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Abstract

This paper proposes two innovative algorithms to estimate a general class of N -state

Markov-switching autoregressive moving-average (MS-ARMA) models with a sample

of size T . To resolve the problem of NT possible routes induced by the presence of

MA parameters, the first algorithm is built on Hamilton’s (1989) method and Gray’s

(1996) idea of replacing the lagged error terms with their corresponding conditional

expectations. We thus name it as the Hamilton-Gray (HG) algorithm. The second

method refines the HG algorithm by recursively updating the conditional expectations

of these errors and is named as the extended Hamilton-Gray (EHG) algorithm. The

computational cost of both algorithms is very mild, because the implementation of these

algorithms is very much similar to that of Hamilton (1989). The simulations show that

the finite sample performance of the EHG algorithm is very satisfactory and is much

better than that of the HG counterpart. We also apply the EHG algorithm to the issues

of dating U.S. business cycles with the same real GNP data employed in Hamilton

(1989). The turning points identified with the EHG algorithm resemble closely to

those of the NBER’s Business Cycle Dating Committee and confirm the robustness of

the findings in Hamilton (1989) about the effectiveness of Markov-switching models in

dating U.S. business cycles.
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1 Introduction

This paper considers the possibility of estimating a general class of N -state Markov-switching

autoregressive moving-average (MS-ARMA) models. The MS-ARMA(p, q) model is a natural

extension to the well-known Markov-switching autoregressive (MS-AR) model proposed in

the seminal paper of Hamilton (1989). It is well known that the MS-AR model performs

well in modeling many macroeconomic data, especially for dating business cycles as shown in

Hamilton (1989). Hamilton (1988) further explores the term structure of interest rates with

the MS-AR model. See Hamilton (1994c) for other interesting macroeconomic applications

of the MS-AR model.

The Markov-switching model has also been widely used in financial data. Particularly,

Engel and Hamilton (1990), Engel (1994), and Bollen, et al. (2000) find Markov-switching

behavior in foreign exchange data. Pagan and Schwert (1990) adopt Markov-switching models

for stock returns. Hamilton and Raj (2002) provide some current reviews concerning the

Markov-switching model.

The above-mentioned research studies are all based on the algorithm of Hamilton (1989).

They cannot consider the potential presence of MA parameters in the data-generating pro-

cess (DGP), because the possible routes of states running from time 1 to time T expand

exponentially to be NT if Hamilton’s (1989) approach is adopted. Billio et al. (1999) suggest

a Bayesian method based on the data augmentation principle, and Billio and Monfort (1998)

adopt the partial Kalman filter and importance sampling techniques to overcome the expo-

nential increase of routes inherent in the MS-ARMA models. The MS-ARMA model also

can be estimated with the state-space approach of Kim (1994), who employs the collapsing

method of Harrison and Stevens (1976) to approximate the associated likelihood function.

The common feature shared with Billio et al. (1999), Billio and Monfort (1998), and Kim

(1994) is that the driving force underlying the MS-ARMA process is normally distributed.

By constrast, this normality assumption is not required with the method proposed in this

paper.

We propose two innovative algorithms for estimating the MS-ARMA models by extending

the method of Hamilton (1989), as his approach is well known and mostly used in the eco-

nomic literature. To resolve the aforementioned NT exploding regime paths problem, the first
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algorithm adopts the idea of Gray (1996) by replacing the lagged error terms with their cor-

responding conditional expectations. The rational is that the problem of NT possible routes

can be resolved with the proposed algorithm. We name this method as the Hamilton-Gray

(HG) algorithm.

Similar to the method in Gray (1996), the implementation of the HG algorithm does

not hinge on the specific value of the regime at time t, and the conditional expectation of

the lagged error terms is recursively calculated. However, this conditional expectation is

not updated even though the information set is expanded. This results in the inefficient

use of information contained in data and goes strongly against the idea of Hamilton (1989)

who employs the Baysian device to recursively update the conditional probability that the

t-th observation was generated by regime j when the t-th observation is obtained. As a

consequence, we refine the HG algorithm by proposing a recursively updating procedure to

compute the conditional expectations of the lagged error terms. This algorithm is named

as the extended Hamilton-Gray (EHG) algorithm and is expected to perform better than

the HG counterpart in estimating the MS-ARMA model. The simulations conducted in this

paper show that the finite sample performance of the EHG algorithm is satisfactory and is

indeed much better than that of the HG counterpart as we predict.

The remaining parts of this paper are arranged as follows. In Section 2 we present the

MS-ARMA models. Section 3 illustrates the details of the proposed algorithms. Section 4

investigates the finite sample performance of the algorithms via a Monte Carlo experiment.

We apply the EHG algorithm to date U.S. business cycle turning points with the real GNP

data used by Hamilton (1989) in Section 5. Section 6 provides a conclusion.

2 The MS-ARMA Model

Denote St ∈ {1, 2, · · · , N} as the unobserved regime at time t and st as the realization of

St. The state variable st can assume only an integer value of 1, 2, · · · , N , and its transition
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probability matrix is:

P ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p11 p21 · · · pN1

p12 p22 · · · pN2

...
...

. . .
...

p1N p2N · · · pNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where pij = P (st = j | st−1 = i) and
∑N

j=1 pij = 1 for all i.

The MS-ARMA models considered in this paper are:

Φst(L)(wt − μst) = Θst(L)σstvt = Θst(L)εt, (2)

where vt is an independently and identically distributed (i.i.d.) white noise with E(v2
t ) = 1,

i.e., εt ∼ i.i.d.(0, σ2
st

), and L is the usual lag operator. We impose stationarity and invertibility

constraints on the AR and MA polynominals within each regime, respectively:

Φst(L) = 1 − φ1,stL − · · · − φp,stL
p, Θst(L) = 1 + θ1,stL + · · ·+ θq,stL

q. (3)

These conditions are summarized in the following Assumption 1.

Assumption 1. For each st = 1, . . . , N , (i) The roots of the polynomial Φst(L) and those

of Θst(L) in (3) are all outside the unit root circle; (ii) Φst(L) and Θst(L) share no common

roots; (iii) σst > 0; (iv) vτ is independent of st for all τ and t; and (v) εt ∼ i.i.d.(0, σ2
st

).

The model in (2) subsumes the MS-AR model of Hamilton (1989). Therefore, when

q = 0 the model can be estimated with the recursive algorithm of Hamilton (1989) based

on Np+1 possible routes connecting wt and its p lagged values, wt−1, . . . , wt−p. By contrast,

when q �= 0 the whole past sequence, {εt−1, εt−2, · · · , ε1}, is required to extract εt. As a

consequence, we cannot apply the algorithm of Hamilton (1989) to the MS-ARMA model

without modifications, because the possible routes of states running from time 1 to T are

NT when we want to filter out the whole sequence {ε1, ε2, · · · , εT} to conduct the associated

maximum likelihood estimation (MLE).

The class of MS-ARMA models in (2) with N = 2 has been considered in Billio et al.

(1999) under the Baysian framework. However, the coverage of the model in (2) is broader

than that considered in Billio et al. (1999), Billio and Monfort (1998), and Kim (1994),
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because we do not assume that εt is normally distributed as they do. Before illustrating the

details of the HG and EHG algorithms for the model in (2) in the next section, let us define

the notation used throughout this paper. Denote Wt ≡ (w1, w2, · · · , wt)
� as a column vector

containing the observations from time 1 to time t. The column vector α = (μ1, · · · , μN ,

σ1, · · · , σN , φ1,1, · · · , φp,1, φ1,2, · · · , φp,2, · · · , φ1,N , · · · , φp,N , θ1,1, · · · , θq,1, θ1,2, · · · , θq,2, · · · ,

θ1,N , · · · , θq,N)� and the transition probabilities pij consist of the parameters characteriz-

ing the conditional density function (c.d.f.) of wt. The parameters α and the transition

probabilities pij are stacked into one column vector ζ .

3 Methods and Main Results

The phenomenon of NT possible regime paths for a sample of T observations is also encoun-

tered with Gray’s (1996) 2-state MS-GARCH(1,1) model. The method proposed in Gray

(1996) for dealing with the MS-GARCH(1,1) model is adopted in order to modify the ap-

proach of Hamilton (1989) and to estimate the MS-ARMA considered in (2). For expositional

purposes, we confine the following arguments on the assumption that the observations for

the MS-GARCH(1,1) model are also wt and the error term underlying this model is εt as

well.

Similar to all the likelihood-based methods, the error term εt−1 of the MS-GARCH(1,1)

model is needed to compute the corresponding conditional variances and the associated like-

lihood function. To circumvent the exponentially expanding regime paths problem, Gray

(1996) suggests replacing εt−1 with its conditional expectation, ε̂t−1|Ωt−2 which is computed

based on the following information set:

Ωt−2 = (Wt−2, Πt−2, ζ), where Πt−2 = ε̂t−2|Ωt−3 . (4)

More specifically, given the idea in page 35 of Gray (1996) and N = 2, the conditional

expectation of εt−1 is computed as:

ε̂t−1|Ωt−2 = wt−1 − E[wt−1 | Ωt−2]

=
2∑

i=1

P (st−1 = i | Ωt−2) (wt−1 − E[wt−1 | st−1 = i, Ωt−2]) , (5)
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where

P (st−1 = i | Ωt−2) =
2∑

m=1

P (st−1 = i | st−2 = m) × P (st−2 = m | Ωt−2), ∀ i = 1, 2,

and P (st−2 = m | Ωt−2) denotes the inference about the probability that st−2 = m conditional

on Ωt−2. Note that the conditional expectation ε̂t−1|Ωt−2 in (5) is recursively calculated and its

value is not updated even when the information set is expanded. This idea not only prevents

the occurrence of NT possible routes from estimating the MS-GARCH(1,1) model, but also

leads us to modify the algorithm of Hamilton (1989) to deal with the MS-ARMA model. We

thus name this modified Hamilton algorithm as the Hamilton-Gray (HG) algorithm. The

details of implementing the HG algorithm will be demonstrated later.

The extended HG (EHG) algorithm also employs Gray’s (1996) method of replacing εt−1

with its conditional expectation to estimate the MS-ARMA(p, q) model, but with a major

modification. Note that the calculation of ε̂t−1|Ωt−2 in (5) does not depend on the value of

st and is not updated when the information set is renewed. This incurs inefficient use of

information contained in data and is very much different from the methodology of Hamilton

(1989) who employs the Baysian device to recursively update the conditional probability that

the t-th observation was generated by regime j when the t-th observation is obtained. The

EHG algorithm is designed to recursively update the conditional expectation of the lagged

error terms εt−k, k = 1, . . . , q, under the MS-ARMA(p, q) scenario. This is the first reason

why we expect the EHG algorithm to perform better than the HG counterpart does.

There is one more possibility to improve the HG algorithm, i.e., at time t with Ωt−1 at

hand the value of P (st−1 = i | Ωt−2) in (5) should be replaced with P (st−1 = i | Ωt−1)

whenever it can be estimated. The EHG algorithm is capable of embedding the information

in P (st−1 = i | Ωt−1) into the estimation of the model in (2). This is the second reason that

the finite sample performance of the EHG algorithm shown in Section 4 is much better than

that of the HG algorithm in estimating the MS-ARMA model.

3.1 EHG algorithm

We first explain the implementation of the EHG algorithm in that the HG algorithm can

be viewed as a special case of the EHG algorithm. Their difference hinges on the method of
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calculating the conditional expectations of the lagged error terms. For expositional purposes,

we assume εt is normally distributed in this section, i.e., εt ∼ i.i.d. N(0, σ2
st

) although our

methods do not need to impose this restrictive assumption.

Denote l = Max(p, q) and define a state variable s∗t to characterize the regime path from

time t to t − l as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s∗t = 1, if st = 1, st−1 = 1, · · · , and st−l = 1;

s∗t = 2, if st = 2, st−1 = 1, · · · , and st−l = 1;
...

...

s∗t = N l+1, if st = N, st−1 = N, · · · , and st−l = N.

(6)

The (N l+1 × N l+1) transition probability matrix of s∗t , P∗, is composed of the transition

probabilities pij in (1) as follows:

P∗ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p∗11 p∗21 · · · p∗N l+11

p∗12 p∗22 · · · p∗N l+12

...
...

. . .
...

p∗
1N l+1 p∗

2N l+1 · · · p∗
N l+1N l+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where p∗ij = P (s∗t = j | s∗t−1 = i). In other words, we do not trace the whole past history of

wt to extract εt to conduct the MLE. Instead, we only trace up to l lagged observations of wt

to compute the conditional expectation of the associated lagged error terms. The choice of

l = Max(p, q) is to ensure that we have enough observations to compute these q conditional

expectations. The accuracy of our approximation method can be improved with a larger

value of l. For example, l = Max(p, q) = 4 for an MS-ARMA(4,2) model, but we may use

l = 5 or other larger values to implement the estimation procedure. The method of choosing

l allows us to deal with the N l+1 possible regime paths based on the recursive algorithm of

Hamilton (1989). See Hamilton (1994b, p.3069) for the illustrations of s∗ and P∗ under the

set-up, N = p = 2 and q = 0.

As shown previously, we cannot exactly extract εt to conduct the MLE given that we

only trace up to l lagged observations of wt. Our strategy is to follow the idea of Gray (1996)

by replacing {εt, . . . , εt−q+1} with their corresponding conditional expectations. However, as

compared to the information set in (4), the one used for our EHG algorithm is much more
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informative:

Ω†
t ≡ (Wt, Π

†
t , ζ), Π†

t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε̂t|s∗t =1,Ω†
t−1

ε̂t|s∗t =2,Ω†
t−1

· · · ε̂t|s∗t =N l+1,Ω†
t−1

ε̂t−1|s∗t =1,Ω†
t−1

ε̂t−1|s∗t =2,Ω†
t−1

· · · ε̂t−1|s∗t =N l+1,Ω†
t−1

...
...

. . .
...

ε̂t−q+1|s∗t =1,Ω†
t−1

ε̂t−q+1|s∗t =2,Ω†
t−1

· · · ε̂t−q+1|s∗t =N l+1,Ω†
t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where the matrix Π†
t contains the conditional expectation of the sequence {εt, . . . , εt−q+1}

based on the path consistent with regime s∗t = j (j = 1, 2, · · · , N l+1) and the information

set Ω†
t−1. Each column in Π†

t represents these conditional expectations under a specific value

of s∗t . The information set in (8) implies that the conditional expectation of the sequence

{εt, . . . , εt−q+1} is updated as a new observation arrives and is in sharp contrast with the one

displayed in (4) which is not recurively renewed.

For the calculation of Π†
t in (8), we first note that the value of s∗t in (6) represents a

sequence of states {st, st−1, · · · , st−l}. We then define st−k(s
∗
t = j) as the value of st−k when

the regime s∗t is j. Adopting the idea of Gray (1996) displayed in (5), the value of ε̂t|s∗t =j,Ω†
t−1

in (8) can be calculated recursively as:

ε̂t|s∗t =j,Ω†
t−1

= wt − E
(
wt | s∗t = j, Ω†

t−1

)
,

= wt − μst(s∗t =j) −
p∑

k=1

φk,st(s∗t =j)

(
wt−k − μst−k(s∗t =j)

)
−

q∑
k=1

θk,st(s∗t =j)ε̂t−k|s∗t =j,Ω†
t−1

, ∀ j = 1, 2, · · · , N l+1, (9)

where

ε̂t−k|s∗t =j,Ω†
t−1

=

∑N l+1

i=1 P (s∗t = j, s∗t−1 = i | Ω†
t−1) × ε̂t−k|s∗t−1=i,Ω†

t−2

P (s∗t = j | Ω†
t−1)

,

=

∑N l+1

i=1 P (s∗t = j | s∗t−1 = i) × P (s∗t−1 = i | Ω†
t−1) × ε̂t−k|s∗t−1=i,Ω†

t−2

P (s∗t = j | Ω†
t−1)

,

∀ k = 1, 2, · · · , q; j = 1, 2, · · · , N l+1, (10)

such that

P (s∗t = j | Ω†
t−1) =

N l+1∑
i=1

P (s∗t = j, s∗t−1 = i | Ω†
t−1). (11)
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The term P (s∗t−1 = i | Ω†
t−1) in (10) denotes the inference about the probability that

s∗t−1 = i based on the information set Ω†
t−1. All the elements in Π†

t can be recursively

calculated by (9) and (10) provided that we have P (s∗t−1 = i | Ω†
t−1) and Π†

t−1. The value of

P (s∗t−1 = i | Ω†
t−1) across i is collected into one vector, ξ̂t−1|t−1:

ξ̂t−1|t−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P (s∗t−1 = 1 | Ω†

t−1)

P (s∗t−1 = 2 | Ω†
t−1)

...

P (s∗t−1 = N l+1 | Ω†
t−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Moreover, ξ̂t|t can be found by iterating on (22.5.5) and (22.4.6) of Hamilton (1994a, p. 692)

as follows:

ξ̂t|t =
ξ̂t|t−1 � ηt

1�
(
ξ̂t|t−1 � ηt

) , (13)

ξ̂t+1|t = P∗ × ξ̂t|t, (14)

where 1 represents an (N l+1×1) vector of ones, the symbol � denotes an element-by-element

multiplication, and ηt is the conditional density of wt given s∗t and Ω†
t−1:

ηt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f
(
wt | s∗t = 1, Ω†

t−1

)
f

(
wt | s∗t = 2, Ω†

t−1

)
...

f
(
wt | s∗t = N l+1, Ω†

t−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

such that

f
(
wt | s∗t = j, Ω†

t−1

)
=

1√
2πσst(s∗t =j)

exp

⎧⎪⎨⎪⎩
−

(
ε̂t|s∗t =j,Ω†

t−1

)2

2σ2
st(s∗t =j)

⎫⎪⎬⎪⎭ ,

∀ j = 1, 2, · · · , N l+1. (16)

The starting value ξ̂1|0 can be set to be the vector of unconditional probabilities described in

(22.2.26) of Hamilton (1994a, p.684).

It follows that the parameters ζ can be estimated by maximizing the following log-

likelihood function with respect to these unknown parameters:

L(ζ) =

T∑
t=1

log
(
f

(
wt | Ω†

t−1

))
,

9



where

f
(
wt | Ω†

t−1

)
= 1�

(
ξ̂t|t−1 � ηt

)
.

See (22.4.7) and (22.4.8) of Hamilton (1994a, p. 692) for details.

With ξ̂t−1|t−1, we have a simple formula to compute ε̂t−k|s∗t =j,Ω†
t−1

in (10) as follows:

ε̂t−k|s∗t =j,Ω†
t−1

=
ekΠ

†
t−1 ×

(
P∗

j
� � ξ̂t−1|t−1

)
P∗

j × ξ̂t−1|t−1

, ∀ j = 1, 2, · · · , N l+1,

k = 1, 2, · · · , q, (17)

where P∗
j denotes the j-th row of P∗ in (7), and ek indicates the k-th row of the (q×q) identity

matrix Iq. Therefore, the computational cost of the EHG algorithm is almost identical to

that of Hamilton’s (1989) algorithm in that the conditional expectation of the lagged error

terms can be succinctly calculated with the formula in (17).

3.2 HG algorithm

We present the details of the HG algorithm in this subsection. At time t the information

set in (4) used for the HG algorithm changes to be:

Ωt−1 = (Wt−1, Πt−1, ζ) , where Πt−1 =

⎡⎢⎢⎢⎢⎣
ε̂t−1|Ωt−2

...

ε̂t−q|Ωt−q−1

⎤⎥⎥⎥⎥⎦ , (4
′
)

under the MS-ARMA(p, q) scenario. Since the value of ε̂t−k|Ωt−1−k
(k = 2, · · · , q) in (4

′
) is

determined when the (t − k)-th observation is obtained and is not updated even when the

information set is expanded, l = p is what we need to trace the path of st for implementing

the HG algorithm. As a consequence, P∗ is an (Np+1 × Np+1) matrix when using the HG

algorithm. Following (5), the first element of Πt−1 in (4′) can be calculated as:

ε̂t−1|Ωt−2
=

⎡⎢⎢⎢⎢⎣
ε̂t−1|s∗t−1=1,Ωt−2

...

ε̂t−1|s∗t−1=Np+1,Ωt−2

⎤⎥⎥⎥⎥⎦
�

×
(
P∗ × ξ̃t−2|t−2

)
, (5

′
)
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where ξ̃t−2|t−2 denotes the (Np+1×1) vector which collects conditional probabilities P (s∗t−2 =

m | Ωt−2) for m = 1, 2, · · · , Np+1 and will be clearly defined in the following (12
′
). Moreover,

following (9), the value of ε̂t−1|s∗t−1=i,Ωt−2 in (5
′
) is calculated as:

ε̂t−1|s∗t−1=i,Ωt−2
= wt−1 − E

(
wt−1 | s∗t−1 = i, Ωt−2

)
,

= wt−1 − μst−1(s∗t−1=i) −
p∑

k=1

φk,st−1(s∗t−1=i)

(
wt−1−k − μst−1−k(s∗t−1=i)

)
−

q∑
k=1

θk,st−1(s∗t−1=i)ε̂t−1−k|Ωt−2−k
, ∀ i = 1, 2, · · · , Np+1. (9

′
)

We need to calculate the value of ξ̃t−2|t−2 to complete the computation of ε̂t−1|Ωt−2 in (5′).

Indeed, ξ̂t−2|t−2 in (12) reduces to be ξ̃t−2|t−2 when the information set changes to be Ωt−2

and the number of regime paths s∗t−2 becomes Np+1, i.e.:

ξ̃t−2|t−2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P (s∗t−2 = 1 | Ωt−2)

P (s∗t−2 = 2 | Ωt−2)
...

P (s∗t−2 = Np+1 | Ωt−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12

′
)

The value of ξ̃t|t also can be found by iterating on (13) and (14) with the following η̃t:

η̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
f (wt | s∗t = 1, Ωt−1)

f (wt | s∗t = 2, Ωt−1)
...

f (wt | s∗t = Np+1, Ωt−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (15

′
)

where

f (wt | s∗t = j, Ωt−1) =
1√

2πσst(s∗t =j)

exp

{
− (

ε̂t|s∗t =j,Ωt−1

)2

2σ2
st(s∗t =j)

}

∀ j = 1, 2, · · · , Np+1. (16
′
)

It is now clear that the HG and EHG algorithms are identical to that of Hamilton (1989)

if q = 0. When q �= 0, the EHG algorithm recursively updates the conditional expectation of

the lagged error term as shown in (17). This is the first notable feature of the EHG algorithm

that cannot be found in Gray’s (1996) and the HG algorithms.
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Another interesting feature of the EHG algorithm is that, as compared to Gray (1996)

who uses P (st−1 = i | Ωt−2) to calculate the value of ε̂t−1|Ωt−2 in (5), we instead employ

the value of P (s∗t−1 = i | Ω†
t−1) for computing the value of ε̂t−k|s∗t =j,Ω†

t−1
in (10). Since s∗t

contains the information about st, the EHG method is more efficient than the HG algorithm

in processing the information in the data. Combining the preceding arguments, we expect

the performance of the EHG algorithm to be much better than that of the HG counterpart.

This is indeed what we observe in the simulation results contained in the next section.

4 Monte Carlo Experiment

We now consider the finite sample performance of the HG and EHG algorithms via a Monte

Carlo experiment. We focus on the following 2-state MS-ARMA(1,1) model:

wt = μst + φ1

(
wt−1 − μst−1

)
+ εt + θ1εt−1, εt ∼ i.i.d. N(0, σ2

st
). (18)

The parameters employed throughout this section are as follows:

(
σ2

1 , σ
2
2

)
= (1, 1.5), (19a)

(μ1, μ2) = (1, 5), (19b)

φ1 ∈ {0.6, 0.9}, (19c)

(p11, p22) ∈ {(0.95, 0.95), (0.5, 0.5)}, (19d)

T ∈ {100, 200, 400, 800}, (19e)

θ1 ∈ {0.5,−0.5}. (19f)

The parameters in (19), except the ones in (19f), have been employed in Psaradakis and Sola

(1998, p.377) to evaluate the finite sample performance of Hamilton’s (1989) algorithm when

the DGP are the MS-AR(1) processes.

All the computations conducted in this section are performed with GAUSS. Two hundred

replications are conducted for each specification. For each sample size T , 200 additional

values are generated in order to obtain random starting values. The true parameters are

used as the initial values for the Constrained Maximum Likelihood (CML) GAUSS program.

12



The maximum number of iterations for each replication is 100. We confine the search of the

parameters μ1 and μ2 within the range of (−20, 20) to ensure that the resulting estimates

of these parameters are not completely unreasonable. The simulation results remain intact

when this range becomes (−50, 50).

Define bias as the average estimated values minus the corresponding true parameter.

Tables 1 and 2 show that the performance of the HG algorithm is not well, because the bias

from estimating θ1 is sizable and cannot be alleviated even when the sample size increases

to be 800. On the other hand, Tables 3 and 4 clearly demonstrate the ability of the EHG

algorithm to deal with the estimation of the MS-ARMA model, because the bias is very

close to zero (especially when the sample size is larger) for all specifications considered in

the tables. The associated root-mean-squared error (RMSE) contained in Tables 5 and 6 is

also found to decrease with the increasing values of sample size. These observations together

reveal the great potential of the EHG algorithm in estimating the MS-ARMA models.

Among the 8 configurations considered in Table 5 and Table 6, we note that the perfor-

mance of the EHG algorithm is relatively weak under the following two settings:

{p11 = 0.95, p22 = 0.95, φ1 = 0.6, θ1 = −0.5},

and

{p11 = 0.5, p22 = 0.5, φ1 = 0.6, θ1 = −0.5}.

These phenomena can be explained by noting that the combinations of the values of φ1 and

θ1 in these two cases are close to violating the identification condition required in item (ii)

of Assumption 1. However, the changing pattern of bias and RMSE from estimating φ1

and θ1 reveals that the performance of the EHG algorithm is still quite well under these

two settings. The performance of the EHG algorithm for estimating the MA parameter is

particularly displayed with the box-plots in Figures 1-8. The above-mentioned observations

are clearly borne out in these figures.

5 Dating U.S. Business Cycles

In this section we apply the EHG algorithm to U.S. quarterly real GNP data (1951:2 to

1984:4) employed by Hamilton (1989). We wish to investigate the robustness of the findings

13



in Hamilton (1989) concerning the effectiveness of Markov-switching models in dating U.S.

business cycles when the potential presence of MA parameters is taken into account. In other

words, we treat the switching ARMA(4,0) model used in Hamilton (1989) as the benchmark

and re-estimate these U.S. real GNP data with the following 3 MS-ARMA(4, q) models:

wt = μst +
4∑

i=1

φi

(
wt−i − μst−i

)
+ εt +

q∑
i=1

θiεt−i, q = 1, 2, 3, (20)

where

εt ∼ i.i.d. N(0, σ2).

Table 7 presents the parameter estimates. Following Hamilton (1989), the standard errors

of these estimates are calculated numerically. The associated business cycles dating are

contained in Table 8.

As shown in Table 7, the relatively robust variables are μ1, μ2, p11, p22 and σ, which

remain qualitatively intact across all specifications considered in Table 7. In addition, none

of the estimates of the parameters, θ1, θ2, and θ3 are statistically significant, indicating that

the influence of the MA parameters on shaping the time series behaviors of the real GNP data

is negligible, once we have incorporated an AR(4) polynomial into our MS-ARMA model.

For various values of q considered in Table 8, we identify 7 business cycles as found in the

report of the Business Cycle Dating Committee and the results from Hamilton (1989) based

on the MS-AR(4) Model. We also find that the turning points specified by the EHG algorithm

in Table 8 resemble closely to those of the NBER’s Business Cycle Dating Committee. The

sum of the absolute dating error against the NBER dating points shown in Table 8 indicates

that the MS-AR(4) and MS-ARMA(4,1) models perform equally well in dating business

cycles. Indeed, the turning points associated with the MS-ARMA(4,1) model are almost

identical to those found in Hamilton (1989) except for the 2nd peak and 5th peak. These

observations confirm the robustness of the findings in Hamilton (1989) and indicate that the

EHG algorithm is a useful method for estimating MS-ARMA models.
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6 Conclusions

This paper develops two algorithms to resolve the problem of NT exploding regime paths

associated with a general class of N -state Markov-switching ARMA models based on Hamil-

ton’s approach (1989), as his method is mostly adopted in the economic literature. The

EHG algorithm is particularly useful, because it processes the information contained in the

data more efficiently than the HG algorithm does. The simulations confirm that the finite

sample performance of the EHG algorithm is very promising and is much better than that

of the HG counterpart. In addition, the computational cost of the EHG algorithm is almost

identical to that of Hamilton’s (1989) method, except the EHG algorithm adds a simple

formula displayed in (17) in computing the conditional expectation of the lagged error terms.

As a consequence, the EHG algorithm can be easily adopted by those who are familiar with

Hamilton’s (1989) approach and extended to estimate the multivariate MS-ARMA processes

by combining the MS-VAR literature. We also apply the EHG algorithm to check the ro-

bustness of the findings in Hamilton (1989) on dating U.S. business cycles. It is found that

the MS-ARMA(4,0) and MS-ARMA(4,1) models work equally well in dating U.S business

cycles with the data used in Hamilton (1989). All these findings point to the potential of

the EHG algorithm in estimating the MS-ARMA model which can be of great use to many

empirical applications found with the existing MS-AR models.
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Table 1. The finite sample performance of the HG algorithm: Bias

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = 0.5

0.95 0.95 0.6 100 0.105 0.009 0.039 -0.208 -0.005 -0.029 -0.038 -0.035

200 0.123 -0.064 0.062 -0.231 0.021 0.022 -0.007 -0.011

400 0.165 -0.066 0.075 -0.235 0.029 0.030 -0.005 -0.008

800 0.153 -0.060 0.083 -0.238 0.037 0.032 -0.003 -0.006

0.9 100 -0.036 0.209 -0.027 -0.187 -0.001 -0.024 -0.044 -0.045

200 0.171 0.229 -0.008 -0.203 0.030 0.045 -0.019 -0.038

400 0.140 0.146 0.005 -0.208 0.032 0.043 -0.013 -0.020

800 0.201 0.194 0.011 -0.213 0.050 0.044 -0.002 -0.008

0.5 0.5 0.6 100 -0.054 0.119 0.092 -0.422 0.057 0.039 -0.001 -0.010

200 -0.036 0.120 0.114 -0.415 0.071 0.054 0.002 -0.006

400 -0.043 0.116 0.121 -0.416 0.073 0.064 -0.001 -0.006

800 -0.041 0.115 0.124 -0.416 0.077 0.067 0.002 -0.003

0.9 100 0.106 0.378 -0.001 -0.374 0.073 0.054 -0.005 -0.014

200 0.140 0.389 0.012 -0.375 0.082 0.076 -0.001 -0.007

400 0.146 0.400 0.019 -0.375 0.088 0.084 -0.004 -0.007

800 0.138 0.386 0.023 -0.376 0.091 0.089 -0.001 -0.003

Notes: Simulations are based on 200 replications. The DGP is the MS-

ARMA(1,1) model defined in (18) with θ1 = 0.5. Other parameters are set

as μ1 = 1, μ2 = 5, σ2
1 = 1, and σ2

2 = 1.5, as shown in (19). Bias is defined by

the mean of estimated values minus the corresponding true parameter.
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Table 2. The finite sample performance of the HG algorithm: Bias

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = −0.5

0.95 0.95 0.6 100 -0.029 0.026 -0.498 0.473 -0.049 -0.034 -0.015 -0.013

200 -0.010 0.015 -0.486 0.476 -0.018 -0.013 -0.006 -0.005

400 -0.007 0.008 -0.483 0.482 -0.008 -0.003 -0.002 -0.002

800 -0.013 0.009 -0.474 0.479 -0.004 0.001 0.000 -0.001

0.9 100 -0.196 0.003 -0.208 0.296 -0.038 -0.004 -0.020 -0.021

200 -0.186 0.016 -0.176 0.288 -0.004 0.037 -0.004 -0.002

400 -0.163 0.050 -0.155 0.285 0.023 0.039 0.001 0.002

800 -0.166 0.033 -0.140 0.283 0.026 0.045 0.003 0.003

0.5 0.5 0.6 100 0.005 -0.022 -0.502 0.490 -0.031 -0.052 -0.006 -0.014

200 0.009 -0.007 -0.517 0.503 -0.016 -0.026 -0.003 -0.011

400 0.001 -0.006 -0.502 0.500 -0.009 -0.011 -0.006 -0.011

800 -0.001 -0.011 -0.492 0.500 -0.006 -0.002 -0.003 -0.005

0.9 100 0.052 -0.113 -0.269 0.412 0.024 -0.018 -0.006 -0.024

200 0.060 -0.096 -0.231 0.419 0.044 0.008 0.002 -0.011

400 0.056 -0.095 -0.203 0.422 0.047 0.016 -0.001 -0.015

800 0.056 -0.098 -0.190 0.419 0.051 0.021 0.002 -0.009

Notes: Simulations are based on 200 replications. The DGP is the MS-

ARMA(1,1) model defined in (18) with θ1 = −0.5. Other parameters are set as

μ1 = 1, μ2 = 5, σ2
1 = 1, and σ2

2 = 1.5, as shown in (19). Bias is defined by the

mean of estimated values minus the corresponding true parameter.
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Table 3. The finite sample performance of the EHG algorithm: Bias

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = 0.5

0.95 0.95 0.6 100 -0.074 0.035 -0.048 0.018 -0.057 -0.028 -0.020 -0.017

200 -0.009 0.001 -0.021 0.003 -0.022 -0.006 -0.007 -0.005

400 0.004 0.013 -0.007 -0.003 -0.007 -0.002 -0.003 -0.003

800 -0.004 0.005 -0.002 -0.006 -0.002 0.003 0.000 -0.002

0.9 100 -0.151 -0.048 -0.042 0.013 -0.054 -0.005 -0.023 -0.028

200 -0.036 0.024 -0.021 0.001 -0.023 -0.004 -0.008 -0.011

400 -0.045 -0.005 -0.010 -0.005 -0.011 0.003 -0.005 -0.002

800 -0.045 -0.032 -0.004 -0.007 -0.003 0.006 -0.001 -0.002

0.5 0.5 0.6 100 -0.003 0.000 -0.048 0.024 -0.006 -0.034 0.002 -0.016

200 0.003 -0.002 -0.020 0.009 0.000 -0.012 0.002 -0.009

400 0.005 0.003 -0.009 -0.001 0.009 -0.003 0.000 -0.011

800 0.005 -0.001 -0.005 -0.004 0.012 0.002 0.002 -0.007

0.9 100 -0.097 -0.096 -0.036 0.007 -0.013 -0.029 0.001 -0.014

200 -0.036 -0.041 -0.019 0.004 -0.005 -0.012 0.002 -0.008

400 -0.014 -0.016 -0.010 0.001 0.003 -0.005 -0.001 -0.012

800 -0.008 -0.013 -0.005 -0.004 0.007 0.000 0.001 -0.006

Notes: Simulations are based on 200 replications. The DGP is the MS-

ARMA(1,1) model defined in (18) with θ1 = 0.5. Other parameters are set

as μ1 = 1, μ2 = 5, σ2
1 = 1, and σ2

2 = 1.5, as shown in (19). Bias is defined by

the mean of estimated values minus the corresponding true parameter.
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Table 4. The finite sample performance of the EHG algorithm: Bias

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = −0.5

0.95 0.95 0.6 100 -0.001 0.007 -0.226 0.177 -0.049 -0.036 -0.016 -0.012

200 0.007 -0.006 -0.187 0.167 -0.020 -0.013 -0.006 -0.004

400 0.003 -0.002 -0.156 0.151 -0.009 -0.005 -0.002 -0.002

800 -0.002 -0.001 -0.063 0.062 -0.005 -0.001 0.000 -0.001

0.9 100 -0.031 0.046 -0.066 0.027 -0.050 -0.036 -0.021 -0.015

200 0.000 0.007 -0.031 0.017 -0.020 -0.008 -0.006 -0.004

400 -0.008 0.001 -0.014 0.010 -0.008 -0.002 -0.002 -0.002

800 -0.009 0.002 -0.006 0.007 -0.003 0.002 0.000 -0.001

0.5 0.5 0.6 100 -0.003 -0.005 -0.284 0.242 -0.039 -0.059 -0.004 -0.013

200 -0.012 -0.026 -0.266 0.242 -0.025 -0.021 -0.004 -0.005

400 0.000 -0.008 -0.249 0.249 -0.013 -0.010 -0.006 -0.011

800 -0.001 -0.011 -0.171 0.174 -0.007 -0.002 -0.003 -0.005

0.9 100 -0.010 -0.014 -0.080 0.066 -0.013 -0.037 -0.004 -0.015

200 -0.010 -0.019 -0.036 0.037 -0.004 -0.008 -0.001 -0.006

400 -0.006 -0.010 -0.018 0.027 0.003 -0.002 -0.004 -0.009

800 -0.003 -0.008 -0.009 0.018 0.006 0.002 0.000 -0.005

Notes: Simulations are based on 200 replications. The DGP is the MS-

ARMA(1,1) model defined in (18) with θ1 = −0.5. Other parameters are set as

μ1 = 1, μ2 = 5, σ2
1 = 1, and σ2

2 = 1.5, as shown in (19). Bias is defined by the

mean of estimated values minus the corresponding true parameter.
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Table 5. The finite sample performance of the EHG algorithm: RMSE

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = 0.5

0.95 0.95 0.6 100 0.573 0.659 0.135 0.135 0.184 0.191 0.061 0.089

200 0.392 0.340 0.083 0.099 0.087 0.099 0.027 0.028

400 0.257 0.259 0.051 0.060 0.060 0.070 0.019 0.020

800 0.171 0.174 0.039 0.039 0.038 0.051 0.012 0.013

0.9 100 1.775 1.692 0.074 0.136 0.173 0.445 0.079 0.105

200 1.199 1.133 0.045 0.089 0.101 0.116 0.032 0.047

400 0.891 0.890 0.028 0.056 0.064 0.072 0.028 0.021

800 0.631 0.602 0.017 0.035 0.043 0.053 0.012 0.014

0.5 0.5 0.6 100 0.438 0.462 0.141 0.164 0.133 0.165 0.083 0.084

200 0.283 0.310 0.084 0.098 0.078 0.106 0.057 0.063

400 0.220 0.224 0.053 0.068 0.063 0.064 0.040 0.045

800 0.144 0.153 0.040 0.045 0.043 0.045 0.026 0.029

0.9 100 1.723 1.744 0.074 0.110 0.116 0.148 0.075 0.078

200 1.118 1.140 0.041 0.075 0.070 0.098 0.055 0.059

400 0.838 0.842 0.027 0.054 0.059 0.061 0.038 0.043

800 0.574 0.580 0.018 0.034 0.041 0.041 0.026 0.028

Notes: Simulations are based on 200 replications. The DGP is the MS-ARMA(1,1)

model defined in (18) with θ1 = 0.5. Other parameters are set as μ1 = 1, μ2 = 5,

σ2
1 = 1, and σ2

2 = 1.5, as shown in (19).
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Table 6. The finite sample performance of the EHG algorithm: RMSE

DGP MLE

p11 p22 φ1 T μ1 μ2 φ1 θ1 σ1 σ2 p11 p22

θ1 = −0.5

0.95 0.95 0.6 100 0.236 0.238 0.508 0.526 0.150 0.164 0.058 0.057

200 0.147 0.146 0.476 0.483 0.078 0.092 0.027 0.026

400 0.091 0.111 0.427 0.432 0.056 0.069 0.018 0.018

800 0.061 0.076 0.237 0.247 0.038 0.051 0.011 0.013

0.9 100 0.801 0.799 0.141 0.194 0.211 0.164 0.086 0.062

200 0.444 0.424 0.076 0.104 0.093 0.096 0.027 0.026

400 0.327 0.319 0.043 0.067 0.062 0.073 0.018 0.019

800 0.216 0.225 0.026 0.047 0.041 0.051 0.012 0.013

0.5 0.5 0.6 100 0.258 0.324 0.518 0.566 0.182 0.233 0.103 0.106

200 0.206 0.258 0.500 0.515 0.115 0.155 0.073 0.074

400 0.112 0.139 0.476 0.492 0.080 0.095 0.047 0.049

800 0.074 0.095 0.380 0.391 0.058 0.066 0.032 0.030

0.9 100 1.187 1.198 0.172 0.237 0.158 0.221 0.085 0.100

200 0.373 0.425 0.080 0.131 0.097 0.122 0.059 0.065

400 0.290 0.307 0.043 0.077 0.074 0.078 0.041 0.045

800 0.194 0.210 0.026 0.051 0.051 0.055 0.028 0.028

Notes: Simulations are based on 200 replications. The DGP is the MS-ARMA(1,1)

model defined in (18) with θ1 = −0.5. Other parameters are set as μ1 = 1, μ2 = 5,

σ2
1 = 1, and σ2

2 = 1.5, as shown in (19).
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Table 7. Maximum likelihood estimates of parameters and

asymptotic standard errors based on data for U.S. quarterly real

GNP and the EHG algorithm

ARMA(4,0) ARMA(4,1) ARMA(4,2) ARMA(4,3)

Parameter Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

μ1 1.164 0.074 1.173 0.073 1.174 0.073 1.176 0.076

μ2 -0.359 0.263 -0.310 0.275 -0.312 0.226 -0.309 0.218

φ1 0.013 0.116 0.265 0.348 0.372 0.391 0.167 0.424

φ2 -0.058 0.137 -0.068 0.122 -0.220 0.501 0.061 0.350

φ3 -0.247 0.107 -0.235 0.105 -0.206 0.149 -0.421 0.236

φ4 -0.213 0.110 -0.169 0.135 -0.170 0.138 -0.161 0.142

σ 0.769 0.102 0.769 0.064 0.768 0.060 0.768 0.060

p11 0.904 0.038 0.905 0.037 0.904 0.037 0.905 0.038

p22 0.755 0.097 0.769 0.096 0.770 0.089 0.769 0.089

θ1 - - -0.284 0.355 -0.393 0.394 -0.175 0.434

θ2 - - - - 0.170 0.560 -0.109 0.373

θ3 - - - - - - 0.202 0.250

Notes: The results are based on the switching ARMA(4, q) model defined in

(20). S.E. stands for standard error of the estimate.
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Table 8. Dating U.S. business cycles with the MS-ARMA(4, q)

Models and the EHG algorithm

NBER MS-ARMA(4,0) MS-ARMA(4,1) MS-ARMA(4,2) MS-ARMA(4,3)

Peak Trough Peak Trough Peak Trough Peak Trough Peak Trough

1953:3 1954:2 1953:3 1954:2 1953:3 1954:2 1953:2 1954:2 1953:2 1954:2

1957:3 1958:2 1957:1 1958:1 1956:4 1958:1 1956:4 1958:1 1956:4 1958:1

1960:2 1961:1 1960:2 1960:4 1960:2 1960:4 1960:2 1960:4 1960:2 1960:4

1969:4 1970:4 1969:3 1970:4 1969:3 1970:4 1969:3 1970:4 1969:3 1970:4

1973:4 1975:1 1974:1 1975:1 1973:4 1975:1 1973:3 1975:1 1973:4 1975:1

1980:1 1980:3 1979:2 1980:3 1979:2 1980:3 1979:2 1980:3 1979:2 1980:3

1981:3 1982:4 1981:2 1982:4 1981:2 1982:4 1981:2 1982:4 1981:2 1982:4

Sum of absolute dating error (quarter) against NBER

– 10 10 12 11

Notes: The results are based on the MS-ARMA(4, q) model defined in (20) with

the parameters presented in Table 7.
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Figure 1. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.95, p22 = 0.95, φ1 = 0.6, θ1 = 0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 2. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.95, p22 = 0.95, φ1 = 0.9, θ1 = 0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 3. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.5, p22 = 0.5, φ1 = 0.6, θ1 = 0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 4. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.5, p22 = 0.5, φ1 = 0.9, θ1 = 0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 5. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.95, p22 = 0.95, φ1 = 0.6, θ1 = −0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 6. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.95, p22 = 0.95, φ1 = 0.9, θ1 = −0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 7. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.5, p22 = 0.5, φ1 = 0.6, θ1 = −0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.
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Figure 8. Box-plots of the estimated θ1 from the model defined in (18) with 200 realizations. The

parameters are set as p11 = 0.5, p22 = 0.5, φ1 = 0.9, θ1 = −0.5, μ1 = 1, μ2 = 5, σ2
1 = 1, and

σ2
2 = 1.5.

29



Number   Author(s)             Title                                               Date 

07-A009  Chao-Chun Chen    Estimating Markov-Switching ARMA Models with Extended    10/07 

Wen-Jen Tsay       Algorithms of Hamilton 

07-A008  鮑世亨            產品異質性下之市場規模與廠商的群聚                   09/07 

         黃登興 

07-A007  Been-Lon Chen      Inflation and Growth: Impatience and a Qualitative Equivalence  06/07 

         Mei Hsu 

 Chia-Hui Lu 

07-A006  Chia-Chang Chuang   Causality in Quantiles and Dynamic Stock Return-Volume      06/07 

         Chung-Ming Kuan    Relations 

         Hsin-Yi Lin 

07-A005  Shu-Chun Susan Yang  Do Capital Income Tax Cuts Trickle Down ?                05/07  

07-A004  Wen-Jen Tsay        The Fertility of Second-Generation Political Immigrants in      04/07   

                             Taiwan    
07-A003  Wen-Jen Tsay        Estimating Long Memory Time-Series-Cross-Section Data      04/07 
07-A002  Meng-Yu Liang       On the Budget-Constrained IRS : Equilibrium and Efficiency   01/07  

         C.C. Yang 

07-A001  Kamhon Kan        The Labor Market Effects of National Health Insurance:        01/07 

         Yen-Ling Lin        Evidence From Taiwan 

06-A015  Chung-cheng Lin     Reciprocity and Downward Wage Rigidity                  12/06 

         C.C. Yang            

06-A014  Chung-cheng Lin     The Firm as a Community Explaining Asymmetric            12/06 

         C.C. Yang           Behavior and Downward Rigidity of Wages 

06-A013  林忠正             補習是一種社會風俗                                   11/06 

         黃璀娟 

06-A012  Pei-Chou Lin        Technological Regimes and Firm Survival:                   11/06 

Deng-Shing Huang    Evidence across Sectors and over Time 

06-A011  Deng-Shing Huang    Technology Advantage and Trade : Home Market Effects       10/06 

   Yo-Yi Huang         Revisited 

Cheng-Te Lee 

06-A010  Chung-Ming Kuan     Artifcial Neural Networks                               09/06 

06-A009  Wei-Ming Lee        Testing Over-Identifying Restrictions without Consistent       09/06 

         Chung-Ming Kuan     Estimation of the Asymptotic Covariance Matrix 

06-A008  Chung-Ming Kuan.    Improved HAC Covariance Matrix Estimation                09/06 
       Yu-Wei Hsieh         Based on Forecast Errors 
06-A007  Yu-Chin Hsu          Change-Point Estimation of Nonstationary I(d) Processes      09/06 

          Chung-Ming Kuan 

 

 1



06-A006  Yuko Kinishita        On the Role of Absorptive Capacity: FDI Matters to Growth           08/06 

          Chia-Hui Lu 

06-A005  Kamhon Kan         Residential Mobility and Social Capital                      07/06 

06-A004  Kamhon Kan         Cigarette Smoking and Self –Control                        07/06 

06-A003  林忠正              懲罰怠惰、流失人才                                    06/06 

06-A002  Shin-Kun Peng        Spatial Competition in Variety and Number of Stores           02/06 

         Takatoshi Tabuchi 

06-A001  Mamoru Kaneko       Inductive Game Theory: A Basic Scenario                    01/06 

J. Jude Kline 

05-A011  Amy R. Hwang        An Ecological-Economic Integrated General Equilibrium Model  12/05 

 

 

05-A010  Juin-jen Chang         A “Managerial” Trade Union and Economic Growth           12/05 

         Ming-fu Shaw 

         Ching-chong Lai 

05-A009  Lin-Ti Tan            Spatial Economic Theory of Pollution Control under Stochastic  10/05                      

Emissions 

05-A008   Kamhon KAN        Entrepreneurship and Risk Aversion                        10/05 

         Wei-Der TSAI 

05-A007   江豐富             台灣縣市失業率的長期追蹤研究—1987- 2001               08/05 

05-A006   Shin-Kun Peng,       Economic Integration and Agglomeration in a Middle          06/05 

          Jacques-Francois Thisse Product Economy 

Ping Wang 

05-A005   譚令蒂             論藥價差                                              05/05 

          洪乙禎 

          謝啟瑞  

05-A004   Lin-Ti Tan           Spatial Monopoly Pricing in a Stochastic Environment          05/05 

          Yan-Shu Lin 

05-A003   Been-Lon Chen       Congestible Public Goods and Indeterminacy in a              03/05 

Shun-Fa Lee          Two-sector Endogenous Growth Model* 

05-A002   C. Y. Cyrus Chu      The Optimal Decoupled Liabilities: A General Analysis          02/05 

Hung-Ken Chien 

05-A001   Cyrus C.Y. Chu       Durable-Goods Monopolists, Network Effects and              02/05 

Hung-Ken Chien      Penetration Pricing 

04-A015   Been-Lon Chen       Multiple Equilibria in a Growth Model with Habit Persistence     11/04 

04-A014   C. Y. Cyrus Chu      A New Model for Family Resource Allocation Among           05/04 

R. R. Yu             Siblings: Competition, Forbearance, and Support    

Ruey S. Tsay 

 2


	
	IEAS Working Paper
	INSTITUTE OF ECONOMICS, ACADEMIA SINICA
	TAIWAN




