zero.

5 Optimal estimator

5.1 Asymptotic results

We can show that choosing B�nn = (K�n
n )

� 1
2 leads to the estimator of minimum variance.

In such a case, the criterion to minimize is given by (9). Assumptions 4, 8 and 11 become:

Assumption 4': EP0 (h(X; �)) 2 H(K) +H(K)? for any � 2 �.
Assumption 8': h(x; �) is di�erentiable with respect to � = (�1; :::; �q) andE

P0

�
@h(X;�)
@�j

�
=

@
@�j
EP0 (h (X; �)) 2 D(K�1) for any � 2 �.
Moreover the matrix

�
K�1=2EP0

�
@h
@�0 (X; �)

�
; K�1=2EP0

�
@h
@�0 (X; �)

��
is positive de�nite

and symmetric.

Remark 6. Since (K�n
n )

�1 has closed range, @
�hn
@�
belongs necessarily to D

�
(K�n

n )
�1� :

Assumption 11':
p
nhn(�0) converges in law to Y as n goes to in�nity, where Y �

N (0; K) in L2[0; T ].

Assumption 14:
�hn (�)� EP0h (�) = Op � 1p

n

�
uniformly in � on �:@�hn@� (�)� EP0 @h@� (�) = Op � 1p

n

�
uniformly in � on �.

Theorem 7 and Assumption 14 imply(K�n
n )

� 1
2 �hn(�)�K� 1

2EP0 (h(�))
! 0 in probability,

uniformly in �; as n and n�
3
2
n go to in�nity and �n goes to zero.(K�n

n )
�1 @�hn
@�0

(�)�K�1EP0
@h

@�0
(�)

! 0 in probability,

uniformly in �; as n and n�3n go to in�nity and �n goes to zero. These are the counterparts

to Assumptions 7 and 10.
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Theorem 8 Under Assumptions 1, 2, 3, 4', 5, 6, 8', 9, 11', 12, 13, and 14, the estimator

�̂n = argmin
�

�h (�)2
K�n
n

is the optimal estimator. It satis�es

�̂n ! �0 in probability,

as n and n�
3
2
n go to in�nity and �n goes to zero and

p
n(�̂n � �0)

n!1�! N
 
0;

EP0 � @h@�0
��2

K

!

as n and n�3n go to in�nity and �n goes to zero.

Remark 7. This result is analogous to that obtained in the discrete case where

the optimal weighting matrix is the inverse of the covariance matrix. But whereas the

generalized inverse of a matrix always exists, it is not the same for an operator. For

consistency of the optimal estimator, we need that EP0h belongs to H(K) +H(K)? and
for asymptotic normality, we need that EP0 @h(X;�)

@�j
belongs to D(K�1): This should restrict

the �eld of possible applications. Nevertheless, Assumptions 4' and 8' are not as restrictive

as one might think, see Subsection 7.1.

Remark 8. There are important contributions on the problem of estimating a pa-

rameter vector whose dimension increases with the sample size. This gives rise to an

in�nity of moment conditions. Huber (1973), Portnoy (1985), and more recently Koenker-

Machado (1997) study the general linear model

yi = x
0
i� + ui, i = 1; 2; :::; n: (10)

where ui are i.i.d. with mean zero, xi and � are pn-dimensional vectors. The condition

E [xi (yi � x0i�)] = 0 de�nes pn moment conditions. The basic question concerns the

asymptotic behavior of the OLS estimator �̂ of �: This problem is characterized by two

facts: (i) the dimension, pn, of � increases to in�nity, (ii) � can be identi�ed only from

the pn moment conditions. On the contrary, in this paper, we consider a parameter

vector � that has a �xed dimension (independent of n). This is the reason why we get
p
n�consistency.
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5.2 E�ciency

Now we address the following question: Is it more e�cient to use a continuum of moment

conditions instead of a discrete subsample of moment conditions? The answer is yes. Let

H = L2[0; 1] and �̂CGMM
n the GMM estimator associated with a continuum of moment

conditions ht, t 2 [0; 1]. By Theorem 8, its asymptotic variance is
E�0( @h

@�0 )
�2
K
:

Let HN be a Hilbert space of vectors of dimension 2
N . Let �̂DGMM

n denote the GMM

estimator associated with 2N moment conditions corresponding to a discretization of the

interval [0; 1]: h t

2N
, t = 1; :::2N . It is well known that in that case, the optimal weighting

matrix is the inverse of KN ; a 2N � 2N matrix of general element E�0(h t

2N
; h s

2N
), for

t; s = 1; :::; 2N . Then, the variance-covariance matrix of the estimator is equal to

� =

�
E�0

�
@h0

@�

��
KN
��1

E�0
�
@h

@�0

���1
;

where in this instance h is simply a vector of moment conditions. To be consistent with

our notation, � should be denoted k E�0( @h
@�0 ) k

�2
KN . A result of Parzen (1959, p.316-18)

states that for any function f 2 H(K); then

k f kK � k f kKN+1 � k f kKN and k f kKN
N!1�! k f kK :

It follows that the variance of �̂DGMM
n is always at least as large as that of �̂CGMM

n :

6 Testing overidentifying restrictions

Hansen (1982) proposed a speci�cation test obtained by replacing � by �̂n in the GMM

objective function. If the model is correctly speci�ed, all the moment conditions (including

the overidentifying restrictions) should be close to zero. Hansen shows that this test

converges to a Chi-square distribution with m � q degrees of freedom, the di�erence
between the number of restrictions tested, m; and the number of parameters to estimate q.

Here, since the number of restrictions is in�nite, this statistic diverges. But an appropriate

standardization leads to a statistic that is asymptotically normal.

De�ne

pn =

nX
j=1

�2j
�2j + �n

; qn = 2
nX
j=1

�4j�
�2j + �n

�2 ; zn = nX
j=1

�6j�
�2j + �n

�3 : (11)

Let us consider the following property:
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Liapunov's condition:

zn

q
3=2
n

! 0 as n!1: (LC)

Lemma 9 (a) - Assume K has an in�nite number of eigenvalues. Then Condition (LC)

is satis�ed for any �n converging to zero.

(b) - If, moreover, there are 0 <  < 1 and some positive constant c such that pn �
c��n as n goes to in�nity, then qn � d��n and zn � e��n as n goes to in�nity, where d

and e are some positive constants.

Example 2. If �j =
1
j
;8j = 1; 2; ::: and using the development in series of coth (�x),

we get
1X
j=1

�2j
�2j + �

=
1X
j=1

1

1 + �j2
=
�

2

1p
�
coth

�
�p
�

�
� 1
2

for a �xed �. It follows from Lemma 9 (b) that pn; qn, and zn diverge all at the same

speed given by 1p
�n
as n goes to in�nity:

Remark 9. When the number of eigenvalues of K is �nite (case where K is degener-

ate), some moments are redundant and the number of factors (in the sense of the principal

component analysis) is �nite. Then, there is no need to penalize and the objective func-

tion should converge to a Chi-square distribution like in �nite dimensional GMM. This

issue will not be investigated further.

Assumption 15: qn
p
�n !1 as n goes to in�nity.

Remark 10. Assumption 15 implies that the eigenvalues of K should not converge

to zero too fast. It limits the dependence between ht: The same type of requirement can

be found in DeJong-Bierens (1994) where some examples are provided. The Brownian

motion (see Example 1) will not satisfy this condition because the rate 1
j2
is too fast.

Theorem 10 Assume K is not degenerate. Under Assumptions 1, 2, 3, 4', 5, 6, 8', 9,

11', 12 to15, we have

�n =
k
p
n�hn

�
�̂
�
k2K�n

n
�p̂n

p
q̂n

n!1�! N (0; 1)

as �n goes to zero and n�
3
n goes to in�nity. p̂n and q̂n are the counterparts of pn and qn

where the �j have been replaced by their estimators �
(n)
j :
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Remark 11. A sketch of the proof is as follows. Let us replace in �n;
p
n�hn by its

limit Y � N (0; K) and �
(n)
j and �

(n)
j by the corresponding true values �j and �j. The

statistic �n becomes

~�n =

nX
j=1

�2j
�2j + �n

"
(Y; �j)

2

�j
� 1
#

"
nX
l=1

2�4l
(�2l + �n)

2

# 1
2

:

The random real elements
(Y;�j)p
�j
are i.i.d. N (0; 1). It follows immediately that the above

expression has a zero mean and a unit variance. The asymptotic normality is deduced

from the Lindeberg Feller theorem as shown in the appendix.

Remark 12. pn can be interpreted as the number of principal components (or eigen-

functions �j) that are really used in the estimation of �: Indeed, an intuitive argument is

the following. Since �n converges to zero; there is a l
� > 0 such for all j � l�,�2j = op (�n) :

Hence from l� on, the terms of the sum are negligible. If �n were zero, then pn = n. But

for �n > 0, pn < n. Assume that �j =
1
j
, j = 1; 2; ::: From Example 2, we know that

pn � �
2

1p
�n
: If �n satis�es the condition of Theorem 10, n�3n ! 1, then a su�cient

condition for the asymptotic normality of �n is pn = op

�
n
1
6

�
:

7 Examples

The �rst three examples illustrate the link between GMM and maximum likelihood esti-

mators (MLE). They actually show that, in some speci�c cases, the GMM estimator is

as e�cient as the MLE. This suggests that when the MLE is not available, the GMM

estimator is a good candidate. The �rst two examples assume that the data are observed

in continuous time whereas the third one assumes i.i.d. cross-sectional data. Subsection

7.4 shows how to use our method to get e�cient estimators and powerful tests in a cross-

sectional setting. Subsection 7.5 considers e�cient estimation of a scalar di�usion when

data are observed in discrete time.

7.1 Link between GMM and MLE: Example 1 (continued)

Consider the following model�
X i
t = F (t; �) + u

i
t EP0 (uit) = 0

X i
0 = 0; u

i
0 = 0

(12)
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where fuitg; i = 1; 2; :::; n are independent processes de�ned on t 2 [0; T ] and F is a

di�erentiable function of t and �. F satis�es F (0; �) = 0;8�. The moment conditions are
given by

ht(X
i; �) = X i

t � F (t; �):

First assume that uit = W
i
t whereW

i
t is a scalar Wiener process. Then k(t; s) = E

P0(W i
tW

i
s) =

t^ s. The RKHS H(K) consists of absolutely continuous functions f over [0; T ] such that
(Kutoyants (1984))

f(0) = 0; k f k2K=
Z T

0

[
d

dt
f(t)]2 dt <1:

Then, the objective function to minimize is given by

k h k2K=
Z T

0

h
0
(t)2 dt =

Z T

0

[X t � F (t; �)]02 dt

where X t =
1
n

Pn
i=1X

i
t and f

0 (t) = d
dt
f(t): �̂GMM

n is the solution ofZ T

0

@

@�
F 0(t; �)dX t �

Z T

0

@

@�
F 0(t; �)F 0(t; �) dt = 0: (13)

Now we want to compare this result with maximum likelihood estimation. Note that

Xt de�ned in (12) is the solution of the following stochastic di�erential equation:

dXt = F
0 (t; �) dt+ dWt (14)

Let �X and �W denote the measures corresponding to the process X and the Wiener

process W respectively. A necessary and su�cient condition for the equivalence of the

measures �X and �W is F 2 H(K), see Kutoyants (1984). Under this condition, one can
write the likelihood ratio (that is, the Radon-Nikodym derivative of �X with respect to

�W ) as
d�X
d�W

= exp

�Z T

0

F 0(t; �)dX t �
1

2

Z T

0

F 02(t; �) dt

�
:

As a result, �̂MLE
n is solution of (13) so that �̂MLE

n = �̂GMM
n : It means that we succeeded

in giving a GMM counterpart to the MLE in continuous time. The equivalence between

GMM and MLE in this setting is not surprising since in a Gaussian model, the �rst

moment summarizes all the information. (Here the variance is assumed to be known but

the result is not modi�ed if Wt is replaced by �Wt with an unknown positive parameter

�:)
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In the case where F (t; �) = t�; there is a su�cient statistic and we get �̂MLE
n =

�̂GMM
n =

�XT
T
: In this special case, GMM does not lead to using all the data but only the

last observations.

Finally if the distribution of the process fuitg is unknown, the GMM estimator in-

volves estimating the covariance k (t; s) from observations of n trajectories: If fuitg is
actually Gaussian, the GMM estimator will be as e�cient as the MLE estimator as n

goes to in�nity. For a sample size n, the estimation of K�1=2 requires the estimation of

n eigenfunctions and eigenvalues. The estimators of the �rst eigenfunctions and eigenval-

ues (in decreasing order) improve with the sample size. However, the estimation of the

last eigenvalues is pretty bad for any sample size. The penalization term �n is used to

discard the last eigenvalues/eigenfunctions. As discussed in Subsection 4.2, the smallest

eigenvalues correspond to the eigenfunctions that are the least informative. A few simu-

lations, not reported here, show that the continuous GMM delivers accurate estimators

of � even in small samples. However, the estimation of the variance of these estimators,

k @h=@� k�2
K�n
n
; is very sensitive to the choice of �n:

7.2 Optimal GMM and MLE: The parametric i.i.d. case

Let (xi)i=1;:::;n be an i.i.d. sample and f(x
ij�) (� 2 IRq) be the density of one observation.

For simplicity we assume xi 2 [0; T ] � IR and that all the usual regularity assumptions

for maximum likelihood estimation are satis�ed. (The result may be easily extended to

[0;+1) or (�1;+1):) The maximum likelihood estimator �̂MLE
n is then asymptotically

normal and its asymptotic variance matrix is I�1� where I� is the usual Fisher information

matrix.

Let F (tj�) be the c.d.f. associated with f(:j�) and F̂n is the empirical c.d.f. de�ned by
F̂n(t) =

1
n

Pn
i=1 1I(x

i � t). Intuitively, an estimator of � will be obtained by minimizing a
distance between F̂n (:) and F (:j�). Using our previous notation, this goal will be achieved
by choosing

ht(X; �) = 1I(X � t)� F (tj�)

which obviously satis�es EP0(ht(X; �0)) = 0 for any t 2 [0; T ]. Let �̂GMM
n be the optimal

GMM estimator. We want to show that the asymptotic variance of �̂GMM
n is also I�1� .

It is known that n�1=2
Pn

i=1 (1I(xi � t)� F (tj�)) converges to a Gaussian distribution
with a covariance operator characterized by the kernel:
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k(s; t) = F (s ^ t)� F (s)F (t):

Equivalently,
p
n(F̂n � F�1(tj�) � t) converges to a Brownian Bridge. From Theorem 8,

we deduce that the asymptotic variance of �̂GMM
n is J�1� where

J� =

 @@�EP0(h)
2
K

=

 @@�F (tj�)
2
K

:

Let us use a result given by Parzen (1970, page 30) (see references therein): If k(s; t) =

g(s) g(t) G(s ^ t); where g and G are continuously di�erentiable, and G(0) = 0; then:

k'k2K =
Z T

0

�
'(t)

g(t)

�02
1

G0(t)
dt

and '; di�erentiable, is an element of the RKHS if this expression is �nite. In our case

g(t) = 1 � F (tj�) and G(u) = F (uj�)
1�F (uj�) . Then, under some regularity conditions, namely

@F
@�
< 1 as t ! 0 and

�
@F
@�

�2 F
1�F ! 0 if t ! T; and after some manipulations, we get

J� = I�: It follows that �̂
GMM
n is as e�cient as the MLE.

7.3 Statistical inference for counting processes

Let N i
t be an i.i.d. sample of counting processes observed between 0 and T . Each N

i
t

satis�es N i
t =

X
p

1I(t � � ip) where (�
i
p)p is the increasing sequence of jump times of

the i-th process. For counting processes, a continuous time trajectory is fully described

by the knowledge of a �nite number of jump times. It is therefore natural to assume

continuous time observations. We assume that the model generating each N i
t is de�ned by

the following stochastic di�erential relation which characterizes a multiplicative intensity

model:

dN i
t = �t(�)Y

i
t dt+ dM

i
t : (15)

An introduction to stochastic calculus for counting processes and applications of (15)

can be found, e.g., in Karr (1986). Equation (15) summarizes the following properties:

The process N i
t has a stochastic intensity, rt(�) = lim

1
�t
P (N i

t+�t�N i
t = 1jF i

t ); where F i
t

denotes the information generated by the past of N i
t . This intensity is factorized into the

product �t(�)Y
i
t ; where �t(�) is a deterministic function depending on the parameter and
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identical for all the processes and Y it is a predictable observed random process (typically

function of the past of N i
t ) speci�c to each individual in the sample. This model does not

include explanatory variables and our approach would have to be extended in order to

cover this case.

In this model, the information matrix satis�es (Karr, Theorem 5.19):

I� =

Z T

0

( @�@� )
2

�
�tdt where �t = E

P0(Y it ):

The GMM estimator is characterized by the function

ht(N
i; �) = N i

t �
Z T

0

�s(�)Y
i
s ds

which satis�es the condition EP0 (ht (N
i; �0)) = 0.

We do not present here the practical implementation of GMM and optimal GMM and

we just show that the optimal GMM estimator has the same asymptotic variance as the

maximum likelihood estimator. The covariance kernel is given by

k(s; t) = EP0(M i
sM

i
t ) = E

P0(M i
s^tE(M

i
s_tjFs^t))

= EP0(M i
s^t

2
) = EP0(< M i

s^t >) =

Z s^t

0

�u(�)�udu:

From Theorem 8, the asymptotic variance of the optimal GMM estimator is equal to J�1�

where

J� =

 @@�EP0(h)
2
K

=

Z t

0

@�s(�)

@�
�sds

2
K
=

Z T

0

�
@�t(�)
@�
�t

�2
�t(�)�t

dt:

This last equality follows from Parzen (1970), see also Section 7.2, and proves that J� = I�:

7.4 Conditional moment restrictions

Assume that X = (Y; Z) be a random vector and

EP0 [� (Y; Z; �0) jZ] = 0 (16)

where � is a known function. Two problems are of interest: (i) estimate e�ciently �0; (ii)

test consistently the conditional moment restrictions. Equation (16) implies that for any

function g

EP0 [g (Z) � (Y; Z; �0)] = 0: (17)
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Chamberlain (1987) shows that the e�ciency bound for the estimation of �0 corresponds to

the GMM e�ciency bound. Moreover, he shows that by choosing a sequence of functions

fglg that is complete, one can come arbitrarily close to the e�ciency bound. He suggests
the set of moment conditions deduced from (17) by taking the family gl (Z) = Z l, l =

1; :::;mn: Newey (1990) discusses the choice of the number, mn, of instruments. He shows

that mn = op (
p
n) is a necessary condition to have consistency and

p
n� asymptotic

normality of the estimator.

Our paper provides an alternative way to approach Chamberlain's e�ciency bound.

Lemma 1 in Bierens (1990) establishes that if

EP0 [� (Y; Z; �0) exp (tZ)] = 0 for all t 2 I (18)

for some interval I � IR (except maybe a set of measure zero) then E [� (Y; Z; �0) jZ] = 0:
Moreover any interval I, even small, can be used. We can estimate � using the contin-

uum of moment conditions (18) indexed by t in I, this estimator is
p
n� consistent and

asymptotically normal and has a variance close to Chamberlain's e�ciency bound. The

main limitation of our paper is that we handle only the case with t 2 IR that is Z 2 IR.
The generalization to the case where Z 2 IRd; d > 1 is beyond the scope of this paper.
Now, we turn to the testing problem. In a series of papers, Bierens has proposed

tests of H0 : P fE [Y jZ] = f (Z; �0)g = 1 against H1 : P fE [Y jZ] = f (Z; �0)g < 1:Here
� (Y; Z; �0) = Y � f (Z; �0) : Bierens (1990) shows that a test based on (18) will be
consistent against all deviations from the null hypothesis. DeJong-Bierens (1994) de-

velop a test based on a sequence of functions fglg satisfying (17) where for instance
(g1 (x) ; g2 (x) ; :::; gl (x)) = (1; sin (x) ; sin (2x) ; cos (x) ; :::) with l = 1; 2; :::;mn wheremn !
1 as n ! 1. Their test is a speci�cation test using overidentifying restrictions �a la
Hansen similar to �n de�ned in Section 6. We can apply �n to the continuum of restric-

tions (18) indexed by t 2 I = [�3; 3] for instance. To be able to compare both approaches,
we follow DeJong-Bierens and replace � by ~�n the nonlinear least-square estimator of � in

the objective function instead of replacing � by �̂n. De�ne

�hn

�
t; ~�n

�
=
1

n

nX
i=1

�
�
yi; zi; ~�

�
exp

�
tzi
�

(19)

where xi = (y
i; zi) is an i.i.d. sample of X = (Y; Z) :
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Since ~�n is consistent and
p
n� asymptotically normal regardless of �n; we get

~�n =
k
p
n�hn

�
:; ~�n

�
k2K�

n
�p̂n

p
q̂n

n!1�! N (0; 1)

as n goes to in�nity, �n goes to zero, and n�
2
n goes to in�nity. The proof follows easily

from that of Theorem 10. Notice that �n is allowed to converge to zero faster than in

Theorem 10.

In the case where �j =
1
j
, DeJong-Bierens get the following condition on the rate

of increase of mn : mn = op

�
n
1
5

�
: By Remark 12 and under the requirement n�2n !

1, we get: pn = op

�
n
1
4

�
: Therefore, our rate is faster than that of DeJong-Bierens.

But this comparison is just illustrative because eigenvalues, �j =
1
j
; do not satisfy our

Assumption 15. pn will dictate the speed of convergence ~�n. Our test as well as that of

DeJong-Bierens has power against any �xed alternative but does not have power against
1p
n
local alternatives to H0 . The reason is that, as explained in DeJong-Bierens, \the

sequence m�1
n (or here �n) can be viewed as a sort of window width parameter present

in nonparametric regression". Hence, the small sample properties of ~�n might not be

satisfying.

7.5 E�cient estimation of a scalar di�usion model

Consider a scalar di�usion process

dxt = �(xt; �)dt+ �(xt; �)dWt (20)

where � and � are known functions of the parameter of interest �. Assume fxtg is
stationary and strong mixing on IR. fxtg is observed at discrete time-points t = 1; :::; T ,
and T goes to in�nity. Let A be the in�nitesimal generator for fxtg ; A can be represented
as (see Hansen-Scheinkman, 1995):

A� = ��0 + 1
2
�2�00:

Let D be the domain of A: One wants to estimate � using moment conditions proposed
by Hansen-Scheinkman (1995):

EP0 [A� (xt)] = 0; for all � 2 D

EP0 [� (xt)A� (xt+1)� � (xt+1)A� (xt)] = 0; for all � 2 D: (21)
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Both (21) and (21) might be necessary to the identi�cation of the model. Conley et al.

(1997, Appendix C) show that an e�cient choice of � in (21) is � = @ ln q=@�, where q is

the stationary distribution of fxtg: However, there is no result on the e�cient choice of
� in (21). We suggest to use as test functions, ��(x) = � (x=�) ; where � is the standard

normal cumulative function. The estimation of model (20) will be based on a continuum

of moment conditions:

h�(xt; xt+1) = ��(xt)A�� (xt+1)� �� (xt+1)A�� (xt)

where � > 0 belongs to a well-chosen interval I. The estimates based on a full interval will

be more e�cient than those based on a few values of �. Here fxtg are not independent,
see Remark 5.

8 Conclusions and directions for future research

We achieved our goal of providing a framework that encompasses both the case where

a discrete number of moment conditions are available and the case where a full interval

is available. However, the generalization to a continuum of moment conditions is not

as straightforward as expected. The determination of the optimal operator relies on

inverting a covariance operator. But while the generalized inverse of a matrix always

exists, the generalized inverse of a compact operator exists only for a subset of L2[0; T ],

the reproducing kernel Hilbert space (RKHS) with kernel the covariance between moment

conditions. We give an estimator of the covariance operator and suggest the use of the

method of regularization to guarantee the stability of the inverse.

There are numerous limitations to our analysis. We consider only cases where the index

parameter, t, belongs to IR:However, for many applications, t belongs to IRd; d > 1, see

Subsection 7.4. Extension to t 2 IRd should not be particularly di�cult. It would be
also of particular interest to examine the case where � is a function. Moment conditions

involving a function are frequent in constrained models. Fields of application include

auctions, instrumental variables, etc. However, this nonparametric setting will complicate

the proofs and alter the speed of convergence.
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Appendix A: De�nitions and properties of operators

This section summarizes useful results on operators. Most de�nitions and results reported

here can be found in Dunford and Schwartz (1963) or in Hochstadt (1973).

Let L2[0; T ] be the space of all square-integrable functions de�ned on the closed interval

[0; T ] that take on real values. L2[0; T ] with the inner product

(f; g) =

Z T

0

f(t)g(t) dt

forms a Hilbert space. We denote the norm by

kfk =
�Z T

0

f(t)2 dt

�1=2
The extension to (L2[0; T ])J is straightforward but we simplify the exposition by imposing

J = 1:

An operator K assigns to an element f in L2[0; T ] a new element Kf in L2[0; T ]. The

operator needs not be de�ned on the full space L2[0; T ] and in this case, its domain D (K)
must be determined (for instance the di�erential operator Kf = df

dt
is de�ned only for the

di�erentiable functions). Let N(K) be the nullspace of the K, N(K) = ff 2 L2[0; T ] j
Kf = 0g; and R(K) be the range of K; R(K) = ff j Kg = f; some g 2 L2[0; T ]g:

De�nition 4 The operator K is said to be linear if it satis�es

K (�f + �g) = �Kf + �Kg

for any scalars � and �, and any functions f and g in L2[0; T ].

An operator K is said to be bounded if for some constant M > 0, that may depend

on f; we have

kKfk �M kfk

for all f in L2[0; T ]: The greatest bound of all M is called the norm of K and denoted

kKk. Another way of de�ning kKk is by

kKk = sup
kfk�1

kKfk

An operator is continuous if and only if it is bounded.
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De�nition 5 Let K be a bounded linear operator on L2[0; T ]. Let ffng be an in�nite
uniformly bounded sequence in L2[0; T ]. K is said to be compact if from the sequence

fKfng one can extract a subsequence fKfnlg that is a Cauchy sequence.

De�nition 6 With K, we can associate the adjoint K� that is de�ned by

(Kf; g) = (f;K�g) :

An operator is said to be self-adjoint if K = K�:

De�nition 7 If for some �

K� = �� (22)

has solutions other than � = 0, we shall call � an eigenvalue of K and the solutions of

(22) eigenfunctions.

Lemma 11 Let K be a self-adjoint operator on L2[0; T ] then all eigenvalues of K are

real.

Lemma 12 Let K be a nonnegative de�nite operator, that is,

(Kf; f) � 0 for all f 2 L2[0; T ];

then all the eigenvalues of K are nonnegative.

Lemma 13 Let K be a compact, self-adjoint operator on L2[0; T ] then the set of its eigen-

values f�jg is countable and its eigenfunctions f�jg can be orthonormalized. Moreover,
any function f in L2[0; T ] can be represented as

f =

1X
j=1

(f; �j)�j + f0;

where f0 is a suitable element of the nullspace of K (Kf0 = 0). It follows that

Kf =
1X
j=1

�j (f; �j)�j;

where �j is repeated according to its order of multiplicity.

If moreover K is nonnegative, the eigenvalues can be ordered as a decreasing sequence

�1 � �2 � :::
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We consider an integral operator

Kf (t) =

Z T

0

k (t; s) f (s) ds;

where f 2 L2[0; T ] and its kernel k (t; s) : [0; T ]�[0; T ]! IR: Notice thatK is self-adjoint

if k is symmetric (k (t; s) = k (s; t)).

Lemma 14 Let k (t; s) be an L2 kernel, that is, k (t; s) satis�esZ T

0

Z T

0

k (t; s)2 dtds <1; (23)

then the associated integral operator K is a compact operator of L2[0; T ]:

Lemma 15 Let K be a compact self-adjoint integral operator with an L2 kernel k (t; s)

and f�jg the set of eigenvalues. ThenZ T

0

Z T

0

k (t; s)2 dtds =
1X
j=1

�2j :

Operators for which (23) holds are referred to as Hilbert-Schmidt operators. No-

tice that if k (t; s) is continuous on [0; T ] � [0; T ] ; then (23) is necessarily satis�ed. We
denote the Hilbert-Schmidt norm as

kKkHS =
 1X
j=1

�2j

!1=2
:

De�nition 8 (Parzen, 1970) Every symmetric nonnegative de�nite kernel k de�ning

an operator K possesses a unique reproducing kernel Hilbert space (RKHS) denoted

H(K) de�ned as follows:
(1) H(K) is a Hilbert space with inner product (:; :)K ;
(2) k(:; t) 2 H(K), 8 t 2 [0; T ],
(3) Reproducing property: (k(:; t); f)K = f(t), f 2 H(K); t 2 [0; T ].

9 Appendix B: Technical proofs

Proof of Theorem 2. A mean value expansion of hn(�̂n) about �0 gives

hn(�̂n) = hn(�0) +
@hn
@�0

(��)(�̂n � �0)
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where �� is on the line segment joining �̂n and �0. Di�erentiating the objective function

with respect to � yields to �
Bn
@hn
@�0

(�̂n); Bnhn(�̂n)

�
= 0

,
�
Bn
@hn
@�0

(�̂n); Bnfhn(�0) +
@hn
@�0

(��)(�̂n � �0)g
�
= 0

by the �rst order condition. Then by linearity of the operator, we obtain

(�̂n � �0) = �
�
Bn
@hn
@�0

(�̂n); Bn
@hn
@�0

(�)

��1�
Bn
@hn
@�0

(�̂n); Bnhn(�0)

�
Assumption 8 implies the invertibility of the �rst matrix for n large. Since �̂n

P�! �0 and

then ��
P�! �0, we have by Slutsky's Theorem and Assumption 11:

p
n(�̂n � �0) = �

�
BEP0

@h

@�0
(�0); BE

P0
@h

@�0
(�0)

��1�
BE�0

@h

@�0
(�0); Z

�
+ op(1)

where Z is de�ned in Remark 2. We have�
BEP0

@h

@�0
(�0); Z

�
� N

�
0;

�
BEP

@h

@�0
(�0); (BKB

�)BEP0
@h

@�0
(�0)

��
The desired result follows.

Proof of Theorem 3. We consider �j as a function of F the c.d.f. of P0: Let

�j = U (F ) and equivalently �
(n)
j = U (Fn) where Fn is the empirical c.d.f.. A �rst order

Taylor development in the sense of Frechet leads to

�
(n)
j � �j = DUF (Fn � F ) + " (Fn � F ) kFn � Fk (24)

The norm is the sup norm. The term " (Fn � F ) converges to zero and
p
n kFn � Fk is

bounded. Let DUF be the derivative of U in F . Then

p
n
�
�
(n)
j � �j

�
=
p
nDUF (Fn � F ) + op (1) : (25)

In order to compute the leading term, we di�erentiate the relationZ
EF (k (X; t; s))�j (s) ds = �j�j (t)
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with respect to F , �j, and �j. E
F denotes the expectation taken with respect to F . If

~F ; ~�j and ~�j are the corresponding di�erential elements, we getZ
E
~F (k (X; t; s))�j (s) ds+

Z
EF (k (X; t; s)) e�j (s) ds = �j e�j (t) + e�j�j (t)

(26)

Multiplying (26) by �j (t) and integrating with respect to t, we obtain, using
R
�j (t)

2 dt =

1; e�j = DUF � ~F� = Z Z E
~F (k (X; t; s))�j (t)�j (s) dtds:

From (25), we obtain

p
n
�
�
(n)
j � �j

�
=
p
n
1

n

nX
i=1

�Z Z
k (xi; t; s)�j (t)�j (s) dtds� �j

�
+ op (1) :

The result follows.

Proof of Theorem 4. (i) Since kKn �Kk � kKn �KkHS, we have

kKn �Kk2 �
Z Z

[kn (t; s)� k (t; s)]2 dtds

=

Z Z "
1

n

nX
i=1

k (xi; t; s)� k (t; s)
#2
dtds

=
1

n2

X
i;j

Z Z
(k (xi; t; s)� k (t; s)) (k (xj; t; s)� k (t; s)) dtds:

This expression is a U-statistic such that

E

�Z Z
(k (xi; t; s)� k (t; s)) (k (xj; t; s)� k (t; s)) dtdsjxj

�
= 0:

Using Sering's theorem (1980, p.194), this U-statistic converges to a mixture of Chi-

square distributions at the speed n: This implies the result.

(ii) As for Theorem 3, let kKk2HS = V (F ) and kKnk2HS = V (Fn). The �rst order

Taylor expansion gives

kKnk2HS � kKk
2
HS = DVF

� eF�+ "� eF� eF
with eF = Fn � F and DVF � eF� = 2 R EF (k (X; t; s))E ~F (k (X; t; s)) dtds. As before we

have
p
n"
� eF� eF = op (1) ; therefore

p
n
�
kKnk2HS � kKk

2
HS

�
=
p
n
1

n

nX
i=1

2

�Z Z
k (xi; t; s) k (t; s) dtds�

Z Z
k2 (t; s) dtds

�
+op (1)
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This yields the result.

Proof of Theorem 7. (i) Let B = K� 1
2 , Bn = K

� 1
2

n , B�n = (K2 + �nI)
� 1
2 K

1
2 , and

B�nn = (K2
n + �nI)

� 1
2 K

1
2
n : We want to show:

kB�nn fn �Bfk ! 0

in probability, as n and n�
3
2
n go to in�nity, �n goes to zero. The proof has three steps:

1) kB�nf �Bfk ! 0 as �n ! 0:

2) kB�nn f �B�nfk ! 0 as �n ! 0 and n�
3=2
n goes to in�nity.

3) kB�nn fn �B�nn fk ! 0 as �n ! 0 and n
p
�n goes to in�nity.

Proofs of Steps 1) and 3) draw from Groetsch (1993, p.84-88).

Step 1) uses the Fourier decompositions:

Bf =
P1

j=1
1p
�j
(f; �j)�j;

B�nf =
P1

j=1

p
�jp

�2j+�n
(f; �j)�j;

kB�nf �Bfk2 =
P1

j=1

�p
�2j+�n��j

p
�j
p
�2j+�n

�2
(f; �j)

2 �
P1

j=1
1
�j
(f; �j)

2 <1;

since f 2 H(K) + H(K)?. We may, in passing to the limit as �n ! 0, interchange

the limit and the summation so that kB�nf �Bfk ! 0 as �n ! 0:

Step 3) follows from

kB�nn fn �B�nn fk � kB�nn kkfn � fk:

The second term on the right hand-side is Op

�
1p
n

�
by assumption. The �rst term is

bounded by 1=�
1
4 for n large because of the following result:

kB�nk2 =
(K2 + �nI)

� 1
2 K

1
2

2
=

�
(K2 + �nI)

� 1
2 K

1
2 ; (K2 + �nI)

� 1
2 K

1
2

�
=

�
(K2 + �nI)

� 1
2 ; (K2 + �nI)

� 1
2 K
�

�
�K2 + �nI

�� 1
2

| {z }
� 1p

�n

�K2 + �nI
�� 1

2 K
| {z }

�1

:

Therefore 1
n
p
�n
! 0 implies kB�nn fn �B�nn fk ! 0:

Step 2)

kB�nn f �B�nfk �
(K2

n + �nI)
� 1
2 K

1
2
n f � (K2

n + �nI)
� 1
2 K

1
2f
 (A)

+
(K2

n + �nI)
� 1
2 K

1
2f � (K2 + �nI)

� 1
2 K

1
2f
 : (B)
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(A) �
�K2

n + �nI
�� 1

2

| {z }
� 1p

�n

K 1
2
n f �K

1
2f
| {z }

=Op
�

1p
n

�
:

(A) goes to zero if n�n goes to in�nity.

(B) �
(K2

n + �nI)
� 1
2 K

1
2f � (K2

n + �nI)
� 1
2 K (K2 + �nI)

� 1
2 K

1
2f
 (1)

+

(K2
n + �nI)

� 1
2 Kn (K

2 + �nI)
� 1
2 K

1
2f � (K2 + �nI)

� 1
2
K

1
2f

 (2)

+
(K2

n + �nI)
� 1
2 K (K2 + �nI)

� 1
2 K

1
2f � (K2

n + �nI)
� 1
2 Kn (K

2 + �nI)
� 1
2 K

1
2f
 : (3)

(1) �
�K2

n + �nI
�� 1

2 K
| {z }

�1

�K� 1
2 �B�n

�
f
| {z }

=O(
p
�n)

: for n large.

(2) =
�B�n �K� 1

2
n

�
K

1
2
n (K2 + �I)

� 1
2 K

1
2f


�
K 1

2
n

�
K2 + �I

�� 1
2 K

1
2

| {z }
�1

�B�n �K� 1
2

n

�
f
| {z }

=O(
p
�n)

: for n large.

(3) �
�K2

n + �nI
�� 1

2

| {z }
� 1p

�n

kKn �Kk| {z }
=Op

�
1p
n

� kB�nfk| {z }
�1=�1=4n kfk

:

We actually have

kB�nn fn �B�nfk = Op
�
1p
n

1

�
3=4
n

�
:

(1) ; (2) ; and (3) converge to zero as long as � goes to zero and n�
3=2
n goes to in�nity.

(ii) can be proved similarly.

Proof of Theorem 8. The consistency follows directly from Theorem 7. Consider

now the asymptotic distribution. The proof of Theorem 2 is valid only if B is a bounded

operator. Here B = K� 1
2 is not bounded. We use the beginning of the proof of Theorem 2

up to the point where Slutsky's Theorem is mentioned. Using the fact B�nn is self-adjoint

and B�nB
�
n = (K

�n
n )

�1, we want to show that�
(K�n

n )
�1 @hn
@�0

(�̂n);
p
nhn(�0)

�
! N

 
0;

EP0 � @h@�0
�2

K

!
:

This result will be proved in two steps:
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Step 1: Show that�
(K�n

n )
�1 @hn
@�0

(�̂n);
p
nhn(�0)

�
D!
�
K�1EP0

@h

@�0
(�0); Y

�
:

Step 2: Show that�
K�1EP0

@h

@�0
(�0); Y

�
� N

 
0;

EP0 � @h@�0
�2

K

!
:

Step 1: �
(K�n

n )
�1 @hn
@�0

(�̂n);
p
nhn(�0)

�
=

�
(K�n

n )
�1 @hn
@�0

(�̂n)�K�1EP0
@h

@�0
(�0);

p
nhn(�0)

�
(27)

+

�
K�1EP0

@h

@�0
(�0);

p
nhn(�0)

�
: (28)

We have

(27) �
(K�n

n )
�1 @hn
@�0

(�̂n)�K�1EP0
@h

@�0
(�0)

| {z }
=op(1)

pnhn(�0)| {z }
=Op(1)

by Theorem 7 and

(28)
D!
�
K�1EP0

@h

@�0
(�0); Y

�
by de�nition of the convergence in a Hilbert space.

Step 2: Note that
�
K�1EP0 @h

@�0 (�0); Y
�
=
�
EP0 @h

@�0 (�0); Y
�
K
where (:; :)K denotes the

inner product in the RKHS. As Kailath (1971) argues, this is not a real inner product

but the notation is convenient. It is usually referred to as congruence inner product.

Since k(t; s) = EP0 (YtYs), we have
�
EP0 @h

@�0 ; Y
�
K
� N

�
0;
EP0 � @h

@�0

�2
K

�
, see for instance

Parzen (1970).

Taking the proof of Theorem 2 where we left it and using the results of step 1 and

step 2, it follows that
p
n(�̂n � �0)

n!1�! N (0; VK)

where VK =k EP0( @h@�0 ) k
�2
K :

We address now the issue of the optimality. For any linear bounded operator B; the

variance, V; of the GMM estimator is given in Theorem 2. To simplify notations, � is

35



omitted in the expression of h: In order to show that V � VK is de�nite positive, we shall
show that

8z 2 IRK ;

z0
��
BEP0 @h

@�0 ; (BKB
�)BEP0 @h

@�0

�
�
BEP0 @h

@�0

2 K� 1
2EP0 @h

@�0

�2 BEP0 @h@�02� z � 0
Let f denote EP0 @h

@�0 and u = Bfz. The above inequality can be rewritten:

(u; (BKB�)u)� (u;Bf)
K� 1

2f
�2 (Bf; u) � 0

, (B�u;KB�u)� (B�u; f)
K� 1

2f
�2 (f;B�u) � 0

, (v;Rv) � 0

where v = B�u and R : g ! Kg�f
K� 1

2f
�2 (f; g) : It is easy to check that RK�1R = R

and that R is self-adjoint. It follows that

(v;Rv) = (v;RK�1Rv) =
K� 1

2Rv
2 � 0

since Rv belongs to H(K).

Proof of Lemma 9. (a) - First we rewrite qn and zn in a convenient way.

qn = 2
nX
j=1

�4j�
�2j + �n

�2 = 2 nX
j=1

1�
1 + �n

�2j

�2 ; (29)

zn =
nX
j=1

�6j�
�2j + �n

�3 = nX
j=1

1�
1 + �n

�2j

�3 : (30)

From (29) and (30), we have

zn
qn
<
1

2
; and

zn

q
3=2
n

<
1

2q
1=2
n

:

Since qn !1 as n goes to in�nity as long as �n goes to zero, (LC) is satis�ed.

(b) - De�ne

�pn (�) =

nX
j=1

�2j
�2j + �

=
nX
j=1

1

1 + �
�2j

=
1

�

nX
j=1

1
1
�
+ 1

�2j
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and

�p1 (�) =
1X
j=1

�2j
�2j + �

=
1

�

1X
j=1

1
1
�
+ 1

�2j

��pn (�) converges uniformly in � to ��p1 (�) as n goes to in�nity since

j��pn (�)� ��p1 (�)j �
1X

j=n+1

1
1
�
+ 1

�2j

�
1X

j=n+1

�2j

This sum converges to 0 because by Assumption 12,
P1

j=1 �
2
j <1. Then �pn (�) converges

uniformly to �p1 (�) and by assumption, we have

�pn (�) � c��

De�ne equivalently

�qn (�) = 2
nX
j=1

�4j�
�2j + �

�2 , and �zn (�) =
nX
j=1

�6j�
�2j + �

�3 :
Let x = 1

�
, we de�ne

�p� (x) = �pn

�
1

x

�
= x

nX
j=1

1

x+ 1
�2j

� cx;

�q� (x) = �qn

�
1

x

�
= 2x2

nX
j=1

1�
x+ 1

�2j

�2 ; and �z� (x) = �zn�1x
�
= x3

nX
j=1

1�
x+ 1

�2j

�3 :
Di�erentiating pn with respect to x leads to the identity

�q� (x) = 2�p� (x)� 2xd�p
� (x)

dx

Therefore, qn and pn diverge at the same rate. Di�erentiating qn with respect to x leads

to

�z� (x) =
�q� (x)

2
� x
4

d�q� (x)

dx
:

Hence, zn and qn diverge at the same speed.

Proof of Theorem 10. Let Pn denote the projection that associates to an operator

K the operator ~Kn de�ned by the �rst n eigenfunctions and eigenvalues of K:We are

going to prove our result in three steps:

Step 1: Show that

1
p
qn

n
k (K�n

n )
�1=2pn�hn

�
�̂n

�
k � k Pn (K�n)�1=2 Y k

o
P�! 0

37



where Y � N (0; K) in H:

Step 2: Show that

1
p
qn

n
k Pn (K�n)�1=2 Y k2 �pn

o
! N (0; 1) :

Step 3: Show that

p̂n � pn
P�! 0; and q̂n � qn

P�! 0:

Step 1: We have

1
p
qn

n
k (K�n

n )
�1=2pn�hn

�
�̂n

�
k � k Pn (K�n)�1=2 Y k

o
� 1

p
qn

(K�n
n )

�1=2pn�hn
�
�̂n

�
� Pn (K�n)�1=2 Y


� 1

p
qn

n(K�n
n )

�1=2
�p
n�hn

�
�̂n

�
� Y

�+ �(K�n
n )

�1=2 � Pn (K�n)�1=2
�
Y
o

� 1
p
qn

n(K�n
n )

�1=2
pn�hn ��̂n�� Y + (K�n

n )
�1=2 � Pn (K�n)�1=2

 kY ko :
We have K�n� 1

2
n

 � 1

�
1=4
n

and
pn�hn ��̂n�� Y  = Op (1)

by Assumption 11' and Theorem 8 with n�3n !1. Moreover, we have

kY k = Op (1) and
(K�n

n )
�1=2 � Pn (K�n)�1=2

 � kPnk kB�nn �B�nk

with

kPnk � 1 and kB�nn �B�nk = Op
�
1p
n

1

�
3=4
n

�
:

by the proof of Theorem 7. Therefore the result is established under the conditions

n�
3=2
n ! 1 and qn

p
�n ! 1: The �rst one is necessarily satis�ed under the condition,

n�3n !1; and the second one is not true in general and is imposed in Assumption 15.
Note that Step 1 implies

1
p
qn

n
k (K�n

n )
�1=2pn�hn

�
�̂n

�
k2 � k Pn (K�n)�1=2 Y k2

o
P�! 0

Step 2: First we de�ne some notations

1
p
qn

n
k Pn (K�n)�1=2 Y k2 �pn

o
=

nX
j=1

Xnj
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with

Xnj =

�2j
�2j+�n

h
(Y;�j)

2

�j
� 1
i

�Pn
l=1

2�4l

(�2l+�n)
2

� 1
2

(Y;�j)p
�j

are independent N (0,1) (see for instance Shorack-Wellner (1986), p.15), therefore
the Xnj are independent with E (Xnj) = 0 and V (Xnj) = �

2
nj. Sn =

Pn
j=1Xnj satis�es

E (S2n) =
Pn

j=1 �
2
nj = 1. Liapunov's Theorem states that a su�cient condition for Sn !

N (0; 1) is the so-called Liapunov's condition

lim
n!1

nX
j=1

E jXnjj3 = 0

See for instance Davidson (1994, p. 373). Liapunov's condition is given by Equation (LC)

which is necessarily satis�ed (see Lemma 9 (a)).

Step 3:

p̂n � pn =
nX
j=1

�
�
(n)2
j

�
(n)2
j +�n

� �2j
�2j+�n

�
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nX
j=1

�
(n)2
j ��2j�

�
(n)2
j +�n

�
(�2j+�n)
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�2n
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j=1

�
�
(n)2
j � �2j

�
� Op

�
1

�n
p
n

�
by Theorem 4. Therefore, p̂n � pn ! 0 if �n

p
n!1:

1
2
(q̂n � qn) =

nX
j=1

 
�
(n)4
j�

�
(n)2
j +�n

�2 � �4j

(�2j+�n)
2

!

=

nX
j=1

�
�
(n)2
j

�
(n)2
j +�n

� �2j
�2j+�n

��
�
(n)2
j

�
(n)2
j +�n

+
�2j

�2j+�n

�
� (p̂n � pn) supj

�
�
(n)2
j

�
(n)2
j +�n

+
�2j

�2j+�n

�
� 2 (p̂n � pn)

Hence, q̂n � qn ! 0 if �n
p
n!1:

To complete the proof, we need to check that the three steps are enough to guarantee

the result. Let A denote k K�� 1
2

n
p
n�hn

�
�̂
�
k2. A Taylor expansion of A�p̂np

q̂n
around pn

and qn gives

A� p̂np
q̂n

=
A� pnp
qn

� 1
p
qn
(p̂n � pn)�

A� pn
2
p
qnqn

(q̂n � qn) + op (1)
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This leads to the result.
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