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VAR FOR QUADRATIC PORTFOLIO’S WITH GENERALIZED
LAPLACE DISTRIBUTED RETURNS

R.BRUMMELHUIS AND J.SADEFO-KAMDEM

Abstract. This paper is concerned with the efficient analytical computa-
tion of Value-at-Risk (VaR) for portfolios of assets depending quadratically
on a large number of joint risk factors that follows a multivariate Gener-
alized Laplace Distribution. Our approach is designed to supplement the
usual Monte-Carlo techniques, by providing an asymptotic formula for the
quadratic portfolio’s cumulative distribution function, together with explicit
error-estimates. The application of these methods is demonstrated using some
financial applications examples.

1. Introduction

This paper is concerned with the efficient numerical computation of
static Value-at-Risk (VaR) for portfolios of assets depending quadrat-
ically on a large number of risk factors Xt = (X1,t, · · · , Xn+1,t) (t rep-
resenting time), under the assumption that Xt follows a Generalized
Laplace Distribution or GLD. Our approach is designed to supplement
the usual Monte-Carlo techniques, by providing an asymptotic formula
for the quadratic portfolio’s cumulative distribution function, together
with explicit error-estimates. The basic philosophy is the same as in
Brummelhuis, Cordoba, Quintanilla and Seco [1], where such an as-
ymptotic formula was derived in the case of normally distributed risk
factors. Here the result of [1] will be extended to a class of non-Gaussian
Xt’s, and even slightly improved upon in the normal case). More im-
portantly, the asymptotic formula will be supplemented with estimates
for the error-term, which were lacking in [1]. This will allow us to
establish a rigorous interval in which the true quadratic VaR will lie,
rather than just give an approximation which is asymptotically exact
when the VaR confidence parameter tends to 1.

The typical way in which quadratic portfolios arise in practice are
as a Γ − ∆ approximations of more complicated portfolios with some
non-linear value function Π(X1,t, · · · , Xn+1,t, t). We will make the ad-
ditional assumption that Π is delta-hedged at t = 0. The restriction to
∆-hedged portfolios is mainly made for computational simplicity, but
note that these include the in practice very important class of hedging
portfolios made up of derivatives and their underlying. In such a case,
letting Sj,t be the time-t price of the j-th underlying asset, we would
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2 R.BRUMMELHUIS AND J.SADEFO-KAMDEM

typically take the log-return Xj,t = log(Sj,t/Sj,0) as the j-th risk factor.
The numerical example we consider at the end of the paper will be of
this kind. A further assumption we will make is that Xt has zero mean,
which in practice will be approximately satisfied on small time-scales
t. We stress, however, that all results of this paper can be extended
to general, non-hedged, quadratic portfolios with Xt having a non-zero
mean. Indeed, in [1] this was already done on the level of the main
asymptotic term for the portfolio’s distribution function when Xt is
normally distributed. However, such an extension not being entirely
trivial (the more so if one wants to include error estimates as precise
as those obtained in the present paper) we decided to postpone the
more general case to a future paper, and first test our approach on the
∆-hedged case.

Why would one want to derive explicit analytic approximations to a
portfolio’s VaR when simple Monte Carlo will in principle compute this
with any given precision? There are in fact a number of good reasons for
wanting to do so. First of all, Monte Carlo, even when combined with
various variance reduction and/or importance sampling techniques, can
be notoriously slow for large portfolios. By contrast, explicit analyt-
ical expressions can in general be computed almost instantaneously,
and would allow for real-time VaR evaluation1. Another drawback of
Monte Carlo is that it the answers it provides lack transparency as re-
gards their dependence on the various model parameters, whether these
are statistical parameters underlying the portfolio model, or manageri-
ally determined ones, like portfolio loadings or choice of VaR-confidence
level. Furthermore, the statistical parameters are typically obtained as
point estimates, using e.g. (quasi-) maximum likelihood methods, and
to obtain a more reliable and realistic picture, these point-estimates
should be complemented by for example their 95% confidence inter-
vals, reflecting the inherent uncertainty in any statistical estimation
procedure. As a consequence, it becomes doubtful even whether a
very precise Monte Carlo computation for a given set of parameters
is meaningful, and a priori more useful and reliable than an approx-
imate analytic answer. Moreover, to get a more realistic picture one
should ideally speaking redo the VaR computation over the whole 95%-
statistical confidence ranges of the parameters2. Doing this by Monte
Carlo would involve massive computations, and therefore likely to be
unfeasible in practice. On the other hand, explicit analytical expres-
sions, even if approximate or providing bounds only, will easily permit
such an analysis.

1assuming of course the statistical procedure for estimating model parameters also allows for
real-time updating, as for example in the case of the RiskMetricTM-methodology for estimating
variances and covariances (see also [13] and [14]).

2possibly only over their end-points, if suitable monotonicity properties hold.
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An alternative rigorous analytical approach to quadratic VaR was
proposed by Cardenas et al. [2] and by Rouvinez [10]. They observed
that, assuming Gaussian risk factors, the portfolio’s characteristic func-
tion can be explicitly computed. Numerical Fourier-inversion will then
yield the portfolio’s distribution function and, consequently, its quan-
tiles or VaR. This method was extended to jump-diffusions in Duffie
and Pan [3]. Note that it is only semi-explicit, in that it still requires
the numerically non-trivial step of Fourier inversion (although good
algorithms are available for this). This would be a disadvantage for
analyzing parameter-dependence. Moreover, explicit computation of
the characteristic function is only possible when Xt is normally dis-
tributed3, and the method does not generalize to the non-Gaussian
risk-factors we are considering here. See also [15].

Two further papers dealing with non-Gaussian quadratic VaR are
Jahel, Perraudin and Sellin [6], who assume Xt follows a stochastic
volatility processes, and Glasserman, Heidelberger and Shahabuddin
[5], who consider Student-t distributed Xt. Both papers are character-
istic function based, [5] exploiting the relation of t-distributions with
quotients of independent Gaussians, and [6] employing the character-
istic function of the process to compute the moments of the portfolio
distribution function, and subsequently fitting a parametric distribu-
tion from the Pearson or Johnson family to these moments (this last
step introduces an uncontrolled approximation).

To begin describing our main results, consider a portfolio with non-
linear Profit and Loss (or P & L) function4 Π = Π(x1, · · · , xn+1, t) over
the time-interval [0, t]. In particular, Π(0, 0) = 0, assuming (without
loss of generality) that X0 = 0. We suppose moreover that the portfolio
is delta-hedged at time 0, implying that its gradient in 0 vanishes:
∇Π(0, 0) = 0. Let

(1) Θ :=
∂Π

∂t
(0),

the rate of change of the portfolio’s time value, and

(2) Γ = (Γij)1≤i,j≤n+1 :=

(
∂2Π

∂xi∂xj

(0)

)

1≤i,j≤n+1

,

the portfolio’s Gamma. Suppose that we dispose of some probabilistic
model for Xt, where t > 0 is some small fixed later time (typically of
the order of 1 day, or 1/252 in the natural unit of one financial year).
To compute VaR, and related risk-measures like Expected Shortfall,
we need to know the P&L’s cumulative distribution function:

(3) FΠt(x) = P ( Π(Xt, t) < x ) ,

3to include jumps, [3] first condition on the number of jumps
4we use the P & L rather than the value function; this is of course just a question of

normalization
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P standing for the objective probability. Since the distribution func-
tion (3) is in general impossible to evaluate analytically, and, for big n
and complicate Π(x1, · · · , xn+1, t), time-consuming to compute numer-
ically by Monte Carlo, one usually performs a preliminary quadratic
approximation:

Π(X) ' Θ t +
1

2
XtΓXt

t(4)

= Θ t +
1

2

∑

j,k

ΓijXiXj,

where there is no linear term since Π is assumed to be ∆-hedged. Here,
and below, we will use the following notational conventions for vectors
and matrices: x = (x1, · · · , xn+1) and X = (X1, · · · , Xn+1) will desig-
nate row vectors, and their transposes xt, Xt will therefore be column
vectors, on which matrices like Γ = (Γij)i,j act by left multiplication

As of now we assume that Xt has a centered multi-variate General-
ized Laplace Distribution or GLD, with parameter α. That is, Xt has
probability density of the form:

(5) fXt(x) =
Cα,n+1√
det (V(t))

exp
(−cα,n+1(xV(t)xt)α/2

)
,

where α > 0 and where V(t) is a positive definite matrix; V(t) will
precisely be Xt’s variance-covariance matrix, provided we choose the
normalization constants Cα,n+1 and cα,n+1 as

(6) cα,n+1 =

(
Γ

(
n+3
α

)

(n + 1)Γ
(

n+1
α

)
)α/2

,

and

(7) Cα,n+1 =
α

2π(n+1)/2

(
Γ

(
n+3
α

)

(n + 1)Γ
(

n+1
α

)
)(n+1)/2

Γ
(

n+1
2

)

Γ
(

n+1
α

) ,

cf. Appendix A. Multi-variate GLD distributions with α < 2 should be
seen as an alternative to multi-variate t-distributions, possessing like
these heavier-than-Gaussian tails, and allowing a more realistic fit to
empirical asset returns around the center; they are called Generalized
Exponential Distributions in [8].

The fact of only including a single time-derivative in (4) needs an
explanation: if we make the, for small times t, reasonable assumption
that V(t) grows linearly with time5, then (4) consists of all terms of
order less than or equal 1 in t (remember that there are no terms of
order 1 in X, since Π is ∆-edged at 0).

5an assumption which is for example satisfied if we estimate V (t) using RiskMetric’s EWMA-
method on smaller time-intervals t/N
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The Value-at-Risk at (risk-managerial) confidence level 1 − p is de-
fined by

(8) VaRΠt
p = sup{V : FΠt(−V ) ≥ p};

Note that, because of the minus-sign, the Value at Risk will be recorded
as a positive number when it corresponds to a loss. If the distribution
function of Πt = Π(Xt, t) is continuous, we can replace the inequality
sign on the right by an equality, and if it is moreover strictly increasing,
then we simply have that VaRΠ

p = −F−1
Πt

(p). We will assume that a
reasonable approximation to VaRp will be given by the quadratic or Γ-
Value-at-Risk, VaRΓt

p , defined as in (8), but with FΠt replaced by

(9) FΓt(−V ) = P( Θt +
1

2
Xt Γ Xt

t ≤ −V ).

In our case, the distribution function FΓ will be strictly increasing,
so the definition of Γ-VaR simplifies to F−1

Γt
(p). The approximation

VaRΠt
p ' VaRΓt

p can be justified by a general result, stated and proved
in Appendix B, that under reasonable assumptions on the portfolio
Π(x, t),

VaRΠt
p /VaRΓt

p → 1, t → 0,

with an error which is O(
√

t). Also observe that if for example Π(x, t) ≥
Θt +

1
2
xΓxt for all x, then of course VaRΠt

p ≤ VaRΓt
p , and similarly with

all inequality signs reversed. From now on, we will take t sufficiently
small but fixed, and make no distinction any more between VaRΠt

p and

VaRΓt
p , that is, we will effectively suppose that Π(x, t) is a quadratic

∆-hedged portfolio. We will also systematically drop all suffixes t, to
simplify notations, and simply write X for Xt, FΓ and VaRΓ

p for FΓt

respectively VaRΓt
p , etc. We will also simply write Θ for Θt.

Our main task will then be to compute FΓ(−V ), or more precisely
its inverse. This is still a non-trivial problem if we are looking for an
analytic solution (which we are, for though Monte Carlo works faster
for quadratic portfolios, it will still be slow if the portfolio is big). Our
strategy will be to approximate FΓ(−V ) for large values of V by an
explicit analytic expression, with explicit error bounds. This will then
allow an approximate inversion.

To state our main result, we need to introduce a certain amount of
notation. Write the variance-covariance V as

V = H Ht,

where we can for example take H upper- or lower-triangular, in which
case this is the Cholesky decomposition (another possibility would
of course be to take the spectral square-root, V1/2, and one chooses



6 R.BRUMMELHUIS AND J.SADEFO-KAMDEM

whichever can be computed fastest). Next introduce the sensitivity-
adjusted variance-covariance matrix, HΓHt, which we diagonalize:

(10) HΓHt = OAOt,

with O orthogonal, and A diagonal. In the present situation of a ∆-
hedged portfolio and mean-0 risk-factors it is not necessary to know
anything about O, whose columns are precisely the eigenvectors of
HΓHt; this changes, however, when one of these two conditions is not
met: cf. [1] for the Gaussian case. It is also important to observe that
HΓHt is not necessarily definite, except if Γ is. We can write A as

A =

( −D−
n− 0

0 D+
n+

)
,

where

Dε
nε

=




aε
1 . . . 0

0
. . . 0

0 . . . aε
nε


 , ε = ±1,

with a+
j , a−j ≥ 0 for all j. We will from now on suppose that HΓH is

non-singular, with strictly negative lowest eigenvalue of multiplicity 1:

(11) −a−1 < −a−2 ≤ . . .− a−n− < 0 < a+
1 ≤ · · · ≤ a+

n+
.

Using these data we define a constant Apc by
(12)

Apc := 2α−
n
2
−1(2π)n/2c

−n+1
α

α,n+1Cα,n+1
(a−1 )

n
2√∏n−

2 (a−1 − a−j )
∏n+

1 (a−1 + a+
j )

.

Definition 1.1. The principal component approximation FΓ,pc(−V ) to
FΓ(−V ) is defined to be:

(13) FΓ,pc(R) = Apc Γ

(
n + 1

α
− n

2
,

(
R√
a−1

)α)
,

where V and R are related by R2 = 2c
2/α
n+1,α(V + Θ).

As we will presently see,

FΓ(−V ) ' FΓ,pc(−V ), V =
1

2
c−2/α
n,α R2 −Θ →∞.

A major pre-occupation of this paper will be to obtain as precise an
estimate as possible for the error. To this effect we next introduce

(14) λmin(Q) :=
α

(a−1 )
α
2

min

(
a−1
a−2

− 1,
a−1
a+

n+

+ 1

)
;

as the notation already indicates, λmin(Q) is the smallest eigenvalue of
a certain auxiliary matrix which will be introduced in the proof of the
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main theorem below.. Furthermore, given a γ such that 0 < γ < 1, we
let

(15) R2
γ := min

(
1

(a−1 )
α
2

4α(1− γ)

|2− α| ,
λmin(Q)

2

)
.

Using these we now introduce three further constants K±
1 , K±

2 and K0,
which will turn up in the estimate for the error term6. These will
involve a further choice of a parameters ε and λ0, and of a C1 cut-off
function g : R≥0 → R such that 0 ≤ g ≤ 1, supp g ⊆ [0, 1] and g(s) = 1
on a neighborhood of 0. Let

(16) K±
1 := n(a−1 )−

α
2 ·

( √
2

λmin(Q)
·
(

1 +
||g′||∞

R2
γ

)
+
||g′||∞

R2
γ

)
.

and

(17) K±
2 :=

√
2 n(n + 2)(a−1 )−

α
2

(
2− α

8α

)
γ−

n
2
−2.

For any explicit computations we will take for g a member of the
family of functions ga (0 < a < 1), defined by

(18) ga(x) =





1 si x ≤ a

1− 1
2

(
2

1−a

)2
(x− a)2 si a ≤ x ≤ a+1

2
1
2

(
2

1−a

)2
(x− 1)2 si a+1

2
≤ x ≤ 1

1 si x ≥ 1

;

a is left as a further free parameter. Note that ga = 1 on [0, a], and
that ‖g′a‖∞ = 2

1−a
, which is the only information we really need.

To define our third and final constant, K0 = K0(ε, λ0), let 0 < ε < 1
and λ0 > 0, and introduce

(19) nε := (1− ε)
(
(a−1 )−1 + α−1a(a−1 )

α
2
−1R2

γ

)α
2 + ε(a−1 )α/2.

Then:

K0 := α−1π
n+1

2 (cα,n+1nε)
−n+1

α Cα,n+1
eελ0(a−1 )−α/2

(ελ0)n/α

·
{

2 || |A|−1||1/2 Γ
(

n+α
α

)

Γ
(

n+1
2

) +
2|n− − n+|+ 10

α(ελ0)1/α

Γ
(

n+1
α

)

Γ
(

n+1
2

)
}

.(20)

The matrix norm is of course simply || |A|−1|| = max
(
1/a−n− , 1/a+

1

)
.

The origin of all these constants will become clear from the proof.
For practical purposes, what is important is that, although complicated
in appearance, they can straightforwardly be computed from A, for any
choice of γ, ε, λ0 and a (limiting ourselves to g’s given by (18)).

6The choice of the sub- and superscripts was made to facilitate keeping track of the constants
in the various proofs below, as will become clear in sections 2, 4 and 5.
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We now state the main result of this paper. Recall the definition of
the incomplete Γ-function:

(21) Γ(z, w) =

∫ ∞

w

e−ssz−1ds,

Then:

Theorem 1.2. Suppose that α ≤ 2. Given V > −Θ, let

(22) R2 := 2c
2/α
n+1,α (V + Θ)

Then

(23) FΓ,pc(R)− EL(R) ≤ FΓ(−V ) ≤ FΓ,pc(R) + EU(R),

with

EL(R) = Apc ·{K±
1 Γ

(
n + 1

α
− n

2
− 1,

(
R√
a−1

)α)
(24)

+(a−1 )
αn
4

Γ
(

n
2
, R

)

Γ
(

n
2

) Γ

(
n + 1

α
,

(
R√
a−1

)α)
} ,

for all R > 0. Moreover, if Rα ≥ λ0, we can take

EU(R) = Apc ·{K±
1 Γ

(
n + 1

α
− n

2
− 1,

(
R√
a−1

)α)
(25)

+ K±
2 Γ

(
n + 1

α
− n

2
− 2,

(
R√
a−1

)α)
}

+ K0Γ

(
n + 1

α
, nεR

α

)
.

Remark 1.3. Although this is perhaps not clear at first sight, (23) is
a one-term asymptotic expansion with remainder, in the sense that the
main term will dominate the error terms for sufficiently large R. For
since Γ(z, w) = wz−1e−w + O(wz−2e−w) as w →∞, it follows that

Γ(z − k, w)

Γ(z, w)
' w−k → 0, w →∞,

which shows that the terms involving K±
1 and K±

2 have a relative decay,

with respect to the principal term, of (R/
√

a−1 )−1 and (R/
√

a−1 )−2,
respectively. The second term on the right hand side of (24) has a
relative exponential decay, due to the Γ(n/2, R) in front. The same is
true for the final term of (25), since for any k, η > 0,

Γ (z, (1 + η)w)

Γ(z − k, w)
' wke−ηw, w →∞.

It then suffices to apply this with z = (n + 1)/α, k = n/2 and η =
nε − (a−1 )−α/2 > 0.
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Remark 1.4. If we expand the incomplete Γ-function of the main term

in (23), we find that, asymptotically as R =
√

2c
1/α
α,n+1

√
(V + Θ) →∞,

FΓ(−V ) ' ApcΓ

(
n + 1

α
− n

2
,

(
R√
a−1

)α)

' Apc

(
R√
a−1

)n+1−nα
2
−α

e−(R/
√

a−1 )α

.

If α = 2, then

Apc,α=2 =
1√
π

(a−1 )n/2

√
∆(A)

,

where we have put

∆(A) :=

n−∏
2

(a−1 − a−j )

n+∏
1

(a−1 + a+
1 ),

and therefore, in the case of normally distributed risk factors,

FΓ(−V ) ' 1√
π

(a−1 )n

√
∆(A)

Γ

(
1

2
,
R2

a−1

)

' 1√
π

(a−1 )(n+1)/2

√
∆(A)

e−R2/a−1

R
, R =

√
V + Θ.

This is essentially theorem 4.2 of [1] (with n replaced by n+1), except
for two errors in the statement of that theorem, which we take the
opportunity to correct here: the numerical factor in the constant C0 of
that theorem should have been π−1/2 instead of 2(2π)(n−1)/2, and the
exponent should have read exp(−R2/a−1 ) instead of exp(−R2/2a−1 ).

Keeping the incomplete Γ-functions, instead of expanding them using
their own asymptotic expansions, a priori leads to a more accurate
approximation, even when α = 2.

Theorem 1.2 can be used as follows to solve our initial problem of
finding good approximations and bounds for VaRΓ

p . Let us define the
principal component Γ-VaR of our quadratic portfolio as the unique
solution V = VaRΓ,pc

p of the equation

(26) FΓ,pc

(
c
1/α
α,n+1

√
2(V + Θ)

)
= p.

Theorem 1.2 then suggests, as a first approximation,

VaRΓ
p ' VaRΓ,pc

p ,

a relation which is asymptotically exact as p → 0. For a given small but
non-zero p > 0 this is, as it stands, just an uncontrolled approximation,
but we can use the error bounds of theorem 1.2 to determine a rigorous
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interval in which VaRΓ
p must lie. For a given p ∈ (0, 1), let RL = RL(p)

and RU = RU(p) solve, respectively:

(27) FΓ,pc(RL)− EL(RL) = p,

and

(28) FΓ,pc(RL) + EU(RU) = p.

Put

(29) Vj(p) :=
1

2
c
−2/α
α,n+1Rj(p)2 −Θ, j = L,U.

Since the lower bound (24) holds for all R > 0, we will always have
that VL(p) ≤ VaRΓ

p . On the other hand, VaRΓ
p ≤ VU(p) will only hold

once we know that cn+1,α2α/2
(
VaRΓ

p + Θ
)α/2 ≥ λ0. This will certainly

be satisfied if we choose:

(30) λ0 = RL(p)α

Summarizing, we then have the following estimate on quadratic VaR:

Corollary 1.5. For a given choice of parameters p, a, γ ∈ (0, 1) let
λ0 = RL(p)α, where RL(p) is the solution of (27). Furthermore, for
given ε ∈ (0, 1), let RU(p) be the solution of (28)7. Let VL(p), VU(p) be
defined by (29). Then:

VaRΓ
p ∈ [VL(p), VU(p)].

Remark 1.6. Once we have fixed λ0 by (30), we can look for a ε ∈
(0, 1) which minimizes K0(ε, λ0). This can be done numerically. An al-
ternative approximate analytic procedure, which works when RL(p)α >
n(a−1 )α/2/α, would be to choose

(31) ελ0 = (a−1 )α/2 n

α
,

which minimizes part of K0: cf. remark 4.4 below. This is allowed as
long as 1 > ε = n(a−1 )α/2/αλ0 = n(a−1 )α/2/αRL(p)α, whence the condi-
tion above. With this choice of ελ0, K0 then becomes, very explicitly,

K0 = α−1π
n+1

2 (cα,n+1nε)
−n+1

α Cα,n+1 (a−1 )−
n
2

(
α
n

)n
α e

n
α

·
{

2|| |A|−1 ||Γ(
n+α

α )
Γ(n+1

2 )
+ 2|n−−n+|+10

α
(a−1 )−1/2

(
α
n

)1/α Γ(n+1
α )

Γ(n+1
2 )

}
,

an expression which, due to the nn/α in the denominator, will tend to
0 as the portfolio dimension n tends to infinity. This suggests that for
large portfolios we can sometimes simply leave out the term involving
K0 from EU(R).

7that is, with this choice of parameters in the expressions for EL(R), EU (R)
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There is further scope for minimization of the error terms over the
other two parameters, γ and a, both restricted to (0, 1). In the nu-
merical example treated in section 6, we have simply made an ad-hoc
choices for these.

2. Probability distribution of a quadratic portfolio

If X as a multi-variate GLD distribution (5), then (9) is given by

(32) C

∫

{Θ+1 1
2
xΓxt≤−V }

e−c(xV−1xt)
α/2 dx√

det(V)

where C = Cα,n+1 and c = cα,n+1 are the two normalization constants
(6) and (7). We decompose V as V = H Ht, and let HΓHt = OAOt

with O orthogonal, and A diagonal, cf. (10). After some elementary
changes of variables, (32) becomes

(33) C

∫

{ 1
2
(|x+|2−|x−|2)≤−(V +Θ)}

e−c(x|A|−1xt)
α/2 dx√

det(A)

(note that det A = det (HΓHt) = det (Γ) det (V)). Here x = (x+, x−)
is the decomposition of Rn+1 into the positive, respectively negative
subspace of HΓHt using its eigenbasis. After a further change of vari-
ables x → c−1/αx in (33) we arrive at the following expression for
FΓ,which will be the starting point of our analysis:

(34) FΓ(−V ) = C
′
∫

{|x−|2−|x+|2≥R2}
e−(x|A|−1xt)

α/2

dx,

with

(35) C
′
= c−

n+1
α · C√

det(A)

and

(36) R2 := 2c2/α(V + Θ),

and where will assume from now on that V + Θ ≥ 0.

The next step will be to rewrite (34) as an integral of surface integrals
over the level sets of the function η(x), defined on {x : |x+| < |x−|} by

η(x) =
√
|x−|2 − |x+|2.

Observe that the region of integration of (34) is included in the domain
of η. Recall that a Liouville form of η is, by definition, any n-form Lη

satisfying

dη ∧ Lη = dx1 ∧ . . . ∧ dxn+1.
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Although a Liouville form is not unique, its restriction to any level set
{x : η(x) = r} of η is8. A classical choice for Lη is:

(37) Lη =
1

|∇η|2
n+1∑
j=1

(−1)j−1 ∂η

∂xj

dx1 ∧ . . . ∧ [j] ∧ . . . ∧ dxn+1,

|∇η| being the euclidian norm of the gradient of η, and the symbol [j]
meaning that the term dxj is deleted. Another possible choice, valid
there where ∂η/∂x1 6= 0, is

(38) Lη =

(
∂η

∂x1

)−1

dx2 ∧ · · · ∧ dxn+1.

Both formulas will be used in this paper. As mentioned, although
different as forms on Rn+1, the restrictions of (37) and (38) on any
level-set of η coincide.

We now have, for any integrable function g = g(x), that∫

{η(x)≥R}
g(x) dx =

∫ ∞

R

(∫

{η=r}
g(x) Lη(x)

)
dr.

Applying this to (34), and using that Lη is homogeneous of order n
with respect to multiplication by r (that is, φ∗r(Lη) = rnLη, where
φr(x) = r · x and where the ∗ indicates pull-back: this follows from η
being homogeneous of degree 1), we see that the integral (34) can be
written as

(39) FΓ(−V ) = C ′
∫ ∞

R

rn
( ∫

{η(x)=1}
e−rα(x|A|−1xt)α/2

Lη(x))
)
dr.

Letting

(40) Σ := {x : η(x) = 1},
our strategy will be to first derive an asymptotic formula with explicit
error estimate for

(41) I(λ) :=

∫

Σ

e−λ(x|A|−1xt)
α/2

Lη(x),

as λ →∞. From this an asymptotic formula for (39) will follow, simply
by taking λ = rα, and integrating from R to ∞.

Recall our hypothesis (11) on the eigenvalues of A, and in particular
our assumption that −a−1 , the lowest eigenvalue of A, is of multiplicity
1. By classical theory, the main contribution to the integral (41) as
λ →∞ will come from those points on the surface Σ where the function
x|A|−1xt has an absolute minimum. Stationary points of a function
on Σ = {η = 1} are simply points of Σ where the gradient of the
function is proportional to the gradient of η(x), and one easily verifies

8the restriction of a Liouville form should be carefully distinguished from the induced (Eu-
clidian) surface measure on the level set, which is obtained by dividing Lη by the length of the

gradient of η
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that x|A|−1xt attains its absolute minimum on Σ in the two points
(±e−1 , 0) ∈ Rn− ×Rn+ , where e−1 := (1, 0, · · · , 0) ∈ Rn− . We next write
(41) as a sum three integrals, using a C2 partition of unity χ+ + χ0 +
χ− = 1 on Σ, where 0 ≤ χ±, χ0 ≤ 1, and where χ± = 1 near (±e1, 0)
(implying that (±e−1 , 0) /∈ supp(χ0)):

(42) I(λ) = I−(λ) + I0(λ) + I+(λ)

with

(43) Iν(λ) =

∫

Σ

χν(x)e−λ(x|A|−1xt)
α/2

Lη(x), ν = ±, 0.

The supports of the χν will be chosen in a special way related to the
local geometry of the phase function near the two critical points. The
main step in our analysis will be to determine the contribution of the
two absolute minima in (±e−1 , 0). By symmetry, it suffices to concen-
trate on one of these, say (e−1 , 0) (provided we of course also choose χ±
symmetrical). Using x′ = (x′−, x+) := (x2,−, · · · , xn−,− , x1,+, · · · , xn+,+)
as local coordinates on Σ near (e−1 , 0), with

x1,− =
√

1− x2
2,− − . . .− x2

n−,− + x2
1,+ + . . . + x2

n+,+,

and observing that in these coordinates Lη restricted to Σ is given by

Lη(x) =

(
∂η

∂x1,−

)−1

dx2,− ∧ . . . ∧ dxn−,− ∧ dx1,+ ∧ . . . ∧ dxn+,+

= x−1
1,− dx′,

(where we used that η = 1 on Σ) we see that

(44) I+(λ) =

∫

Rn

χ̃+(x
′
) e−λ(c1+q(x′))α/2

(
1− |x′−|

2
+ |x+|2

)−1/2

dx′,

where we put

(45) c1 :=
1

a−1
,

and

q(x
′
) =

( 1

a−2
− 1

a−1

)
x2

2,− + . . . +
( 1

a−n−
− 1

a−1

)
x2

n−,− +(46)

( 1

a+
1

+
1

a−1

)
x2

1,+ + . . . +
( 1

a+
n+

+
1

a−1

)
x2

n+,+ ,

and with χ̃+(x
′
) := χ+(

√
1− |x′−|2 + |x+|2, x′−, x+). In the next section

we will make a careful study of the asymptotic behavior, for big λ, of
integrals like (44).
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3. Sharp estimates for Laplace integrals

In this section we derive precise estimates for a general n-dimensional
Laplace-type integral:

(47) J(λ) =

∫

Rn

a(x)e−λψ(x)dx,

with C2 amplitude a and C4 phase function ψ satisfying the following
hypotheses:

• (i) ψ(x) ≥ 0, and ψ has a unique minimum in on supp(a) in
x = 0, with ψ(0) = 0.

• (ii) The hessian Q =
(

∂2ψ
∂xi∂xj

(0)
)

i,j=1,...,n
is non-degenerate (and

therefore strictly positive).
• (iii) ψ(x) = 1

2
xQxt + R(x) with R(x) = O(|x|4).

• (iv) ∇a(0) = 0.

Hypothesis (iv) is made for convenience rather than necessity, since it
will anyhow be satisfied by the amplitude of (44), and simplifies some
of the estimates below. A further hypothesis on a will be introduced
in the next paragraph: cf. (v) below.

The philosophy behind our estimates for (47) is to express all con-
stants in terms of Q and its geometry, by means the associated distance,
dQ(x) =

√
xQxt. A first example will be given by the final hypothesis,

on supp (a), which we will state now. Let ψ(x) = 1
2
xQxt + R(x), as

above, and let R−(x) = max(−R(x), 0), the negative part of the 4th-
order remainder. If 0 < γ < 1 is a constant, to be chosen arbitrarily,
then clearly 1

2
xQxt − R−(x) will dominate 1

2
γxQxt on some neighbor-

hood of 0. We give a more precise quantitative form to this observation
by introducing

(48) rγ := sup{r :
1

2
xQxt −R−(x) ≥ γ

2
xQxt, x ∈ BQ(0, r)},

where BQ(0, r) = {x : xQxt ≤ r2}, the Q-ball of radius r. We then add
as our final hypothesis that

• (v) supp (a) ⊆ BQ(0, rγ).

To simplify notations, we will often write Q(x) for xQxt. We next define
two constants ‖R/Q2‖∞,rγ and ‖a/Q‖∞,rγ by

(49) ‖R/Q2‖∞,rγ := max
BQ(0,rγ)

(
R(x)

Q(x)2

)
,

and, letting ρ2(x) := a(x) − a(0) −∇a(0)xt = a(x) − a(0) (in view of
condition (iv)), the remainder term in the first order Taylor expansion
of a,

(50) ‖ρ2/Q‖∞,rγ := max
BQ(0,r)

(
|ρ2(x)

Q(x)
|
)

.
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Observe that both quantities are finite, since R(x) = O(|x|4) and
ρ2(x) = O(|x|2), and since Q(x) is positive definite. We can now for-
mulate the main theorem of this section:

Theorem 3.1. For a given γ, 0 < γ < 1, and under the assumptions
(i)-(v), we have that

J(λ) =
a(0)√
det(Q)

(2π

λ

)n/2

+ E(λ),

with the following estimate for the error-term:

|E(λ)| ≤
1√

det (Q)

(
2π
λ

)n/2
(

n‖ρ2/Q‖∞,rγ

λ
+

n(n+2)‖a‖∞ ‖R/Q2‖∞,rγ

λ2γn/2+2 +
|a(0)|Γ(n

2
,
λr2

γ
2

)

Γ(n
2
)

)
,

where Γ(z, w) is the incomplete Γ-function defined by (21).

Proof. We split J(λ) as

J(λ) =

∫

Rn

a(x)e−λQ(x)/2dx +

∫

Rn

a(x)(e−λR(x) − 1)e−λQ(x)/2dx

=: J1 + J2,(51)

and estimate J1 and J2 separately.

Estimation of J1. Do a 2nd order Taylor expansion of a(x) around 0:

a(x) = a(0) +∇a(0) xt + ρ2(x),

with |ρ2(x)| ≤ C|x|2 in supp (a) (we do not use yet that ∇a(0) = 0
at this stage). Inserting this in the integral and observing that odd
powers of x integrate to 0, we easily find that

J1(λ) =
a(0)√
det (Q)

(2π

λ

)n/2

+

∫

BQ(0,rγ)

ρ2(x)e−λQ(x)/2dx +(52)

∫

Rn\BQ(0,rγ)

ρ2(x)e−λQ(x)/2dx,

where we used the standard change of variables x → λ−1/2Q−1/2x to
obtain the first term. But if ∇a(0) = 0, then ρ2(x) = −a(0) on the
complement of the support of a, and since supp (a) ⊆ BQ(0, rγ) by
hypothesis, we see that the final term in (52) equals

−a(0)
∫
{xQxt≥r2

γ} e−λQ(x)/2dx

= − a(0)√
det (Q)

∫

{|x|2≥r2
γ}

e−λ|x|2/2dx

=
−a(0)|Sn−1|√

det (Q)

∫ ∞

rγ

rn−1e−λr2/2dr,
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where we introduced polar coordinates, and where |Sn−1| = 2πn/2/ Γ(n/2)
is the surface measure of the unit sphere in Rn. The integral can be
transformed into an incomplete Γ-function, and it will be useful, here
and for later, to note the following easily proved general identity:

(53)

∫ ∞

R

rae−brα

dr = α−1b−(a+1)α−1

Γ
(
α−1(a + 1), bRα

)
.

We then find that the last term in (52) equals

(54) − a(0)√
det (Q)

(2π

λ

)n/2

· Γ(n/2 , λr2
γ/2)

Γ(n/2)
.

Observe that for big λ this decays exponentially as ' Cλ−1e−λr2
γ/2, by

the asymptotics of the incomplete Γ function.
As for the second term in (52), we can estimate its absolute value by

max
BQ(0,r)

(∣∣∣∣
ρ2(x)

Q(x)

∣∣∣∣
)

) ·
∫

Rn

Q(x)e−λQ(x)/2dx =
n‖ρ2/Q‖∞,rγ

λ
√

det (Q)

(
2π

λ

)n/2

,

by the change of variables x → λ−1/2Q−1/2x. Summarizing, we found
that

(55) J1(λ) =
a(0)√
det (Q)

(2π

λ

)n/2

+ E1(λ),

where
(56)

|E1(λ)| ≤ 1√
det (Q)

(
2π

λ

)n/2
(

n‖ρ2/Q
2‖∞,rγ

λ
+ |a(0)|Γ(n

2
,

λr2
γ

2
)

Γ(n
2
)

)
.

Estimation of J2. Using the elementary inequality |ey−1| ≤ |y|max(ey, 1)
(y ∈ R) with y = −λR(x), we see that

|J2| ≤ λ

∫

BQ(0,rγ)

|a(x)||R(x)|e−λ(Q(x)/2−R−(x))dx

≤ λ‖a‖∞
∫

BQ(0,rγ)

|R(x)|e−λγQ(x)/2dx,

since supp(a) ⊆ BQ(0, rγ) and 1
2
Q(x) − R−(x) ≥ γ

2
Q(x) on BQ(0, rγ).

Multiplying and dividing by Q(x)2, we find:

|J2| ≤ ‖a‖∞‖R/Q2‖∞,rγ

∫

Rn

Q(x)2e−λγQ(x)/2dx

=
(2π

λ

)n/2 n(n + 2) ‖a‖∞ ‖R/Q2‖∞,rγ

λ2γn/2+2
√

det (Q)
,

where we used that∫

Rn

|x|4e−|x|2/2dx = (2π)n/2(n2 + 2n).
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Adding this to (55), we have proved theorem 3.1. QED

A closer examination of the proof of theorem 3.1 reveals that we can
obtain sharper asymmetrical upper and lower bounds for J(λ), if we
have information about the signs of a(0) and of R(x). Specifically, if
a(0) > 0, then (54) will be negative, and can be discarded if we are
looking for an upper bound of J(λ). Similarly, if a(x) ≥ 0 and R(x) ≤ 0
(as will be the case in our application to I(λ)), then exp(−λR(x))− 1
will clearly be positive, and J2(λ) can be left out of a lower bound. We
therefore have the

Corollary 3.2. (of the proof of theorem 3.1) Under the conditions of
theorem 3.1 and if, moreover, a(x) ≥ 0 and R(x) ≤ 0 on B(0, rγ), then

−EL(λ) ≤ J(λ)− a(0)√
det(Q)

(
2π

λ

)n/2

≤ EU(λ),

with upper and lower errors

EU(λ) =
1√

det(Q)

(
2π

λ

)n/2 (
n‖ρ2/Q‖∞,rγ

λ
+

n(n + 2)‖a‖∞ ‖R/Q2‖∞,rγ

γn/2+2λ2

)
,

and

EL(λ) =
1√

det(Q)

(
2π

λ

)n/2
(

n‖ρ2/Q‖∞,rγ

λ
+ a(0)

Γ(n
2

,
λr2

γ

2
)

Γ(n
2
)

)
.

As a final observation we note that both theorem 3.1 and corollary 3.2
will continue to hold if we replace rγ by some smaller number Rγ < rγ

(provided we do the same in condition (v)), as is clear from the proofs.

4. Estimation of I(λ)

4.1. Asymptotics of I±(λ). We first apply the results of the previous
section to I±(λ). To simplify notations, we will, in this subsection only,
drop the accents, and write x = (x−, x+) for x′ = (x′−, x+) (so that x
will now be in Rn instead of Rn+1).

We see from equations (44), (45) and (46) that exp c
α/2
1 I+(λ) is of

the form (47), with phase function

ψ(x) = (c1 + q(x))α/2 − c
α/2
1 ,

and amplitude

a(x) = χ̃+(x) (1− |x−|2 + |x+|2)−1/2.

Here c1 := (a−1 )−1 > 0 and q(x) is the positive definite quadratic form
given by (46). If we let f(y) = (c1 + y)α/2, then

f(y) = c
α/2
1 +

α

2
c

α
2
−1

1 y +
α

4
(
α

2
− 1)(c1 + θyy)

α
2
−2y2
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with 0 < θy < 1. Hence,

ψ(x) =
α

2
c

α
2
−1

1 q(x) + R(x) =
1

2
Q(x) + R(x)

with Q(x) = αc
α
2
−1

1 q(x) and, if α ≤ 4,

|R(x)| ≤ |α(α− 2)|
8

c
α
2
−2

1 q(x)2 =
|α− 2|

8α
c
−α/2
1 Q(x)2.

Observe that R(x) ≤ 0, and R = −R−, if α ≤ 2, which is the interesting
range of α’s for applications to portfolio risk. It follows that 1

2
Q−R− ≥

γ
2
Q is the true whenever

|α− 2|
8α

c
−α/2
1 Q(x) ≤ 1− γ

2
,

which, recalling (48), implies that

(57) r2
γ =

4α(1− γ)

|α− 2| · c
α
2
1 .

These estimates also show that

‖R/Q2‖∞ ≤ |α− 2|
8α

c
−α/2
1 =

|α− 2|
8α

(a−1 )α/2,

on all of Rn.

We next turn to the amplitude. We will choose our cut-off function
χ̃+ of the form

χ̃+(x) = g

(
Q(x)

R2
γ

)
,

with suitably chosen Rγ ≤ rγ, and with g : R≥0 → [0, 1] a C1 cut-off
function supported in [0, 1] and equal to 1 on a neighborhood of 0.
For any explicit computations below we will take g equal to ga defined
by (18), in which case ‖g′a‖∞ = 2

1−a
. Letting h(y) := (1 − y)−1/2, we

can write a(x) = g(Q(x)/r2
γ)h(|x−|2 − |x+|2), and since ∇a(0) = 0, we

obtain from the 0-th order Taylor expansions with remainder of ga and
h that:

ρ2(x) = a(x)− 1

= −1

2

|x−|2 − |x+|2
(1− θ(|x−|2 − |x+|2))3/2

+
Q(x)

r2
γ

g′(θ′
Q(x)

r2
γ

)

−1

2

|x−|2 − |x+|2
(1− θ(|x−|2 − |x+|2))3/2

· Q(x)

r2
γ

g′(θ′
Q(x)

r2
γ

),

for suitable θ = θx, θ
′ = θ′x ∈ (0, 1). We now pick Rγ such that Rγ < rγ

and such that | |x−|2 − |x+|2| ≤ 1/2 on B(0, Rγ). To do this explicitly,
simply observe that

∣∣ |x−|2 − |x+|2
∣∣ ≤ |x|2 ≤ λmin(Q)−1Q(x),
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where λmin(Q) is the smallest eigenvalue of Q. Hence it suffices to
choose

(58) R2
γ = min

(
r2
γ,

1

2
λmin(Q)

)
.

Straightforward estimates then show that

(59) ||ρ2(x)

Q(x)
||∞ ≤

√
2

λmin(Q)

(
1 +

||g′||∞
R2

γ

)
+
||g′||∞

R2
γ

.

With this choice of Rγ also have that

‖a‖∞ ≤ sup
B(0,Rγ)

(1− |x−|2 + |x+|2)−1/2 ≤
√

2.

Let us define constants K̂±
1 , K̂±

2 by:

(60) K̂±
1 := n ·

{ √
2

λmin(Q)

(
1 +

||g′||∞
R2

γ

)
+
||g′||∞

R2
γ

}
,

and

(61) K̂±
2 :=

√
2

n(n + 2)

γ
n
2
+2

|α− 2|
8α

(a−1 )α/2.

Corollary 3.2 then implies the following intermediary result, which we
state as a lemma, for future reference:

Lemma 4.1.

−Ê±
L (λ) ≤ I+(λ) + I−(λ)− 2√

det(Q)

(
2π

λ

)n/2

e
− λ

(a−1 )α/2
(62)

≤ Ê±
U (λ),

with

Ê±
U (λ) =

2√
det(Q)

(
2π

λ

)n/2

e
− λ

(a−1 )α/2

(
K̂±

1

λ
+

K̂±
2

λ2

)
,

and

Ê±
L (λ) =

2√
det(Q)

(
2π

λ

)n/2

e
− λ

(a−1 )α/2


K̂±

1

λ
+

Γ
(

n
2

,
λR2

γ

2

)

Γ
(

n
2

)

.

4.2. Estimation of I0(λ). We now re-instate the accented variables,
and let x = (x1, x

′) ∈ Rn+1, as before, in section 2. To complete our
asymptotic formula for I(λ), we have to estimate the contribution of

(63) I0(λ) =

∫

Σ

e−λϕ(x)χ0(x)Lη(x),

where we have put

(64) ϕ(x) :=
(
x|A|−1xt

)α/2
.
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Recall that ϕ assumes its absolute minimum c
α/2
1 = (a−1 )−α/2 on Σ in

the two points ±e1 := (±e−1 , 0), which are both outside of the support
of χ0; I0(λ) will therefore have an exponential decrease with respect to
I±(λ), and the only point is to give a precise quantitative form to this
observation. If Σ is compact, that is, if n+ = 0, then the integral I0(λ)
can be trivially estimated by

|I0(λ)| ≤ exp

(
−λ min

suppχ0

(ϕ− ϕ(e1))

)
|Sn−1| e−λϕ(e1),

since for the unit sphere the Liouville measure of η(x) = |x−| is equal
to the surface measure. However, in the general case the total Liou-
ville measure of Σ will be infinite, and we will use a fraction of the
exponential to arrive at a convergent integral. Let therefore ε ∈ (0, 1).
Then

eλϕ(e1)I0(λ) =

∫

Σ

e−λ(ϕ(x)−ϕ(e1))χ0Lη

≤ max
supp χ0

exp (−λ(1− ε)(ϕ− ϕ(e1)))(65)

·
∫

Σ

e−ελ(ϕ−ϕ(e1)) χ0 Lη,

whose absolute value will, for λ’s bigger than some λ0 > 0, be bounded
by

exp

(
−λ(1− ε)) min

supp χ0

(ϕ− ϕ(e1))

)
· eελ0ϕ(e1) ·

∫

Σ

e−ελ0ϕ|Lη|;

here λ0 is to be chosen conveniently in concrete applications. We there-
fore can estimate, for λ ≥ λ0,

(66) |I0(λ)| ≤ Kε,λ0 · e−λ(ϕ(e1)+mε),

where

(67) mε = (1− ε) min
supp χ0

(ϕ− ϕ(e1)) > 0,

and

(68) Kε,λ0 = eελ0ϕ(e1)

∣∣∣∣
∫

Σ

e−ελ0ϕLη

∣∣∣∣ < ∞.

This shows, as announced, that I0(λ) is exponentially decreasing with
respect to I±(λ), as λ → ∞. To obtain a precise quantitative form
of this, we now bound the two constants mε and Kε,λ0 , with special
attention to the dependence on the GLD-parameter α and on the choice
of Rγ in the estimate for I±(λ). We begin with Kε,λ0 . We will use
Stokes’ theorem to convert the integral over the hyper-surface Σ into
one over the exterior domain, and for this we first compute the exterior
derivative of Lη.
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Lemma 4.2. Let η = η(x) and v = v(x) be a C2, respectively C1,
function, defined on some open subset of Rn+1 on which ∇η is nowhere
vanishing. Then

d (vLη) = g(x)dx1 ∧ · · · ∧ dxn+1,

where

g(x) =
1

|∇η|2 (∇v · ∇η + v∆η)− 2v

|∇η|4
∑

j,k

∂2η

∂xj∂xk

∂η

∂xj

∂η

∂xk

.

The proof, a straightforward differentiation exercise, is left to the reader.

In our case, η(x) =
√
|x−|2 − |x+|2, and therefore

∇η(x) = η(x)−1 (x−,−x+) .

In particular, |∇η(x)| = |x|/|η(x)|. We next compute

∂2η

∂xj∂xk

= εj
δjk

η(x)
− εjεk

xjxk

η(x)3
,

where εj = 1 if 1 ≤ j ≤ n−, and εj = −1 if n−+1 ≤ j ≤ n−+n+ = n+1.
It follows that ∆η = (n− − n+)/η − |x|2/η3 and also that,

∑

j,k

∂2η

∂xj∂xk

∂η

∂xj

∂η

∂xk

=

(∑
j

εj

x2
j

η3

)
− |x|4

η5
.

By Cauchy-Schwarz,
|∇v · ∇η|
|∇η|2 ≤ |∇v|

|∇η| ,
and we easily find that since |∇η| = |x|/|η|,

|g(x)| ≤ |∇v|
∇η

+ |v| ·
{ |n− − n+|

η|∇η|2 +
|x|2

η3|∇η|2 +
2|x|2

η3|∇η|4 +
2|x|4

η5|∇η|4
}

=
|∇v|
|∇η| + |v| ·

{
|n− − n+| η

|x|2 +
1

η
+

2η

|x|2 +
2

η

}
.

Hence, if η(x) ≥ 1 then, since η(x) ≤ |x| and |∇η(x)| ≥ 1,

|g(x)| ≤ |∇v|+ |v| · (|n− − n+|+ 5) ;

(this could have been slightly sharpened9). Taking v(x) = exp (−ελ0ϕ(x))

with ϕ(x) = (x|A|−1xt)
α/2

and using Stokes’ theorem applied to the ex-
terior domain, we find that

| ∫
Σ

e−ελ0ϕLη| = | ∫{η≥1} d
(
e−ελ0ϕLη

) |

≤
∫

Rn

(
α ελ0

(
x|A|−1xt

)α/2−1 ∣∣ |A|−1x
∣∣ + (|n− − n+|+ 5)

)
e−ελ0ϕdx.

9namely to: |g(x)| ≤ |∇v|+ |v| · (|n− − n+|+ 5)/η(x); however, for large n, the extra decay of
η(x)−1 will not make a huge difference after integration over {η(x) ≥ 1}.
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After the change of variables x → (ελ0)
−1/α|A|1/2x, the right hand side

of becomes:√
det |A|

(ελ0)n/α

∫

Rn+1

{
α|x|α−2

∣∣ |A|−1/2x
∣∣ +

|n− − n+|+ 5

(ελ0)1/α

}
e−|x|

α

dx.

Now
∣∣ |A|−1/2x

∣∣ ≤ || |A|−1 ||1/2 |x|,
∫

Rn+1

e−|x|
α

dx =
1

α
|Sn| Γ

(
n + 1

α

)

=
2

α
π(n+1)/2 Γ

(
n+1
α

)

Γ
(

n+1
2

) ,

and ∫

Rn+1

|x|α−1e−|x|
α

dx =
1

α
|Sn| Γ

(
n + α

α

)

=
2

α
π(n+1)/2 Γ

(
n+α

α

)

Γ
(

n+1
2

) .

Collecting all terms we find that Kε,λ0 ≤ K̂0(ελ0), where

K̂0(ελ0) := π(n+1)/2
√

det |A| eελ0(a−1 )−α/2

(ελ0)n/α

·
{

2 || |A|−1||1/2 Γ
(

n+α
α

)

Γ
(

n+1
2

) +
2|n− − n+|+ 10

α(ελ0)1/α

Γ
(

n+1
α

)

Γ
(

n+1
2

)
}

.(69)

Finally, we compute mε, given by (67). A moment’s thought will
show that the minimum will be attained at a point x = (x1, x

′) ∈ Σ of
suppχ± where Q(x′) = aR2

γ, a as in (18). Since ϕ(x)|Σ = (c1+q(x′))α/2,

and q(x′) = α−1c
1−α

2
1 Q(x′), we find

(70) mε = (1− ε)[(c1 + α−1c
1−α

2
1 a ·R2

γ)
α/2 − c

α/2
1 ], .

This completes our estimation of I0(λ). Summarizing, and recalling
that ϕ(e1) = (a−1 )−α/2, we have shown:

Lemma 4.3. For λ ≥ λ0,

|I0(λ)| ≤ K̂0(ελ0) e−nελ,

with
nε := mε + (a−1 )−α/2,

and with K̂0(ελ0) and mε given by (69) and (70), respectively.

Remark 4.4. In practice, we would want to choose ελ0 such that

K̂0(ελ0) is minimal. An exact minimization involves computing the
minimum of a function of the form

z → (
z−k + Cz−k−l

)
ecz,
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with parameters k, l, c, C > 0; for us, z = ελ0 > 0, k = n/α and
l = 1/α. Putting the derivative equal to 0 leads to the equation

czl+1 − kzl + cCz − (k + l)C = 0,

which, in general, cannot be solved explicitly. An exception is when
l = 1, corresponding to α = 1, in which case the positive root is given

by z = (2c)−1
(
k − cC +

√
(k − cC)2 + 4cC(k + 1)

)
' k/c, for large

k. A simple upper bound for the minimum can be obtained by only

exactly minimizing one of the two terms making up K̂0(ελ0), using
that a function of the form z → z−kecz (c > 0) attains its minimum
ckk−kek on z > 0 in the point z = k/c. Applying this with k = n/α
and c = (a−1 )−α/2, we obtain that

minελ0 K̂0(ελ0) ≤ π(n+1)/2
√

det |A| (a−1 )−n/2 en/α

(n/α)n/α(71)

·
{

2|| |A|−1 ||Γ(
n+α

α )
Γ(n+1

2 )
+ 2|n−−n+|+10

α
(a−1 )−1/2

(
α
n

)1/α Γ(n+1
α )

Γ(n+1
2 )

}
.

The above suggests n(a−1 )α/2/α as a reasonable choice for ελ0. A lower
bound on λ0 will then determine ε and, consequently, nε.

5. Proof of theorem 1.2

It remains to replace λ by rα in the estimates of the previous sec-
tion, integrate from R to ∞ with respect to rndr, and multiply by
C ′ = c−(n+1)/αC

√
det|A| with c = cα,n+1, C = Cα,n+1; cf. (34), (35).

This is basically a book-keeping exercise, but we will still indicate the
main steps of the computations, for convenience of the reader. We first
observe that the

√
det |A| in the denominator of the constant C ′, for-

mula (35), and the
√

det Q in the denominators in lemma 4.1 combine
to yield an overall factor of

(|det A| det Q)−1/2 = α−n/2(a−1 )
αn
4
− 1

2 ∆(A)−1/2,

where we have put

∆(A) :=

n−∏
2

(a−1 − a+
j )

n+∏
1

(a−1 + a+
j ).

(Recall that Q = αn/2(a−1 )−(α
2
−1) q, with q given by (46).) Using (39),

the principal term of I+ + I− in (62) (that is, 2(det(Q))−1/2(2πλ−1)n/2

exp(−λ(a−1 )−α/2)) will then give rise to a principal term of FΓ(−V ) of

FΓ,pc(−V ) := 2α−n/2(2π)n/2c−
n+1

α C (a−1 )
αn
4
− 1

2 (∆(A))−1/2

·
∫ ∞

R

rn(1−α
2
) exp

(−(a−1 )−α/2rα
)
dr,
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where we recall that V = 1
2
c−2/αR−Θ. Using (53), we find that

(72) FΓ,pc(−V ) = Apc Γ

(
n + 1

α
− n

2
,

(
R√
a−1

)α)
,

with Apc = 2α−
n
2
−1(2π)n/2c−

n+1
α C (a−1 )n/2∆(A)−1/2, which establishes

the main term approximation (13), (12).

The estimates for the upper and lower error terms can be found
similarly. We begin with the latter. It is important to observe that for
a lower bound for I(λ) we can leave out the I0(λ)-term altogether10.
We therefore have, using lemma 4.1,

FΓ(−V )− FΓ,pc(−V )

≥ −C ′
∫ ∞

R

rnÊL(rα) dr

= −2(2π)n/2 C ′
√

det Q
{ K̂±

1

∫ ∞

R

rn−α(n
2
+1) exp

(
− rα

(a−1 )α/2

)
dr

+
1

Γ(n/2)

∫ ∞

R

Γ

(
n

2
,
1

2
R2

γ rα

)
exp

(
− rα

(a−1 )α/2

)
rn dr} .

The first integral on the right can again be evaluated using (53), yield-
ing

K̂±
1 α−1(a−1 )

n+1
2
−αn

4
−α

2 Γ

(
n + 1

α
− n

2
− 1,

(
R√
a−1

)α)
.

The second integral can be treated as follows: inserting the definition
of the incomplete Γ-function, and interchanging order of integration, it
is found to equal

(73)
1

Γ(n/2)

∫ ∞

R

s
n
2
−1e−s

∫ (2R−2
γ s)1/α

R

rn exp

(
− rα

(a−1 )α/2

)
dr ds.

Since this is a term which will be exponentially small for large R, we
won’t evaluate this integral explicitly (but see Sadefo [11]), but contend
ourselves with an upper bound, by extending the inner integral over
[R,∞). The double integral then becomes a product, equal to

α−1(a1)
n+1

2
Γ

(
n
2
, R

)

Γ
(

n
2

) Γ

(
n + 1

α
,

(
R√
a−1

)α)
.

10As already noted in the introduction, this is extremely helpful, since it will imply a λ0-
independent lower bound on FΓ which, in turn can be used to find a lower bound on λ0 when
computing VaRΓ

p for a given p.
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Finally, the overall coefficient in front equals 2(2π)n/2α−n/2c−(n+1)/αC ·
(a−1 )

αn
4
− 1

2 ∆(A)−1/2, and combining all terms gives the lower bound

−EL(R) := −(a−1 )−α/2 Apc K̂±
1 Γ

(
n + 1

α
− n

2
− 1,

(
R√
a−1

)α)

−(a−1 )
αn
4 Apc

Γ
(

n
2
, R

)

Γ
(

n
2

) Γ

(
n + 1

α
,

(
R√
a−1

)α)
,

which proves one half of theorem 1.2.
The upper error can be bounded in the same way. By the other half

of lemma 4.1, and lemma 4.3, we find that if Rα ≥ λ0, then

FΓ(−V )− FΓ,pc(−V ) ≤ EU(R),

where

EU(R) := C ′
∫ ∞

R

rn
(
ÊU(rα) + K̂0(ελ0) e−nεrα

)
dr.

The two integrals can be treated as before, and we find after some
computations that

EU(R) = Apc ·
∑
j=1,2

(a−1 )−jα/2K̂±
j Γ

(
n + 1

α
− n

2
− j,

(
R/

√
a−1

)α)

+K0(ελ0)Γ

(
n + 1

α
, nεR

α

)
,

with
K0(ελ0) = α−1|det(A)|−1/2 (cnε)

−n+1
α C K̂0(ελ0),

which is equal to (20). This completes the proof of theorem 1.2. QED

6. Numerical application

We constructed a ∆-hedged portfolio that contains respectively n =
n1+n2 equities with n1 = 30 European short call options on n1 equities
and n2 = 15 European long put options from the French CAC 40
Market (January 05, 2005 to October 17, 2005), with data plotted in
Figures 1 and 2. The price of the portfolio is given by
(74)

Π(t, S(t)) =
30∑
i=1

[−Ci(t, Si(t))+∆i ·Si(t)] +
45∑

j=31

[Pj(t, Sj(t))+∆j ·Sj(t)],

where Si is an equity price i, with S(t) = (S1(t), . . . , Sn(t)), and
Ci(t, Si(t)) is the price of European call option i on equity i. ∆ is
known in the literature as a gradient portfolio sensitivity vector. Our
portfolio has been chosen so that ∆ = 0, with ∆i = ∂Ci

∂Si
(Si(0)), and

∆ = (∆1, . . . , ∆n). We defined the volatility σi of the underlying stock
i as the sample standard deviation of the log return of stock i. We
set the maturity time T = 1/4 years, the interest rate r = 0.1, 0.05,
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c = [c1; c2] and used Ei = (1 + c1 σi) Si(0) for the exercise price of
call i with i = 1, . . . , 30 and c1 a parameter to be chosen. We also set
Ej = (1 + c2 σj) Sj(0) for the exercise price of put i with j = 1, . . . , 15
and c2 a parameter to be chosen. The parameter α of the multivariate
Generalized Laplace distribution (MGLD) can be estimated via max-
imum likelihood, using the EWMA covariance matrix and the sample
log-returns (see Sadefo-Kamdem and Genz [15] for details.)

In the following Tables: VaRΠ
MC,NSIM denotes the VaR of the full

portfolios (without approximation) obtained with NSIM Monte Carlo
simulation using MGLD random with α = 2; VaRΘ−Γ

MC,NSIM denotes the
VaR of the quadratic approximation portfolios obtained with NSIM
Monte Carlo simulations. The following Tables provide computed R
and V aRp,α values for α = 2, for selected p’s and c = [c1, c2] values.
NSIM denotes the number of simulations for Monte Carlo.

• Portfolio with c1 = 1 and c2 = −1: Π(0) = 830.7588383380647,

Θ̆t = 0.18908531206273, α = 2, ε = 0.4798, λ0 = Rα
LB, a = 0.5

and γ = 0.01, we obtained

p 0.01 0.001 0.0001 0.00001

Rp,LB 0.42217492 0.52435910 0.61145949 0.688559884
Rp,PC 0.42225041 0.52439849 0.611484333 0.68857728
Rp,UB 0.42234784 0.52445154 0.61151859 0.68860163

VaRp,UB -0.01070761 0.08596410 0.18486967 0.28508690
VaRp,PC -0.01078991 0.08590847 0.18482778 0.28505335
VaRp,LB -0.01085365 0.085867158 0.18479740 0.28502940

Remark 6.1. In the preceded table we can see that the VaR is
positive when, when p tends to 0. In the next part, we consider
the confidence level p = 0.00001.

• Portfolio with c1 = 1 and c2 = −1: Π(0) = 830.7588383380647,

Θ̆t = 0.18908531206273, p = 0.00001, λ0 = Rα
LB, a = 0.5 and

γ = 0.01, we obtained

α 1.50 1.70 1.80 1.95

Rp,LB 0.938002 0.838618 0.786274 0.711358
Rp,PC 1.080324 0.889633 0.810993 0.715394
Rp,UB 2.421969 1.006289 0.828150 0.718946

VaRp,UB 1.216434 0.291861 0.241510 0.275642
VaRp,PC 0.090560 0.186818 0.223854 0.271061
VaRp,LB 0.021733 0.144943 0.199065 0.265884

VaRp,UB − VaRp,LB 1.194702 0.146918 0.042446 0.009758
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• Portfolio with c1 = 1 and c2 = 0: Π(0) = 830.7588383380647,

Θ̆t = 0.18908531206273, p = 0.00001, λ0 = Rα
LB, a = 0.5 and

γ = 0.01, we obtained

α 1.90 1.93 1.96 1.99

Rp,LB 0.732863 0.718536 0.703535 0.687662
Rp,PC 0.743132 0.725392 0.708533 0.692503
Rp,UB 0.751234 0.731080 0.716014 0.698472

VaRp,UB 0.263035 0.269421 0.280773 0.287512
VaRp,PC 0.253309 0.262296 0.270981 0.279380
VaRp,LB 0.241134 0.253781 0.2644959 0.272836

VaRp,UB − VaRp,LB 0.021901 0.015641 0.0152774 0.0146759

• For Π(0) = 85.6680838, c = [−1; 1], Θ̆t = 0.18908531206273,
p=0.001, we obtained

Limits Lower (LB) Principal (PC) Upper (UB)

R 0.52436622 0.52439849 0.52445154

VaRΓ,α=2
Analytic 0.08587462 0.08590847 0.08596410

VaRΘ−Γ,α=2
MC,10000 0.083588053 0.083588053 0.083588053

VaRΓ,α=2

Analytic

VaRΘ−Γ,α=2

MC,10000

− 1 0.016611073 -0.027760116 0.017008664

| VaRΓ,α=2

Analytic

VaRΘ−Γ,α=2

MC,10000

− 1| 1,66 % 2,78 % 1,70 %

VaRΘ−Γ,α=2
MC,100000 0.091566139 0.091566139 0.091566139

VaRΓ,α=2

Analytic

VaRΘ−Γ,α=2

MC,100000

− 1 -0.041355979 0.061787811 -0.040508470

| VaRΓ,α=2

Analytic

VaRΘ−Γ,α=2

MC,100000

− 1| 4,13 % 6,17 % 4,05 %

Computation Time-Exec

VaRΓ,α=2
Analytic[LB, PC, UB) 1.41 seconds

VaRΘ−Γ,α=2
MC,1000 1.92 seconds

VaRΘ−Γ,α=2
MC,10000 182.91 seconds

VaRΘ−Γ,α=2
MC,100000 17003.92 seconds

• Following the precede tables, for all L ∈ {LB, PC, UB}, the
relative error we make is

|
VaRΓ,0.001

L − VaRΓ,0.001
MC(10000)

VaRΓ,0.01
MC(10000)

| ' 2, 78%,
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and

|
VaRΓ,0.001

L − VaRΓ,0.001
MC(100000)

VaRΓ,0.01
MC(100000)

| ' 6, 17%,

while the relative size of the analytic estimation interval

[VaRΓ,0.001
LB , VaRΓ,0.001

UB ],

is approximately 0.009 % of true VaR.

• The R’s values were determined solving the equations P =
FΓ,PC(R) − EL(R) = LB(R), p = FΓ,PC(R), p = FΓ,PC(R) +
EU(R) = UB(R) for p = 0.001 using a bisection method. The

estimation of VaRΓ,0.001
PC , VaRΓ,0.001

LB and VaRΓ,0.001
UB takes 1.42 sec-

onds. For Monte Carlo VaR calculation the times of execution
were respectively 182.91 for 10000 simulations and 17003.92 sec-
onds for 100000 simulations.

• On a more powerful computer the time for performing the MC
simulations could of course be significantly shorter. Observe,
however, that our example portfolio is not particularly big.

Remark 6.2. Our method gives the following VaR estimates at the
99% confidence level, where the computations were done in Matlab on
a Pentium IV, with 512 MHZ of RAM and 1.5 GHz of processor; the
zeros were found using the bisection algorithm.

7. Conclusions

In this paper we have considered the problem of the analytical ap-
proximate of Value-at-Risk. Given a specified confidence level p, and
assuming a generalized Laplace distribution for the joint log returns,
our approach is designed to supplement the usual Monte-Carlo tech-
niques, by providing an asymptotic formula for the quadratic portfolio’s
cumulative distribution function, together with explicit error-estimates.

We illustrated the use of this analytical method with several exam-
ples based on real data taken from the French CAC 40 Market. We
have shown that appropriately chosen analytical method can efficiently
provide accurate results for these problems, with a very good computer
speed.

We expect that the type of results in this paper can be generalized for
mixture of generalized Laplace distributions risk factors (see [11, 12]).
An important result of this paper is the analytical approximation of
the distribution function of a nonlinear (e.g. quadratic) of generalized
Laplace distribution random vectors with explicit error-estimates. Our
methods were derived assuming a quadratic Taylor approximation for
the portfolio price, but our methods could also be used for other qua-
dratic approximations (those developed by Studer[16], for example. See
appendix E). Note that Studer [16] and Mina [7] describe procedures by
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which the quadratic approximation is estimated by least squares meth-
ods. These methods produce fairly accurate and fast delta–gamma
approximations to “true” VaR. Even though we have use the RiskMet-
rics EWMA for our computation, an improvement is possible with our
method by using DCC (see Engle [4]) or a regime switching volatility
approach (see Pelletier [9]). An application to assessing the quality of
an approximate distribution by using the Kullback-Leibler information
measure is possible. Our method is applicable to portfolios of bonds
and also to a portfolio of mortgage backed securities.

Appendix A. Normalization constants of the GLD

The k-dimensional GLD with V = I is given by (cf. (5) ):

f(x) = C exp (−c|x|α) ,

where the normalization constants c = cα,k and C = Cα,k are such that

(75)

∫

Rk

f(x) dx =

∫

Rk

x2
jf(x) dx = 1.

By rotation invariance of f , the latter condition is equivalent to
∫
R |x|2fdx =

k. Changing variables x → c−1/αx and introducing polar coordinates,
we obtain the following system of equations for c and C:

1 = c−k/αC |Sk−1|
∫ ∞

0

rk−1e−rα

dr

= α−1c−k/αC|Sk−1| Γ
(

k

α

)
,(76)

and

k = c−(k+2)/αC |Sk−1|
∫ ∞

0

rk+1e−rα

dr

= α−1c−(k+2)/αC|Sk−1| Γ
(

k + 2

α

)
.(77)

Here |Sk−1| = 2πk/2/Γ(k/2) is the surface area of the unit sphere in
Rk. Dividing (76) by (77), we obtain that

(78) c = cα,k =

(
Γ

(
k+2
α

)

kΓ
(

k
α

)
)α/2

.

(If α = 2, this gives c = 1/2, as it of course should.) Substituting this
in (76) then gives

C =
αck/αΓ

(
k
2

)

2πk/2Γ
(

k
α

)

=
α

2πk/2

(
Γ

(
k+2
α

)

kΓ
(

k
α

)
)k/2

Γ
(

k
2

)

Γ
(

k
α

) .(79)
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(Check: for α = 2 this yields the normalization constant of the normal
distribution, (2π)−k/2.)

Appendix B. Approximating non-linear VaR by quadratic
VaR

It is commonly believed that for small time-windows [0, t], VaRΠt
p

is well-approximated by VaRΓt
p . To our knowledge, however, there is

not yet a theorem available establishing this formally. We will fill this
apparent gap in the literature by proving the following general result
for ∆-hedged portfolios, which will cover the situation considered in
the present paper.

Theorem B.1. Suppose that the risk factors Xt follow an elliptical dis-
tribution E(0,Vt, φ) having finite third moments, and variance-covariance
matrix Vt linear (or approximately linear) in t. Let Π(x, t) be a non-
linear ∆-hedged portfolio satisfying

(80) max
|α|=3

sup
(x,t)

∣∣∂α
x,tΠ(x, t)

∣∣ < ∞ .

Suppose that p is such that VaRΓt
p > 0 for all sufficiently small t, t ≤ t0.

Then for any ε > 0,

(81) lim sup
t→0

VaRΠt
p+ε

VaRΓt
p

≤ 1 ≤ lim inf
t→0

VaRΠt
p−ε

VaRΓt
p

.

Remarks B.2. (i) We do not suppose that either Xt or any of the
two portfolios concerned have a continuous, let alone differentiable,
probability distribution function. This theorem therefore also applies
to situations where Xt could have jump components, e.g. for applica-
tions to credit risk, or where the underlying E(0, I, φ)-distribution is
an infinitely divisible Lévy distribution.

(ii) Also, the hypothesis of having elliptically distributed Xt is, in itself,
not crucial: what will be important is that X1 =d

√
tX1 which, in our

case, follows from the fact that elliptic distributions having the same
φ are uniquely distinguished by their variance-covariance matrices and
their means.

The proof of this theorem will be based on the following elementary
lemma.

Lemma B.3. Let X and Y be two real-valued random variables, with
cumulative distribution functions FX and FY respectively, and let F Y :=
1− FY . Then, for any λ with 0 < λ < 1, we have:
(82)
FX (x/λ)− F (−(1− λ)x/λ) ≤ FX+Y (x) ≤ FX(λx) + FY ((1− λ)x) .
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Proof. The right and inequality is an immediate consequence of {X +
Y ≤ x} ⊆ {X ≤ λx} ∪ {Y ≤ (1− λ)x}. To prove the other inequality,
write X as X = (X + Y )− Y . Then by what we just proved, FX(x) ≤
FX+Y (λx) + F−Y ((1− λ)x), or

FX+Y (λx) ≥ FX(x)− F−Y ((1− λ)x) .

Replacing x by x/λ and observing that F−Y (y) = F Y (−y), the lemma
follows. QED

Proof of theorem B.1. If we do a second order Taylor expansion of
Π(x, t), then

Π(x, t) = Θt +
1

2
xΓxt + R(x, t),

with

R(x, t) =
n∑

j=1

∂2
xj ,tΠ(0, 0) +

1

2
∂2

t Π(0, 0) +
∑

|α=3|

1

α!
∂α

(x,t)Π(θx,tx, θx,tt),

where θ(x,t) ∈ (0, 1). By assumption (80), if t > 0 stays bounded,

|R(x, t)| ≤ C
(|x|t + t2 + (|x|+ t)3

)

≤ C(t2 + |x|t + |x|3),
where C is the usual type of generic constant whose numerical value
may differ from line to line. If we let

Rt := R(Xt, t),

then it follows that

E(|Rt|) ≤ C
(
t2 + tE(|Xt|) + E(|Xt|3)

)
(83)

≤ Ct3/2,

since Xt ∼ E(0,Vt, φ) with Vt = tV1. We now apply lemma B.3 with
X = Θt + 1

2
XtΓXt

t, and Y = Rt = Πt −X. Then for any V ∈ R∗+,

FΠt(V ) ≤ FΓt(λV ) + FRt ((1− λ)V )(84)

≤ FΓt(λV ) +
E(|Rt|)

(1− λ)V

≤ FΓt(λV ) +
Ct3/2

(1− λ)V

where we used Chebyshev’s inequality and (83). If what follows, qX(p) :=
inf{x : FX(x) ≥ V } will be the p-th quantile of a random variable
X (so that VaRX

p = −qX(p)). By hypothesis, qΓt(p) is strictly neg-
ative, and in particular non-zero, if t ≤ t0. If we now take V =
λ−1qΓt(p) − η|qΓt(p)| = (λ−1 + η)qΓt(p) with η > 0 arbitrary, then
it follows from (84) and the definition of the p-th quantile of Γt, that

FΠt

(
(λ−1 + η)qΓt(p)

)
< p + C

t3/2

(1− λ)(λ−1 + η)|qΓt(p)| .
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(If FΓt were continuous we could simply take η = 0, but this would not
make much difference for the remainder of the proof). It follows that

(85) qΠt

(
p + C

t3/2

(1− λ)(λ−1 + η)|qΓt(p)|
)

> (λ−1 + η)qΓt(p).

We now observe that, by the linearity of Vt, Θt + XtΓXt
t/2 is equidis-

tributed with t(Θ+X1ΓXt
1/2), and therefore qΓt(p) = tqΓ1(p), with the

quantile on the right independent of t. Hence, (85) implies that

qΠt

(
p + Ct1/2

) ≥ λ−1qΓt(p)− η,

for some new constant C = C(λ, η, p). Now take t sufficiently small, so
that Ct1/2 < ε. Then for such t,

qΠt (p + ε) ≥ (λ−1 + η)qΓt(p),

since qX is a non-decreasing function. Multiplying both sides of the
inequality above by −1, dividing and letting t → 0, we conclude that,

lim sup
t→0

|VaRΠt
p+ε|

|VaRΓt
p

≤ λ−1 + η,

for any positive λ < 1 and η. Letting λ → 1 and η → 0, we find the
first half of the statement of the theorem.

To prove the other half of the theorem, the lower bound in lemma
B.3 and Chebyshev’s inequality imply that

FΠt(V ) ≥ FΓt(λ
−1V )− FRt

(−λ−1(1− λ)V
)

≥ FΓt(λ
−1V )− λ

E(|Rt|)
(1− λ)|V |

≥ FΓt(λ
−1V )− Ct−3/2|V |−1,

with a λ-dependent constant, by (83) again. Assuming t ≤ t0, so that
qΓt(p) < 0, we now take V = λqΓt(p) + η|qΓt(p)| = (λ − η)qΓt(p) with
0 < η < λ arbitrary. It follows that

qΠt

(
p− Ct−3/2(λ− η)|qΓt(p)|−1

) ≤ (λ− η)qΓt(p).

Using, as before, that qΓt is linear in t, we find that for any ε > 0 and
sufficiently small t < t(ε), we have that qΠt(p − ε) ≤ (λ − η)qΓt . This
implies that

lim inf
t→0

VaRΠt
p−ε

VaRΓt
p

≥ (λ− η),

which yields the second half of (81), after letting δ → 1 and η → 0.
QED

It is natural to ask wether one can do better, under additional hy-
potheses on the cumulative distribution functions on Πt and Γt. For
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example, if we could take ε = 0 in (81), the conclusion could immedi-
ately be strengthened to

(86) lim
t→0

VaRΠt
p

VaRΓt
p

= 1.

We conjecture this is possible if FΠt and FΓt are continuous. Assuming
this to be true, and assuming that Γt possesses a continuous probability
density, we can sharpen theorem B.1 by giving a rate of convergence.

Theorem B.4. With the same hypotheses as in theorem B.1, suppose
moreover that FΠt is strictly increasing and continuous, and that FΓt

is continuously differentiable and strictly increasing also. Then

(87)

∣∣∣∣∣
VaRΠt

p

VaRΓt
p

− 1

∣∣∣∣∣ ≤ C
√

t.

Proof. By similar arguments as in the proof of theorem B.1, but inter-
changing the rôles of Πt and Γt, one shows that

p− C
t3/2

|qΠt(p)| ≤ FΓt (qΠt(p)) ≤ p + C
t3/2

|qΠt(p)| .

Applying F−1
Γt

, which is an increasing function, we find that

(88) F−1
Γt

(
p− C

t3/2

|qΠt(p)|
)
≤ qΠt(p) ≤ F−1

Γt

(
p + C

t3/2

|qΠt(p)|
)

.

By Taylor’s formula and the inverse function theorem,

(89) F−1
Γt

(
p± C

t3/2

|qΠt(p)|
)
' qΓt(p)± C

F ′
Γt

(qΓt(p))

t3/2

|qΠt(p)| .

Now since Θt + 1
2
XtΓXt

t =d t
(
Θ + 1

2
X1ΓXt

1

)
, it follows that FΓt(x) =

FΓ1(x/t) and, as we already observed before, qΓt(p) = tqΓ1(p). Hence

F ′
Γt

(qΓt(p)) = t−1F ′
Γ1

(qΓ1(p)) ,

and

t3/2

|qΠt(p)| =
t3/2

|qΓt|
|qΓt(p)|
|qΠt(p)

≤ C
t1/2

|qΓ1|
where we used (86). Using this, (89) and (88) and the fact that qΓ1(p) 6=
0, imply that, with some suitable constant C > 0,

|qΠt(p)− qΓt(p)| ≤ Ct3/2|qΓ1(p)| = Ct1/2|qΓt(p)|
for some suitable constant C > 0, which implies the theorem. QED
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Figure 1. Histogram of 199 daily log-returns of 45 stocks (CAC 40)
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Figure 2. Normalplot of 199 daily log-returns of 45 stocks (CAC 40)
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Figure 3. Graph of fonctions p = FΓ,PC(R) − EL(R) = LB(R),
p = FΓ,PC(R), p = FΓ,PC(R) + EU (R) = UB(R), when α = 1.8,
for a given CAC 40 ∆-hedged portfolio.
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Plot of LB(R), PC(R) and UB(R) for γ =0.01, a =0.5, ε =0.47, r=0.05, T=0.25,  α =1.9 , c=[−1;1].
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Figure 4. Graph of functions p = FΓ,PC − EL(R) = LB(R),
p = FΓ,PC(R), p = FΓ,PC + EU (R) = UB(R), when α = 1.9,
for a given CAC 40 ∆-hedged portfolio.
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a given CAC 40 ∆-hedged portfolio.
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