
中央研究院經濟所學術研討論文 
IEAS Working Paper 

 

 

 

Residential Mobility and Social Capital 

Kamhon Kan 

IEAS Working Paper No. 06-A005 

July, 2006 

 
 
 

Institute of Economics 
Academia Sinica 

Taipei 115, TAIWAN 
http://www.sinica.edu.tw/econ/ 

 
 
 

 

中央研究院  經濟研究所 

INSTITUTE OF ECONOMICS, ACADEMIA SINICA 

TAIWAN 
 

copyright © 2006 (Kamhon Kan) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6428226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RESIDENTIAL MOBILITY AND SOCIAL CAPITAL∗

Kamhon Kan
Institute of Economics

Academia Sinica
Taipei, Taiwan

Abstract

This paper empirically investigates the role of social capital in house-
holds’ residential mobility behavior by considering its spatial dimen-
sion. This study focuses on a household’s social ties with people living
nearby, which we refer to as its “local social capital”. Local social cap-
ital may deter residential mobility, because the resources stemming
from them are location-specific and will be less valuable if a household
moves. We conjecture that a household’s possession of local social cap-
ital has a negative effect on its residential mobility, and this negative
effect of local social capital may be stronger on long-distance mobility
than on short-distance mobility. Our empirical investigation is based
on data from the Panel Study of Income Dynamics. We obtain evidence
which is supportive of these conjectures.
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1 Introduction

This paper empirically studies the role of social capital in households’ residential mobility

behavior. By doing so, we exploit social capital’s spatial dimension, which is rarely explored

in the literature. There are many definitions of social capital, as some refer to the modes

of interaction which generate mutual benefits among individuals, while some pertain to the

resources derived from such modes of interaction (see Sobel [40]).1 In this study social cap-

ital refers to the resources that stem from social ties or social networks (see, e.g., Bourdieu

and Wacquant [11], Portes and Landolt [35], and van Dijk [43].2 Accordingly, the strength

of one’s social ties and the extensiveness of one’s social networks are observable dimensions

of one’s stock of social capital.

Residential mobility is a major mechanism through which neighborhood dynamics are

driven. The rapid inflows and outflows of residents in a neighborhood lead to neighborhood

instability (see, e.g., Rothenberg, Galster, Butler, and Pitkin [38], Chapter 8). Social capital

may mitigate neighborhood instability and promote neighborhood cohesion by encouraging

residents to stay put. Having friends or family members in one’s neighborhood (i.e., social

networks), especially those who are geographically close and willing to help, is an example

of social capital. A household can derive financial and/or emotional support from its social

networks, and once it moves to another neighborhood, this kind of social capital may be lost.

Thus, residential mobility is likely to be deterred by local social networks.3

The relationship between social capital and residential mobility is likely to be close and

intricate. This has much to do with the spatial dimension of social ties. The spatial di-

mension of social ties arises from the fact that their value and the way they are valuable to

1For example, Coleman [13] refers to social capital as the ability of people to work voluntarily together,
while Dasgupta’s [14] definition of social capital pertains to the quantity of trust among individuals or the
benefits deriving from trust among individuals.

2See, e.g., Putnam [36], Astone, Nathanson, Schoen, and Kim [5], Durlauf, [17], and Sobel, [40], for exposi-
tions and critical reviews.

3We can also view local social capital as an element of the neighborhood environment. As documented by
some studies in the housing literature, neighborhood quality is an important factor in households’ decision to
move (see, e.g., Boehm and Ihlanfeldt [10] Bartik, Butler, and Liu [6], and Lee, Oropesa, and Kanan [27].
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an individual depends on the physical distance between the locations where she possesses

social ties and the location where she resides. For example, local social ties, i.e., social

ties with individuals living nearby, may generate positive neighborhood externalities (e.g.,

a lower crime rate, better maintenance of physical environment, etc.) and may be valuable

when one needs help in emergencies. On the other hand, the assistance one derives from

distant social capital, i.e., social ties with people not living nearby, is more restricted due to

the barrier posted by the geographical distance.

Owing to the spatial dimension of social capital, such that social capital is location-

specific, one’s residential mobility decision incorporates the stock of local social capital into

consideration, and the incentive to accumulate local social capital hinges on one’s plan or

tendency to move in the future. Accordingly, a mobility-prone individual will have less

incentive to invest in local social capital, because the stock of social capital that one has

accumulated in one location will become less useful after she has moved. Since local social

capital may be lost as a result of residential mobility, it may pose as a part of the opportunity

cost of residential mobility. As such, local social capital may deter residential mobility. Thus,

because local social capital is location-specific, a household’s local social capital investment

and residential mobility are simultaneous decisions.

The simultaneity between the local social capital investment behavior and the residen-

tial mobility decision gives rise to an identification problem for empirical analyses, i.e., local

social capital is endogenous in the outcome equation of residential mobility. The endogene-

ity of local social capital in the mobility equation arises from the fact that a household’s

mobility tendency, which may not be perfectly observable and will be partly absorbed by

the mobility outcome equation’s error term, is correlated with its stock of local social cap-

ital. More specifically, in a typical empirical model of household mobility, a household’s

socioeconomic characteristics are used to explain its residential mobility decision. However,

since it is almost impossible for these socioeconomic characteristics to perfectly capture a

household’s mobility tendency, there will be uncaptured mobility tendency. This uncaptured
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mobility tendency will be absorbed by the model’s error term, which is correlated with an

indicator of local social capital. The coefficient estimate associated with the local social in-

dicator will be biased if its endogeneity is not accounted for.4 The endogeneity of local social

capital will be accounted for in our empirical analysis. The way we account for our local so-

cial capital indicator’s endogeneity is illustrated when we introduce our econometric models

in Section 3.

The concept of social capital originates from sociology. In the past decade, there has been

a sprout of interest in social capital by social scientists. Research on social capital has been

encouraged by findings of the correlation between measures of social capital and some socio-

economic outcomes (e.g., education attaintment, criminality, income level, and job search

outcomes). In what follows we review the literature pertaining to economic studies of social

capital.

In the economic literature there are studies that explain an individual (or a country’s)

economic outcomes using indicators of her (or a country’s) social capital, e.g., Furstenberg

and Hughes [19], La Porta, et al. [26], Knack and Keefer [25], and Narayan and Pritch-

ett [33]. It is found that social capital leads to favorable outcomes.5 Furstenberg and

Hughes [19] explore impacts of some social capital measures (e.g., family structure, interac-

tion within the family, characteristics of family members, and some attitudinal indicators)

on some outcome measures (e.g., education attainment and criminality). They find that

social capital helps explain these outcome variables.

The effects of social capital, especially in the form of social networks, on individual la-

bor market outcomes are an emerging thread of research in the economic literature (see

Ioannides and Loury [24], for a recent survey of the literature). Economic theories predict

that social networks have a great impact on an individual’s labor market outcomes, with the

exact impacts depending on the kind of ties that she has. For example, Mortensen and Vish-

4As pointed out by Durlauf [17], in general indicators of social capital are likely to be endogenous in a
behavioral choice equation, leading to an identification problem for empirical analyses.

5See Durlauf [17] for a critical discussion on the identification issue of the causal relationship between
social capital and economic outcomes.
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wanath [31] show that contacts raise the equilibrium wage distribution, Calvó-Armegnol

and Jackson [12] demonstrate that networks externalities generate state dependence in

labor market status, and Arrow and Borzekowski’s [4] simulation and calibration results

suggest that ties with firms lead to income inequality.

Empirical findings in both the economics and the sociology literature mostly indicate

that social networks have a positive effect on some labor market outcomes. The evidence

obtained in the literature suggests that job search through informal contacts generates some

favorable labor market outcomes. For example, the use of informal contacts produces more

job offers (see Blau and Robins [7]) and jobs found through informal contacts last longer (see

Devine and Keifer [16], and Simon and Warner [39]). Nevertheless, the literature’s findings

of the effect of social networks on wages are not unanimous. Wages associated with jobs

found through informal contacts may be higher than (see Marmaros and Sacerdote [30]),

lower than (see Elliott [18], and Addison and Portugal [2]), or the same as (Bridges and

Villemez [8], Holzer [23], and Marsden and Gorman [29]) those associated with jobs found

using other methods. See Loury [28] for a reconciliation of these wage effects by examining

the effect of different types of contacts.

Another strand of research investigates individuals’ social capital investment behav-

ior. Since social capital is conducive to certain favorable social/economic outcomes, there

are incentives for people to invest in (or create) it. Since the returns to social capital are

different for individuals of difference characteristics (e.g., age, occupation, housing tenure

status), they also have different incentives to invest in it. For example, older individuals

(as compared to younger ones) enjoy shorter streams of benefit from social capital, certain

occupations benefits more from social capital (e.g., sales representatives), and homeowners

(as compared to tenants) gain more from neighborhood social capital through neighborhood

quality and local housing price. Representatives of this category of research are Green and

White [22], DiPasquale and Glaeser [15], Aaronson [1], Alesina and Laferrara [3], Glaeser

and Sacerdote [20], and Glaeser, Laibson, and Sacerdote [21].
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In the broadly defined migration literature (that pertains to inter- and intra-metropolitan

mobility, and international migration), there are studies focusing on the relationship be-

tween an individual’s migration decision and her social capital, and some of these studies

were conducted before the concept of social capital was being formalized. These studies

are mainly concerned with the facilitating effects of social networks (e.g., having neighbors,

friends or family members who are migrants) on the propensity for an individual to emi-

grate in the context of a developing country. There are several possible channels through

which social networks facilitate migration. Firstly, members of one’s social networks are a

source of material aid (e.g., accommodation). Secondly, emotional support (e.g., encourage-

ment), which is important for new immigrants, can be derived from one’s social networks.

Finally, one may obtain important information (e.g., living environment, job opportunities,

etc.) from one’s social networks. Notable examples of studies focusing on the effects of social

capital on out-migration in developing countries are Murayama [32], Root and de Jong [37],

Wegge [44], Palloni, et al. [34], and Winters, de Janvry, and Sadoulet [46].

An exception in the migration literature is the study by Toney [42], which investigates

the deterrence effects of social ties on households’ migration decision, based on a small scale

longitudinal dataset. His sample consists of Rhode Island individuals who had lived in

another state prior to moving to Rhode Island, and his indicators of social ties pertain to

the states of birth of a respondent and her spouse, and those of their parents, as well as the

current states of residence of their parents. It is found that social ties (i.e., the birthplace of

the subject, the subject’s spouse and parents being in Rhode Island, or the current state of

residence of the subject’s parents being in Rhode Island) have a positive impact on the length

of stay in Rhode Island. However, in addition to the lack of representativeness of Toney’s

[42] sample, the social ties’ measures used in the study are rather crude and the effects

of these variables on migration may instead stem from one’s psychological attachment to

Rhode Island.

The above literature review alludes to the fact that social capital is an important source
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of human and social resources. The tapping and investment in social capital are an impor-

tant aspect of social behavior. However, the spatial dimension of social capital has not been

touched on, except in the international migration literature, where the facilitating effect of

social networks on the out-migration of individuals (from an underdeveloped country) to a

foreign (developed) country that they have social networks is studied.

Our empirical work is based on household data from the Panel Study of Income Dy-

namics. In the 1980 wave of the survey, information about respondents’ local social capital

(i.e., whether there will be someone nearby who can spend a lot of time helping in case of

emergency) is collected.

To account for the endogeneity of local social capital, we adopt Durlauf ’s [17] approach

by modeling social capital together with the behavioral choice as a system of equations.

To do that, we must use instruments to achieve identification. These instruments must

be correlated with the social capital variable, but uncorrelated with the error term in the

behavioral choice model. We turn to this in Sections 3 and 4.

The rest of the paper proceeds as follows. Section 2 describes our data and gives details of

the key variables. Section 3 outlines our econometric models. Section 4 presents tests of our

empirical specifications. Section 5 reports and discusses our empirical findings. Section 6

concludes the study.

2 Data

The data that we use for our empirical work come from the Panel Study of Income Dynamics

(PSID). The reason why we use the PSID data is that the 1980 wave of the survey collected

information on households’ social capital. In our empirical work we explain household resi-

dential mobility behavior in survey year 1981 with an indicator of local social capital, which

comes from the 1980 survey, while controlling for other socioeconomic characteristics, which

also pertain to the 1980 survey year. Hereafter, for notational simplicity, we denote survey
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years 1980 and 1981, respectively, by “t−1” and “t.”

In our empirical analysis, we look at two sets of residential mobility indicators. The first

consists of a variable (denoted by MOVEt) with two possible outcomes: “stay” (i,e., MOVEt=1)

and “move” (i,e., MOVEt=0). The second is defined by two binary variables, namely INTERCt

and INTRACt, which indicate three possible outcomes, namely, staying in the same residence

(i.e., INTERCt=0 and INTRACt=0), moving to another county (i.e., INTERCt=1 and INTRACt=0),

or moving to another location in the same county (i.e., INTERCt=1 and INTRACt=0). This set

of variables divides residential mobility into two types, namely, between long distance (i.e.,

INTERCt=1 and INTRACt=0) and short distance (i.e., INTERCt=0 and INTRACt=1) mobility.

Our indicator of local social capital (denoted by NEARHELPt−1) pertains to whether a

household perceives that there are people living nearby who can spend a lot of time helping

out when there is a serious emergency or not. This indicator is constructed based on the

following question in the 1980 PSID questionnaire:

“Suppose there were a serious emergency in your household. Is there a friend
or relative living nearby whom you could call on to spend a lot of time helping
out?”

A household is assumed to have local social capital if there are people who live nearby

and could give the household a lot of time helping out (i.e., answering “yes” to the above

question).

In the 1980 PSID questionnaire, there is also a question about whether there are peo-

ple not living nearby that a household can count on for help, with the exact wording of the

question being,

“Do you have a relative or friend who doesn’t live near you who could come to
help you in an emergency?”

Using the respondents’ answers to this question, we construct a variable FARHELPt−1. To

gain additional insight into the spatial nature of social capital, we also examine the effect

of FARHELPt−1 on a household’s residential mobility. Since a move by a household does not
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diminish social capital associated with FARHELPt−1, the variable is unlikely to have any effect

on a household’s mobility decision.

As explained in Section 1, the local social capital variable is likely to be endogenous in

the residential mobility equation. If endogeneity is not accounted for, then we will not be

able to identify the true effect of local social capital. In this study we take the approach

suggested by Durlauf [17], such that the variable NEARHELPt is modeled jointly with the res-

idential mobility variables. This approach requires instruments to facilitate identification.

To be qualified for being an instrument, a variable must be correlated with the social capital

variables, but uncorrelated with the unobservable heterogeneity variable (i.e., be exogenous

in the residential mobility model). There are several variables which meet this requirement:

(1) In the previous five years, whether or not a household has received help by someone
who spent a lot of time helping (denoted by RTIMEt−1). Information on this variable
comes from the answer to a question in the 1980 PSID survey: “In the last five years
has either a friend or a relative spent a lot of time helping you in an emergency?”

(2) In the previous five years, whether or not a household has received monetary assis-
tance from someone outside the household (denoted by RMONEYt−1). Information on this
variable comes from the answer to a question in the 1980 PSID survey: “In the last
five years have you received any amount such as several hundred dollars from either
a friend or relative?”

(3) In the previous five years, whether or not a household has spent a lot of time helping
someone (denoted by GTIMEt−1). Information on this variable comes from the answer to
a question in the 1980 PSID survey: “In the last five years have you (or anyone living
with you) spent a lot of time helping either a relative or friend in an emergency?”

(4) In the previous five years, whether or not a household has given monetary assistance
to someone outside the household (denoted by GMONEYt−1). Information on this variable
comes from the answer to a question in the 1980 PSID survey: “In the last five years
have you helped out either a friend or relative in an emergency by giving or loaning
them several hundred dollars or more?”

Variables RTIMEt−1 and RMONEYt−1 pertain to the experience of receiving assistance in

the past. They should be related to a household’s possibility of receiving assistance in the

future. The experience of receiving assistance in the past indicates that there are people

who may offer help in the future when needed. However, since RTIMEt−1 and RMONEYt−1 are

not restricted to assistance offered by people living nearby and they pertain to events in
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the past (before survey year t−1), they are probably not directly related to a household’s

residential mobility behavior in the future (i.e., period t+1).

Variables GTIMEt−1 and GMONEYt−1 are related to a household’s investment in social cap-

ital. Due to the possibility of reciprocity, GTIMEt−1 and GMONEYt−1 can predict a household’s

likelihood to receive assistance. Again, since GTIMEt−1 and GMONEYt−1 are not restricted to

assistance given to people living nearby and they pertain to events in the past, they are

unlikely to be directly related to a household’s residential mobility behavior in the future.

We also use a set of household socioeconomic characteristics and their changes, pertain-

ing to survey year 1980, as control variables. These variables include age of the household

head (denoted by AGEt−1) and its square (denoted by AGE2t−1), number of children present

in the household (denoted by CHILDt−1) and its changes (namely, INCCHILDt−1, denoting an

increase, and DECCHILDt−1, denoting a decrease), the household head’s marital status (de-

noted by MARRIEDt−1) and its change (denoted by DMARRIEDt−1), total family income (namely

INCOMEt−1) and its changes (namely INCINCOMEt−1, denoting a increase, and DECINCOMEt−1,

denoting a decrease), housing tenure status (OWNt−1, i.e., whether owning or renting), years

of education received by the head (namely EDUCATION), whether the household head is an

African American (namely AA), and whether the household head has experienced a job

change (i.e., CJOBt−1) since the previous year. In addition, we use the county unemployment

rate (denoted by URATEt−1) to control for local economic conditions.6

The definitions of all the variables used in the empirical analyses are presented in Ta-

ble 1. Descriptive statistics from our sample are presented in Table 2. According to Table 2

6Some of these control variables may be endogenous in the mobility equation, e.g., OWNt−1 and CJOBt−1. How-
ever, given that they are not the variables of interest in the current paper and accounting for their endogeneity
will require considerable costs (e.g., associated with computation and the search for additional instruments
for identification), we choose not to deal with it and keep these variables in the mobility equation for the
sake of ceteris paribus. If some explanatory variables are endogenous and their endogeneity is not accounted
for, the coefficient estimates of these variables will be biased and coefficient estimates associated with other
explanatory variables will be consistent to a scaled version of the true parameters with the correct signs.

Another option is to drop these variables from the mobility equation. However, this will lead to a more
serious consequence, namely, the rest of the variables will be biased if they are correlated with the dropped
variables (i.e., the omitted variable bias). A formal proof of these claims is available upon request from the
author.
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more than seventy-nine percent of households in our sample have someone nearby to spend

time helping out when an emergency occurs. The relationship between the household head

and the person possibly helps out in an emergency is displayed in Table 3. The table shows

that for a majority (i.e., 80.18%) of the households, this person is a relative, who is most

likely a member of the extended family, e.g., parents, children/grandchildren, and siblings.

This suggests that family ties is an important source of local social capital for a household.

The proportion of households that moved in 1981 (i.e., MOVEt=1) is 0.2053. Among house-

holds that moved in 1981, 29.63% of them underwent an inter-county move and 70.37% an

intra-county one. Comparing movers versus non-movers, there is not much difference in the

portion of households that expected to receive emergency assistance. With the sample mean

of NEARHELPt−1 for movers and non-movers being 0.8093 and 0.7939, respectively, mover

households were slightly more likely to expect to receive emergent assistance. However,

when we divide mover households into two types, namely inter-county movers and intra-

county movers, we discover that it is more likely that emergency assistance is available to

inter-county movers. The sample mean of NEARHELPt−1 is 0.7857 for inter-county movers

and 0.8194 for intra-county movers.

3 Econometric Model

In this section we set up our empirical models. In order to accommodate two different

indicators of residential mobility we construct two empirical models. The first pertains

to the binary choice of whether a household moves or not, while the second pertains to

whether it moves or not and, if it does, whether the move is long-distance (i.e., intercounty)

or short-distance (i.e, intracounty). Both empirical models allow local social capital to be an

endogeneity regressor.



11

3.1 Whether to Move or Not

We first present a model for the binary choice of whether to move or not. We denote the

mobility outcomes by I it; such that if household i moves, then we have I it = 1, otherwise

I it = 0. We introduce a stochastic structure to the mobility decision by assuming that a

household’s mobility decision is determined by a latent variable M∗
it such that

I it =





1, if M∗
it > 0

0, otherwise;
(1)

and M∗
it is a function of its socio-economic characteristics and local social capital, i.e.,

M∗
it = γSit−1 +β′xit−1+εit. (2)

In (2)
{
γ,β

}
are parameters to be estimated (with β being a vector and γ a scalar); Sit−1 and

xit−1 respectively denote an indicator of local social capital (i.e., whether emergency help is

available from people living nearby) and a vector of socioeconomic characteristics; and εi is a

random variable representing unobserved household heterogeneity. We further assume that

εi is mean-zero and standard normally distributed. With this distributional assumption, we

have a binary probit model.

Now we turn to the identification of γ. The local social capital indicator Sit−1 is likely to

be co-determined with I it. Since local social capital may be lost when a household moves, it

is difficult for a mobility-prone household (for whom εit is large) to accumulate and maintain

social capital, implying that this household is likely to have a smaller stock of local social

capital. This suggests that there is a negative correlation between Sit−1 and εit. If this

correlation is not accounted for, it will be absorbed by the coefficient estimate of γ.

To account for this possibility, we set up a model for Sit−1 and allow for a correlation

between Sit−1 and εi. The variable Sit−1 is binary with Sit−1 = 1, denoting the possession

of local social capital by household i, and Sit−1 = 0, denoting the opposite. We assume that
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Sit−1 is determined as follows:

Sit−1 =





1, if α′wit−1 +uit−1 > 0,

0, otherwise;
(3)

where α is a vector of parameters, wit−1 is a vector of socioeconomic variables, which con-

tains xit−1 and a set of instrumental variables zit−1, and uit−1 is a random variable repre-

senting unobservable household heterogeneity. It is assumed that uit−1 is mean-zero and

standard normally distributed. We allow uit−1 and εit to be correlated, i.e., corr(εit,uit−1) =

ρ 6= 0. We estimate the simultaneous equation system, which consists of (2) and (3), by the

method of maximum likelihood.

3.2 Intracounty and Intercounty Mobility

In addition to looking at the effect of local social capital on the binary event of whether a

household moves or not, we also investigate its effect on the types of residential mobility

that a household undertakes. We divide residential mobility into two types: intercounty

and intracounty. We expect that households having local social capital are less likely to un-

dertake long distance residential mobility (i.e., intercounty residential mobility). There are

three possible outcomes: (0) stay put, (1) intercounty mobility, and (2) intracounty mobility.

We denote the outcome by Rit, such that
Rit = 0 if household i stays put (i.e., INTERCt=0 and INTRACt=0),
Rit = 1 if household i has intercounty mobility (i.e., INTERCt=1 and INTRACt=0),
Rit = 2 if household i has intracounty mobility (i.e., INTERCt=0 and INTRACt=1).

To model households’ decision pertaining to these three outcomes, we employ the multi-

nomial probit model, where the type of move j that household i undertakes is governed by

a latent variables R∗
ji, such that outcome k is observed if the latent variable associated with

it is the largest one. That is,

Rit = k if R∗
kit > R∗

jit; ∀ j,k ∈ {0,1,2}; j 6= k. (4)

In our specification, the latent variables R∗
jit are specified to be a function of household
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socioeconomic characteristics, which include an indicator of local social capital Si, i.e.,

R∗
jit = γ jSit−1 +β′

jxit−1 + e jit, (5)

where
{
β j,γ j

}
are parameters, and e jit follows a standard normal distribution. The identifi-

cation of the multinomial probit model requires a normalization. We impose the restrictions

β0 = 0 and e0it = 0 for identification. We allow for a correlation between e1it and e2it, i.e.,

cov(e1it, e2it) = ρ12 6= 0, and that between e jit and uit−1, i.e., cov(e jit,uit−1) = ρ ju 6= 0. The

models (5) and (3) are estimated jointly with the method of maximum likelihood.

4 Specification Tests

In the empirical model, we use a set of instruments zit−1 to attain identification. Since the

reliability of the estimation results hinges critically on the validity of our instruments, it is

important that these instruments are valid. For zit−1 to be valid instruments, they must

satisfy two assumptions, namely,

(A1) zit−1 is uncorrelated with the error terms εit and e jit in the structural equations (2)
and (5), respectively, and

(A2) zit−1 is correlated with the endogenous variable Sit−1.

In this section we outline the overidentification restriction test and the weak instrument

test to test for the validity of assumptions A1 and A2, respectively.

4.1 Overidenfitication Restriction Test

The overidentification restriction test is performed to examine the validity of assumption

A1. If zit−1 have explanatory power towards M∗
it and R∗

jit, respectively, then assumption A1

is violated. This implies that we can examine the validity of assumption A1 by testing for

the statistical significance of the coefficient estimates of zit−1 in the following models.

M∗
it = γSit−1 +β′xit−1 +α′zit−1+εit, (6)

R∗
jit = γ jSit−1+β′

jxit−1+α′
j zit−1+ e jit, (7)
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where no exclusion restrictions are imposed and the coefficients are estimated jointly with

the social capital model (3), with cross-equation correlations allowed. Likelihood ratio tests

are used to test for the statistical significance of the parameters α and α j, respectively. Un-

der the null hypothesis (i.e., assumption A1 is valid) zt−1 has not explanatory power toward

M∗
it and R∗

jit, i.e., α= 0 and α j = 0. It is noted that in performing our overidentification re-

striction tests, we estimate the simultaneous equation systems without imposing exclusion

restrictions. This is feasible because the endogenous regressor is a nonlinear function of its

error term. See Wilde [45] for a proof.

4.2 Weak Instruments Test

For the purpose of identification, the correlation between the instruments and the endoge-

nous regressor must be strong enough. Staiger and Stock [41] point out that estimation with

weak instruments will lead to biased coefficient estimates for the endogenous regressor. To

check whether the instruments are weak or not, we perform a likelihood ratio test for the

explanatory power of the instruments zit−1 in (3).

It is noted that Staiger and Stock [41] suggest the use of the F-test to test for the weak

instruments and an F-statistic of less than 10 is an indication of weak instruments. How-

ever, the error term of the local social capital model (3), which is a probit model, cannot be

uncovered from the model’s parameters. This implies that it is infeasible for us to conduct

the conventional F-test, which involves the computation of the residual sums of squares

based on the endogenous regressor’s model.

In the current study, we replace the F-test by a likelihood ratio test. The statistic of the

likelihood ratio test is chi-square distributed and it can be converted to an F-statisitic. We

obtain an F-statistic τF from our likelihood ratio test statistic τχ as follows.

τF = τχ/K ∼ F(K ,∞),
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which has degrees of freedom {K ,∞}.7 With this F-statistic we are able to use Staiger and

Stock’s [41] criterion to determine whether our instruments are weak or not.

5 Results

Whether to Move or Not

The estimation results are presented in Tables 4–10. We first look at the results per-

taining to the binary probit model pertaining to the effect of the local social capital indi-

cator NEARHELPt−1 in Table 4. The first two columns of the results pertain to MOVEt and

NEARHELPt−1 based on a simultaneous equation estimation. According to the overidentifica-

tion test and the weak instrument test, the instruments zit−1 are valid. The overidentifica-

tion restriction test yield a test statistic of 3.4052, which has a p-value of 0.4924, implying

that the instruments are uncorrelated with the NEARHELPt−1 equation’s error term. The

statistic of the likelihood ratio test for weak instruments is 167.47, which is equivalent to

an F-statistic of 41.87.8 With the F-statistic well above the critical value of 10 (c.f. Staiger

and Stock [41]) we can rule out the possibility that our instruments are weak.

The correlation coefficient between the unobservable random variables εit and uit−1,

denoted by corr(εit,uit−1) in the bottom of Table 4, is negative, but it is numerically and sta-

tistically insignificant. A likelihood ratio test of the simultaneous equation model against

the single equation one (which does not allow for a correlation between εit and uit−1) yields

a test statistic of 0.1864. With a p-value of 0.6659, it is statistically insignificant. This sug-

gests that, allowing for a cross-equation correlation, the system consisting of equations (2)

and (3) is overparametrized. Because of this, we rely on the single equation probit model,

where NEARHELPt−1 is not allowed to be endogenous, for our inference. The estimation re-

7Let f be an F-distributed random variable with f = x1/n1
x2/n2

, where both x1 and x2 are chi-square distributed
random variables with degrees of freedom n1 and n2. As n2 approaches infinity, x2 approaches its expected
value of n2. This implies that x1/n1 is F distributed with {n1,∞} degrees of freedom.

8As a cross-check, we have estimated the model for NEARHELPt−1 with OLS (i.e., a linear probability model
is estimated). This allows us to conduct an F-test. The resultant F-statistic is 42.01, which matches closely
our probit-based F-statistic.
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sults are displayed in the third column of Table 4. The coefficient estimate of NEARHELPt−1

in the MOVEt equation is -0.1522, which is statistically significant at conventional levels. The

negative and statistically significant coefficient of NEARHELPt−1 suggests that having local

social capital does deter a household from moving.

To gauge the magnitude of NEARHELPt−1’s effect on MOVEt, we look at the marginal ef-

fects, which are presented in Table 6. The marginal effect of NEARHELPt−1 on MOVEt (in the

first column of Table 6) is -0.0407, which is moderate in magnitude. This marginal effect

indicates that having local social capital reduces the probability of residential mobility by

0.0407. This marginal effect is similar to that associated with having an African-American

household head (i.e., AA=1) and job changes for the household head (i.e., CJOBt−1=1), whose

marginal effects are 0.0483 and -0.0515, respectively, but are substantially smaller than

that associated with being a homeowner (i.e., OWNt−1=1), which has a marginal effect of

-0.2083. This suggests that social capital is not the most important factor affecting a house-

hold’s residential mobility, but its impact is still important relative to other socio-economic

factors.

The single equation probit estimation results pertaining to the effects of other explana-

tory variables on the probability of a residential move are in line with findings of previous

studies, e.g., Boehm [9]. In the current study, we will not elaborate on our estimation results

pertaining to the effects of socioeconomic characteristics on residential mobility since in the

literature there are numerous relevant empirical studies.

In the following we review and discuss the empirical results pertaining to local social

capital, which are relatively rare in the literature. Our discussion is based on the single

equation estimation as displayed in the fourth column of Table 4. Homeowning households

(i.e., OWNt−1=1) are more likely to have someone nearby to offer emergency assistance. This

echoes DiPasquale and Glaeser [15] who find that homeowners are more likely to invest in

social capital. However, a household head’s job changes (i.e., CJOBt−1) and the local-county

unemployment rate (denoted by URATEt−1) do not affect the household’s local social capital.
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We also find that most household economic and demographic characteristics do not affect

a household’s local social capital, e.g., the estimation yields statistically insignificant coeffi-

cient estimates for the household head’s years of education (i.e., EDUCATION) family income

(denoted by INCOMEt−1) and its changes (denoted by INCINCOMEt−1 and DECINCOMEt−1), and

the household head’s marital status (denoted by MARRIEDt−1) and its changes (denoted by

DMARRIEDt−1). An exception is the number of children present in a household. A household

with more children (denoted by CHILDt−1) is more likely to have someone nearby to help in

emergency, while an increase in CHILDt−1 (denoted by INCCHILDt−1) will lower the likelihood.

A decrease in CHILDt−1 (denoted by DECCHILDt−1) does not have any statistically significant

effect.

The coefficient of AGEt−1 is significantly negative and its square is significantly postive,

indicating that the lifecycle profile of local social capital is u-shaped, bottoming out at the

age of 60.5. This finding contradicts Glaeser, Laibson, and Sacerdote’s [21] theoretical pre-

diction and empirical results that an individual’s investment in social capital decreases with

age, with the stock of social capital having an inverted u-shaped trend over the lifecycle. The

contradiction may arise from the definition of our local locial capital indicator NEARHELPt−1,

which indicates whether assistance is available from both friends and relatives. In fact, in

the PSID data over eighty percent of potential emergency assistance to a household comes

from the relatives of the household head or her spouse. It is reasonable that the ability of

an individual’s reletives, especially parents or siblings, to spend time helping out decreases

with their and the individual’s age. Yet, as the individual’s children grow up and leave the

household to establish their own, this individual’s stock of local social capital may be replen-

ished. This may explain the u-shaped effect of a household head’s age on the probability of

having someone living nearby to spending time helping out.

The positive coefficient of RTIMEt−1 demonstrates that the availability of assistance from

individuals outside the household tend to be persistent. The positive effects of GTIMEt−1

and GMONEYt−1 manifest, on the other hand, the reciprocity of support among households.
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The coefficient estimate of RMONEYt−1 is statistically insignificant. This implies that the

availability of monetary assistance from individuals outside the household may not imply

that assistance in terms of time is also readily available from them. This may have to do

with the fact that monetary assistance may come from individuals who may or may not live

nearby.

To gain addition insight into the nature local social capital, we examine how residen-

tial mobility is affected by another social capital indicator, namely FARHELPt−1, which in-

dicates whether a household thinks that someone not living nearby will spend a lot of

time to help out in case of an emergency. In contrast to NEARHELPt−1, the benefits associ-

ated with FARHELPt−1 is unlikely to dramatically diminish as a household relocates, as such

FARHELPt−1 will probably not deter relocation by a household. The pertinent single equation

probit estimtion results are reported in the third column of Table 5 and the corresponding

marginal effects are reported in the second column of Table 6.9 The coefficient estimates

associated with FARHELPt−1 is statistically insignificant, implying that social capital, which

is not associated with local social ties, does not have any effect on residential mobility. The

contrast in effects associated with NEARHELPt−1 and FARHELPt−1 suggests that NEARHELPt−1’s

effect on residential mobility is likely to stem from the spatial fragility of local social capital.

This result provides further support to our conjecture about the spatial dimension of social

capital.

Intracounty and Intercounty Mobility

We next examine the effect of local social capital on long-distance (i.e., INTERCt=1)

and short-distance (i.e., INTRACt=1) moves. It is noted that the parameters pertaining

to the outcome {INTERCt=0, INTRACt=0} are normalized to zero, so that the explanatory

variables’ coefficient estimates for INTERCt and INTRACt are relative to those pertaining to

9The weak instrument test and the overidentification restriction test indicate that the instruments zit−1
are valid. The test statitics of the two tests are reported in the bottom of Table 5. A test of the single equation
specification against its simultaneous equation counterpart suggest that the single equation specification is
preferred.
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{INTERCt=0, INTRACt=0}.

The estimation results pertaining to local social capital’s effect on intercounty and intra-

county mobility are presented in Table 7, which corresponds to a specification with

cov(e jit,uit−1)6= 0 and cov(e1it, e2it)= 0, implying the presence of cross-equation correlations

between residential mobility and local social capital and the absence of a cross-equation

correlation between intercounty and intracounty mobility. The selection of this specification

is based on a series of specification testing. Moreover, the overidentification test and weak

instrument test suggest that the instruments are valid.10

According to the estimation results the effect of NEARHELPt−1 on a long-distance move

(i.e., INTERCt=1) is negative and statistically significant, while it is negative but statistically

insignificant on a short-distance move (i.e., INTRACt=1). The coefficient estimates are -0.3341

and -0.0747, respectively, with the latter being statistically not different from zero. This

supports our conjecture that the deterrence effect of local social capital is more important on

long-distance residential mobility than short-distance residential mobility. This difference

in effects demonstrates that the effects of NEARHELPt−1 on residential mobility probably arise

from a household’s greater loss of local social capital associated with a long-distance move

compared with that associated with a short-distance move.

The marginal effects are reported in Table 8. The marginal effect of NEARHELPt−1 on

INTERCt, i.e., -0.0573, is substantial and is comparable with those of other variables (e.g.,

OWNt−1, CJOBt−1 and AA, which have marginal effects of -0.0886, 0.0187, and -0.0787, respec-

tively). In contrast, the marginal effect of NEARHELPt−1 on INTRACt, i.e., -0.0152, is numeri-

cally less discernible.

Additional estimation results, which concern the effect of FARHELPt−1 on intercounty and

intracounty residential mobility, and their marginal effects are displayed in Tables 9 and 10,

10An overidentification test for cov(e jit, zit−1)= 0, yielding a test statistic of 4.3928 (with a p-value of 0.8201),
which suggests that the correlations between the instruments zit−1 and the error terms {e1it, e2it} are statis-
tically insigificant. The weak instrument test statistic is already discussed earlier.
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respectively.11 These results suggest that FARHELPt−1 does not have a significant impact on

either intercounty or intracounty residential mobility. Once again, the spatial nature of so-

cial capital is manifested by the juxtaposition of the effects of NEARHELPt−1 and FARHELPt−1,

respectively, on intercounty and intracounty residential mobility.

6 Conclusion

This paper empirically investigates the role of local social capital, i.e., social ties with people

living nearby, in households’ residential mobility behavior. By doing so, we take into con-

sideration social capital’s spatial dimension, which is seldom emphasized in the literature.

Our empirical analysis is based on data from the Panel Study of Income Dynamics (PSID).

In the empirical work we use the availability of assistance offered by someone living nearby

when there is a serious emergency as a surrogate of local social capital.

Our empirical results indicate that the availability of emergency assistance to a house-

hold from someone living nearby does deter a household from moving. Furthermore, the

possession of local social capital is especially dampening to long-distance mobility, while its

effect on short-distance mobility is insubstantial. Our empirical findings yield an impor-

tant implication that , social capital does have a spatial dimension. The recognition of this

dimension may generate new insights regarding the interplay between spatial economic

behavior and social capital, which deserves further research.

11Our specification search suggests the adoption of a specification with cov(e1it, e2it)= 0 and cov(e jit,uit−1)=
0. The overidentification restriction test yields a statistic of 5.9834 (which has a p-value of 0.6491). This
suggests that the instruments zit−1 are valid.
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Table 1: Definition of Variables
Variable Definition
MOVEt Whether a household moved or not in year t; MOVEt=1 if yes, MOVEt=0 if no.
INTERCt Whether a household moved to another county or not in year t; INTERCt=1 of yes,

INTERCt=0 if no.
INTRACt Whether a household moved but remained in the same county or not in year t;

INTRACt=1 of yes, INTRACt=0 if no.
NEARHELPt−1 In year t−1 whether or not someone living nearby could spend a lot of time help

out if an emergency occurs ; NEARHELPt−1=1 if yes, NEARHELPt−1=1 if no.
FARHELPt−1 In year t−1 whether or not someone not living nearby could spend a lot of time

help out if an emergency occurs ; FARHELPt−1=1 if yes, FARHELPt−1=1 if no.
OWNt−1 Whether or not a household was a homeowner in year t − 1; OWNt−1=1 if yes,

OWNt−1=0 if no.
CJOBt−1 Whether or not the household head changed jobs in year t−1; CJOBt−1=1 if yes,

CJOBt−1=0 if no.
CHILDt−1 Number of children living with the household head in year t−1.
INCCHILDt−1 Increase in the number of children living with the household head between years

t−1 and t−2.
DECCHILDt−1 Decrease in the number of children living with the household head between years

t−1 and t−2
MARRIEDt−1 Whether or not the household head was married in year t−1; MARRIEDt−1=1 if yes,

MARRIEDt−1=0 if no.
DMARRIEDt−1 Whether or not the household head changed marital status in year t − 1;

DMARRIEDt−1=1 if yes, DMARRIEDt−1=0 if no.
AA Whether the household head is African American; AA=1 if yes, AA=0 if no.
INCOMEt−1 Total family income in year t−1.
INCINCOMEt−1 Increase in family income between years t−1 and t−2.
DECINCOMEt−1 Decrease in family income between years t−1 and t−2.
EDUCATION The household head’s years of education.
AGEt−1 The household head’s age.
AGE2t−1 The household head’s age squared.
URATEt−1 Unemployment rate of the local-county.
RTIMEt−1 In the previous five years, whether a household has received help by someone

who spent a lot of time helping; RTIMEt−1=1 if yes, RTIMEt−1=0 if no.
GTIMEt−1 In the previous five years, whether a household has spent a lot of time helping

someone; GTIMEt−1=1 if yes, GTIMEt−1=0 if no.
RMONEYt−1 In the previous five years, whether a household has received monetary assistance

from someone outside the household; RMONEYt−1=1 if yes, RMONEYt−1=0 if no.
GMONEYt−1 In the previous five years, whether a household has given monetary assistance to

someone outside the household; GMONEYt−1=1 if yes, GMONEYt−1=0 if no.
Note: In the current study “year t−1” refers to the year prior to the spring of survey year t, and

“year t” refers to the period between the spring of survey year t−1 and the spring of survey
year t.
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Table 2: Descriptive Statistics

Sample Mean (Standard Deviation)
Variable

Full Sample
Subsample

MOVEt=1 INTERCt=1 INTRACt=1 MOVEt=0
MOVEt 0.2053 1.0000 1.0000 1.0000 0.0000

(0.4039)
INTERCt 0.0608 0.2963 1.0000 0.000 0.0000

(0.2390) (0.4569)
INTRACt 0.1445 0.7037 0.0000 1.0000 0.0000

(0.3516) (0.4569)
NEARHELPt−1 0.7972 0.8093 0.7857 0.8194 0.7939

(0.4022) (0.3931) (0.4120) (0.3850) (0.4046)
FARHELPt−1 0.7171 0.7537 0.6984 0.7516 0.7077

(0.4504) (0.4311) (0.4608) (0.4324) (0.4549)
OWNt−1 0.6309 0.3224 0.4111 0.2887 0.7106

(0.4826) (0.4676) (0.4929) (0.4535) (0.4535)
CJOBt−1 0.1587 0.2724 0.2556 0.2758 0.1293

(0.3654) (0.4455) (0.4370) (0.4473) (0.3356)
CHILDt−1 1.1477 1.0658 0.9841 1.1016 1.1689

(1.3366) (1.2569) (1.2065) (1.2701) (1.3559)
INCCHILDt−1 0.1386 0.1373 0.1349 0.1306 0.1390

(0.4081) (0.4426) (0.4262) (0.4519) (0.3987)
DECCHILDt−1 0.3488 0.4960 0.4762 0.5145 0.3108

(0.7634) (0.9464) (0.8363) (1.0015) (0.7037)
MARRIEDt−1 0.6575 0.5165 0.6185 0.4726 0.6939

(0.4746) (0.5000) (0.4867) (0.4997) (0.4609)
DMARRIEDt−1 0.0708 0.1328 0.1222 0.1403 0.0548

(0.2566) (0.3396) (0.3282) (0.3476) (0.2277)
AA 0.3122 0.3269 0.1889 0.3871 0.3084

(0.4634) (0.4693) (0.3921) (0.4875) (0.4619)
INCOMEt−1 2.19e+04 1.79e+04 1.94e+04 1.73e+04 2.30e+04

(1.77e+04) (1.31e+04) (1.23e+04) (1.35e+04) (1.86e+04)
INCINCOMEt−1 5643.6223 4837.0011 4664.0333 4879.9629 5851.9581

(1.09e+04) (6728.3888) (5800.3642) (7074.4801) (1.18e+04)
DECINCOMEt−1 2055.7693 3250.3825 3804.4741 2989.3516 1747.2222

(6393.6852) (8331.2222) (8559.6413) (8180.0215) (5750.1889)
EDUCATION 11.7369 12.10102 12.4519 11.9371 11.63031

(3.4421) (3.0189) (3.0999) (2.9701) (3.5372)
AGEt−1 41.4935 34.3973 35.0926 34.25806 43.3263

(14.6286) (12.7990) (13.1619) (12.7296) (14.5134)
AGE2t−1 1935.656 1346.801 1404.085 1335.397 2087.746

(1331.791) (1059.431) (1093.521) (1053.252) (1352.603)
URATEt−1 6.9944 7.0306 7.0648 7.0000 6.9850

(2.1765) (2.1317) (2.1626) (2.1289) (2.1881)
RTIMEt−1 0.1403 0.1839 0.1630 0.1919 0.1290

(0.3473) (0.3876) (0.3700) (0.3941) (0.3352)
GTIMEt−1 0.2840 0.2770 0.2852 0.2694 0.2858

(0.4510) (0.4477) (0.4523) (0.4440) (0.4519)
RMONEYt−1 0.1980 0.2679 0.3407 0.2339 0.1800

(0.3986) (0.4431) (0.4748) (0.4236) (0.3842)
GMONEYt−1 0.6582 0.7037 0.7333 0.6903 0.6464

(0.4744) (0.4569) (0.4430) (0.4627) (0.4781)
WEDUC 5.7428 4.6322 5.7741 4.1581 6.0296

(5.3113) (5.4478) (5.6645) (5.2986) (5.2382)
FEDUC 8.7260 9.4949 9.8741 9.2774 8.5274

(3.6879) (3.8727) (3.9399) (3.8481) (3.6127)
Observations 4292 881 261 620 3411
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Table 3: Relationship with the Person Who Lives Nearby
and Willing to Offer Emergency Assistance.

Relationship Observations Percentage
Non-Relatives 678 19.82%
Parents 884 25.84%
Children/Grandchildren 436 12.74%
Siblings 645 18.85%
Aunt/Uncle 97 2.84%
Niece/Nephew 20 0.58%
Cousin 50 1.46%
Grandparents 37 1.08%
In-laws 549 16.05%
Don’t Know 25 0.73%
Total 3421 100%
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Table 4: Probit Estimation Results (1)
Simultaneous Equations Single Equation

Variable
MOVEt NEARHELPt−1 MOVEt NEARHELPt−1

NEARHELPt−1 −0.0461 −0.1522∗∗

(−0.18) (−2.55)
OWNt−1 −0.7514∗∗ 0.1171∗∗ −0.7485∗∗ 0.1157∗∗

(−13.06) (1.98) (−13.05) (1.96)
CJOBt−1 0.1792∗∗ −0.0620 0.1780∗∗ −0.0638

(2.93) (−0.89) (2.91) (−0.92)
CHILDt−1 0.0040 0.0448∗∗ 0.0055 0.0443∗∗

(0.19) (2.25) (0.27) (2.23)
INCCHILDt−1 −0.0961 −0.2003∗∗ −0.1006∗ −0.2003∗∗

(−1.55) (−3.23) (−1.65) (−3.23)
DECCHILDt−1 0.0926∗∗ −0.0392 0.0913∗∗ −0.0396

(3.17) (−1.19) (3.14) (−1.21)
MARRIEDt−1 −0.0465 0.0477 −0.0478 0.0467

(−0.80) (0.80) (−0.82) (0.79)
DMARRIEDt−1 0.1273 0.0801 0.1284 0.0788

(1.49) (0.78) (1.50) (0.76)
AA −0.2076∗∗ 0.0102 −0.2082∗∗ 0.0095

(−3.64) (0.18) (−3.65) (0.17)
INCOMEt−1 −3.43e−06 −5.52e−07 −3.46e−06 −5.84e−07

(−1.17) (−0.22) (−1.18) (−0.23)
INCINCOMEt−1 5.53e−06 3.82e−07 5.55e−06 4.41e−07

(1.41) (0.11) (1.41) (0.12)
DECINCOMEt−1 3.68e−06 4.87e−06 3.79e−06 4.82e−06

(1.03) (1.07) (1.06) (1.06)
EDUCATION 0.0060 −0.0069 0.0061 −0.0068

(0.69) (−0.89) (0.70) (−0.88)
AGEt−1 −0.0257∗∗ −0.0735∗∗ −0.0274∗∗ −0.0736∗∗

(−2.06) (−6.56) (−2.34) (−6.57)
AGE2t−1 0.0001 0.0006∗∗ 0.0001 0.0006∗∗

(0.84) (5.02) (0.95) (5.03)
URATEt−1 0.0083 −0.0057 0.0081 −0.0058

(0.76) (−0.55) (0.75) (−0.55)
RTIMEt−1 0.5275∗∗ 0.5235∗∗

(6.41) (6.39)
GTIMEt−1 0.1797∗∗ 0.1808∗∗

(3.37) (3.40)
RMONEYt−1 −0.0075 −0.0091

(−0.11) (−0.14)
GMONEYt−1 0.4703∗∗ 0.4712∗∗

(9.80) (9.83)
CONSTANT 0.3626 2.3955∗∗ 0.4957∗ 2.4015∗∗

(0.87) (8.53) (1.78) (8.56)
corr(εi,ui) -0.0630 —

( 0.43) —
Overidentification Restriction Test‡ 3.4052

[0.4924]
Weak Instrument Test††† 167.47 167.47

[2.64e-038] [2.64e-038]
Log-likelihood -3841.0972 −1873.0688 −1968.1216
Observations 4292 4292
†t-statistics in parentheses.
‡Likelihood-ratio test for overidentification restriction; p-value in square parentheses.
†††Likelihood-ratio test for instruments’ explanatory power; p-value in square parentheses.
∗∗Statistically significant at the 5% level.
∗Statistically significant at the 10% level.
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Table 5: Probit Estimation Results (2)
Simultaneous Equations Single Equation

Variable
MOVEt−1 FARHELPt−1 MOVEt FARHELPt−1

FARHELPt−1 −0.2514 0.0522
(−0.57) (0.98)

OWNt−1 −0.7544∗∗ −0.1262∗∗ −0.7494∗∗ −0.1245∗∗

(−13.22) (−2.37) (−13.08) (−2.34)
CJOBt−1 0.1765∗∗ 0.0008 0.1784∗∗ 0.0027

(2.89) (0.01) (2.92) (0.04)
CHILDt−1 0.0019 −0.0209 0.0039 −0.0215

(0.09) (−1.17) (0.19) (−1.21)
INCCHILDt−1 −0.0841 0.1035∗ −0.0951 0.1028∗

(−1.34) (1.77) (−1.56) (1.76)
DECCHILDt−1 0.0890∗∗ −0.0397 0.0940∗∗ −0.0393

(2.95) (−1.42) (3.23) (−1.40)
MARRIEDt−1 −0.0373 0.1475∗∗ −0.0482 0.1486∗∗

(−0.62) (2.74) (−0.83) (2.76)
DMARRIEDt−1 0.1302 0.0389 0.1277 0.0424

(1.53) (0.45) (1.50) (0.49)
AA −0.1921∗∗ 0.1765∗∗ −0.2091∗∗ 0.1777∗∗

(−3.07) (3.41) (−3.67) (3.43)
INCOMEt−1 −3.20e−06 2.35e−06 −3.48e−06 2.45e−06

(−1.09) (0.99) (−1.19) (1.03)
INCINCOMEt−1 5.32e−06 −1.02e−06 5.52e−06 −1.08e−06

(1.36) (−0.29) (1.41) (−0.30)
DECINCOMEt−1 3.22e−06 −5.49e−06∗ 3.68e−06 −5.35e−06

(0.89) (−1.65) (1.03) (−1.60)
EDUCATION 0.0079 0.0255∗∗ 0.0052 0.0253∗∗

(0.84) (3.53) (0.60) (3.51)
AGEt−1 −0.0250∗∗ −0.0027 −0.0248∗∗ −0.0025

(−2.16) (−0.27) (−2.12) (−0.26)
AGE2t−1 0.0001 −0.0002 0.0001 −2.33e−05

(0.80) (−0.21) (0.82) (−0.22)
URATEt−1 0.0065 −0.0247∗∗ 0.0089 −0.0244∗∗

(0.58) (−2.60) (0.82) (−2.57)
RTIMEt−1 0.2358 0.2441∗∗

(3.54) (3.74)
GTIMEt−1 0.0668 0.0644

(1.42) (1.37)
RMONEYt−1 −0.0047 −0.0052

(−0.08) (−0.09)
GMONEYt−1 0.2769∗∗ 0.2754∗∗

(6.22) (6.16)
CONSTANT 0.4867 0.3016 0.2690 0.2942

(1.18) (1.24) (0.99) (1.22)
corr(εi,ui) 0.1812 —

( 0.70) —
Overidentification Restriction Test‡ 4.8808

[0.2997]
Weak Instrument Test‡ 58.90 58.90

[1.66e−014] [1.66e−014]
Log-likelihood -4351.6139 −1875.7951 −2476.0565
Observations 4292 4292
†t-statistics in parentheses.
‡Likelihood-ratio test for instruments’ explanatory power; p-value in square parentheses.
∗∗Statistically significant at the 5% level.
∗Statistically significant at the 10% level.
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Table 6: Marginal Effects of Single Equation Probit Models
MOVEt NEARHELPt−1 FARHELPt−1Variable (1) (2) (3) (4)

HELPt−1 −0.0407 0.0133
OWNt−1 −0.2083 −0.2089 0.0306 −0.0412
CJOBt−1 0.0483 0.0485 −0.0170 0.0009
CHILDt−1 0.0014 0.0010 0.0116 −0.0072
INCCHILDt−1 −0.0258 −0.0245 −0.0522 0.0344
DECCHILDt−1 0.0235 0.0242 −0.0103 −0.0132
MARRIEDt−1 −0.0124 −0.0125 0.0123 0.0503
DMARRIEDt−1 0.0347 0.0345 0.0199 0.0140
AA −0.0515 −0.0518 0.0025 0.0582
INCOMEt−1 −0.89e−07 −8.97e−07 −1.52e−07 8.19e−07
INCINCOMEt−1 0.42e−06 1.42e−06 1.15e−07 −3.61e−07
DECINCOMEt−1 0.73e−07 9.47e−07 1.26e−06 −1.79e−06
EDUCATION 0.0016 0.0013 −0.0018 0.0085
AGEt−1 −0.0071 −0.0064 −0.0192 −0.0008
AGE2t−1 3.21e−05 2.77e−05 0.0002 −7.81e−06
URATEt−1 0.0021 0.0023 −0.0015 −0.0082
RTIMEt−1 0.1131 0.0771
GTIMEt−1 0.0455 0.0214
RMONEYt−1 −0.0024 −0.0017
GMONEYt−1 0.1310 0.0942
Note: (1) NEARHELPt−1 is the social capital indicator in the regression,

i.e., HELPt−1 stands for NEARHELPt−1.
(2) FARHELPt−1 is the social capital indicator in the regression,

i.e., HELPt−1 stands for FARHELPt−1.
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Table 7: Multinomial Probit Estimation Results (1)
Variable INTERCt INTRACt NEARHELPt−1
NEARHELPt−1 −0.3341∗∗ −0.0747

(−2.1760) (−0.6164)
OWNt−1 −0.5170∗∗ −0.7190∗∗ 0.0893

(−5.9271) (−11.4815) (1.4487)
CJOBt−1 0.1091 0.1700∗∗ −0.0357

(1.2871) (2.5978) (−0.5047)
CHILDt−1 −0.0421 0.0141 0.0243

(−1.2847) (0.6151) (1.2053)
INCCHILDt−1 0.0117 −0.1141∗ −0.1609∗∗

(0.1286) (−1.9323) (−2.4787)
DECCHILDt−1 0.0627 0.0751∗∗ −0.0508

(1.4592) (2.5045) (−1.4806)
MARRIEDt−1 0.1444 −0.1384∗∗ 0.0529

(1.6125) (−2.2749) (0.8916)
DMARRIEDt−1 0.0570 0.1671∗ 0.0990

(0.4754) (1.9256) (0.9118)
AA −0.4590∗∗ −0.0631 0.0051

(−5.3836) (−1.0194) (0.0896)
INCOMEt−1 −1.78e−06 −3.75e−06 −4.06e−06

(−0.4200) (−1.0702) (−1.5926)
INCINCOMEt−1 −2.94e−06 7.35e−06 4.11e−06

(−0.4014) (1.4759) (1.0737)
DECINCOMEt−1 7.71e−06∗ −3.0e−07 6.12e−06

(1.7994) (−0.0725) (1.1167)
EDUCATION 0.0100 0.0026 −0.0082

(0.0812) (0.0268) (−0.1072)
AGEt−1 −0.010191 −0.0159 −0.0240∗∗

(−0.5904) (−1.2119) (−2.0625)
AGE2t−1 −0.0003 4.89e−05 0.0007

(−0.1796) (0.0328) (0.5889)
URATEt−1 0.1205 0.0291 −0.0610

(0.7786) (0.2408) (−0.5680)
RTIMEt−1 0.5106∗∗

(6.2835)
GTIMEt−1 0.1772∗∗

(3.3099)
RMONEYt−1 −0.0057

(−0.0841)
GMONEYt−1 0.4723∗∗

(9.8160)
CONSTANT −0.4313 0.0497 1.3591∗∗

(−1.0185) (0.1563) (4.6998)

Covariances
cov(e1i, e2i) cov(e1i,ui) cov(e2i,ui)

-0.1215∗ 0.0169∗∗

( -1.9026) ( 2.4732)
Overidentification Restriction Test‡ 4.3928

[0.8201]
Log-Likelihood -4392.9090
Observations 4292
†t-statistics in parentheses.
‡Likelihood-ratio test for overidentification restriction; p-value in square parentheses.
∗∗Statistically significant at the 5% level.
∗Statistically significant at the 10% level.
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Table 8: Marginal Effects of Multinomial Probit Model (1)
Variable INTERCt INTRACt HELPt−1
NEARHELPt−1 −0.0573 −0.0152
OWNt−1 −0.0886 −0.1466 0.0235
CJOBt−1 0.0187 0.0347 −0.0094
CHILDt−1 −0.0072 0.0029 0.0064
INCCHILDt−1 0.0020 −0.0233 −0.0424
DECCHILDt−1 0.0107 0.0153 −0.0134
MARRIEDt−1 0.0248 −0.0282 0.0139
DMARRIEDt−1 0.0098 0.0341 0.0261
AA −0.0787 −0.0129 0.0013
INCOMEt−1 −3.13e−07 −7.61e−07 −1.07e−06
INCINCOMEt−1 −5.03e−07 1.50e−06 1.08e−06
DECINCOMEt−1 1.32e−06 −6.39e−07 1.61e−06
EDUCATION 0.0017 0.0005 −0.0022
AGEt−1 −0.0017 −0.0033 −0.0063
AGE2t−1 −5.94e−06 1.00e−06 1.89e−05
URATEt−1 0.0207 0.0059 −0.0161
RTIMEt−1 0.1346
GTIMEt−1 0.0467
RMONEYt−1 −0.0015
GMONEYt−1 0.1245
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Table 9: Multinomial Probit Estimation Results (2)
Variable INTERCt INTRACt FARHELPt−1
FARHELPt−1 0.0686 0.0522

(0.9048) (0.8838)
OWNt−1 −0.5237∗∗ −0.7248∗∗ −0.1254∗∗

(−6.0691) (−11.6192) (−2.3556)
CJOBt−1 0.0940 0.1726∗∗ 0.0000

(1.1054) (2.6408) (−0.0001)
CHILDt−1 −0.0481 0.0158 −0.0255

(−1.4938) (0.6939) (−1.4393)
INCCHILDt−1 −0.0035 −0.1082∗ 0.1081∗

(−0.0387) (−1.8217) (1.8716)
DECCHILDt−1 0.0651 0.0791∗∗ −0.0460

(1.5162) (2.6171) (−1.6173)
MARRIEDt−1 0.1568∗ −0.1450∗∗ 0.1329∗∗

(1.7444) (−2.3905) (2.4739)
DMARRIEDt−1 0.0630 0.1811∗∗ 0.0445

(0.5234) (2.0805) (0.5143)
AA −0.4433∗∗ −0.0691 0.1545∗∗

(−5.2043) (−1.1183) (2.9599)
INCOMEt−1 −2.33e−06 −3.30e−06 4.09e−06∗

(−0.5629) (−0.9563) (1.7425)
INCINCOMEt−1 −1.66e−06 6.71e−06 −2.46e−06

(−0.2270) (1.3826) (−0.5968)
DECINCOMEt−1 7.44e−06∗ −4.5e−07 −5.18e−06

(1.7210) (−0.1084) (−1.5121)
EDUCATION 0.0026 −0.0007 0.0987

(0.0213) (−0.0073) (1.3450)
AGEt−1 −0.0094 −0.0155 −0.0031

(−0.5487) (−1.1894) (−0.3218)
AGE2t−1 −0.0002 5.34e−05 −0.0003

(−0.1539) (0.0362) (−0.3124)
URATEt−1 0.0457 0.0675 −0.2499∗∗

(0.2954) (0.5546) (−2.5680)
RTIMEt−1 0.2411∗∗

(3.6701)
GTIMEt−1 0.0669

(1.4075)
RMONEYt−1 0.0018

(0.0318)
GMONEYt−1 0.2777∗∗

(6.1527)
CONSTANT −0.7769∗∗ −0.0881 0.5132∗∗

(−2.0450) (−0.2957) (2.1426)

Covariances
cov(e1i, e2i) cov(e1i,ui) cov(e2i,ui)

Overidentification Restriction Test‡ 5.9834
[0.6491]

Log-Likelihood -4895.1413
Observations 4292
†t-statistics in parentheses.
‡Likelihood-ratio test for overidentification restriction; p-value in square parentheses.
∗∗Statistically significant at the 5% level.
∗Statistically significant at the 10% level.
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Table 10: Marginal Effects of Multinomial Probit Model (2)
Variable INTERCt INTRACt HELPt−1
FARHELPt−1 0.0097 0.0094
OWNt−1 −0.0738 −0.1302 −0.0420
CJOBt−1 0.0132 0.0310 0.0000
CHILDt−1 −0.0068 0.0028 −0.0085
INCCHILDt−1 −0.0005 −0.0194 0.0362
DECCHILDt−1 0.0092 0.0142 −0.0154
MARRIEDt−1 0.0221 −0.0261 0.0445
DMARRIEDt−1 0.0089 0.0325 0.0149
AA −0.0624 −0.0124 0.0517
INCOMEt−1 −3.3e−07 −5.9e−07 1.37e−06
INCINCOMEt−1 −2.3e−07 1.21e−06 −8.20e−07
DECINCOMEt−1 1.05e−06 −0.8e−07 −1.73e−06
EDUCATION 0.0003 −0.0001 0.0330
AGEt−1 −0.0013 −0.0028 −0.0010
AGE2t−1 −4.20e−06 9.6e−07 −1.09e−05
URATEt−1 0.0064 0.0121 −0.0836
RTIMEt−1 0.0807
GTIMEt−1 0.0224
RMONEYt−1 0.0006
GMONEYt−1 0.0929
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