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Abstract

We extend the KVB approach of Kiefer, Vogelsang, and Bunzel (2000, Economet-

rica) and Kiefer and Vogelsang (2002b, Econometric Theory) to construct a class of

robust tests for over-identifying restrictions in the context of GMM. The proposed test

does not require consistent estimation of the asymptotic covariance matrix but relies

on kernel-based normalizing matrices to eliminate the nuisance parameters in the limit.

Moreover, the proposed test is valid for any consistent GMM estimator, in contrast with

the conventional test that requires the optimal GMM estimator, and hence is easy to

implement. Our simulations show that the proposed test is properly sized and may even

be more powerful than the conventional test computed with an inappropriate user-chosen

parameter.

JEL classification: C12, C22

Keywords: generalized method of moments, kernel function, KVB approach, over-

identifying restrictions, robust test



1 Introduction

The generalized method of moments (GMM) introduced in Hansen (1982) is a leading

estimation technique in econometric applications. In the context of GMM, the validity of

the moment conditions is tested using the over-identifying restrictions (OIR) test. Similar

to many asymptotic tests, the OIR test requires consistent estimation of the asymptotic

covariance matrix. When heteroskedasticity and serial correlations are present, the co-

variance matrix can be consistently estimated by the nonparametric kernel method; see

den Haan and Levin (1997) for a review of this method. A well known problem with

the kernel covariance-matrix estimator is that its behavior depends on the chosen kernel

function and truncation lag (i.e., the number of autocovariances being estimated). The

resulting OIR test is thus not robust because the choices of the kernel function and trun-

cation lag are somewhat arbitrary in practice, even when some “automatic selection”

methods for truncation lags are available (e.g., Andrews, 1991; Newey and West, 1994).

To circumvent the problems arising from nonparametric kernel estimation of the

asymptotic covariance matrix, Kiefer, Vogelsang, and Bunzel (2000), hereafter KVB,

proposed an alternative approach to constructing tests for parameters in linear regres-

sions; see Bunzel, Kiefer, and Vogelsang (2001), Kiefer and Vogelsang (2002a, b), and

Vogelsang (2003) for other applications and extensions of this approach. The main idea

of the KVB approach is to obtain an asymptotically pivotal test by employing a normal-

izing matrix that can eliminate the nuisance parameters of the asymptotic covariance

matrix. As for specification testing, Lobato (2001) obtained a test for serial correlations

along the same line; Kuan and Lee (2006) proposed robust M tests for general moment

conditions. However, the result of Kuan and Lee (2006) requires the asymptotic covari-

ance matrix been nonsingular, yet this condition fails to hold in testing OIR. We are

therefore motivated to find a robust OIR test in the spirit of KVB.

In this paper, we extend KVB and Kiefer and Vogelsang (2002b) to construct a class

of robust OIR tests. The proposed OIR test does not require consistent estimation of the

asymptotic covariance matrix but relies on kernel-based normalizing matrices to eliminate

the nuisance parameters in the limit. This test is thus asymptotically pivotal, and its

asymptotic critical values can be easily obtained via simulations (some critical values are

already available in the literature). An important feature of the proposed OIR test is

that it is valid for any consistent GMM estimator, in contrast with the conventional OIR

test that requires the optimal GMM estimator. As for finite-sample performance, our

simulations show that the proposed test is properly sized and may even be more powerful
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than the conventional test computed with an inappropriate user-chosen parameter.

This paper proceeds as follows. In Section 2, we review the GMM estimation and

OIR test. A class of robust OIR tests and its asymptotic properties are presented in

Section 3. Simulation results are reported in Section 4. Section 5 concludes the paper.

All proofs are deferred to Appendix.

2 GMM and OIR Test

Consider the model characterized by a vector of q moment conditions:

IE[f(ηt;θo)] = 0, for a unique θo ∈ Θ ⊂ IRp, (1)

where ηt is a random data vector, θo (p×1) is the true parameter vector, and f (q×1) is

a vector of functions that are continuously differentiable in the neighborhood of θo. The

parameter θo is said to be over-identified (just-identified) if q > (=) p. Given a sample

of T observations, the GMM estimator of θo is

θ̂T = argminθ∈Θ QT (θ) = mT (θ)′HT mT (θ),

where HT is a symmetric, positive semi-definite weighting matrix and

m[rT ](θ) =
1
T

[rT ]∑
t=1

f(ηt;θ), 0 < r ≤ 1,

with mT (θ) the full-sample average of f(ηt;θ).

In the analysis below, we shall consider the local departure from (1):

IE[f(ηt;θo)] = δo/
√

T , (2)

where δo is a non-zero vector. Clearly, (2) reduces to (1) when δo = 0. In what follows,

we let [c] denote the integer part of the real number c, ⇒ weak convergence (of associated

probability measures), IP−→ convergence in probability, D−→ convergence in distribution,
d= equality in distribution, Wq a vector of q independent, standard Wiener processes, and

Bq the Brownian bridge with Bq(r) = Wq(r) − rWq(1) for 0 ≤ r ≤ 1. Given a matrix

A with full column rank, we write MA = A(A′A)−1A′ and VA = I − MA. We also

write B+ as the Moore-Penrose generalized inverse of B. We assume throughout the

paper that HT
IP−→ Ho, where Ho is a q×q non-stochastic matrix that is symmetric and

positive definite. This is a standard condition in the GMM literature; note that the class

of optimal weighting matrices recommended by Hansen (1982) satisfies this condition.
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To establish the properties of θ̂T , we impose the following “high-level” conditions, sim-

ilar to those in Vogelsang (2003), Kiefer and Vogelsang (2005), and Kuan and Lee (2006).

These conditions will also be used to analyze the proposed test in the next section.

[A1] Under the local alternative (2),
√

T (θ̂T − θo) = OIP(1).

[A2] Under the local alternative (2),

√
Tm[rT ](θo) =

1√
T

[rT ]∑
t=1

f(ηt;θo) ⇒ rδo + SWq(r), 0 < r ≤ 1,

where S is the nonsingular, matrix square root of Σo (i.e., Σo = SS′), and Σo =

limT→∞ var(T 1/2mT (θo)).

[A3] F [rT ](θ) = [rT ]−1
∑[rT ]

t=1 ∇θf
(
ηt;θ

) IP−→ F (θ) uniformly in θ and 0 < r ≤ 1, and

F o := F (θo) is a q × p matrix with full column rank. Further, ∇θF [rT ](θo) is

bounded in probability.

[A1] requires consistency of the GMM estimator, and [A2] regulates {f(ηt;θo)} to

obey a functional central limit theorem. Both conditions are assumed to hold under

the local alternative (2) and hence permit analysis under local mis-specification; see

also Hall (1999, pp. 101–103). Note that [A2] is somewhat weaker than that for es-

tablishing consistency of the asymptotic covariance matrix estimator, as pointed out

in Kiefer and Vogelsang (2005). [A3] is also standard in the literature and implies

F T (θo) = T−1
∑T

t=1 ∇θf(ηt;θo)
IP−→ F o.

It is easy to verify that the GMM estimator has the Bahadur representation:

√
T (θ̂T − θo) = −(F ′

oHoF o)
−1F ′

oHo

[
1√
T

T∑
t=1

f(ηt;θo)

]
+ oIP(1), (3)

and by [A2], its asymptotic covariance matrix is

Ωo(Ho) = (F ′
oHoF o)

−1F ′
oHoΣoHoF o(F

′
oHoF o)

−1.

In particular, Ωo(Σ
−1
o ) = (F ′

oΣ
−1
o F o)−1. It is easily shown that Ωo(Ho) − Ωo(Σ

−1
o ) is

a positive semi-definite matrix for any Ho �= Σ−1
o . This suggests that the optimal GMM

estimator, θ̂
∗
T , can be obtained by minimizing mT (θ)′Σ̂

−1

T mT (θ). A preliminary GMM

estimator of θo is thus needed to compute Σ̂T before conducting the optimal estimation.

As far as testing the validity of the model (1) is concerned, it is natural to base a

specification test on T 1/2mT (θ̂T ). Such a test is known as the OIR test because it is
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only possible to test (1) when q > p. Define the OIR test with the (HT -based) GMM

estimator θ̂T and the weighting matrix ḦT as

J (θ̂T , ḦT ) = TmT (θ̂T )′ḦT mT (θ̂T ).

It can be seen that the OIR test of Hansen (1982) is a special case with the optimal

GMM estimator θ̂
∗
T and the optimal weighting matrix ḦT = Σ̂

−1

T , i.e.,

J ∗ = J (θ̂
∗
T , Σ̂

−1

T ) = TmT (θ̂
∗
T )′Σ̂

−1

T mT (θ̂
∗
T ).

To derive the limit of J (θ̂T , ḦT ), note that the first-order Taylor expansion of

T 1/2mT (θ̂T ) about θo is

√
TmT (θ̂T ) =

√
TmT (θo) + F o

√
T (θ̂T − θo) + oIP(1). (4)

Thus, T 1/2mT (θ̂T ) and T 1/2mT (θo) are not asymptotically equivalent due to the pres-

ence of estimation effect (i.e., the second term on the right-hand side of (4)). Letting Λ

denote the matrix square root of Ho such that ΛΛ′ = Ho, we have from the Bahadur

representation (3) that

√
TmT (θ̂T ) =

[
Iq − F o(F

′
oHoF o)

−1F ′
oHo

]√
TmT (θo) + oIP(1)

= Λ′−1VΛ′Fo
Λ′√TmT (θo) + oIP(1),

(5)

where VΛ′Fo
= Iq − Λ′F o(F

′
oHoF o)−1F ′

oΛ is symmetric and idempotent with rank

q − p. Letting U := ΛVΛ′Fo
Λ−1, [A2] and (5) ensure that

√
TmT (θ̂T ) D−→ U ′[δo + SWq(1)]. (6)

As U is singular with rank q − p, this is a Gaussian limit with the singular asymptotic

covariance matrix: U ′ΣoU . The result below gives the limits of the OIR tests.

Theorem 2.1 Given [A1]–[A3], we have under the local alternative (2) that

J (θ̂T , ḦT ) D−→ [
δo + SWq(1)

]′
UḦoU

′[δo + SWq(1)
]
;

in particular, J ∗ D−→ χ2(q−p, δ′
oS

′−1VS−1Fo
S−1δo), where δ′

oS
′−1′VS−1Fo

S−1δo is the

non-centrality parameter.

It is readily seen from Theorem 2.1 that, under the null that δo = 0, J (θ̂T , ḦT )

still depends on the nuisance parameters S, Λ and F o in the limit and hence is not
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asymptotically pivotal. By contrast, J ∗ is asymptotically pivotal with the limiting dis-

tribution χ2(q − p) and has asymptotic local power against (2), yet it requires optimal

GMM estimation and a consistent estimator of Σo.

When f(ηt;θo) are heteroskedastic and serially correlated, a leading consistent esti-

mator of Σo is the following nonparametric kernel estimator:

Σ̂
κ

�(T ) =
1
T

T∑
i=1

T∑
j=1

κ

( |i − j|
�(T )

)[
f(ηi; θ̂T ) − mT (θ̂T )

][
f(ηj ; θ̂T ) − mT (θ̂T )

]′
, (7)

where θ̂T is a preliminary consistent estimator for θo and κ is a kernel function that

vanishes when |i − j| > �(T ), and �(T ) grows with T at a slower rate and is known as

the truncation lag. It should be mentioned that a “non-centered” version of Σ̂
κ

�(T ), with

f(ηi; θ̂T )f(ηj; θ̂T )′ as summand, is not consistent under non-local alternatives. While

the tests based on these two versions of kernel estimators have the same weak limit

under both the null and local alternatives, the test with a “centered” Σ̂
κ

�(T ) is more

powerful than that with a “non-centered” Σ̂
κ

�(T ), because the former is OIP(T ) but the

latter is OIP(T/�(T )) under non-local alternatives, as shown in Hall (2000) and Hall,

Inoue, and Peixe (2003). Note also that the performance of the OIR test with the kernel

covariance-matrix estimator depends on the chosen κ and �(T ). Even though �(T ) may be

chosen using a data-dependent method (e.g., Andrews, 1991; Newey and West, 1994), the

selected �(T ) may still be arbitrary because it requires additional user-chosen parameters.

3 The Proposed OIR Tests

The OIR test is a special case of the M test. Given a set of general moment condi-

tions of the form (1), Kuan and Lee (2006) proposed robust M tests without consistent

estimation of asymptotic covariance matrix, analogous to the robust tests of parame-

ters considered by KVB. In particular, they suggested two normalizing matrices:1 (i)

ĈT = T−1
∑T

t=1 ϕt(θ̂T )ϕt(θ̂T )′, with θ̂T a full-sample estimator and

ϕt(θ̂T ) =
1√
T

t∑
i=1

[
f(ηi; θ̂T ) − mT (θ̂T )

]
,

and (ii) C̃T = T−1
∑T

t=p+1 ϕ̃tϕ̃
′
t with

ϕ̃t =
1√
T

t∑
i=1

[
f(ηi; θ̃t) − mT (θ̂T )

]
,

1What Kuan and Lee (2006) suggested are “centered” normalizing matrices. They demonstrated that

the robust M test with a “non-centered” normalizing matrix virtually has no power.
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where θ̃t is the recursive counterpart of θ̂T , computed from the subsample of first t obser-

vations so that θ̃T = θ̂T . It was shown that TmT (θ̂T )′Ĉ
−1

T mT (θ̂T ) is not asymptotically

pivotal unless the estimation effect is absent (i.e., F o in (4) is a zero matrix), and the M

test TmT (θ̂T )′C̃
−1

T mT (θ̂T ) has the same weak limit regardless of the estimation effect

and hence is asymptotically pivotal in general.

3.1 A Robust OIR Test

A crucial condition ensuring the validity of these two normalizing matrices is that the

asymptotic covariance matrix of T 1/2mT (θ̂T ) is nonsingular. In the context of OIR

testing, this condition fails because the asymptotic covariance matrix, U ′ΣoU , is singular.

As such, none of the tests proposed by Kuan and Lee (2006) can serve as a robust OIR

test. To be sure, we first derive the limits of ĈT and C̃T .

Lemma 3.1 Given [A1]–[A3], we have under the local alternative (2) that

ĈT ⇒ SP qS
′,

C̃T ⇒ U ′SP qS
′U ,

where P q =
∫ 1
0 Bq(r)Bq(r)′ dr.

In view of (6), it is clear that the limit of ĈT is unable to eliminate the nuisance

parameters in the limit of T 1/2mT (θ̂T ). On the other hand, the limit of C̃T is a singular

matrix, and hence the convergence of C̃T in Lemma 3.1 need not carry over under

generalized inverse. This stems from the fact that rank(C̃T ) need not converge (with

probability one) to rank(U ′SP qS
′U ) = q−p; see, e.g., Andrews (1987) and Scott (1997,

pp. 188–190). As a consequence, it is not even easy to determine the weak limit of

TmT (θ̂T )′C̃
+

T mT (θ̂T ).

Instead of normalizing by C̃
+

T , consider the following statistic:

TmT (θ̂T )′
(
U ′SP qS

′U
)+

mT (θ̂T ).

By (6), the weak limit of this statistic under the null hypothesis is

Wq(1)
′S′U

(
U ′SP qS

′U
)+

U ′SWq(1)
d= Wq−p(1)

′P−1
q−pWq−p(1); (8)

the proof (8) is given in Appendix; see also equation (9) of Kuan and Lee (2006). Thus,

it is possible to have an asymptotically pivotal OIR test if we can find a suitable nor-

malizing matrix such that its Moore-Penrose generalized inverse converges weakly to
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(
U ′SP qS

′U
)+. As the limit of ĈT is SP qS

′ (Lemma 3.1), a candidate for the desired

normalizing matrix is Γ̂T = Û
′
T ĈT ÛT , where ÛT = Λ̂T V̂ T Λ̂

−1

T is a consistent estimator

of U , with Λ̂T the matrix square root of HT , F̂ T = T−1
∑T

t=1 ∇θf(ηt; θ̂T ), and

V̂ T = Iq − Λ̂
′
T F̂ T [F̂

′
T HT F̂ T ]−1F̂

′
T Λ̂T .

Note that ÛT is of rank q − p for all T .

The normalizing matrix Γ̂T then leads to the robust M test:

J (θ̂T , Γ̂
+

T ) = TmT (θ̂T )′Γ̂
+

T mT (θ̂T ).

The following limits are immediate once we show that Γ̂
+

T ⇒ (
U ′SP qS

′U
)+.

Theorem 3.2 Given [A1]-[A3], we have under the local alternative (2) that

J (θ̂T , Γ̂
+

T ) D−→ [∆−1A′U ′δo + W q−p(1)]
′P−1

q−p[∆
−1A′U ′δo + W q−p(1)],

where A is a q × (q − p) matrix with A′A = Iq−p and ∆ is a (q − p) × (q − p) diagonal

matrix with positive diagonal elements such that U ′SS′U = A∆2A′. Under the null

hypothesis that δo = 0, J (θ̂T , Γ̂
+

T ) D−→ W q−p(1)′P
−1
q−pW q−p(1).

While the robust M tests of Kuan and Lee (2006) converge weakly to W q(1)′P
−1
q W q(1)

under the null, the null limit of J (θ̂T , Γ̂
+

T ) is of a similar form but depends on the number

of over-identifying restrictions, q − p. It is worth mentioning that J (θ̂T , Γ̂
+

T ) does not

require recursive estimation and hence is computationally simpler than the robust M test

based on C̃T proposed by Kuan and Lee (2006).

3.2 Extension to Kernel-Based OIR Tests

Analogous to Kiefer and Vogelsang (2002a), it can be easily shown that ĈT is alge-

braically equivalent to one half of the Bartlett-kernel-based covariance matrix estimator

without truncation, i.e., Σ̂
B

�(T ) = 2ĈT with �(T ) = T . Moreover, other kernel-based

covariance matrix estimators without truncation (Σ̂
κ

�(T ) in (7) with �(T ) = T ) can be

expressed as

Σ̂
κ

T =
T−1∑
i=1

T−1∑
j=1

[
(κi,j − κi,j+1) − (κi+1,j − κi+1,j+1)

]
ϕi(θ̂T )ϕj(θ̂T )′, (9)

where κi,j = κ(|i − j|/T ), as in Kiefer and Vogelsang (2002b) and Lee (2006). These

results suggest that Σ̂
κ

T is closely related to the normalizing matrix in the KVB approach.

To be specific, we consider the kernel function κ that satisfies the following conditions.
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[A4] The kernel function κ is such that:

(a) κ(0) = 1, κ(z) = κ(−z) and |κ(z)| ≤ 1 for all z ∈ IR,
∫ ∞
−∞ κ(z)2 dz < ∞, κ is

continuous at the origin;

(b)
∫ ∞
−∞ κ(z) exp(−izλ) ≥ 0 for all λ ∈ IR, where i is the imaginary unit;

(c) κ is twice continuously differentiable with the second order derivative κ′′.

The conditions [A4](a) and (b) are standard in the literature and admit the Bartlett,

Parzen, and quadratic spectral kernels; see, e.g., Andrews (1991). In particular, [A4](b)

ensures that the kernel-based covariance matrix estimator is positive semi-definite for

all samples, but it rules out the Tukey-Hanning kernel. Kiefer and Vogelsang (2002b)

and Vogelsang (2003) also require [A4](c) for kernel-based normalizing matrices, yet this

condition rules out the Bartlett kernel. The lemma below suggests that Σ̂
κ

T may play

the role as ĈT ; cf. Lemma 3.1.

Lemma 3.3 Given [A1]–[A4], we have under the local alternative (2) that

Σ̂
κ

T ⇒ SP κ,qS
′,

where P κ,q =
∫ 1
0

∫ 1
0 κ′′(r − s)Bq(r)Bq(s)′ dr ds =

∫ 1
0

∫ 1
0 κ(r − s) dBq(r) dBq(s)′.

Remark: Although the Bartlett kernel is excluded by [A4](c), Lemma 3.3 remains valid

for Σ̂
B

T because Σ̂
B

T = 2ĈT ⇒ SP B,qS
′ with P B,q−p = 2

∫ 1
0 Bq−p(r)Bq−p(r)′ dr.

Analogous to Γ̂T in the preceding subsection, we can consider the kernel-based nor-

malizing matrix: Γ̂
κ

T = Û
′
T Σ̂

κ

T ÛT . While depending on the selected kernel function,

this normalizing matrix avoids choosing a truncation lag. With Γ̂
κ

T , we obtain a class of

robust OIR tests:

J (
θ̂T , (Γ̂

κ

T )+
)

= TmT (θ̂T )′(Γ̂
κ

T )+mT (θ̂T );

note that for the Bartlett kernel B, J (
θ̂T , (Γ̂

B

T )+
)

= 2J (
θ̂T , Γ̂

+

T

)
. The limiting behavior

of this class of tests is established in the result below. In view of the remark after

Lemma 3.3, this result in fact includes Theorem 3.2 as a special case.

Theorem 3.4 Given [A1]-[A4], we have under the local alternative (2) that

J (
θ̂T , (Γ̂

κ

T )+
) D−→ [∆−1A′U ′δo + W q−p(1)]

′P−1
κ,q−p[∆

−1A′U ′δo + W q−p(1)],

where A and ∆ are defined in Theorem 3.2. Under the null that δo = 0, J (
θ̂T , (Γ̂

κ

T )+
) D−→

W q−p(1)
′P−1

κ,q−pW q−p(1).
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Remarks:

1. Note that the proposed robust OIR test requires only a consistent GMM estimator,

in contrast with the conventional OIR test of Hansen (1982) which requires the

optimal GMM estimator. As such, the proposed test is easy to implement and

can serve to evaluate GMM models and determine if the optimal estimation is

worthwhile under present specification.

2. When κ is the Bartlett kernel, the (asymptotic) critical values of J (
θ̂T , (Γ̂

κ

T )+
)

with different q − p are available from Lobato (2001, Table 1). As for other κ and

different q − p, the critical values can be obtained via simulations; for q − p = 1,

the square root of the critical values can be found in Kiefer and Vogelsang (2002b,

Table 1) and Phillips, Sun, and Jin (2006, Table 6).

4 Monte Carlo Simulations

In this section, the finite sample performance of the proposed J (
θ̂T , (Γ̂

κ

T )+
)

test is eval-

uated via Monte Carlo simulations. We consider two nominal sizes: 5% and 10%, the

samples T = 50, 100, and 500 for size simulations, and T = 50 and 100 for power sim-

ulations. The number of replications is 10,000 for all simulations. As the results under

different nominal sizes are qualitatively similar, we report only the results for 5% nominal

size; the results for 10% nominal size are available from the authors upon request.

For the proposed test, we adopt six different kernel functions: Bartlett (B), quadratic

spectral (QS), Daniel (D), Parzen (P), and exponentiated Parzen (EP) with power ρ = 8

and 32 (EP08 and EP32). The EP kernel, proposed by Phillips et al. (2006), is obtained

by exponentiating the Parzen kernel with power ρ ≥ 1 and satisfies [A4].2 We consider the

EP kernel because, as shown by Phillips et al. (2006), it delivers faster rate of convergence

of the covariance matrix estimator and yields test power close to the power envelope when

ρ = 32. For these tests, we employ the GMM estimator based on the identity weighting

matrix. For comparison, we simulate the conventional J ∗ test of Hansen (1982) which
2The EP kernel with power ρ is

EPρ(x) =

⎧⎪⎪⎨⎪⎪⎩
(1 − 6x2 + 6|x|3)ρ, 0 ≤ |x| ≤ 1/2,

(2(1 − |x|)3)ρ, 1/2 ≤ |x| ≤ 1,

0, otherwise,

and it reduces to the Parzen kernel when ρ = 1.
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is based on the consistent estimator Σ̃
B

�(T ). This is a “centered” version of the Bartlett-

kernel-based covariance matrix estimator, as recommended by Hall (2000). To compute

Σ̃
B

�(T ), the identity-matrix based GMM estimator is used as a preliminary GMM estimator

for θo. As for the selection of �(T ), we follow Hall (2000) and adopt the nonparametric

method of Newey and West (1994) with the weighting vector: [1 −1]′ and two preliminary

truncation lags: [c(T/100)2/9 ], where c = 4 and 12; see Hall (2000, pp. 1522–1523) for

more detail. The resulting OIR tests are denoted as J ∗
nw,4 and J ∗

nw,12.

Similar to Hall (2000), we consider the GMM specification:

IE[zt(yt − θxt)] = 0, (10)

where yt and xt are random variables, zt = [z1,t z2,t]
′ is a 2 × 1 random vector, and θ is

an unknown parameter. The data generating processes (DGPs) for yt and xt are

yt = xt + γz1,t + et,

xt = z1,t + z2,t + ut,

where et and ut are random errors. Let ξt = [z1,t z2,t et ut]′. Then the data for ξt are

generated according to the VAR(1) model: ξt = aξt−1 + vt, where a ∈ (−1, 1) is a scalar

parameter and vt ∼ i.i.d. N (0,Σv) with the diagonal elements of Σv being 1 − a2 and

nonzero off-diagonal elements being such that corr(z1,t, z2,t) = corr(et, ut) = 0.5. Note

that this DGP reduces to that of Hall (2000) when a = 0. In this study, we set a = 0, 0.5,

0.8, 0.9, −0.5 so that we can examine the effect of serial correlations on the performance

of the proposed tests. When γ = 0, it is easy to see that the model (10) is correctly

specified in the sense that there exists a unique θo = 1 such that IE[zt(yt − θoxt)] = 0.

For γ �= 0, the model (10) is misspecified. We thus consider γ = 0 for size simulations

and various γ in (0, 2] for power simulations.

The empirical sizes of these tests are reported in Table 1. It is found that when the

data possess no or moderate serial correlation (i.e., a = 0 or 0.5), the empirical sizes of

all J (
θ̂T , (Γ̂

κ

T )+
)

tests are quite close to the nominal size 5% even when T = 50. When a

gets larger such that data become more persistent, the proposed tests with QS, P, and D

remain properly sized, but those with B, EP08 and EP32 tend to be over-sized when T is

small; the size distortions of the latter tests diminish quickly with T . For example, when

a = 0.8 (0.9), T = 100 (500) is enough for these tests to be properly sized. Note that

the proposed test based on the EP kernel seems to be robust to ρ under moderate serial

correlation, but it has more size distortion for ρ = 32 when the data are highly persistent

and T is small. By contrast, J ∗
nw,c are over-sized for all samples, and the distortions do

10



Table 1: Empirical sizes of the OIR tests.

Proposed test with κ Conventional test

DGP T B QS D P EP08 EP32 J ∗
nw,4 J ∗

nw,12

50 4.65 4.47 4.50 4.44 4.91 5.00 9.81 19.66

a = 0.0 100 4.89 4.65 4.67 4.67 4.66 4.98 7.25 13.51

500 5.08 4.86 4.89 5.00 5.43 5.47 5.76 7.14

50 5.28 4.88 4.92 4.63 4.69 5.51 12.11 20.69

a = 0.5 100 4.99 4.90 4.90 4.76 4.59 5.02 9.87 15.15

500 5.13 5.09 5.08 4.60 4.89 4.69 7.30 7.84

50 6.37 4.79 4.78 4.76 5.09 7.89 19.05 24.83

a = 0.8 100 5.78 4.79 4.77 4.43 4.61 5.61 14.25 17.96

500 5.24 4.74 4.76 4.96 5.05 5.13 8.70 10.07

50 8.83 5.20 5.17 5.70 7.30 14.40 28.39 31.41

a = 0.9 100 7.14 4.47 4.47 4.52 5.59 8.63 21.19 22.53

500 5.82 5.14 5.19 5.23 4.75 5.00 11.19 10.81

50 5.62 5.04 5.05 4.80 5.12 5.52 12.28 20.65

a = −0.5 100 5.16 4.70 4.71 5.07 4.73 5.05 9.55 15.12

500 5.17 5.25 5.29 5.33 5.17 5.29 7.33 7.77

Note: The entries are rejection frequencies in percentage; the nominal size is 5%.

not disappear even when T = 500. For a given sample, the size distortions deteriorate

rapidly when a increases. This shows that J ∗
nw,c is not quite robust to serial correlation

of unknown form. Also, the size distortions depend on the user-chosen parameter c and

are much larger for c = 12.

To provide a proper comparison between the power performance of different tests,

we simulate the size-adjusted powers. We first examine the effect of kernel function on

the power of the proposed test and plot the power curves in Figure 1, with γ on the

horizontal axis. We consider the cases that a = 0.5, 0.9 and T = 50, 100. It can be seen

that in all cases, the tests with the EP kernel dominate the tests with other kernels (the

one with EP32 has the highest power), and the test with the Bartlett kernel dominates

those with other conventional kernels. As for the effect of persistence in data, we observe

that the test powers are lower for a larger a, yet the ranking of power performance is not

altered.

Given that the proposed test with EP32 enjoys power advantage over the tests with

other kernel functions, we further evaluate its power performance relative to the conven-

tional OIR tests: J ∗
nw,4 and J ∗

nw,12. As J ∗
nw tests are based on the Bartlett kernel, we

11



also consider the proposed test with the same kernel. The power curves of these tests are

plotted in Figure 2. It can be seen that the performance of J ∗
nw,c depends on the user-

chosen parameter c, and the test with c = 4 is more powerful than the test with c = 12.

It has been documented in the literature that the tests with a KVB-type normalizing

matrix typically suffer from power loss, even though they are properly sized. Nonetheless,

it can be seen from Figure 2 that, for moderately correlated data (e.g., a = 0.5), the test

with EP32 performs similarly to J ∗
nw,4 (with very minor power loss) and hence is more

powerful than J ∗
nw,12 in both samples. The test with B, on the other hand, has more

power loss relative to J ∗
nw,4, but it still outperforms J ∗

nw,12 in a small sample (it has the

lowest power in a larger sample). When the data are highly persistent (e.g., a = 0.9),

the tests with EP32 and B in a small sample are even more powerful than J ∗
nw,4 for large

γ (so that the DGP is far away from the null). In a larger sample, the test with EP32

performs similarly to J ∗
nw,4; the test with B is less powerful but performs similarly to

J ∗
nw,12. These results together suggest that the proposed tests, especially the one with

EP32, can serve as practically useful diagnostic tools for testing OIR.

5 Conclusions

In this paper, the KVB approach is modified to construct a class of robust specification

tests for OIR in the context of GMM. The proposed test does not require consistent

estimation of the asymptotic covariance matrix so that it avoids the problems arising from

nonparametric kernel estimation. Moreover, the proposed test is computationally simple.

First, it does not require optimal GMM estimation, in contrast with the conventional OIR

test. Second, it does not require recursive estimation, in contrast with the robust M test

of Kuan and Lee (2006). The proposed test is thus practically useful because it can

serve as a preliminary check of GMM models without going through the more complex

process of optimal estimation. The simulation results also confirm that the proposed

test is properly sized and may have power advantage relative to the conventional OIR

test with an inappropriate user-chosen parameter. In particular, with a properly selected

kernel function (e.g., EP32), our test may even outperform the conventional OIR test in

terms of finite sample power.
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Appendix

Proof of Theorem 2.1: As ḦT
IP−→ Ḧo, the limit of J (θ̂T , ḦT ) follows immediately

from (6) and the continuous mapping theorem. For the second assertion, note that when

Ho = Ḧo = Σ−1
o , Λ = S′−1, VΛ′Fo

= VS−1Fo
, and U = S′−1VS−1Fo

S′. Then by (6),

T 1/2mT (θ̂
∗
T ) ⇒ SVS−1Fo

S−1[δo + SWq(1)
]

and

J ∗ D−→[
S−1δo + Wq(1)

]′
VS−1Fo

S′Σ−1
o SVS−1Fo

[
S−1δo + Wq(1)

]
=

[
S−1δo + Wq(1)

]′
VS−1Fo

[
S−1δo + Wq(1)

]
,

because S′Σ−1
o S = I and VS−1Fo

is symmetric and idempotent. Given rank(V S−1Fo
) =

q − p, we have from Theorem 9.11 of Scott (1997, p. 381) that the quadratic form on the

right-hand side above is distributed as a non-central χ2 distribution with q − p degrees

of freedom and the non-centrality parameter: δ′
oS

′−1′VS−1F o
S−1δo. �

Proof of Lemma 3.1: Setting t = [rT ], 0 < r ≤ 1, the first-order Taylor expansion of

T 1/2m[rT ](θ̂T ) about θo is

√
Tm[rT ](θ̂T ) =

√
Tm[rT ](θo) +

[rT ]
T

F [rT ](θo)
√

T (θ̂T − θo) + oIP(1)

=
√

Tm[rT ](θo) +
[rT ]
T

F o

√
T (θ̂T − θo) + oIP(1),

where F [rT ](θo) and F o are defined in [A3]. It follows from [A2] that

ϕ[rT ](θ̂T ) =
√

Tm[rT ](θ̂T ) − [rT ]
T

√
TmT (θ̂T )

=
√

Tm[rT ](θo) −
[rT ]
T

√
TmT (θo) + oIP(1)

⇒ SBq(r),

regardless of the values of F o and δo. The first assertion on ĈT now follows from the

continuous mapping theorem.

As for C̃T , it can be shown that, analogous to (5),

√
Tm[rT ](θ̃[rT ]) = U ′√Tm[rT ](θo) + oIP(1).

By [A2], T 1/2m[rT ](θ̃[rT ]) ⇒ U ′[rδo + SWq(r)
]
, and hence

ϕ̃[rT ] =
√

Tm[rT ](θ̃[rT ]) −
[rT ]
T

√
TmT (θ̂T ) ⇒ U ′S[Wq(r) − rWq(1)] = U ′SBq(r).

13



The weak limit of C̃T also follows from the continuous mapping theorem. �

Proof of Equation (8): By the singular value decomposition, we have U ′S = A∆B′,

where A and B are q × (q − p) matrices such that A′A = B′B = Iq−p, and ∆ is a

(q−p)×(q−p) diagonal matrix with positive diagonal elements. As U ′SS′U = A∆2A′,

it is easily seen that U ′SWq(r)
d= A∆Wq−p(r) and U ′SBq(r)

d= A∆Bq−p(r). Hence,

U ′SP qS
′U =

∫ 1

0

∫ 1

0
U ′SBq(r)Bq(s)

′S′U dr ds

d=
[∫ 1

0

∫ 1

0
A∆Bq−p(r)Bq−p(s)

′∆A′ dr ds

]
= A∆P q−p∆A′.

As shown in Kuan and Lee (2006), taking the generalized inverse of both sides of the

equation above yields

(U ′SP qS
′U)+ d= A∆−1P−1

q−p∆
−1A′.

Under the null, T 1/2mT (θ̂T ) ⇒ U ′SWq(1) by (6), so that

TmT (θ̂T )′(U ′SP qS
′U)+mT (θ̂T )

⇒ Wq(1)
′S′U(U ′SP qS

′U )+U ′SWq(1)

d= Wq−p(1)∆A′A∆−1P−1
q−p∆

−1A′A∆Wq−p(1)

= Wq−p(1)
′P−1

q−pWq−p(1). �

Proof of Theorem 3.2: Clearly, Γ̂T ⇒ U ′SP qS
′U . By Lemma 3.1, P q is positive

definite with probability one, hence so is SP qS
′. Then, rank(U ′SP qS

′U) = q − p. As

ĈT converges to SP qS
′ by Lemma 3.1, it must have rank q for all T large. Given that

Û is of rank q − p for all T , Γ̂T is thus of rank q − p and satisfies the rank condition for

the continuity of the Moore-Penrose generalized inverse; see, e.g., Scott (1997, 188–190).

It follows that (Γ̂T )+ ⇒ (U ′SP qS
′U)+. In view of the proof of equation (8), we know

there exist A and ∆ such that

√
TmT (θ̂T ) ⇒ U ′[δ + SWq(1)]

d= U ′δ + A∆Wq−p(1),

and (U ′SP qS
′U ′)+ d= A∆−1P−1

q−p∆
−1A′. It follows from the continuous mapping the-
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orem that

J (θ̂T , Γ̂
+

T ) D−→ [U ′δo + U ′SWq(1)]
′(U ′SP qS

′U
)+[U ′δo + U ′SWq(1)]

d= [U ′δo + A∆Wq−p(1)]
′A∆−1P−1

q−p∆
−1A′[U ′δo + A∆Wq−p(1)]

= [∆−1A′U ′δo + Wq−p(1)]
′P−1

q−p[∆
−1A′U ′δo + Wq−p(1)].

The null limit follows immediately by setting δ = 0. �

Proof of Lemma 3.3: As in the proof of Lemma 3.1, ϕ[rT ](θ̂T ) ⇒ SBq(r). When the

kernel function κ is twice continuously differentiable with the second order derivative κ′′,

it is easily shown that

T 2

[
(κ[rT ],[sT ] − κ[rT ],[sT ]+1) − (κ[rT ]+1,[sT ] − κ[rT ]+1,[sT ]+1)

]
→ −κ′′(r − s),

uniformly in r and s; see Kiefer and Vogelsang (2002b, pp. 1364–1365). It then follows

from (9) and the continuous mapping theorem that

Σ̂
κ

T ⇒ S

[∫ 1

0

∫ 1

0
−κ′′(r − s)Bq(r)Bq(s)

′ dr ds

]
S′.

The second equality of P κ,q follows from integration by parts, as in Phillips et al. (2006,

pp. 890–891). �

Proof of Theorem 3.4: The proof is analogous to that of Theorem 3.2. Given

Lemma 3.3, it can be shown that Γ̂
κ

T ⇒ U ′SP κ,qS
′U and (Γ̂

κ

T )+ ⇒ (U ′SP κ,qS
′U)+.

Moreover, equation (8) carries over to the present case:

Wq(1)
′S′U

(
U ′SP κ,qS

′U
)+

U ′SWq(1)
d= Wq−p(1)

′P−1
κ,q−pWq−p(1).

We also have

√
TmT (θ̂T ) ⇒ U ′δ + A∆Wq−p(1),

and (U ′SP κ,qS
′U ′)+ d= A∆−1P−1

κ,q−p∆
−1A′. Therefore,

J (
θ̂T , (Γ̂

κ

T )+
) D−→ [∆−1A′U ′δo + Wq−p(1)]

′P−1
κ,q−p[∆

−1A′U ′δo + Wq−p(1)],

and the null limit follows by setting δ = 0. �
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(a) (b)

(c) (d)

Figure 1: The size-adjusted powers of the proposed test with different kernels: (a) a = 0.5

and T = 50, (b) a = 0.9 and T = 50, (c) a = 0.5 and T = 100, and (d) a = 0.9 and

T = 100.
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(a) (b)

(c) (d)

Figure 2: The size-adjusted powers of the proposed test with EP32 and B, J ∗
nw,4, and

J ∗
nw,12: (a) a = 0.5 and T = 50, (b) a = 0.9 and T = 50, (c) a = 0.5 and T = 100, and

(d) a = 0.9 and T = 100.
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