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Abstract

We consider a situation, in which a regulator believes that constraining a good,

created jointly by competitive agents, is socially desirable. Individual levels of out-

puts, which generate the constrained amount, can be computed as a Pareto-efficient

solution of the agents’ joint utility maximisation problem. However, generically, a

Pareto-efficient solution is not an equilibrium. We suggest the regulator should

calculate a Nash-Rosen coupled-constraint equilibrium (or a “generalised” Nash

equilibrium) and use the coupled-constraint Lagrange multiplier to formulate a

threat, under which the agents would play a decoupled Nash game. An equilibrium

of this game will possibly coincide with the Pareto-efficient solution. We focus on

situations when the constraint is saturated, and examine under which conditions a

match between an equilibrium and a Pareto solution is possible. We illustrate our

findings using a model for a coordination problem, in which firms’ outputs depend

on each other and where the output levels are important for the regulator.
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1 Introduction

The aim of this paper1 is twofold. First, we want to formulate sufficient conditions,

under which a two-player concave game with coupled constraints has an equilibrium

à la Rosen (see Rosen (1965)) that is also a Pareto-optimal solution of a centralised

problem. In that we apply Aumann’s idea of game engineering, see Aumann, R.

J. (2008) i.e., we want to construct a game whose equilibrium coincides with a

prescribed outcome. Secondly, we want to illustrate this result by analysing a

stylised real-life game where two competitive players contribute to a public good.

We also want to contribute to welfare economics. We contend that our work is

inspired by the second welfare theorem2. As known, lump-sum transfers that are

required for the implementation of an efficient outcome, are difficult to arrange.

Also, economies are often composed of agents that exert externalities on each other

and their outputs are subjected to constraints imposed externally (e.g., by social or

environmental pressure groups). None of the above features has been included in

the welfare theorems’ specification. Our results, obtained for a two-agent economy,

overcome these shortcomings: (1) the agents are allowed to interact through exter-

nalities (including negative), (2) the regulator seeks an efficient outcome subject to

a constraint and (3) an efficient outcome is obtained through the threat of nominal

(never collected) taxes.

More specifically, we are interested in situations, in which a regulator wants

to control competitive agents so that their jointly created externality satisfies con-

straints. Typically, the constraints correspond to exogenous standards and concern

the combined strategy space of all players.. The constraints can be imposed from

above (e.g., on pollution emitted by a cluster of pulp mills, see e.g., Haurie and

Krawczyk (1997) or Krawczyk (2005) or by thermal generators, see e.g., Contreras

et al. (2007)), or from below e.g., on the amount of some public good like trans-

portation capacity or hospital beds, available to a local population. The former

constraints concern a negative externality, which needs to be restricted; the latter

are imposed to satisfy a level deemed necessary.

Also, problems involving competition for a scarce resource, demanded by inde-

pendent operators that depend on some legislation (like private fishermen operating

1This paper draws from and extends Krawczyk and Tidball (2009).
2See e.g. Groves, T. and Ledyard, J. (1977). Briefly, the two welfare theorems assert that

under suitable conditions: (i) every competitive allocation is Pareto-efficient and (ii) every Pareto-

efficient allocation is competitive for some distribution of endownements, realisable through trans-

fers.
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on a fishery or internet users logging in to a server, see e.g., Kesselman et al. (2005))

can be analysed using the same framework and are thus of interest to us.

In all these situations the joint restrictions are likely to be saturated. This

might be because agents’ individually optimal solutions limit the amount of the

positive externality, because not emitting negative externality is costly or because

the contested resources are scarce. Notice that if the constraints had some slack,

there would be “no problem” for the regulator3. In this paper, we will assume that

the regulator is dealing with the “interesting” case of saturated constraints and

wishes to know how to apportion the responsibility for the constraints’ satisfaction

among the agents so that an equilibrium is achieved.

Individual levels of outputs (and inputs) that generate the desired amount of

the externality can be computed as a Pareto-efficient constrained solution to the

agents’ joint utility maximisation problem. The regulator might use an arbitrary

weight α ∈ (0, 1) to balance the agents’ utility functions or seek α̂ that maximises

the sum.

As known, generically, a Pareto-efficient solution is not an equilibrium hence not

self-enforcing, thus of problematic use in a competitive environment. We suggest

the regulator calculates a Rosen coupled-constraint equilibrium (Nash normalised),

see e.g., Rosen (1965) or Krawczyk (2005), (or a “generalised” Nash equilibrium

as this type of equilibrium is called in e.g., Pang and Fukushima (2005)) and uses

the coupled-constraint Lagrange multiplier to formulate a threat, under which the

agents will play a decoupled Nash game. An equilibrium of this game will possibly

coincide with the desired Pareto-efficient constrained solution. If so, the Pareto

outcome will be achieved as a Nash equilibrium, hence self-enforcing.

In the paper, we examine, under which conditions a match between those two

solutions is possible. This is the line of research started in Tidball and Zaccour

(2005). Here, we generalise the results obtained in the above paper for an envi-

ronmental problem. We illustrate our findings using a model for a coordination

problem, in which firms’ outputs depend on each other and where the output levels

are important for the regulator.

The model considered in this paper is deterministic and information is “sym-

metric”. We notice that should any of these assumptions not be satisfied, the

regulator might assign penalty functions that would prompt the agents to produce

the externality amounts that are not optimal for the agents. If so, they would start

trading out the excess amounts until they became individually optimal. However,

3Unless the regulator would like to improve welfare from a status quo situation.
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such a trading problem surpasses the scope of this paper.

What follows is a brief outline of what this paper contains. In Section 2, we

describe a model in which two firm outputs are coordinated by a regulator. This

motivates our search for a map between Patero-efficient solutions and competitive

equilibria. In Sections 3 and 4, we develop the solution concepts for the coordination

problem and revise the mathematics needed for the uniqueness of equilibrium. We

develop the sufficient conditions for the map’s existence in Section 5. We apply

these conditions to the motivating example in Section 6. The concluding remarks

summarise our findings, which include a socio-economic interpretation of the results.

2 A “public” good delivery

The mathematics of the model described below is taken from the seminal paper by

Rosen (1965). The interpretations and intuitions are ours.

2.1 A model

Consider two competitive agents whose outputs are x1 ≥ 0 and x2 ≥ 0, respectively.

Maintaining the outputs is expensive; the cost function of the first agent is
x2

1

2
and

x2
2 of the second.

The revenue of the first agent can only be created using the second agent’s

output (positive externality) and, in this case, it equals x1x2. However, the goods

produced by the second agent “suffer” when are utilised by the first agent (negative

externality) so, the revenue of the second agent is −x1x2.

In absence of regulation, the unique equilibrium of the Nash-Cournot game

max
x1

(
φ1(x) = −1

2
x2

1 + x1x2

)

max
x2

(
φ2(x) = −x2

2 − x1x2

)

g1(x) = x1 ≥ 0

g2(x) = x2 ≥ 0





(1)

“played” among the agents is (0,0).

However, maintaining some positive combination of levels x1 and x2 may be

important for the regulator. Mathematically, the regulator may want the outputs
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to satisfy

h(x) = x1 + x2 − 1 ≥ 0 . (2)

Throughout this paper φi(x), i = 1, 2 are assumed continuous in all arguments

and concave in xi. The common constraint h(·) will then be assumed such that the

constraint set

x ∈ X ≡ {(x1, x2) : x1 ≥ 0, x2(x) ≥ 0, h(x) ≥ 0} (3)

is a convex, closed and bounded subset of IR2.

The problem of how to entice the agents to satisfy constraint (2) boils down

into two subproblems:

a. What should be the levels of x1 and x2?

b. What should the regulator do to induce the players to choose these levels?

Briefly, the levels x1 and x2 can be established as a (constrained) Pareto-efficient

solution and implemented as Rosen (Nash normalised) equilibrium of a decoupled

game (to be defined). In the rest of this paper we study the mathematical conditions

that φ1(·), φ2(·) and h(·) need to satisfy for the Pareto and Rosen solutions to exist

and coincide.

2.2 Interpretations and intuitions

To focus attention we suggest that the above mathematical problem can have the

following socio-economic origin.

Consider a rail network owned by a public firm and a private firm responsible

for rolling stock and transportation.

Let x1 be the tonnage of the goods transported through the network; let x2 be

the length of the tracks owned by the tracks’ owner. The revenue of the transporta-

tion firm is proportional to the tonnage and to the tracks’ length β1x1 x2.

In absence of a discount price for super-large trains, perhaps due to an imperfect

state of the tracks, a reasonable approximation of the cost function to the trans-

portation firm may be −α1x
2
1

2
: the more goods to transport, the more hardware

needs to be maintained.

In brief, the operator of the rolling stock has variable revenue β1x1x2 and costs

−α1x
2
1

2
whose combination approximates the firm’s profit φ1(x).

The public firm operating the tracks is paid a fixed amount, which is normalised

to zero. The costs of maintaining the tracks at level x2 is β2x1x2 +α2x
2
2 (where the
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first term is motivated by the destruction caused by tonnage x1). Hence φ2(x) =

−α2x
2
2 − β2x1x2.

For social reasons, the government wants transportation activity γ1x1 + γ2x2 to

be above level M . This can be written as γ1x1 + γ2x2 −M ≥ 0.

The above provides motivation for model (1), (2), in which α1 = α2 = β1 =

β2 = γ1 = γ2 = M = 1.

3 Solution concepts

3.1 Pareto-efficient constrained solutions

We will establish a solution to question (a.) from Section 2.1 i.e., we will compute

what output levels the regulator may want the agents to produce.

Consider model (1), (2).

The regulator is typically interested in a Pareto-efficient solution x̂ =
(
x̂1, x̂2

)

i.e., such that

if φi(x1, x̂2) > φi(x̂1, x̂2) then φ−i(x1, x̂2) < φ−i(x̂1, x̂2) i = 1, 2 (4)

where the subindex −i indicates the player.

If α ∈ (0, 1) and φ1(x1, ·) and φ2(·, x2) are concave, differentiable and x ∈ X

then

x̂ =
(
x̂1, x̂2

)
= arg max

x∈X
{αφ1(x) + (1− α)φ2(x)} . (5)

To stress that x̂ depends on α we will write x̂(α) =
(
x̂1(α), x̂2(α)

)
. Notice that

the larger α, the more importance that regulator assigns to the payoff of the first

player. We can say that α is a marginal rate of substitution between the two players’

payoffs.

If there is no particular reason for the regulator to prefer one specific value of

α, solving the following problem will deliver the “best” α̂ and the best output pair(
x̂1(α̂), x̂2(α̂)

)

α̂ = arg max
α∈(0,1)

{αφ(x̂1(α), x̂2(α)) + (1− α)φ(x̂1(α), x̂2(α))} . (6)

In this paper we assume that the regulator is interested not (only) in α̂ and the

corresponding outputs and payoffs but (also) in the full array of Pareto-efficient

solutions
(
x̂1(α), x̂2(α)

)
and the corresponding payoffs φi(x̂1(α), x̂2(α)), i = 1, 2.

This helps answer question (a.) from Section 2.1.
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3.2 Coupled constraints equilibria

Rosen Rosen (1965) introduced coupled constraints equilibrium (CCE), also known

as generalised Nash equilibrium (see e.g., Harker (1991) or Pang and Fukushima

(2005)) for games with constraints in the combined strategy space of all agents. In

these games, the regulator may seek a solution that can be adopted by competitive

players and such that guarantees fulfilment of the constraints, which depend on

the actions undertaken by all agents. For the history of this solution concept and

examples of use see Rosen (1965), Haurie (1994), Haurie and Krawczyk (1997),

Krawczyk (2007) and Drouet et al. (2008); also Pang and Fukushima (2005).

We will exploit the CCE politico-economic appeal. Once the regulator estab-

lishes a desired CCE (explained below), the equilibrium implementation is straight-

forward. The equilibrium Karush-Kuhn-Tucker multipliers associated with the joint

constraints need be used as penalty tax rates for the constraints’ violation and the

players have to allow for these penalties in their payoffs. The players will then

“play” a decoupled game whose solution coincides with the desired equilibrium.

Knowledge that a CCE exists and is unique is crucial for the above enticement

mechanism. It suffices to say that without the equilibrium uniqueness, the tax

effectiveness could not be established. However, in general, there is a plethora of

equilibria when joint actions of the players are restricted.

Rosen Rosen (1965) allows for a discriminatory treatment of players through

the introduction of weights ri > 0, i = 1, 2 , with which the regulator can appraise

each agent’s payoff (e.g., from a view point of the community). On the other hand,

the weights help control which equilibrium is established. This is so because, given

sufficient concavity of the payoffs, an equilibrium that corresponds to a particular

r = [r1, r2] is unique. (We notice that one of them may be the Pareto-efficient

solution
(
x̂1(α), x̂2(α)

)
.)

The main role of the weighs in controlling the agents’ behaviour is that they

can modify the Karush-Kuhn-Tucker multipliers and adjust the tax rates among

players to entice them to choose actions that lead to a desired equilibrium outcome.

Below we will review the mathematics of CCE and its implementation, including

the uniqueness conditions; for details see Rosen (1965), Haurie (1994) or Krawczyk

(2007).

7



4 Existence and uniqueness of coupled constraints

equilibrium

We will adopt the literature results to the two-person game (1) with one joint

constraint (2). For the proofs see Rosen (1965).

4.1 Introductory remarks

The solution to game (1) with the joint constraint (2) can be written as

x∗ = equilyi|x∗−i∈X {φ1(x), φ2(x)} , (7)

which means that φi(x
∗), i = 1, 2 satisfy

φi(x
∗) = max

yi|x∗−i∈X
φi(yi|x∗−i), i = 1, 2 (8)

where yi|x−i ≡ (yi, x−i) denotes a collection of actions when the i-th agent “tries”

yi while the other agent is playing x−i, i = 1, 2.

At x∗ no player can improve their own payoff by a unilateral change in his

(or her) strategy, which keeps the combined vector in X ⊂ IR2. In general, the

strategy set X is assumed a convex, closed and bounded subset of IR2 and X ≡
{(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ M}, as in (3).

Game (7) shall be called a coupled constraints game (à la Rosen, see Rosen

(1965)). The coupling refers to the fact that one player’s action affects what the

other players’ actions can be. In the special case where X = X1 × X2 i.e., each

player’s action is individually constrained, the game is said to have uncoupled con-

straints.

If each payoff function φi is multiplied by weight ri > 0, then

x∗(r) = equilyi|x∗−i∈X {r1φ1(x), r2φ2(x)} , (9)

where r = [r1, r2] ∈ IR2
+. Our aim is to examine when x∗(r) can match x̂(α) for a

given α ∈ (0, 1).

4.2 Definition

We know from Rosen (1965)4 that an equilibrium exists and is unique if the game

is diagonally strictly concave (DSC).

4Also see Krawczyk et al. (1998) or Krawczyk (2007) for some applications.
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The economic interpretation of DSC is quite simple. A game that is DSC, is one

in which each player has more control over his own payoff than the other players

have over it. This is a desired, and rather common, feature of many economic

models.

Mathematically, let us call f(x, r) ≡ r1φ1(x)+ r2φ2(x) the joint payoff function.

A (“smooth”) game is DSC if the so-called pseudo-Hessian of the joint payoff

function (i.e. Jacobian of pseudo-gradient of f(x, r), see e.g., Rosen (1965) or

Krawczyk et al. (1998)) for the given game is negative definite.

Theorem 4.1. In a game with uncoupled constraints, if the joint payoff function

f(x, r) is DSC for some r > 0, then there exists a unique Nash equilibrium.

When the constraints are coupled, there are no such guarantees, and a special

type of equilibrium must be defined.

For that purpose, assume that the constraint set X is defined through (2). (In

general, X needs to be defined by a collection of concave functions, see Rosen

(1965) or Krawczyk (2007) and such that the constraint qualification conditions

are satisfied.)

Denote the constraint shadow price vector for player i by λ∗i ≥ 0. Then, x∗ ∈ X,

is a coupled constraint equilibrium point if and only if it satisfies the following

Karush-Kuhn-Tucker conditions:

h(x∗) ≥ 0 (10)

λ∗i h(x∗) = 0 (11)

φi(x
∗) ≥ φi(yi|x∗) + λ∗i h(yi|x∗) (12)

for all i = 1, . . . n and where yi|x was defined in (7).

The above conditions establish a solution to (7) under the adopted differentia-

bility and qualification assumptions. We notice that conditions (10)-(12) define x∗

as a vector of non improvable strategies if x∗ ∈ X, hence Nash.

In general, the multipliers5 λ1 and λ2 will not be related to each other. However,

we shall consider a special kind of equilibrium, which can reflect the different levels

of agent responsibility for the constraint satisfaction (expressed by the vector r)

and is unique.

Definition 4.1. An equilibrium point x∗ is a Rosen (Nash normalised 6) equilibrium

point if, for some vectors r > 0 and λ∗ ≥ 0, conditions (10)-(12) determine x∗ and

5They will be vectors if there were more coupled constraints to satisfy.
6“Normalisation” means in this context that both players face the same constraint shadow

price λ if r = 1. For r > 1, the first player’s constraint shadow price is
λ

r
.
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are satisfied for

λ∗i =
λ∗

ri

(13)

for each i. 7

For shortness we have dropped coupled constraints from the equilibrium defini-

tion.

Now, we can better understand the role of the weights ri. If an agent’s weight ri

(see (9)) is greater than those of his (or her) competitors, then his (or her) Lagrange

multipliers are lessened, relative to the competitors’. This means that the marginal

cost of the constraint’s violation is lower for this agent than for their competitor.

Paraphrasing, the vector r tells us of how the regulator has distributed the burden

of the constraints’ satisfaction among the agents.

The wording of the following theorem crucial for coupled-constraint games is a

bit stronger than in Rosen (1965), see Krawczyk (2002).

Theorem 4.2. Let the weighting r̄ ∈ Q be given where Q is a convex subset of IR2
+.

Let f(x, r̄) be diagonally strictly concave on the convex set X and such that the

Karush-Kuhn-Tucker multipliers exist. Then, for the weighting r̄, there is a unique

Rosen (Nash normalised) equilibrium point.

In other words, if a game is DSC for a feasible distribution of the constraint’s

satisfaction responsibilities, then the game possesses a unique coupled constraint

equilibrium for each such distribution.

4.3 Enforcement through taxation

Here we establish a solution to subproblem (b.) from Section 2.1. In particular, we

explain how specific output levels, including those desired by the regulator, can be

made optimal for the agents.

In Section 3.2 we mentioned a decoupled game that the agents play after the

regulator has modified their payoffs. The decoupling means that the players de-

cide upon their actions without the explicit knowledge of the common constraint.

Instead, they know the penalty functions for the common constraint violation and

incorporate them in their payoff functions.

The penalty functions Ti(λ
∗, ri, x), i = 1, 2 contain the tax rate determined by

the Lagrange multiplier obtained as CCE of the constrained game and the constraint

7We could say that λ∗ are the “objective” shadow prices while λ∗i are the “subjective” ones.
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violation term

Ti(λ
∗, ri, x) =

λ∗

ri

max(0,−h(x)) (14)

where λ∗ is the Lagrange multiplier associated with the constraint and ri is player

i’s weight8 that defines their responsibility for the constraint’s satisfaction.

Hence, if the weight for player i is, for example ri > 1 and the weight for the

other player is 1, then the responsibility of player i for the constraints’ satisfaction

is lessened.

The players’ payoff functions, so modified, will be

φ
i
(x) = φi(x)− Ti(λ

∗, ri, x) . (16)

Notice that under this taxation scheme the penalties remain “nominal” (i.e., zero)

if all constraints are satisfied.

The Nash equilibrium of the new unconstrained game with payoff functions φ
i

is implicitly defined by the equation

φi(x
∗∗) = max

yi∈IR
+

φ
i
(yi|x∗∗) ∀ i, (17)

(compare with equation (8)).

We can easily see that the equilibrium conditions for x∗∗ are equivalent to (10)-

(12) and conclude that x∗∗ = x∗.(See Krawczyk and Uryasev (2000), Krawczyk

(2005) or Krawczyk (2007) for a discussion and examples).

5 A relationship between Pareto-efficient solu-

tions and Rosen’s equilibria

5.1 Pareto efficiency first order conditions

Consider the regulator problem (5) of dealing with two economic agents whose

outputs need to be controlled for social reasons. We repeat the mathematical

model for this problem, which is:

max
x∈X

{αφ1(x1, x2) + (1− α)φ2(x1, x2)} . (18)

8If the weights r were identical [1 , 1 , . . . 1] then the penalty term for the constraint is the same

for each player f

Ti(λ∗, 1, x) = λ∗max(0,−h(x)) . (15)

.
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We will use P (·, ·) or simply P to refer to the contents of the curly brackets above.

As in Section 2, φi(·, ·), i = 1, 2 are differentiable payoff functions concave in

the player’s own decision variable and X is a convex set of output combinations

that the optimal solutions need to satisfy.

We will assume that the regulator is interested in optimal solutions that saturate

the constraint h(x1, x2) = 0. (e.g., because of the good’s scarcity, or abundance of

pollution).

The Lagrangean is:

LP = αφ1(x1, x2) + (1− α)φ2(x1, x2) + µh(x1, x2). (19)

The first order conditions for a Pareto optimal solution (when h(x1, x2) = 0) are:

∂LP

∂x1

= α
∂φ1(x1, x2)

∂x1

+ (1− α)
∂φ2(x1, x2)

∂x1

+ µ
∂h(x1, x2)

∂x1

= 0,

∂LP

∂x2

= α
∂φ1(x1, x2)

∂x2

+ (1− α)
∂φ2(x1, x2)

∂x2

+ µ
∂h(x1, x2)

∂x2

= 0,





(20)

Given concavity of the payoff functions and convexity of the constraint set, the

above conditions are also sufficient for a solution x̂1(α), x̂2(α) to (20), to be a

Pareto optimal solution to (18).

5.2 Rosen’s equilibrium first order conditions

It is well known that a Pareto optimal (efficient) solution i.e., the pair x1(α), x2(α)

that solves problem (18) is not a generic Nash equilibrium. Consequently, it does

not have the self-enforcing properties that the latter solution concept enjoys.

On the other hand the regulator knows from Section 4.3 (also, see Haurie and

Krawczyk (1997), Krawczyk (2005) or Krawczyk (2005)) that it is possible to control

competitive agents, who share a common constraint, to satisfy this constraint.

This is achieved through a threat function (14), which results from a CCE. This

equilibrium does possess the features of Nash equilibrium.

Mathematically, the regulator may then seek x1(r), x2(r) that satisfy:

max
x1

r φ1(x1, x2)

max
x2

φ2(x1, x2)

h(x1, x2) = 0.





(21)
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where r ≥ 1 is a weight, which the regulator attaches to the first player’s payoff

relative9 to the second player’s payoff.

The player Lagrangeans are:

LR
1 = rφ1(x1, x2) + λh(x1, x2), LR

2 = φ2(x1, x2) + λh(x1, x2) . (22)

Following (10)-(12), (13) and when h(x1, x2) = 0, a pair x1(r), x2(r) is a nor-

malised equilibrium, called Rosen’s, of game (21) if it satisfies the following first

order conditions (KKT):

∂LR
1

∂x1

= r
∂φ1(x1, x2)

∂x1

+ λ
∂h(x1, x2)

∂x1

= 0,

∂LP

∂x2

=
∂φ2(x1, x2)

∂x2

+ λ
∂h(x1, x2)

∂x2

= 0,





(23)

If the joint payoff function is diagonally strictly concave then the pair x1(r), x2(r),

which satisfies (23), is the unique normalised (Rosen) equilibrium of game (21), see

Theorem 4.2 .

5.3 Relations between α and r

We want to find a relationship between α and r such that the solutions for the two

problems (Pareto and Rosen) are identical i.e., x∗(r) = x̂(α).

Assume that

µ = Kλ. (24)

The multipliers µ and λ need be positive so, if we find K > 0 that satisfies this

equation then the regulator will be able to use a Rosen’s equilibrium to enforce a

Pareto optimal solution.

If solutions x1(α), x2(α) and x1(r), x2(r) are to be the same, then (20) and (23)

imply:

Kr
∂φ1(x1, x2)

∂x1

= α
∂φ1(x1, x2)

∂x1

+ (1− α)
∂φ2(x1, x2)

∂x1

, (25)

K
∂φ2(x1, x2)

∂x2

= α
∂φ1(x1, x2)

∂x2

+ (1− α)
∂φ2(x1, x2)

∂x2

. (26)

9So, we have scaled r2 = 1 and set r = r1. See Appendix A for a proof that, for the case of

two players, Theorem 4.2 is true when the regulator uses just one r to apprise the first player’s

payoff relative to the second player’s, instead of using two “absolute” weights r1 and r2.
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Conditions (25) and (26) give two equations for the two unknown K and r. Solving

these equations yields

r(α) =

∂φ2

∂x2

∂φ1

∂x1

α∂φ1

∂x1
+ (1− α)∂φ2

∂x1

α∂φ1

∂x2
+ (1− α)∂φ2

∂x2

(27)

and

K(α) =
α∂φ1

∂x2
+ (1− α)∂φ2

∂x2

∂φ2

∂x2

. (28)

The derivatives in equations (27) and (28) are evaluated at x1(α), x2(α) hence,

r = r(α), K = K(α) i.e., they are functions of α.

Note that the numerator α
∂φ1

∂x1

+ (1− α)
∂φ2

∂x1

in the expression for r (27) can

be negative or zero if φ2(x1, x2) decreases in x1 (i.e., if x1 is a negative externality

in the problem) and if α is small (i.e., if the second player’s payoff is somehow

preferred).

Also, the denominator α
∂φ1

∂x2

+ (1− α)
∂φ2

∂x2

can be negative or zero if φ1(x1, x2)

decreases in x2 (i.e., if x2 is a negative externality in a problem) and if α is large

(i.e., the first player’s payoff is somehow preferred). It follows from the above that

if there are negative externalities, then r(α) can have breaks in domain and attain

negative values that preclude the existence of a Nash equilibrium, which could

implement the desired Pareto solution. We can say that:

Theorem 5.1.

(a) For α ∈ (0, 1) such that a solution to (18) exists with λ > 0 and if 0 <

r(α) < ∞ the regulator can implement a desired Pareto-efficient solution as a

Rosen (Nash normalised) equilibrium. In particular, formula (27) determines the

level of responsibility of the first player for the constraint satisfaction relative to the

level of the second player, for a specific level of α.

For the situations when there are no negative externalities and when there are

no externalities at all, we have the respective corollaries.

Corollary 5.1. If there are no negative externalities i.e., if
∂φi

∂xj

> 0 then 0 <

r(α) < ∞. Hence, for a given value of α, the corresponding Pareto-efficient solution

can be made optimal for individual agents.

Corollary 5.2. If φi(xi, xj) = φi(xi), (φi concave en xi), then

• Rosen equilibria exist for any r > 0. This is so, because the pseudo-hessian:

2

(
rφ′′1 0

0 φ′′2

)
.
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has positive determinant and trace negative hence is negative definite. So, the

game is DSC.

• For all α ∈ (0, 1) such that a solution to (18) exists with λ > 0, there exists

a bijection between α ∈ (0, 1) and r ∈ (0,∞) given by

r(α) =
α

1− α
.

This means that for this case, the set of Rosen equilibria coincides with the

set of Pareto optima with constraints.

In the next section we continue the motivating example from Section 6 of two

agents exerting negative externalities on each other. We will establish the values

of α such that a solution to (18) exists with λ > 0 and that verifies 0 < r(α) < ∞.

6 Realisation of a public good delivery

We now analyse the public good’s delivery model (1), under the delivery condition

(2).

6.1 Does status quo need be modified?

The regulator needs to establish whether the solution x to the unconstrained game,

presumably “played” at present (hence “status quo”),

x = equil
yi|x−i∈IR

2 {φ1(x), φ2(x)} , (29)

generates scarcity

x1 + x2 − 1 ≤ 0 . (30)

If there is abundance of the joint good x1 +x2−1 > 0, then there is “no problem”10

for the regulator to solve because the constraint is satisfied in a Nash equilibrium.

Condition (30) implies that, in a constrained equilibrium, λ > 0 if such an equilib-

rium exists.

As we said in Section 2.1, a solution to the unconstrained game (1) is x1 =

0, x2 = 0. This clearly satisfies (30) hence, the regulator’s problem of how to

assure satisfaction of the constraint in an equilibrium is real.

10See footnote 3. In this paper, we assume that the regulator’s main concern is the constraint

satisfaction.
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6.2 Which Pareto-efficiency programmes can be enforced

6.2.1 The necessary conditions

The regulator has to verify that the Pareto-efficiency programme (18) when X =

IR2, also generates a “scarce” solution i.e., that x̂1(α) + x̂2(α) − 1 ≤ 0. This

will imply that once the constraint (2) is enforced, a constrained Pareto-efficient

solution will be saturated hence µ > 0 in (19). Consequently, K > 0 in (24).

The following Karush-Kuhn-Tucker conditions formulated for programme (18)

with h(x) = x1 +x2−1 ≥ 0 and xi ≥ 0, i = 1, 2 constitute the necessary conditions

for a constrained Pareto-efficient outcome:

−αx1 + (2α− 1)x2 + µ ≤ 0 (31)

x1(−αx1 + (2α− 1)x2 + µ) = 0 (32)

αx1 − (1− α)(2x2 + x1) + µ ≤ 0 (33)

x2(αx1 − (1− α)(2x2 + x1) + µ) = 0 (34)

x1 + x2 − 1 ≥ 0 (35)

µ(x1 + x2 − 1) = 0 (36)

Their solution results in several threads.

First, µ > 0.

a. x1 > 0, x2 > 0

From (32), (34), (36)

µ(α) =
6 α− 6 α2 − 1

3α
> 0 for α ∈

(
1

2
−
√

3

6
,

1

2
+

√
3

6

)
, (37)

or, approximately, for α ∈ (0.211, 0.789).

We have plotted in Figure 1 the values of the constraint’s “shadow price”

µ implied by the Pareto weight α, as a function of the weight. The

dash-dotted (blue) line shows the values of µ, for which a constrained

“interior” solution exists. Here, we mean interior if (x1, x2) belong to

the inside of the segment {(x1, x2) : x2 = −x1 + 1, x1 ∈ (0, 1)}. We no-

tice that the shadow price for the interior solutions diminishes when the

regulator’s preferences become more definite for one of the agents (i.e.,

α is away from the centre).
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Figure 1: The shadow price in the constrained Pareto-efficiency problem as a func-

tion of α

.

The output values that maximise the Pareto program (18), under the

delivery condition (2), are plotted in Figure 2 top panel. Their analytical

expressions are:

x̂1(α) =
1

3α
, x̂2(α) =

3α− 1

3α
. (38)

We observe that only for α >
1

3
both outputs are positive, see the blue

line segments in this figure. The corresponding payoffs for each player

are shown in the middle panel of Figure 2. The regulator’s goal value,

which is a weighted sum of the agents’ payoffs is shown in the bottom

panel.

b. x1 = 0, x2 > 0

From (36) x2 = 1 and from (34)

(1− α)(−2 · 1) + µ = 0 (39)

thus µ = 2(1 − α). This combination of x1, x2, µ does not satisfy (31),

hence there is no “corner” solution of the regulator’s programme at x1 =

0, x2 = 1.
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Figure 2: Pareto-efficient solutions as a function of α.

c. x2 = 0, x1 > 0

From (36) x1 = 1 and from (32)

−α + µ = 0 (40)

hence µ = α > 0 for any α ∈ (0, 1), see the solid (red) line in Figure 1.

The KKT conditions with µ > 0 are satisfied for α <
1

3
and we conclude

that the corner solution x1 = 1, x2 = 0 exists for 0 < µ = α <
1

3
.

We notice non-uniqueness of µ(α) for α ∈ (0.211, 0.333) in Figure 1.

However, this non-uniqueness can be resolved if the regulator requires

non-negative, hence realisable, outputs for either agent (see (38)). If

18



so, the solution is unique: for α ∈ (0, 0.333) , x1 = 1, x2 = 0; for α ∈
(0.333, 0.789) the solution is given by (37). There though appears that

there is no solution for α ∈ (0.789, 1).

The resulting payoffs to the players and regulator’s aim values are dis-

played in Figure 2 in middle and bottom panels, respectively.

• For µ = 0. We consider this case to examine the solution existence, or its

lack, in the interior of the set {(x1, x2) : x2 > −x1 + 1, x1 ≥ 0, x2 ≥ 0}.

a. The cases of x1 = 0, x2 = 1 and x1 = 1, x2 = 0 coincide with items (b.)

and (c.) above, for α = 1 and α = 0, respectively.

b. Assuming x1 > 0, x2 > 0 and using (32), (34) yields

−αx1 + (2α− 1)x2 = 0 (41)

(2α− 1)x1 − 2(1− α)x2 = 0 . (42)

This system has the zero solution that contradicts (35).

However, if αs =
1

2
+

√
3

6
then

∆ = 6α− 6α2 − 1 = 0 (43)

and we could have a singular solution

xs
1 =

2
√

3

3 +
√

3
xs

2 (44)

From (35),
2
√

3

3 +
√

3
xs

2 + xs
2 =

√
3 + 3√
3 + 1

xs
2 ≥ 1 (45)

so xs
2 ≥

√
3 + 1√
3 + 3

.

If we use αs in programme (18) and allow for x1 =
2
√

3

3 +
√

3
x2 then we

obtain P = 0.

However, we do not expect the regulator to have their preferences be-

tween firms set at exactly α = αs and will not delve into the singular

solution.
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6.2.2 Sufficient conditions

To establish, for which α, x1 and x2 the Pareto programme can be maximised we

need to analyse the shape of P (·, ·) as a function of α. This can be done easily by

examining Hessian and gradient of P (·, ·), both as functions of α. The formulae

are available from the authors. Here, for transparency of the analysis we present

3D snapshots of P (·, ·), for three selected values of α: 0.5, 0.789 and 0.9, see Figure

3. The feasible region X = {x : x1 + x2 ≥ 1} is on the right hand side of the

coordinate system.

Figure 3: The shape of P (·, ·) for selected values of α (0.5, 0.789 and 0.9).

We notice that P (·, ·) is concave for all values of α. However, the location of

the maximum changes. The left panel depicts the Pareto programme for α = 0.5 <

0.789 and shows that it has a maximum in the “scarcity” region. So, the locus

of the constrained maxima coincides with the constraint. (The maximum will be

x1 = 1, x2 = 0 for α ≤ 0.333 but we do not show this figure for brevity.)

The right panel of Figure 3 depicts the Pareto programme for α = 0.9 > 0.789.

We see that the function is unbounded in the feasibility region for this value of

α. We can also see in the middle panel that the programme is “symmetrical”

around the region’s frontier and infer that there is no finite maximum of P (·, ·) for

α > 0.789. Hence there is no unbounded solution to the Pareto programme for this

interval of α. Consequently, the regulator’s choices of α ∈ (0.789, 1) will not be
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implementable as coupled constraints equilibria.

We conclude that the Pareto optimal solutions for α ∈ (0., 0.789) exist and are

unique. However, the solutions cannot be obtained for “large” values of α, which

would have favoured the income generated by the first agent (the transportation

firm).

6.3 Which coupled constraints equilibria are available

Subsequently, existence and uniqueness of a coupled constraints’ equilibrium for

r > 0 needs be established. For that purpose we compute pseudo-Hessian for the

game at hand (see Section 4.2):

H =


 −r −1

2
+ 1

2
r

−1
2

+ 1
2
r −2


 (46)

that is negative definite for

5

2
r − 1

4
− 1

4
r2 = −r2 + 10r − 1 > 0 (47)

i.e., 5− 2
√

6 < r < 5 + 2
√

6 or, approximately, 0.101 < r < 9.899 . (48)

So, we know there exists an interval for r, for which the CCE exists and is unique.

We now compute the mapping α Ã r from (27)

r(α) =
1− 6 α

−2 + 3 α
(49)

and plot it in Figure 4.

Map (49) enables us to compute the largest ᾱ that corresponds to the upper

end of interval (48). This is ᾱ ≈ 0.583, the largest value of α, for which a unique

equilibrium is guaranteed11. At the lower end of this interval is α ≈ 0.191. We

notice that α > 0 i.e., there are α < α, for which a Pareto solution exists. On the

other hand, ᾱ < 0.789 i.e., ᾱ is below the largest α, for which the Pareto programme

possesses a solution.

We observe that the interval (α, ᾱ) is included in

(
1

6
,

2

3

)
, for which r(α) > 0.

The intersection12 is

α ∈ (α, ᾱ) ≈ (0.191, 0.583) (50)

11We notice that H > 0 is a sufficient condition for uniqueness and cannot exclude that unique-

ness may be achieved for r > 0 from outside the above interval.

12Notice that α =
2
3

is special in that x1

(
2
3

)
= x2

(
2
3

)
=

1
2
; furthermore, for α >

2
3

the

contribution of the second firm toward the constraint satisfaction is greater than of the first firm.

However, α =
2
3

> ᾱ that is outside the interval, for which unique equilibria are guaranteed.
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that defines the interval of α for which r > 0 and such that the uniqueness of

equilibria is guaranteed.

We can see that as the regulator attaches more weight to the first firm’s payoff

i.e., if α grows from α , to ᾱ (i.e., from 0.191 to 0.583), the preferential treatment

as measured by r, which diminishes marginal cost of the constraint’s violation (see

(14)), becomes increasingly stronger. This appears logical: the more income from

firm 1 the regulator “wants”, the smaller the marginal cost this firm should face.

This enables us to see the dual function of weight r. On a one hand it stimulates

the first firm’s production by diminishing its marginal cost; on the other hand, it

motivates firm 2 to produce because of the fear of punishment.

In summary, if α ∈ (0.191, 0.583), then 0.101 < r < 9.899 and (49) defines a

relationship between a Pareto solution and CCE.

Recall, a value of α “close” to 0 signifies that the second firm’s payoff is of more

value to the regulator than the first firm’s; an α “close” to 1 means more importance

attached to first firm’s payoff. It becomes clear that because of the constraint (2),

the regulator cannot prioritise the second firms’ payoffs in some “extreme” fashion.

However, this does not preclude existence of the “corner” solution x1 = 1, x2 = 0,

that exists for any α ∈ (0.191 0.333).
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We have also computed α̂ =

√
6

6
≈ 0.4082 ∈ (0.191, ᾱ) that minimises the

regulator’s programme (6), which is a convex function of α, see Figure 2 third

panel. This suggests that the regulator might seek to implement an equilibrium

that corresponds to ᾱ.

7 Concluding remarks

We have proved Theorem 5.1, which formulates the necessary conditions, under

which a constrained Pareto-efficient solution can be supported by a coupled con-

straints equilibrium à la Rosen. Corollaries 5.1 and 5.2 provide the conditions for

the situations with no negative externalities and “nil” externalities, respectively.

The above constitute the mathematical conditions for a novel approach to the

solution of a politico-economic coordination problem. We have used a game theo-

retic framework that has allowed us to formulate this problem naturally as a coupled

constraints equilibrium. We have illustrated how to use Theorem 5.1 to solve the

problem.

We have concluded that if agents interact through positive and negative exter-

nalities, then the regulator’s choices for his (or her) preferred solutions may exclude

some extreme values of the marginal rate of substitution between the firms’ payoffs.

Furthermore, we have obtained some quantitative results relevant to the con-

sidered example. The array of unique equilibria that can support the regulator’s

choices is non symmetrical with respect to α = 0.5 and exclude solutions, in which

the “public” firm’s payoff would have contributed more than 58% toward the reg-

ulator’s programme. On the other hand, heavy preferences of the “private” firm’s

payoff (i.e., small α) are also excluded. This suggests that the Pareto programmes

supported by coupled constraints equilibria are politically equilibrated and hence

acceptable to the stockholders.

Acknowledgment

The authors extend their thanks to Paul Calcott, Vlado Petkov, Jack Robles and

Charles Figuières for comments on this paper. All errors are ours.

23



Appendix

A Rosen’s relative weights in IR2
+

Consider a game with payoffs Π1(e), Π2(e) that satisfy know that this game has a

unique equilibrium for a choice of r1, r2. The equilibrium fist order conditions are

∂Π1(e)

∂e1

= −λ(r1, r2)

r1

∂Π2(e)

∂e2

= −λ(r1, r2)

r2





(51)

where λ ≥ 0 is the shadow price of the common constraint of type (2).

Let us choose r1 = r, r ∈ (0,∞) and r2 = 1. The first order conditions (51)

become now
∂Π1(e)

∂e1

= −λ′(r, 1)

r

∂Π2(e)

∂e2

= −λ′(r, 1)





(52)

where λ′ > 0 is the Lagrange multiplier that corresponds to this choice or r.

We notice that conditions (51) are equivalent to (52) if

λ(r1, r2)

r1

=
λ′(r, 1)

r

λ(r1, r2)

r2

= λ′(r, 1)





. (53)

The above is true if and only if

r ≡ r1

r2

. (54)
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