
« Wealthy people do better? 

Experimental Evidence on Endogenous Time 

Preference Heterogeneity and the Effect of 

Wealth in Renewable Common-Pool Resources 

Exploitation  » 

    
    Gaston A. GIORDANA 

 
DR n°2008-10 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6427778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Wealthy people do better? 

Experimental Evidence on Endogenous Time Preference Heterogeneity and 

the Effect of Wealth in Renewable Common-Pool Resources Exploitation 
 

 
July 2008 

 
 

Gastón A. Giordana♣ 
 

 

Abstract 

Aiming to better characterize the exploitation behavior of renewable common-pool resources, 
in this paper we explore alternative hypothesis about the valuation of the future by the agents 
and the possibility of heterogeneous behavior on this regard. To do this, we further analyze 
the experimental data of an N-person discrete-time deterministic dynamic game of T periods 
fixed duration. Firstly, we consider the homogeneous case where withdrawers’ rate of time 
preference is symmetrically determined. Then, we calibrate the best fitting model assuming 
alternatively, exogenous and endogenous time preference. The exogenous time preference 
case is the traditional assumption in modeling intertemporal choices, i.e. every period, players 
discount future values at the same level. In the endogenous case, we statistically model the 
reduced form of the discount factor as a transformation of a second order polynomial on 
wealth. Secondly, we further explore the endogenous case looking forward to assess the 
extent of heterogeneity in the rate of time preference formation process. Dynamic problems 
resolution gives scope for the implementation of ‘rules of thumb’ as a consequence of its’ 
intrinsic complexity. Then, in order to identify the different decisions rules and to classify 
appropriators within them, we implement a Bayesian classification algorithm based on Houser 
et al (2004) work. The application of this econometric procedure has allowed us to identify 
two types of appropriators: “Quasi Myopic” (QM) appropriators and “Disrupted Farsighted” 
(DF) appropriators. The algorithm has classified near 85% of the appropriators in our sample 
as QM, and 5% as DF; the lasting agents could not be identified. We used the fitted empirical 
model to perform simulations. Some results are: (i) initial wealth increase the average 
efficiency of exploitation; (ii) when initial wealth is high (low), a more equally (unequally) 
distribution of wealth between types results in higher efficiency in the exploitation of the 
resource.   
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1. Introduction 

 

Natural resources play a decisive role in the development of many economic regions. Many 

natural resources (e.g. fisheries, groundwater bodies, communal forests and grazing grounds) 

share the characteristics of common property goods; the market institution is indeed 

inefficient. Recent literature on the commons has mainly focused on the determination of 

factors that favor users’ communities to achieve, without external intervention, successful 

collective action in order to efficiently use the common resource (Ostrom et al, 1994; Baland 

and Platteau, 1996). While the relationship between the population size and the ability to 

solve the commons dilemma is well understood, the consequences of wealth inequalities, as 

well as inequalities on other economic variables, just begin to be clearly formalized and 

empirically tested (cf. Olson, 1965; Baland and Platteau, 1997; Cardenas, 2003; Bardhan et al, 

2007).  

 

The theoretical and experimental work in the commons literature has mainly focalized in the 

rent dissipation problem that takes place within an exploitation period. However, the negative 

externalities resulting from the exploitation of fisheries, forests and groundwater bodies are 

principally of dynamic nature. It is important to explicitly consider in the analysis the 

dynamic aspects of natural resource exploitation for many reasons. First, the exploitation of 

the resource stock may not produce significant negative externalities within the exploitation 

period1. Rather, the overexploitation negative effects may be noticeable in the near or far 

future. For instance, the reduction of the water-table of a groundwater body may not have a 

huge economic impact in quite common contexts (Gisser and Sanchez, 1980; Koundouri, 

2004).  But, depending on characteristics of the aquifer, the cumulated reduction may lower 

the water-table enough to render the aquifer vulnerable to seawater intrusion in the case of 

coastal aquifers or, in other aquifer types, to be polluted by surface water or fossil 

groundwater. Secondly, when extraction activities do not result in current negative 

externalities, the willingness to engage in collective action may be sensible reduced as it 

depends on the rate of time preference of resource users (Ostrom, 1990). The rate of time 

preference refers to an index of the marginal rate of substitution between current and future 

consumption and payoffs (Fischer, 1930)2. While a resource user may be considered as a 

                                                 
1 The duration in time of an exploitation period may differ depending on the natural resources. 
2 In the following we will interchangeably use the words “rate of time preference”, “patience” and “discount 
factor”. We will follow the convention of associating a “discount factor” with the inverse of the marginal rate of 
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cooperator in a static framework, she may result to be a free-rider when the externalities are 

dynamic if she has a low time preference. A user that shows a weak time preference will 

behave myopically as his discount factor is likely to be close to zero, ignoring the future 

consequences of his current decisions and free-riding on others conservation efforts. On the 

other hand, it can be expected that a user with a strong time preference engages himself more 

easily in collective action activities as she derives current utility from resource conservation. 

Thus, the heterogeneity on the rate of time preference within a population of resource users 

will affect the cooperative behavior as it leads to differential impatience among the users in 

making short-run sacrifices for resource conservation (Bardhan and Dayton, 2002). Moreover, 

time preference heterogeneity among the commons users may lead to the worst of the worlds 

(i.e. everybody behaving myopically) if the farsighted users behave as “conditional 

cooperators” conditioning their efforts towards conservation to the others’ efforts (Gächter et 

al, 2004).  

 

Heterogeneity in the rate of time preference within a population of resource users is more 

likely if the later is endogenously determined. Since the discounted utility model of 

Samuelson (1937), the rate of time preferences are taken as exogenously given with little 

discussion of what determines their level. Yet, in the nineteen and early twenty century, 

intertemporal choices were interpreted as the joint product of many conflicting psychological 

motives (Frederick et al, 2002). Becker and Mulligan (1997) built up on these initial 

perceptions a model of endogenous time preference. Their point of departure consists in a 

particular definition of rationality that takes into account many kinds of human frailties. In 

their view, even rational people may excessively discount future utilities (i.e. the endowed 

discount level), but they assume that it is possible to partially or fully offset this “inherited 

weakness” by spending effort and goods to reduce the degree of over-discounting. In this 

framework, the heterogeneity in the rate of time preference may still be consequence of 

exogenous factors (e.g. intelligence, culture, religion) as the endowed discount level is 

exogenously fixed. But, the marginal cost and benefit of the effort to reduce the degree of 

over-discounting, as assumed by Becker and Mulligan (1997), is a function of individual 

economic variables (e.g wealth) that may be unequally distributed, resulting then in 

differences on the time preference between people.   

 

                                                                                                                                                         
substitution and a “rate of time preference” with a natural logarithm of the marginal rate of substitution. Thus, a 
patient person has a high discount factor and a low rate of time preference. 



 4

Aiming to better characterize the exploitation behavior of renewable common-pool resources, 

in this paper we explore alternative hypothesis about the valuation of the future by the agents 

and the possibility of heterogeneous behavior on this regard. To do this, we further analyze 

the experimental data of the unregulated treatment of Giordana and Willinger (2007). They 

implemented an experiment test of N-person discrete-time deterministic dynamic game of T 

periods fixed duration to assess the efficiency of second best incentive schemes in coping 

with stock externalities. Firstly, we consider the homogeneous case where withdrawers’ rate 

of time preference is symmetrically determined. Then, we calibrate the best fitting model 

assuming alternatively, exogenous and endogenous time preference. The exogenous time 

preference case is the traditional assumption in modeling intertemporal choices, i.e. every 

period, players discount future values at the same level3. Thus, this assumption results in 

temporally consistent decisions. In the endogenous case, we follow Becker and Mulligan 

(1997) supposing that the rate of time preference that results in a particular value of the 

discount factor is not exogenously given by “a play of nature” at the beginning of the game. 

We think the process of time preference formation as an “unconscious” construction 

compounding various unpredictable forces (e.g. psychological, emotional, economics) along 

the lifetime of the agent. But, we do not explicitly model the decision of investment in over-

discounting reducing effort. For simplicity seek, we rather statistically model the reduced 

form of the discount factor as a transformation of a second order polynomial on wealth. 

 

One of our results points out that the endogenous rate of time preference assumption does as 

well as the exogenous one. Then, in a second part of this paper, we further explore the 

endogenous case looking forward to assess the extent of heterogeneity in the rate of time 

preference formation process. In such a complex decisional situation the information 

requirements are quite strong. So, it is likely that agents, when making a decision, use 

decision rules (i.e. rules of thumb) constructed on the basis of available information (Conlisk, 

1996). As noted by Camerer (2003, p. 42), an optimal use of experimental data, resulting in a 

deeper description of the underlying behavior, requires the employ of adapted econometric 

techniques. Consequently, we adopt an exploratory approach: we adapt and apply to our 

experimental data the Bayesian classification algorithm developed by Houser et al (2004) 

(HKM algorithm). This statistical procedure allows us to make inferences about the number 

and the nature of the “decision rules” present in a population of subjects. The underlying idea 

                                                 
3 All along the paper we will consider as synonymous the “rate of time preference” and the “discount factor”.  
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is that, in complex environments, the rational choice is just one of the possible decision rules 

that can exist. The decision rules are approximated with flexible parametric functions 

(polynomials) on a set of relevant state variables. In our particular case we have specified the 

decision rules as functions of the unique observable state variables of the game: the stock of 

the resource and the individual accumulated wealth. 

 

Our results support the possibility that discount factors result from an endogenous rate of time 

preference formation process. We found that in the homogenous population case, the 

estimated model with endogenous time preference accommodates the data as well as the 

model with exogenous one. Moreover, our results support some heterogeneity in the valuation 

of the future. The application of the HKM algorithm to the experimental data allowed us to 

identify two types of withdrawers with different rates of time preference. As the model 

implemented in the laboratory does not consider financial markets, neither the initial 

endowment nor the accumulation of wealth during the experiment should have an effect on 

behavior. Although, the accumulated wealth came-out as a pertinent state variable in 

explaining the extractions of the different types of withdrawers. Moreover, the effect of the 

accumulated wealth adjusts to the main predictions of the Becker and Mulligan (1997) model 

on endogenous time preferences, as well as some important implications of general models of 

CPR exploitation under wealth inequality (Bardhan et al, 2007; Baland and Platteau, 1996, 

1997). 

    

The paper is organized as follows. In section 2, we describe the theoretical model of a 

renewable Common-pool Resource exploitation under exogenous and endogenous time 

preference. Also, the experimental protocol of Giordana and Willinger (2007) is briefly 

depicted and the results of the econometrics treatments for the homogenous population case 

are exposed. In section 3 we describe the HKM classification algorithm and the way we 

specified it in order to adapt it to our data. In section 4, we expose the results of the 

application of HKM algorithm, as well as those that follow from the simulations of the 

resulting empirical model. Finally, section 6 we conclude and discuss some of the results. 
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2. An experiment on the exploitation of a renewable Common-pool resource 

 

In this section we will briefly present the theoretical model and the experimental protocol 

implemented to test it which corresponds to the laissez-faire situation of Giordana and 

Willinger (2007) model. In order to solve the game, we will consider two alternative 

assumptions about the discount factor. First, the rate of time preference is assumed to be 

exogenously fixed. Secondly, following Becker and Mulligan (1997), we assumed that the 

rate of time preference is endogenously determined as a function of wealth. In both cases the 

rate of time preference is supposed homogenous among the whole population of withdrawers. 

Finally, we use experimental data of Giordana and Willinger (2007) to fit both models 

looking for a better description of the observed behavior in the laboratory. 

 

 

2.1 A simple model of renewable common-pool resource exploitation 

 

Let us consider 5 firms that extract units from a stock of a common resource. In each period t 

= 1,…,10, firm i extracts t
iy  units. The evolution of the resource stock tS  is described by: 

(1)   rySS
i

t
i

tt +−= ∑
=

+
5

1

1 , 

where r (= 30) is a constant natural recharge known by all agents, and the stock in the initial 

period is 5001 =S . Extracted units generate a profit equal to: 

 (2)   ( ) ( ) ( )tt
i

t
i

t
i

tt
i

t
i SyyySyw ⋅−⋅−⋅−⋅= 01.06.709.03.5, 2 ,   i = 1,…,5.  

 

As the profit function is the same for all agents we drop the subscript i. Past profits 

accumulate to constitute the wealth of each withdrawer i given by ( )∑
=

+=
t

s

ss
i

s
i

t
i SywWW

1

0 , , 

where 0
iW  is the ith withdrawer wealth at the beginning of period 1. 

 

As can be observed from equation (2), there is not within period externality: the t period profit 

of agent i is not affected by the current decisions of the other agents (j ≠ i). The externality 

affecting firms in each period is dynamic because it is related to the evolution of the resource 

stock: current withdrawals reduce future stocks diminishing the future profits of every agent. 
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Every period each agent maximizes the sum of the discounted future profits: 

(3)   ( ) ( ) ( )ss
i

T

ts

tsss
i

tss
i

t SyVSywSyV ,,, *

1
∑

+=

−+= ρ , 

 where t is the current period and ρ the discount factor and ( )ss
i Sy *  is the optimal feedback 

resulting from the solution of the subsequent subgames.  

 

In the following we discuss different assumptions on the discount factor ρ to solve the 

dynamic game resulting from equation (1), (2) and (3). First, we consider a situation where 

rational agents’ time preferences are exogenously given, secondly, the endogenous case is 

analyzed. 

 

As a point of departure, let us model the reduced form of the discount factor ti,ρ  of each agent 

i is a function ( )t
iΛφ  on a set t

iΛ  of economic variables. As Becker and Mulligan (1997) 

pointed out, some economic variables may affect the capacity and/or the cost, of each agent to 

perform effort to overcome their intrinsic myopia. For instance, let us consider that the unique 

element of t
iΛ , is the wealth accumulated up to period t, t

iW , of agent i. The function ( )⋅φ  can 

be any that ensures that [ ]1,0, ∈tiρ . Then, the discount factor is represented by: 

(4)   ( )( )2
21,

t
i

t
iti WW ⋅+⋅+= ββαφρ . 

 

 

(i) Exogenous rate of time preference 

 

In this subsection it is assumed that every individual in the population is exogenously 

endowed with the same rate of time preference. Then, 021 == ββ , [ ]1,0∈α  and the function 

( )⋅φ  is the identity; so, titi ,  , ∀=αρ . 

 

Two behavioral assumptions are considered to solve the dynamic game: selfish rational agents 

can be myopic or farsighted. In a farsighted population, appropriators are endowed with a 

future skewed time preference (i.e. titi ,  0, ∀>=αρ ); then, they internalize the impact of 

their current extractions on their own future profits. They define an optimal extraction plan, 

which is a best response to the other players’ optimal extraction plans. This extraction plan is 
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called feedback strategy if it is a function of the available stock tS in each period t. In the 

myopic population case, agents are endowed with a present skewed time preference. Thus, 

under the assumption of myopic behavior the optimization horizon is restricted to one period 

(i.e. titi ,  0, ∀==αρ ). Each period the myopic withdrawer calculates the profit maximizing 

extraction given the best responses of his rivals4. In each period of the game, except the last 

one, and given the resource stock available, myopic behavior leads to higher extractions 

compared to rational behavior. 

 

The theoretical predictions under these behavioral assumptions are compared to the optimum 

extraction path which corresponds to maximizing the sum of discounted profits of all firms 

over the whole temporal horizon (i.e. the central planer solution). Figure 1 shows the 

extraction trajectories calculated with a closed-loop solution (agents observe tS  at the 

beginning of each period) and assuming that 1=α  for farsighted and optimum solutions and 

0=α  for the myopic solution. The Figure 1 exposes the unconditional predictions which 

assume that all agents follow the theoretical prediction which results in a particular stock 

trajectory. But, if at least one player deviates, the stock trajectory will differ from the 

predicted one. Thus, the feedback functions outcome will be different from the unconditional 

predictions; we call conditional predictions the withdrawal trajectories calculated on the basis 

of the state variables trajectories observed in the laboratory.  

 

As evidenced in Figure 1, the difference between the myopic and the farsighted trajectories 

reflects the differential degrees of patient of each type of withdrawer. Moreover, the 

differences with the optimum extraction trajectory highlight the inefficiency of the formers. 

Taking the optimum strategy as an efficiency benchmark5, the myopic and farsighted 

strategies achieve, respectively, 74% and 52% of efficiency with respect to the benchmark. 

 

 

 

 

 

                                                 
4 The analytical expressions for the farsighted and myopic solutions are available in Giordana and Willinger 
(2008) Appendix. 
5 Efficiency is defined as the wealth accumulated until the end of period T under a particular strategy with 
respect to the optimum strategy. 
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(ii) Endogenous rate of  time preferences 

 

In this subsection it is assumed that the rate of time preference of all the agents in the 

population follows a particular specification of equation (4). We assumed that 

{ }0,, 21 −ℜ∈αββ , and the function ( )⋅φ  is any ensuring that [ ]1,0, ∈tiρ . Note that 

αββ  and , 21  are not i-indexed, then we still suppose homogeneous rate of time preference 

among withdrawers. The constant α represents the endowed rate of time preference and, the 

coefficients β measure the impact of wealth on the discount factor. 
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Figure 1: Exogenous time preference: unconditional predictions. 

 

Under equation (4), an additional assumption is needed to guarantee the unicity of the 

symmetric solution of the game resulting of equations (1) to (3) and, to avoid the critic of 

“endogenizing preferences”. The equation (4) is a statistical model of the reduced form of the 

discount factor resulting from a decision of investment in over-discounting reducing effort. 

But, the marginal cost and benefits of this effort respond to unconscious process that 

compound economical, emotional and psychological factors. Indeed, the practical assumption 

is that withdrawers “discover”, at the beginning of each period and given their level of wealth, 

their specific rate of time preference on the basis of which they will discount the flow of 

future profits. Then, when agents accumulate wealth by using the resource at each period, 

they are not aware about the potential effects on their own discount rate. 
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In Figure 2 we plot the unconditional predictions for the exogenous and endogenous rate of 

time preference cases. The myopic ( 0=ρ ), the indifferent future-present farsighted 

withdrawer ( 1=ρ ) and the optimum behavior ( 1=ρ ) are plotted against some simulated 

trajectories for the endogenous model. In order to perform the simulated trajectories of the 

endogenous model we have specified equation (4) as:   

(5)   ( )( )[ ]2
, 0001.0005.01ln t

i
t

iti WW ⋅−+⋅+−= αρ . 

 

We have simulated the endogenous model for 4 different values of α. When α = 0 the 

trajectory almost perfectly mimics the myopic one. As the absolute value of α increases, the 

withdrawals in the initials periods are lower. But, as time passes the wealth accumulation 

increases the value of the future and enhances the discounting. As a consequence, the final 

withdrawals remain quite low with respect to the exogenous rate of time preference case.   

 

Figure 2: Endogenous versus exogenous time preference: unconditional predictions. 

 

 

2.2 Experimental results 

 

The experimental protocol was designed to capture the fundamental aspects of the game 

described above. In each period, subjects decide the amount of “units” to extract from an 

account. Given the parameterization (see equation (2)), in each period a subject earns 

experimental points depending on his/her unit order and on the available units in the account 

at the beginning of the decision period. All experimental sessions were conducted at the 

University of Montpellier 1 using the z-Tree computer program (Fischbacher, 2007) with 
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subjects recruited from the pool of undergraduate students of LEEM6. More details about the 

design and implementation of the experiment are available in Giordana and Willinger (2007). 

 

 

(i) Exogenous rate of time preference 

 

With data from 6 groups of 5 subjects repeating 4 times the 10 periods dynamic game, 

Giordana and Willinger (2007) found that the myopic strategy is the best fitting one. The data 

of the Laissez-Faire treatment of Giordana and Willinger’s experiment is used in Figure 3 

which exposes the conditional predictions of the myopic, farsighted and optimum strategies, 

calculated on the basis of the observed stock trajectories. Also, the mean withdrawal 

trajectory (calculated over the 4 repetitions of the game) is plotted in Figure 3, as well as the 

limits of the bootstrap confidence intervals. As shown in Figure 3, the mean extraction path is 

close to the myopic conditional benchmark but significantly different from it (excepting the 

last three periods) as the limits of the confidence intervals do not overlap with the myopic 

conditional prediction. Also, the mean extraction path is significantly higher than the rational 

conditional benchmark excepting the last 3 periods, when the differences between all three 

strategies vanish. 

 

Figure 3: Conditional predictions versus the observed mean withdrawals trajectory. 

 

In order to accommodate the observed trajectory, we have calculated the discount factor of the 

“mean withdrawer” that result in the best fitting withdrawal trajectory. To do so we have 

calculated for each agent 100 withdrawals trajectories, conditioned to the observed stock, for 
                                                 
6 Laboratory of Experimental Economics of Montpellier. 
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values of the discount factor in the interval [0,1]. Then, we assigned to each agent the 

discount factor that minimizes the deviation between her extraction trajectory and the 

predicted one.  

 

RESULT 2.1:  In average, experimental withdrawers are farsighted with a rather high rate of 

time preference resulting in a discount factor equal to 0.7. 

 

The comparison of individual observed withdrawal trajectories with conditional predictions 

for different levels of future discounting pointed out a discount factor equal to 0.7 as the one 

that, in average, minimizes deviations. The mean square deviation (MSD)7 of the average 

extraction trajectory with respect to the conditional predictions of the myopic and the future-

present indifferent withdrawers (i.e farsighted with ρ = 1) attained, respectively, 208.44 and 

273.84. But, the conditional prediction of the farsighted withdrawers with ρ = 0.7 just attained 

197.13. As is shown in Figure 3, this extraction trajectory almost perfectly reproduces the 

mean withdrawal trajectory. 

 

 

(ii) Endogenous rate of  time preferences 

 

In this sub-section we will estimate the parameters of equation (5), αββ  and , 21 . In order to 

perform this estimation, we used the individual discount factors estimated in the previous 

section as dependant variable to fit a generalized linear model. Our finding can be 

summarized in results 2.2 and 2.3. 

 

RESULT 2.2: Wealthy withdrawers are more patient. 

 

We estimated four models imposing different restrictions on the coefficients of equation (4). 

The preferred model is the first one. As can be observed in Table 1, model 1 achieves the best 

fitting (the lower log-pseudo likelihood) and the estimated coefficients are all significantly 

                                                 
7 ( )( ) NSyyMSD

t g

ttt
g∑∑ −=

2,θ , where ( )θ,tt Sy  correspond to the mean conditional prediction for a 

population with a proportion θ of myopic agents, and for each group g 5∑
∈∀

=
gi

t
i

t
g yy . 
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different from zero at least at 9% of significance level. The estimated values of α and β1 and 

β2 indicates that the rate of time preference increases at a decreasing rate with wealth. 

 

RESULT 2.3: The estimated model with endogenous rate of time preference accommodates 

better the observed mean withdrawals trajectory than the model with exogenous myopic (ρ = 

0) rate of time preference. 

 

The generalized linear models exposed in Table 1 have been calculated using a binomial 

distribution and the complementary-log link function. On the basis of the estimated discount 

factors predicted by model 1 (see equation (4)), we have calculated the corresponding 

withdrawals trajectories and compared them to the laboratory observations. As can be seen in 

Table 1, the mean square deviations of the preferred model with endogenous time preference 

is equal to 200.91 which is lower than the 208.44 resulting from the exogenous myopic rate of 

time preference model. Though, it is not significantly different of the exogenous time 

preference model,  fitted in the previous section (c.f. Result 2.1), as the MSD is equal to 

197.13. 

 
Dependant 
Variable ρ Model 1 Model 2 

α =0 
Model 3 
β2= 0 

Model 4 
α =β2= 0 

 Coefficient (p-value) 

Constant (α) 

 
-0.397207 

(0.008) 
 

- -0.4238201 
(0.001) - 

W (β1) 

 
0.0070587 

(0.087) 
 

0.0007183 
(0.731) 

0.0002985 
(0.859) 

-0.0056137 
(0.000) 

W^2 (β2) 

 
-0.0001017 

(0.004) 
 

-0.000105 
(0.000) - - 

Log-pseudo 
Likelihood -738.878 -753.837 -748.834 -767.083 

Mean Square 
Deviation 200.76 200.98 203.1 201.01 

Table 1: Fitted models of the discount factor on wealth. 

 

Figure 4 plots the observed mean withdrawal trajectory and the conditional predictions for the 

exogenous rate of time preference model assuming myopic (ρ = 0), present-future indifferent 

farsighted (ρ = 1) withdrawers and the optimum behavior (ρ = 1), as well as the conditional 

predictions of the endogenous rate of time preference fitted model ( )( )t
iΛ= φρ . The mean 

trajectory resulting from the preferred model, i.e. model 1, is exposed with diamond markers. 
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As can be observed this trajectory gets closer to the mean withdrawals observed in the 

laboratory than the myopic conditional prediction does. Moreover, there are not significant 

differences (at 5% confidence level) excepting period 3 extraction that lies outside the 

bootstrap confidence interval limits. 

 
Figure 4: Conditional predictions versus mean withdrawals. Endogenous time preferences given by: 

( )[ ]20001017.00070587.0397207.01log ttt WW ⋅−⋅+−−=ρ  

 

 

3. Heterogeneous and endogenous rate of time preference 

 

Up to here it has been assumed that the rate of time preference, exogenously and 

endogenously determined, is homogeneous among the users of the common resource. This 

means that the users are supposed to discount future payoffs symmetrically. However, a more 

general formulation should consider the possibility for resource users with heterogeneous rate 

of time preference. Actually, if we look at Figures 3 and 4, it appears that the mean 

withdrawal trajectory may result from a linear combination of the myopic and the farsighted 

ones, when considering an exogenously given discount factor. In a complete information 

framework it can be shown straightforward that the homogeneous population cases depicted 

in Figure 2 (exogenous and endogenous cases) are just particular cases of the heterogeneous 

population composed at different proportions by rational selfish agents with divers discount 

factors8. On the other hand, while in imperfect information framework there may be a 

multiplicity of solutions to the game, there is not a solution in an incomplete information case. 

For instance, considering the agents’ wealth as private information and assuming that the only 
                                                 
8 For instance, Giordana (2007) study the two types case, i.e. Myopic and Farsighted withdrawers.  
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observable state variable is the resource stock that gives aggregate information about the 

others’ extraction decisions, as it is the case of the experimental protocol in Giordana and 

Willinger (2007), just allow players to derive best response functions with respect to the 

“mean” rival. In this complex situations where multiplicity of equilibrium are common, it is 

pertinent to assume that rational agents may follow what some “rules of thumb” dictate, i.e. 

decision rules based on the available information that derivable at an affordable “reflective 

cost” (Conlinsk, 1996). 

 

In the next section we adopt a more flexible methodology to explore the heterogeneity of 

behavior without imposing restrictive assumptions about the different types of behavior to be 

found. We will adapt the algorithm proposed by Houser et al (2004) to our experimental data 

in order to explore the number and nature of “decision rules” truly used by the players in the 

laboratory. 

 

 

3.1 A Bayesian type classification algorithm: The HKM algorithm 

 

The work of Houser et al (2004) proposed a Bayesian type classification algorithm (HKM 

algorithm) that allows drawing inferences about the number and the mathematical form of 

decision rules present in the population of players, as well as the probability with which each 

player uses each rule. The decision rules are modeled as a flexible parametric function 

conditional on an assumed set of relevant state variables. The number of decisions rules 

actually used in a population is determined using Bayesian decision theory (cf. Paap and 

Geweke, 2005). 

 

Even if the HKM algorithm is applicable in a large number of cases, we will restrict ourselves 

to the baseline case: discrete choice Markov decision processes (in discrete time). The main 

reason to our choice is that all the extractions decisions observed in the laboratory are integers 

tough the choice set proposed to players was continuous. The baseline HKM algorithm was 

developed to classify individual decisions without interaction; we will then adapt it to 

individual decisions taken in the framework of a discrete-time deterministic dynamic game of 

T periods fixed duration. 
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3.1.1  The structural model 

 

The optimal decision rule is obtained applying the Bellman’s (1957) principle. In each period 

t ( )T≤  each subject Ni∈  has to choose a level of withdrawal t
iy  in the set { }J,...,1 . Subject 

i will choose the level of withdrawal j* if and only if any other alternative achieves a higher 

latent value: 

( ) ( )t
i

tt
ij

t
i

tt
ij ISVISV ,,* >     *jj ≠∀ . 

 

The value to subject i of choosing alternative j can be written as: 

(6)   ( ) ( ) ( )t
i

t
i

tt
i

ttt
ij

t
i

tt
ij yjISISEVSwISV −

+++= ,,,,, 11   Tt ,...,1=  

 

where ( )t
i

t
i

tt
i yjIShI −
+ = ,,,1  and ( )ttt ySgS ,1 =+  are the (possible stochastic) Markovian law of 

motion for the state variables. In our case, the later law of motion is defined in equation (1) 

(page 5). We have distinguished the resource stock tS , which is a common state variable to 

all the players, from the individual state denoted by 1+t
iI . While the resource stock impacts 

objectively on the value function of every subject, it may affect the individual state in a 

different manner. Actually, the individual state may include non pertinent information 

(Houser et al, 2004). The individual state represents the information set of subject i. It may 

include, for example, the decisions and payoff of previous periods, and any observable 

information about the other players’ decisions. We assume that the individual state is given by 

the accumulated wealth of the agent: ( )∑
=

+==
t

s

ss
i

s
i

t
i

t
i SywWWI

1

0 , . The first term of equation 

(6) is the current payoff of subject i in period t resulting of choosing j is ( )tt
ij Sw . In our case 

there is not intra-period interaction between the players, then the payoff does not depend on 
t
iy− , the period t decision vector of all subjects excepting i. The second term of equation (6) 

corresponds to the future component of the value function. It represents the expected value of 

the state variables (i.e. the resource stock and the individual state) given the current states and 

the subjects’ decisions. 

 

Houser et al (2004) generalized this framework by allowing for the possibility that subjects do 

not use the optimal decision rule based on the maximization of the expected value. And more 

important to the aim of this paper, Houser et al (2004) allowed for the possibility that there is 
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heterogeneity in the decision rules that exist in a population of withdrawers. Therefore, they 

proposed to model the future component as a flexible function (i.e. polynomial) in the 

resource stock tS  and in the elements of the subject’s information set t
iI  (the accumulated 

wealth in our case).  

(7)   ( ) ( ) t
ijk

t
i

tt
i

t
i

tt
i

t jWSFyjISWSEV υπ +=−
++ ,,,,,, 11  Kk ,...,1=  

 

F(⋅) indicates the future component polynomial, kπ  denotes a finite vector of parameters 

which are specific to the subject type k, and the random variable t
ijυ  accounts for idiosyncratic 

errors. The distribution of idiosyncratic errors may vary by type, so that optimization error 

may be more important for some types than others. The standard deviation of the optimization 

errors is represented by kσ . 

 

From equations (6) and (7), the value that the withdrawer i whose type is k, assigns to the 

extraction level j in period t, is  

(8)   ( ) ( ) t
ijk

t
i

tt
ij

t
i

tt
ij jISFwkISV υπ ++= ,,,  

 

 

3.1.2  Statistical inference 

 

The choice of subject i in each period t are observable by the econometrician, 

{{{ t
iy ,{ t

ijw }j=1,…,J}t=1,…,T}i=1,…,N}. The objective is to perform inferences about: 

(i) The order of the F polynomial and the set of state variables that enter the 

polynomial. 

(ii) The number of decision rule types K that are present in the population of 

withdrawers. 

(iii) The vector of parameters kπ , kσ  for each type k = 1,…,K. 

(iv) The population proportions of each type kθ . 

(v) The posterior probability ki ,τ  that each subject is each type. 

 

The inference problem is decomposed in two stages. The stage consists in drawing inferences 

about the parameters { }kkk θσπ ,,  for k = 1,…,K, given K, the order G of the F polynomial, the 
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set of state variables considered and the distribution hypothesis of the optimization errors. The 

second stage of the inference problem consists in drawing inferences about the number of 

types K and the order of the F polynomial. The standard approach in Bayesian decision theory 

is to implement a range of models with different K and G, and use the marginal likelihood to 

choose among them. Recently developed simulation methods9 have made this kind of 

complex inference problem quite tractable (c.f. chapter 3 in Paap and Geweke, 2005). 

 

In the next section we will detail how this general framework is adapted to our experimental 

data. 

 

 

3.2 Empirical specification 

 

The HKM algorithm is based on the Gibbs sampling, a simulation method that allows the 

construction of sequences of the parameters drawn from the posterior probability function. In 

this section we will present the specification of the Gibbs sampler. We will also describe the 

likelihood function, the prior and posterior distributions of the model parameters. 

 

 

3.2.1  The functional forms for the decision rules 

 

In our specification, the future component polynomial integrates the resource stock, that is a 

state variable common to all the subjects, and the accumulated wealth up to period t t
iW , that 

is part of each subject individual information set. 

 

The Bayesian selection procedure pointed out as the preferred model a second order 

polynomial in the resource stock and the accumulated wealth. Thus, the future component F 

for the subjects of type k takes the form (without the subscript k): 

(9)  ( ) ( ) ( )2543
2

210,, tttttt
k

t
i

t WWWSSSjISF ⋅+⋅+⋅⋅+⋅+⋅+= πππππππ . 

 

                                                 
9 Markov Chain Monte Carlo (MCMC) methods. 
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As the choices made depend on the relative value of each alternative, the model is not 

identified in levels. The model is identified in the usual manner (Geweke et al., 1994) with a 

differenced system: 

  ( ) ( ) ( ) { }50,...,1        0,,~,,~,, 0 ∈−= jWSVjWSVjWSz k
t

i
tt

ik
t

i
tt

ijk
t

i
tt

ij πππ , 

where ( ) ( ) ( ) ( ) ( )( ) 2150,150,501,10,,,,~
kkkk

t
i

tt
ijk

t
i

tt
ij WSVjWSV σσσππ −+= . 
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∗∗∗∗∗∗ ππππππ

σσσπππ
 

 

The subject i’s decision rule of type k in period t can be written: 

( ) ( ) ( ) ( ) ( ) jlkWSzjISfwkWSVkWSVkWSz t
i

tt
il

t
ijk

t
i

tt
ij

t
i

tt
i

t
i

tt
ij

t
i

tt
ij ≠∀>++=−≡   ,,,~,~,~, 0 ηπ , 

where t
i

t
ij

t
ij 0υυη −≡ . 

 

 

3.2.2  The likelihood function, Priors, and Joint Posterior Distribution of 

Parameters 

 

The econometrician observes the choice trajectories of the subjects and the trajectory of the 

resource stock. Given the deterministic nature of the game, the accumulated wealth t
iW  can be 

calculated for each period. For each type k and given the values of the others parameters and 

variables, the latent values z are modeled with a seemingly unrelated regressions model 

(SUR). Then, for each type k it is assumed that ( )k
t
i Niid Σ≡ ,0 η . The probability function of 

the latent values z of type k is: 

(10) 
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where, 
k

kH
Σ

=
1  is the precision matrix, and 't

ijQ  is the transposed vector of the polynomial 

terms (given the order G). 

 

The indicator function I is the latent values z are not coherent with the observed choices: 
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Inference via the Gibbs sample starts with the specification of the complete data likelihood 

function. Then, given a particular K and G, this is: 

(12) 
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We will present in the following paragraphs the prior distributions of the model parameters. 

The SUR model assumes that the parameters vector π follows a multivariate normal 

distribution: ( )Λ,0~ Nkπ , where Λ  is 6x6 diagonal matrix with all its’ elements equal to 

1e+20. Additionally, the  SUR model assumes that the precision matrix kH  follows a Whishart 

distribution: ( )vAWiH k ,~ 1− , where 1−A  is positive defined matrix of scale parameters and 

( ) 2150 −=v  are the degrees of freedom. 
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The prior mean of the parameters vector π is null: the prior distribution is then centered on 

myopia. Though, the prior distribution is not very informative, there is a little prior weight on 

the myopic rule because the elements of the variance matrix Λ  are very high. We have 

restricted the elements of the matrix to be equal. This may result in a drawback because it 

may impose too much prior weight on models for which the high-order terms of the 

polynomial dominate decisions. 

 

 

3.2.3  The Gibbs sampling algorithm 

  

On the basis of Houser et al (2004), in this sub-section we describe the application of the 

Gibbs sampler used to approximate the posterior parameters of the models. The Gibbs 

sampler is constituted of five blocs10: 

 

(i) Draw of latent values z: given the parameters values the conditional posterior 

distribution of t
ijz j = 1,…,50 is given by: 
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Following, Geweke (1991), the latent values z are drawn from a truncated multivariate 

Gaussian distribution. 

  

(ii) Draw of the ∗
kπ   (k = 1,…, K) parameters. This and next blocs of the algorithm 

constitute the two blocs of the Gibbs sampler used to estimate the SUR model. It generates 

samples from the posterior distribution kkkk QzH ,,∗π  from the conditional posterior 

distribution ∗
kπ  and kH  (see the next item): 

( )[ ] ( )[ ] ( )( )kTkkkTkkkkTkkkkkk zIHQzIHQzIHQNQzH ⊗+Λ⊗+⋅Λ⋅⊗+Λ ∗−−∗ ',''~,, 11 ππ  

                                                 
10 The Matlab code developed largely use the BACC functions.  
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where, Λ  and ∗
kπ  are, respectively, the variance-covariance matrix and the parameters vector 

of the polynomial drawn in the previous iteration of the sampler. 

 

(iii) Draw of the variance-covariance matrix of the optimization error 1−
kH , k = 1,…, K. 

Draws are done from the conditional posterior distribution given by:  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎥⎦

⎤
⎢⎣
⎡ −

′
−+ ∗∗∗ TvQzQzAWiQzH kk

t
ikk

t
ikkkk ,~,, πππ , where A  is the matrix of 

scale parameters drawn in the previous iteration of the sampler. kH  is afterwards inversed to 

obtain kΣ . 

 

(iv) Draw of the population of proportion kθ  (k = 1,…, K). The conditional posterior 

distribution of kθ  is Di({2+Nk}k = 1,…,K). The drawing is made using standard procedures. 

 

(v)  Draw of the ith subject type, i = 1,…, N. The likelihood contribution for subject i given 

he/she uses decision rule k and with everything else known is represented by ( )iLk . Then, we 

draw from the following distribution: 

( ) ( )
( )∑ =

==
Kk k

k
i iL

iLk
,1

''Pr τ . 

 

Finally, K (the number of types) and G (the polynomial order) have to be chosen. We estimate 

several models with different values of K and G, and then use Bayesian decision theory to 

choose among them. This requires construction of the marginal likelihood for each model. We 

have used the same procedure than Houser et al (2004) for constructing marginal likelihoods 

which is based on Lewis and Raftery (1997). 

 

 

4. Results of applying the HKM algorithm 

 

In this section we present the results of the HKM algorithm applied to our experimental data. 

We have fitted 12 models with different numbers of types K and polynomial orders G. But, 

we did not evaluate models with different state variables entering in the future component of 

the value function. The 12 considered models include in the polynomial two state variables: 
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the stock of the resource (S) and the accumulated wealth (W). The later state variable is not 

relevant for decision in the theoretical model studied11. 

 

We proceed with the selection of the preferred model and the evaluation of its’ fit to the 

experimental data. After that we perform simulations of the preferred model to better 

characterize the estimated decision rules.  

 

 

4.1 Model selection 

 

In order to assess the convergence of the algorithm, we proceed at first by a visual evaluation 

of the sequences of the parameters ∗
kπ  then, we practice several convergence tests12 (cf. 

Appendix 1, page 43). Given the high dimension of the choice set, the algorithm is rather slow 

on a standard personal computer. Therefore, the inferences presented here are based on a 

fixed number of cycles (7500 cycles) of the algorithm. If the convergence tests reveal a 

problem, and as it is too time consuming to increase the number of cycles, we just give the 

precision level that has been reached with that number of iterations13. 

 

RESULT 4.1: The algorithm identified two types of agents: the “Quasi Myopic” (QM) and 

the “Disrupted Farsighted” (DF). The “Quasi Myopic” type regroups about 84% of the agents, 

but only 8% are “Disrupted Farsighted”; the remaining 8% could not be identified. 

 
 Order of future component polynomial 

Number of types G = 2    G = 3 G = 4 G = 5 
 

2 
 

-3725 -4180 -4085 -4274 

 
3 
 

-5649 -5580 -5592 -5248 

 
4 
 

-4681 -6381 -7726 -9116 

Table 2: Marginal likelihood of the estimated models 

 

                                                 
11 See Giordana and Willinger (2007) for the feedback functions of the homogenous population case with 
exogenous discount factors. 
12 Implemented by the “coda” function in Matlab; this function is available for free in the “Econometrics 
Toolbox” package of LeSage (1999). 
13 Aiming to reduce the size of the paper we did not introduce in Appendix 1 the convergence tests of the models 
other than the preferred one. However, they are available under request. 
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The comparison of the marginal likelihood indicates that the model with 2 types and G = 2 

(order of the F polynomial) is the preferred model (Table 2). The estimated coefficients of the 

future component are exposed in Table 3. The interpretation of these coefficients is quite 

complex, we will pass then directly to the evaluation of the adjustment of the preferred model. 

 

We attribute to every subject a type according to their posterior probability of being QM or 

DF. We obtain this probability, for every agent, by calculating the likelihood share on the 

basis of posterior parameters. Those subjects whose probability of being QM (or DF) was 

equal to 0.5 were considered as not identified. 

 
       

 Prior Distribution 
Type 1 : N = 

« Quasi Myopic » 

Type 2 : N = 

« Disrupted Farsighted » 

 Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 

π0 : Cte 0 1*e10 -149,71688 28,94230 -495,58605 23,11397 

π1 : St 0 1*e10 -0,10001 0,02218 -0,27049 0,01594 

π2 : St^2 0 1*e10 0,00006 0,00002 0,00009 0,00001 

π3 : St*W 0 1*e10 -0,87175 0,02171 -0,69733 0,01582 

π4 : W 0 1*e10 -0,00017 0,00005 -0,00015 0,00003 

π5 : W^2 0 1*e10 0,00011 0,00005 0,00009 0,00003 

ση - -     

θk 0.5 - 0,8417  0.0833  

Table 3: Prior and posterior means and standard deviations of future component parameters 

 

 

4.2 Evaluation of the fit 

 

RESULT 4.2: The estimated decision rules adjust convincingly well to the observed 

extractions. 

 

The Figure 5a traces the observed and the estimated average withdrawals of each type as well 

as those from the not identified individuals. The conditional theoretical predictions for the 

myopic and rational strategies are also exposed in Figure 5a. The QM decision rule slightly 

overvalues the individual withdrawals of the first four periods, but then it adjusts perfectly the 

behavior observed for almost all the remaining periods. The “Quasi Myopic” label of this 

decision rule is explained by the proximity of the withdrawals feigned under this rule and 

those resulting from the conditional theoretical prediction of the myopic strategy (under 
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exogenous time preference). The mean extractions trajectory of the DF agents is also 

overvalued by the estimated decision rule between periods 2 and 5; in particular for periods 3 

and 4, the differences are quite marked. We observe that DF average extractions present a 

non-stationary pattern: from period 7 until period 9, the mean extractions of the DF subjects 

are underestimated because they get clearly closer to the QM trajectories (observed and 

estimated). However, the Figure 5a clearly shows that the main aspects of the observed 

behavior of the DF subjects are captured by estimated decision rule. This means that the 

withdrawals are lower than those of the QM subjects for almost the whole temporal horizon 

(justifying the “farsighted” label). The too weak extraction level during the last period 

justifies the “disrupted” character of these agents: they persist in valuing the future while 

there is not any more. The predictive capacity of DF rule seems reasonable, though Figure 5a 

points out that could be insightful to consider additional state variables into the future 

component polynomial to better capture the non-stationary pattern. The average withdrawals 

of the not identified agents do not show any particular tendency. They are very variable with 

relatively distant peaks. Thus, the incapacity to identify this behavior does not reveal a defect 

in the performance of the algorithm. 

 

We observe in the Figure 5b a very good adjustment of the estimated rules to the mean 

extraction trajectory (the not identified subjects are not considered in the calculation of this 

trajectory). 

 
(a)       (b) 

 
Figure 5: Observed and estimated mean withdrawals 
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RESULT 4.3: The comparison of the observed individual extractions of each withdrawer 

type with the conditional predictions reveals that the QM and the DF estimated rules give the 

best fitting predictions. 

 

The Table 4 exposes the square deviation of the average extractions of each type of agent (the 

not identified subjects are not considered) with respect to each prediction (i.e. myopic 

conditional prediction, farsighted with exogenous and endogenous discount factor, QM and 

DF predictions). As can be seen in Table 5, the best predictors of each type mean withdrawals 

are the corresponding estimated rules: the QM rule square deviation with respect to the QM 

subjects is 1.92 and the DF rule square deviation with respect to the DF subjects reaches 28. It 

should be noted that the model with a population of farsighted withdrawers, each with 

exogenous discount factors equal to 0.7, predicts the mean extraction of the QM subjects as 

well as the QM rule. However, this model is not a good predictor of the DF subjects’ mean 

withdrawals, as the DF rule’s square deviation is significantly lower. 

 

                   Type 

Predictions 
Quasi 

Myopic 

Disrupted 

Farsighted 

QM 1.92 78 

DF 51 28 

Myopic 13 119 

Farsighted (ρ = 0.7) 1.98 62 

Farsighted ( )( )t
iΛ= φρ  8 107.7 

Table 4: Square deviation of prediction for each type’s mean withdrawals. 

 
The results exposed in this sub-section certainly confirm the good performance of the 

statistical procedure. On the one hand, the estimated decisions rules adjust very well the 

observed extractions and, on the other hand, the classification algorithm seems to have done a 

very good work. 

 

 

4.3 Decision rules characterization 

 

In order to fully describe the characteristics of the extraction trajectories of the identified 

types, we perform simulations using different sets of parameters. A first series of simulations 
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are carried out with the same set of parameters used in the experimental design of Giordana 

and Willinger (2007) (c.f. equation (2), page 5). Secondly, aiming to further stand out the 

effects of wealth distribution on withdrawals trajectories of each estimated type and on the 

exploitation efficiency, we performed a second series of simulations using another set of 

parameters (Table 5). 

 

 

4.3.1  First series of simulations: QM and DF populations 

 

Aiming to characterize the trajectories depicted under the estimated decision rules, in this 

series of simulations it is assumed that the entire population of withdrawers is of the same 

type, i.e. QM or DF. We first simulate one-shot withdrawals of QM and DF populations for 

different levels of the state variables. Then, we compare the exploitation efficiency according 

to the whole population of withdrawers behaves as one of the estimated types or as one of the 

three theoretical strategies considered (i.e. myopic, rational and optimum). Though, the 

resulting extraction trajectories are not completely comparable because they result in different 

paths of the state variables (i.e. the resource’s stock and the accumulated wealth). 

Consequently, we also compare trajectories conditioned to the paths of the state variables 

generated under the estimated decision rules (i.e. Quasi Myopic and Disrupted Farsighted). 

 

RESULT 4.4: The Stock of the resource and the Accumulated Wealth are complements in 

determining the level of extractions. 

 

In both estimated decision rules, the state variables affect the individual withdrawals in 

opposite directions: the state variable Stock (Accumulated Wealth) is directly (indirectly) 

related with the withdrawal level. Similarly to the myopic and rational theoretical strategies, 

the individual withdrawals of each type relates directly to the stock level. The cumulated 

wealth is not relevant in the theoretical model considered, though it impacts negatively on the 

level of extraction of each type. Figure 6 plots the individual extraction level of a QM agent 

for different combinations of the state variables. As can be noted from this figure, the QM 

rule (and the DF also14) results in well behaving concave extraction level curves: to leave the 

                                                 
14 The surface resulting for the DF rule has a similar form. 
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extraction level unchanged, an increment of the resource stock must be compensated by an 

increment in wealth.  

 

Figure 6: Individual Quasi Myopic extractions for different combinations of Stock and Wealth levels. 

 

RESULT 4.5: The estimated decision rules result in more efficient withdrawal trajectories 

that the myopic strategy. 

 

Figure 7 shows that the trajectory of individual extractions in a QM population is similar to 

the myopic trajectory: they start and finish at the same level, but we observe differences of 

just a unit in the periods 2, 3, 5 and 9. In consequence, the myopic strategy engenders a 

withdrawal trajectory that is slightly less efficient than the QM trajectory: 52% of efficiency 

versus 56%, respectively. Figure 7 also shows that the trajectory of individual extractions in a 

DF population (hereafter trajectory DF) lies below the myopic and QM trajectories (excepting 

periods 7 and 10 of the QM trajectory), when three trajectories coincide. The efficiency of the 

DF trajectory is 67%, which is sharply superior with respect to the QM rule and the myopic 

strategy, but it is still lower than the predicted efficiency for the rational strategy (74% of 

efficiency). 
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Figure 7: Simulated individual extractions under the estimated decision rules and the theoretical 
strategies. 
 

 

RESULT 4.6: The wealth effect in the QM and DF decision rules results in withdrawal 

trajectories that converges faster to a level of total extraction that, given the natural recharge 

of the resource, ensures henceforth a constant Stock. 

 

The Figure 8a plots the extraction trajectories under the QM decision rule. It also plots, 

conditioned to the path of the state variables Stock and Wealth generated under the QM rule, 

the extraction trajectories resulting from the DF rule and the three theoretical hypotheses of 

behavior. Whereas the conditional theoretical predictions converge to the same level of 

extraction in the final period, the estimated rules of decision, in Figure 8a, predict lower 

withdrawals during the temporal horizon and particularly in the last period. This evidences for 

the negative “wealth effect” stated before. The myopic and QM extractions are identical in the 

initial period but, as the wealth accumulates, the QM extractions move away from the myopic 

conditional prediction. The DF rule (conditional to the QM state variables paths) results in an 

extraction trajectory that is parallel and lower with respect to the QM trajectory. It worth be 

noted that the QM trajectory converges (in period 9), to an equalitarian distribution of the 

natural recharge (30/5 = 6); that is, the QM rule leads to a “pseudo stationary state” where the 

stock of the resource neither increases nor decreases. Nevertheless, the accumulated wealth 

continues to increase. Then, we cannot pronounce us on the characteristics of this state. 
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(a)       (b) 

 
Figure 8: Individual simulated withdrawals and conditional predictions for the theoretical strategies 
(Myopic, Rational and Optimum). (a) Quasi Myopic rule; (b) Disrupted Farsighted rule. 

 

The Figure 8b is similar to Figure 8a but the calculations are done on the basis of the state 

variable paths generated under the DF decision rule. The DF withdrawals trajectory is below 

the QM one in every period. The resulting path of the state variable Stock is thus superior in 

every period with respect to the path resulting from a population following the QM rule. So, 

Figure 8b shows that the extraction trajectory converges more quickly to a “pseudo stationary 

state” with a higher stock level than the QM rule case. As a consequence, the wealth also 

evolves in a different way according to the type of the population: whereas the DF rule 

predicts relatively poor agents at the beginning of the temporal horizon and rich agents at the 

end, under the QM rule, the prediction is reversed.  

 

RESULT 4.7: The stock effect on the QM and DF extraction trajectories crowds out the 

wealth effect. 

 

The comparison of the QM trajectories in the Figure 8a and b allows us to characterize better 

the effect of the state variables interaction. In the Figure 8a the QM trajectory is even closer to 

the myopic conditional prediction with respect to the Figure 8b. This is because under the DF 

rule the withdrawers are relatively poor during the first periods of the temporal horizon 

weakening the wealth effect strength. The difference between the myopic and the QM 

withdrawals, as can be seen in Figure 8a, amplifies during the last two periods. On the 

contrary, in the Figure 8b, this difference remains constant from period 5 till the end. It 
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appears that the effect of a high stock of the resource, resulting from the DF rule, absorbs the 

wealth effect observed in the Figure 8a. 

 

Similarly to the QM rule case, the stock effect on the extraction trajectory crowds out the 

wealth effect in the DF rule case. The comparison of Figure 8a and b lets see that the DF 

trajectory in the former figure, when conditioning to the state variables evolution generated by 

a QM population, lies below the DF trajectory plotted in the later. In the first half of the 

temporal horizon the differences are limited to one unit. In the last five periods the difference 

increases to two units even that wealth is higher with regard to the rule QM case. However, 

the stock is also higher with respect to the QM rule case inducing higher extractions. 

 

 

The empirical model resulting from the estimated types gives a consistent description of the 

observed behavior. Then, it can be used to evaluate the impact, on the CPR exploitation 

behavior, of modifications in the context (i.e. natural recharge of the resource, initial wealth 

and its distribution between types). In the next section we perform a second series of 

simulations of the empirical model to assess the impact of wealth inequality. 

 

 

4.3.2  Second series of simulations: the effect of wealth inequality 

  

The results exposed in the previous sections render interesting the evaluation of the 

consequences, on the withdrawal trajectories and the efficiency of the exploitation, of the 

agents’ wealth and its distribution. We shall study the effect on the trajectories of individual 

withdrawals of: (i) the amount of initial wealth, and (ii) the distribution of the initial wealth 

between types of withdrawers. 

 

The parameter setting used in all the simulations performed is exposed in the Table 5. Most of 

the parameters values remained unchanged with regard to those used for the experiments in 

the laboratory (Giordana and Willinger, 2007). However, we lengthened the temporal horizon 

from 10 to 15 periods, the number of withdrawers from 5 to 10 individuals and we modified 

the characteristics of the resource: the initial stock of the resource was incremented from 500 

to 1000 units and the natural recharge was also incremented to 60 units by period. We 

implement these changes in the parameter set mainly because, as stated in the previous 
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subsection, the effect of wealth is stronger at the end of the temporal horizon. We look 

forward to modify the accumulated wealth path to better assess its’ impact. We are aware that 

the validity of these simulations follows from the assumption that the implementation of the 

experimental treatment with the parameter setting exposed in Table 5 would have allowed us 

to estimate the same decision rules. 

 
Population size 

(N) 
Composition of 
the population Profit function Cost function Resource’s 

Stock Choice set 

10 

50% of “Quasi 
Myopic”  

 
50% of 

“Disrupted 
Farsighted” 

a = 5,3 
b = 0,09 

p = 7,55 
f = 0,01 

z = 0,001 

S(0) = 1000 

r = 60 
{0,50} 

Table 5: Parameters’ values common to every one of the performed simulations. 

 

Before we analyze how the distribution of wealth between the types impacts on the efficiency 

of the exploitation, we describe the withdrawal trajectories simulated for various levels of 

initial wealth. We have calculated 51 withdrawal trajectories for each type of withdrawer in 

the mixed population considering that the initial wealth of each individual varies from 0 to 

5000 points. These trajectories are presented in the Figure 10. The nuance of the grey color 

indicates the intensity of the withdrawals in excess/shortage with respect to the level that 

guarantees a constant resource stock. 

 
RESULT 4.8: As the initial wealth increases: (i) the extraction trajectories of both types 

converge progressively to an equalitarian distribution of the recharge between types; (ii) 

beyond a particular level of wealth, an unequal distribution of the recharge between the types 

comes out again. 

 

The Figure 9 (a) and (b) show that the initial extractions are strongly reduced by an increase 

of the initial wealth, even up to result in constant or increasing trajectories when the wealth is 

very high. These figures also show that the extractions at the end of the temporal horizon are 

less affected. The phenomenon of convergence towards a pseudo stationary state is not 

altered. Nevertheless, we observe that according to the raise of the initial wealth, the 

distribution of the recharge becomes more and more equalitarian. Firstly, the QM extractions 

(Figure 9a) converge to a higher amount than DF extractions (Figure 9b). Beyond a particular 

level of wealth, the PP final extractions become higher than the QM ones, but the 

convergence is less clear because trajectories show some variability. 
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(a) (b) 
 

 
Figure 9: Individual withdrawal trajectories for different amounts of initial wealth: (a) Quasi Myopic, (b) 
Disrupted Farsighted. 
 

RESULT 4.9: Richer populations do better, though up to a certain level of wealth. 

 

The efficiency of the resource exploitation by a mixed population of QM and DF withdrawers 

increases, at a decreasing rate, with the initial wealth of agents. As can be seen in Figure 10 

the mean efficiency achieves its’ maximum when the initial wealth of each agent is equal to 

4100 points. During the increasing segment of the mean efficiency, the QM trajectories are 

more efficient as a consequence of the relatively low DF extractions. But, the opposite is 

observed during the decreasing segment. This can be resumed in the following result: 

 

RESULT 4.9bis: As initial wealth increases, final wealth distribution between withdrawers 

types first degrades, then beyond a certain level of wealth it gets ameliorated to finish 

achieving equality in the final wealth distribution when wealth reaches the level Ŵ . 

 

As can be seen in Figure 10, the vertical distance between the efficiency achieved by the 

trajectories of each type of withdrawer is maximal when the initial wealth is between 2000 

and 2500 points. Beyond this level, efficiency distances get reduce and achieve equality when 

ω̂ . The analysis of the extraction trajectories shapes, exposed in Result 4.8, clarifies the 

statements of Result 4.9. 
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Figure 10: Efficiency of the resource exploitation by a mixed population of QM and DF agents for 
different amounts of initial wealth. 

 

Let us suppose that at the beginning of the temporal horizon, an amount W of wealth is 

distributed between types of withdrawers in an equal or unequal manner. But, inside the group 

of withdrawers of the same type, the wealth is equally distributed. 

 

RESULT 4.10: In terms of the resource exploitation efficiency, equality in wealth 

distribution is better in rich populations of withdrawers, but some extent of inequality does 

better in poorer populations. 

 

The distribution of wealth that maximizes the exploitation efficiency is less unequal as long as 

the initial wealth gets higher. Nevertheless, the distributions resulting in relatively poor DF 

withdrawers dominate those where they are relatively richer. Figure 11 lets see the previous 

result’s statements. It shows the efficiency of the withdrawal trajectories for each type, as well 

as the mean efficiency, calculated for different distributions of three distinct levels of initial 

wealth. The comparison of the 3 windows in Figure 11 shows that the wealth distribution 

between types that maximizes the mean efficiency is progressively less unequal as long as the 

initial wealth goes from 20 000 until 41 000 points. The window (c) in the Figure 11 exposes 

alternative distributions of the initial wealth amount that, when equally distributed, attains the 

maximum efficiency, as has been shown in Figure 10 (i.e. ω̂⋅= NW ). As can be seen in 

window (c), the equal distribution of the initial wealth maximizes de mean efficiency. This is 

coherent with the Figure 10. 
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Additionally, it can be seen, in all three windows of Figure 11, that for the same level of 

wealth distribution inequality, the distributions resulting in poorer DF agents attain a higher 

mean efficiency, and that the maximum mean efficiency is attained when final wealth 

distribution is egalitarian. This can be resumed in the following results: 

 

RESULT 4.10bis: Independently of both, the amount of initial wealth and its initial 

distribution: (i) maximal efficiency is reached when final wealth is equally distributed 

between types; (ii) initial wealth distribution that favors QM agents are superior in terms of 

mean efficiency. 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
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(c) 

Figure 11: Efficiency of the extraction trajectories of a mixed population of QM and DF agents. The 
trajectories correspond to different distributions of an initial wealth of (a) 20 000, (b) 30 000 and (c) 
41 000 points. 

 

 

6. Conclusion and discussion  

 

Aiming to better characterize the exploitation behavior of renewable common-pool resources, 

in this paper we explore alternative hypothesis about the valuation of future by the agents and 

the possibility of heterogeneous behavior on this regard. To do this, we adopt an exploratory 

approach then, we further analyze the data collected by Giordana and Willinger (2007) in 

their experimental test of an N-person discrete-time deterministic dynamic game of T periods 

fixed duration. Firstly, assuming that the rate of time preference is symmetrically determined 

among withdrawers (homogeneous case), we estimated models of exogenous and endogenous 

discounting. In the exogenous time preference case, players discount future values in every 

decision period at the same level. In the endogenous case, we statistically modeled the 

discount factor reduced form as a complementary log transformation of a second order 

polynomial on cumulated wealth. Afterwards, we further explore the endogenous case looking 

forward to assess the extent of heterogeneity in the subjects’ appraisal of the resource’s future 

value. Consequently, we adapt and apply to our experimental data the Bayesian classification 

algorithm developed by Houser et al (2004) (HKM algorithm). This statistical procedure 

allows us to make inferences about the number and nature of the decision rules present in a 

population of subjects as well as about the probability with which each subject uses each rule. 

The future component of each rule (i.e. the future value of the resource) is modeled as a 
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polynomial on relevant state variables; we have considered: the stock of the resource and the 

accumulated wealth. Our results can be summarized as follows: 

 

(i) Time preference heterogeneity. The model with heterogeneous time preference among 

withdrawers gives the best fitting of the observed withdrawals trajectories. 

(ii) Classification. The preferred model identifies two types of decision rules (modeled as 

second order polynomials): “Quasi Myopic” (QM) and “Disrupted Farsighted” (DF). The 

algorithm classifies about 84% of the agents as QM, but only 5% as DF; the remaining 

11% could not be identified. 

(iii) Decision rules’ withdrawals trajectories characterization. In both estimated decision 

rules, the state variables affect the individual withdrawals in opposite directions. While the 

state variable Stock is directly related with the withdrawal level, the Accumulated Wealth 

is indirectly related. The “stock effect” direction corresponds to the theoretical predictions, 

and the “wealth effect” coincides with the estimated endogenous time preference model in 

the homogenous population case. Moreover, the complementarity between the stock and 

the wealth avoids that the wealth effect excessively reduces extractions in the final periods 

when the resource has little future value. 

(iv) Efficiency. Assuming that the whole population of withdrawers behaves alternatively 

as one of the estimated decision rules, the resulting trajectory are more efficient than the 

exogenous myopic discounting trajectory (ρ = 0), but they are still less efficient than the 

time indifferent farsighted trajectory (ρ = 1). 

(v) Wealth & Efficiency. Assuming equality in wealth distribution at the departure point: 

a. Richer populations do better, though up to a certain level of wealth, Ŵ . 

b. As initial wealth increases, final wealth distribution between withdrawers types 

first degrades, then beyond a certain level of wealth it gets ameliorated to 

finish achieving equality when wealth reaches the level Ŵ . 

(vi) Wealth Distribution & Efficiency. Assuming a fixed amount of wealth unequally 

distributed between the types of withdrawers but equally distributed within withdrawers of 

the same type: 

a. Equality in initial wealth distribution is better in rich populations of 

withdrawers, but some extent of inequality in initial wealth does better in 

poorer populations. 
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b. Independently of both, the amount of initial wealth and its distribution, 

maximal efficiency is reached when final wealth is equally distributed between 

types.    

 

These results corroborate to some extent the implications of theoretical models recently 

developed on time preference formation (Becker and Mulligan, 1994, 1997) (B&M 94, 97) 

and on the effects of wealth inequality in the exploitation of common-pool resources (Baland 

and Platteau, 1997, 1998; Bardhan et al, 2007). However, attention must be paid when doing 

comparisons as the theoretical frameworks are quite distinct. While Becker and Mulligan 

formalize the time preference formation process of agents taking individual intertemporal 

decisions, our experimental data results from an interaction situation, i.e. exploitation of 

common resource. On the other hand, the analysis of Baland and Platteau (1997) and of 

Bardhan et al. (2007) about the effect of wealth inequality on the efficiency in the commons, 

focus on the rent dissipation problem within an exploitation period, leaving the dynamic 

externalities untreated. 

 

One of the main implications of the B&M97’s model is that “…there is a complementarity 

between future utilities and weighting the future more heavily. Consequently, anything that 

raises future utilities without raising the marginal utility of current consumption will tend to 

lower the equilibrium discount on the future” (page 739). Our results agree with this assertion. 

On the one hand, a raise in the stock of the resource enhance future and current payoffs, hence 

in accordance with this assertion, it results in increased current extractions for both decision 

rules (depending on the level of the stock and the wealth of the agent). An increment in 

current extractions implies a relative low future value of the resource, which means high 

discounting (i.e. low discount factors). On the other hand, a raise in the level of wealth does 

not modify the level of payoffs but enhances the future final reward of the experiment; 

therefore, agreeing with the assertion, current extractions diminish, reflecting a higher future 

value of the resource hence low discounting (i.e. high discount factors). To this to be true we 

must think experimental subjects as consumers looking forward to maximize their reward at 

the end of the session. Assuming that the utility of consumption is a concave function and that 

they will exhaust the budget constraint, the reduced form of the utility can be written in terms 

of the accumulated wealth. At the beginning of the game the accumulated wealth is low so the 

marginal utility of current payoffs is very high, then they heavily discount future. As a 

consequence of wealth accumulation the marginal utility of consumption decreases then, the 
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willingness to perform over-discounting reducing efforts increases. Within the framework of 

section 2’s model, it can be shown straightforward under which conditions these comparative 

static hold. 

 

The implications of the B&M97’s model about the effects of wealth on future discounting 

should not be applied straightforwardly to a strategic interaction framework in theoretical 

grounds. In the baseline situation, assuming that the cost of the discount reducing effort is 

independent of wealth and income, they show that wealthy consumers will be more patient 

and then, inequalities will be deepened (Becker and Mulligan, 1997; page 745). While our 

results also show that wealth enhances patient, the impact on the final wealth distribution are 

not so clear-cut. This B&M97’s second implication, results from the fact that time preference 

implies increased future consumption and then more utility. However, in a common resource 

game, time preference may imply lower future payoffs depending on the degree of patient of 

the other common users affecting their willingness to engage in short-term sacrifices aimed to 

ensure future conservation (this phenomenon is known as the “race for the water” in the 

groundwater exploitation literature (Burt and Provencher, 1993)). This is why we show that 

some extent of inequality is better in terms exploitation efficiency: all the unequal 

distributions of initial wealth that favors Quasi Myopic withdrawers (i.e. impatient users) are 

better if the initial wealth is inferior to NW ⋅= ω̂ . On the other hand, it comes out from our 

empirical results that there is, for each level of initial wealth, an optimal unequal distribution 

and, unless the initial wealth distribution is close to it, the final wealth distribution strongly 

degrades.  

 
The advanced argument about the effect of wealth on future consumption of the experimental 

subjects helps explain why ours results on the effects of the initial wealth level and its’ 

distribution on the efficiency of the resource appropriation do not totally agree with the firsts 

two theoretical propositions of Baland and Platteau (1997) (B&P97). The B&P97’s first 

proposition asserts that “in the appropriation game the more unequal the distribution of 

wealth, the more efficient the use of the CPR” (page 456), and the second one that “a 

disequalizing change in the distribution of access rights, e.g. through credit constraints, may 

increase the welfare of all users” (page 457). Our results do not support the first proposition 

and just partially the second one. The simulations of the empirical model showed that there 

are “equalizing” changes that increase the welfare of all users and, depending on the richness 

of the population there may be disequalizing changes that improve total efficiency but they 
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are not Pareto improvements. While this is disappointing, some factors explain these 

discrepancies as both analysis are not frankly comparable. First, while B&P97 study 

homogeneous agents, we work with two types of withdrawers with distinct time preferences. 

We did not evaluate wealth distribution among homogenous withdrawers but just between 

groups of the same type. Secondly and may be more important, in their analysis the 

distribution of wealth is related to the distribution of external constraints that limit the amount 

of exploitation effort which some users can exert and then it may reduce the extent of 

overexploitation by altering the distribution of access rights. In our case, wealth does not 

restrict the ability to use the resource. On the contrary, following the argument advanced in a 

previous paragraph, it increases the interest of resource conservation. Then, it may be more 

adapted to consider our framework as a public good (i.e. resource conservation) game where 

the wealth increases the interest of contributing on it. 

 

Baland and Platteau (1997) continue their analysis of wealth inequality studying the case of 

the private provision of a common good. They assume that the interest on the common good 

of each agent depends on her wealth15. Then, different wealth distributions result in different 

equilibrium behaviour of agents which can be characterised as constrained cooperators, 

potential cooperators and defectors. Changes in the distribution of wealth may generate shifts 

in the equilibrium types of agents: potential cooperators may be seen themselfs converted in 

defectors or constrained cooperators, following a particular modification of the wealth 

distribution. This implies that “the poorer the economy the higher must be the proportion of 

defectors with no wealth in the population. If the economy is rich enough, however, wealth 

distribution may be perfectly egalitarian”, (Proposition 7, page 467). Our results fully 

corroborate these theoretical propositions. In our empirical model, the equilibrium types of 

the agents are given and independent of the wealth level: they are all constrained cooperators 

as we have shown that wealth increases patient (i.e. contributions to the common good). This 

is the raison why the optimal distribution is, for relatively poorer populations (or economies), 

almost egalitarian and fully egalitarian when the population is rich enough. The inequalities 

when the population are poor are thus explained by the time preference type of withdrawers 

(i.e. Quasi Myopic or Disrupted Farsighted). Therefore, when the economy is poor is better, in 

average, to give more wealth to those which the impact of wealth on patient is lower (i.e. 

Quasi Myopic) than to those which are intrinsically more patient (i.e. Disrupted Farsighted).  

                                                 
15 This is the critical assumption that allows avoiding the neutrality of wealth in the private provision of public 
goods as predicted by Bergstrom et al (1986) in the case of pure public goods. 
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To conclude we would like to stand out the robustness of our results to the common critic of 

artificiality regarding the experimental methodology. Some scholars accuse the experimental 

methodology to generate assertions that are not validated in the “real” world but in the “lab” 

world as the saliency of choices or the limitations of the choice sets “artificially” bring 

subjects to make particular decisions (Bardsley, 2005). Let us assume that this critic could be 

valid for some experimental protocols. Unlikely, our observations do not come-out from a 

factorial experimental design trying to identifies the impact of wealth and its’ distribution on 

the CPR exploitation efficiency. Rather, we econometrically modelled observed behaviour on 

the basis of pertinent state variables aiming to assess the effect of wealth and its’ significance. 

 

 

7. Bibliography 

 
Baland, J.M. and Platteau J.P., (1999), “The Ambiguous Impact of Inequality on Local 

Resource Management”, World Development, 27(5), 773-788. 
Baland, J.M. and Platteau J.P., (1997) “Wealth Inequality and Efficiency on the Commons, 

Part I: the Unregulated case”, Oxford Economic Papers, 49, 451-82. 
Baland, J.M. and Platteau J.P., (1996), Halting Degradation of Natural Resources. Is there 

a Role for Rural Communities?, Oxford University Press. 
Bardhan, P., Ghatak, M. and Karaivanov, A., (2007) “Wealth Inequality and Collective 

Action”, Journal of Public Economics, 91, 1843-1875. 
Bardhan, P. and Dayton-Johnson, J., (2002) “Unequal Irrigators: Heterogeneity and Commons 

Management in Large-Scale Multivariate Research”, in (National Research Council 
eds.) The Drama of the Commons. 87-112. Washington DC. National Academy Press. 

Bardsley N., (2005), “Experimental economics and the artificiality of alteration”, Journal of 
Economic Methodology, 12(2), 239-251. 

Becker, G.S. and Mulligan C.B., (1997), “The Endogenous Determination of Time 
Preference”, The Quarterly Journal of Economics, vol. 112(3), 729-58. 

Becker, G.S. and Mulligan C.B., (1994), “On the Endogenous Determination of Time 
Preference”, Working paper, 98, University of Chicago - George G. Stigler Center for 
Study of Economy and State. 

Bellman, R.(1957), Dynamic Programming, Princeton, N.J.: Princeton University Press. 
Bergstrom, T., Blume, L. and Varian, H. (1986), “On the Private Provision of Public Goods”, 

Journal of Public Economics, vol. 29, 25-49. 
Camerer C., (2003), Behavioral Game Theory. Russell Sage Foundation, New York, New 

York/Princeton University Press, Princeton, New Jersey, 544 pages. 
Cardenas J.C., (2003), “Real wealth and experimental cooperation: experiments in the field 

lab”, Journal of Development Economics, Elsevier, vol. 70(2), 263-289, April. 
Conlisk, J., (1996), “Why Bounded Rationality?” Journal of Economic Literature, 34(2), 669-

700. 
Fischbacher U., (2007), “z-Tree: Zurich toolbox for ready-made economic experiments”,  

Experimental Economics, 10(2), 171-178. 
Fisher, I. (1930), The Theory of Interest, New York, Macmillan. 



 42

Frederick S., Loewenstein G. and O’Donoghue T., (2002), “Time discounting and Time 
preference: A Critical Review”, Journal of Economic Literature, 40, 351-401. 

Gächter, S., Herrmann, B. and Thoni, C., (2004), “Trust, voluntary cooperation, and socio-
economic background: survey and experimental evidence” Journal of Economic 
Behavior & Organization, 55(4), 505-531. 

Geweke J., (1991), “Efficient simulation from the multivariate normal and student-t 
distributions subject to linear constraints”. In: Computer Science and Statistics: 
Proceedings of the Twenty-Third Symposium on the Interface, Alexandria, VAt 
American Statistical Association, 571-578. 

Geweke J., (1992), Evaluating the accuracy of sampling-based approaches to the calculation 
of posterior moments, in Berger J.O., Bernardo J.M, Dawid A.P. et Smith A.F.M. 
(Eds.). 

Geweke, J., Keane, M. and Runkle D. (1994), “Alternative computational approaches to 
inference in the multinomial probit model”, The Review of Economics and Statistics, 
76(4), 609-632. 

Giordana, Gastón and Willinger, Marc, (2007) “Fixed Instruments to Cope With Stock 
Externalities an Experimental Evaluation”. FEEM Working Paper No. 72.2007 
Available at SSRN: http://ssrn.com/abstract=999921, (revised Mars 2008) 

Gisser M. and Sanchez D.A., (1980), “Competition versus optimal control in groundwater 
pumping”, Water Resources Research, 16, 638-642. 

Herr, A., Gardner R. and Walker J., (1997), “An Experimental Study of Time-Independent 
and Time-Dependent Externalities in the Commons”, Games and Economic Behavior, 
19(1), 77-96. 

Houser D., Keane M. et McCabe K., (2004), “Behavior in a dynamic decision problem: An 
analysis of experimental evidence using a Bayesian type classification algorithm”, 
Econometrica, 72(3), 781–822. 

Koundouri P., (2004), “Potential for groundwater management: Gisser-Sanchez effect 
reconsidered”, Water Resources Research, 40, W06S16, doi:10.1029/2003WR002164. 

Olson, M., (1965), The logic of collective action: Public goods and the theory of groups. 
(Harvard Economic Studies 124). Cambridge, Mass.: Harvard University Press. 

Ostrom E., Gardner R. and Walker J.M. (1994), Rules, games, and common-pool resources, 
Ann Arbor: The University of Michigan Press. 

Ostrom, E., (1990), Governing the commons: The evolution of institutions for collective 
action. New York: Cambridge University Press. 

Paap R. and Geweke J., (2005), Contemporary Bayesian Econometrics and Statistics, Wiley, 
New Jersey, 300p. 

Raftery A.E. and Lewis S.M., (1995), The number of iterations, convergence diagnostics, 
and generic Metropolis algorithms, In Practical Markov Chain Monte Carlo (W.R. 
http://citeseer.ist.psu.edu/64115.html)    

Raftery A.E. and Lewis S.M., (1992), “How many iterations in the Gibbs sampler ?”, in 
Bayesian Statistics 4 (J.M. Bernardo et al., editors), Oxford University Press, pp. 763-
773. 

Samuelson, P. (1937), “A note on the Measurement of Utility”, Review of Economic Studies, 
4, 151-161. 

 

 

 

 



 43

APPENDIX 1: Convergence tests of the preferred model 
 
 
Model 1: 2 order polynomial – 2 types 

The tests exposed in Table A.9 indicate that the coefficients kπ of the polynomial did not 

converge after 14.300 cycles of the Gibbs sampler. The autocorrelation coefficients are too 

high, the Raftery-Lewis (RL) diagnostic demands 172.106 cycles and to thin the sample by 

two; the I-stat is also too high (I-stat>5 evidences convergence problems) and all the RNE are 

too low. The RL diagnostic proposes to leave the first 1220 cycles. Looking up Figure A.21 

and A.13 we decided to leave the first 2500 cycles. Then, after reducing the precision of the 

estimation (q=0.0125, r=0.015), the RL diagnostic indicates a convergence (Table A.6) tough 

it is not perfect.  

The convergence diagnostics applied to the others parameters kσ and kθ , show that there is 

convergence. 

Given convergence diagnostics results exposed in Table A.6, the calculation of the posteriors 

is done from the shortened (of the first 2500 cycles) and thinned sample (by 5). 

 
Raftery-Lewis Diagnostics for each parameter chain  
(q=0.0125, r=0.01500, s=0.950000). Based on sample size = 11800 
TYPE   Thin     Burn    Total(N)    (Nmin)    Istat  
  1        3           98      6290        211      29.8          
  2        5         157      9667        211      45.8  

Table A.6: Raftery-Lewis’s convergence diagnostic of the πk sequence of the shortened sample; model 1. 

  
Raftery-Lewis Diagnostics for each parameter chain  
(q=0.025, r=0.01, s=0.95). Based on sample size = 4100 

Type 1 Type 2 
Variable          Thin       Burn   Total(N)     (Nmin)     I-stat  
variable 1           1          2        951        937      1.015  
     .                     .           .           .             .            . 
variable 50          1          2        951        937      1.015 

Variable          Thin       Burn   Total(N)     (Nmin)     I-stat  
variable 1           1          2        951        937      1.015  
     .                     .           .           .             .            . 
variable 50          1          2        951        937      1.015 

Table A.7: Raftery-Lewis’s convergence diagnostic of the σk sequence of the shortened and thinned 
sample; model 1. 
 
Raftery-Lewis Diagnostics for each parameter chain  
(q=0.025, r=0.01, s=0.95). Based on sample size = 4100 

Type 1 Type 2 
Variable       Thin       Burn   Total(N)     (Nmin)     I-stat  
theta1            1          2        970        937      1.035 

Variable       Thin       Burn   Total(N)     (Nmin)     I-stat  
theta2            1          2        914        937      0.975 

Table A.8: Raftery-Lewis’s convergence diagnostic of the θk sequence of the shortened and thinned 
sample; model 1. 
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MCMC CONVERGENCE diagnostics  
Based on sample size =      14300  
 

Model 1: 2° order – 2 types 

TYPE 1 TYPE 2 
Autocorrelations within each parameter chain  
Variable        Lag 1        Lag 5       Lag 10       Lag 50  
Cte             0.997        0.985        0.970        0.870  
St              0.877        0.691        0.659        0.568  
St^2            0.657        0.093        0.105        0.024  
W               0.963        0.904        0.896        0.799  
W*St            0.684        0.329        0.287        0.171  
W^2             0.572        0.137        0.069        0.046  

  
Variable        Lag 1        Lag 5       Lag 10       Lag 50  
Cte             0.996        0.978        0.956        0.797  
St              0.993        0.954        0.914        0.729  
St^2            0.845        0.438        0.339        0.438  
W               0.995        0.980        0.967        0.827  
W*St            0.846        0.542        0.428        0.375  
W^2             0.678        0.110       -0.026        0.430 

Raftery-Lewis Diagnostics for each parameter chain  
(q=0.0250, r=0.010000, s=0.950000) 
Variable       Thin       Burn   Total(N)     (Nmin)     I-stat  
Cte               2       1220     172106        937    183.678  
St                2       1220     172106        937    183.678  
St^2              2       1220     172106        937    183.678  
W                 2       1220     172106        937    183.678  
W*St              2       1220     172106        937    183.678  
W^2               2       1220     172106        937    183.678  

 
 
Variable       Thin       Burn   Total(N)     (Nmin)     I-stat  
Cte               2       1220     172106        937    183.678  
St                2       1220     172106        937    183.678  
St^2              2       1220     172106        937    183.678  
W                 2       1220     172106        937    183.678  
W*St              2       1220     172106        937    183.678  
W^2               2       1220     172106        937    183.678 

Geweke Diagnostics for each parameter chain  
Variable         Mean      std dev      NSE iid      RNE iid  
Cte       -181.109471   129.259556     1.080923     1.000000  
St          -0.111639     0.059410     0.000497     1.000000  
St^2         0.000061     0.000048     0.000000     1.000000  
W           -0.856031     0.066610     0.000557     1.000000  
W*St        -0.000171     0.000071     0.000001     1.000000  
W^2          0.000108     0.000055     0.000000     1.000000  
 
Variable       NSE 4%       RNE 4%       NSE 8%       RNE 8%      NSE 15%      RNE 15%  
Cte         20.240169     0.002852    23.940014     0.002039    26.956126     0.001608  
St           0.007200     0.004761     0.008682     0.003274     0.009887     0.002525  
St^2         0.000002     0.040371     0.000002     0.030301     0.000003     0.023825  
W            0.010045     0.003075     0.011847     0.002211     0.013378     0.001734  
W*St         0.000004     0.023465     0.000004     0.023023     0.000004     0.025659  
W^2          0.000001     0.094775     0.000002     0.084645     0.000002     0.083480  
 

 
Variable         Mean      std dev      NSE iid      RNE iid  
Cte       -530.486212   180.811408     1.512021     1.000000  
St          -0.284996     0.077292     0.000646     1.000000  
St^2         0.000094     0.000025     0.000000     1.000000  
W           -0.680510     0.084792     0.000709     1.000000  
W*St        -0.000144     0.000043     0.000000     1.000000  
W^2          0.000086     0.000027     0.000000     1.000000  
 
Variable       NSE 4%       RNE 4%       NSE 8%       RNE 8%      NSE 15%      RNE 15%  
Cte         26.363849     0.003289    30.075825     0.002527    32.245549     0.002199  
St           0.010626     0.003700     0.012343     0.002742     0.013347     0.002345  
St^2         0.000002     0.008496     0.000003     0.006360     0.000003     0.005494  
W            0.012566     0.003184     0.014431     0.002414     0.015513     0.002089  
W*St         0.000003     0.011520     0.000004     0.009568     0.000004     0.008505  
W^2          0.000001     0.027329     0.000001     0.022637     0.000002     0.019788  
 

Geweke Chi-squared test for each parameter chain  
First 20% versus Last 50% of the sample  
Variable              Cte 

  
 
Variable              Cte 
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NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.        -144.373029     0.331570     0.000000  
4% taper      -145.198575     4.676970     0.000320  
8% taper      -144.884369     5.633327     0.006977  
15% taper     -144.618897     6.223391     0.028121  

NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.        -506.923889     0.236538     0.000000  
4% taper      -507.141692     3.415591     0.016731  
8% taper      -507.103752     4.247440     0.067016  
15% taper     -507.058945     4.838084     0.131943  

Variable               St 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.097298     0.000258     0.000000  
4% taper        -0.097695     0.002403     0.000134  
8% taper        -0.097422     0.002740     0.002781  
15% taper       -0.097195     0.002883     0.011680 

Variable               St 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.276264     0.000179     0.000000  
4% taper        -0.276290     0.001737     0.013706  
8% taper        -0.276259     0.002129     0.058425  
15% taper       -0.276219     0.002369     0.120543  

Variable             St^2 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.           0.000057     0.000000     0.000000  
4% taper         0.000058     0.000001     0.000704  
8% taper         0.000058     0.000001     0.005839  
15% taper        0.000057     0.000001     0.017423  

Variable             St^2 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.           0.000093     0.000000     0.000000  
4% taper         0.000092     0.000000     0.015011  
8% taper         0.000092     0.000000     0.058940  
15% taper        0.000092     0.000000     0.121312  

Variable                W 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.874869     0.000252     0.000000  
4% taper        -0.874706     0.002648     0.000199  
8% taper        -0.875029     0.003008     0.005388  
15% taper       -0.875266     0.003140     0.024081  

Variable                W 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.691394     0.000174     0.000000  
4% taper        -0.691368     0.001828     0.014323  
8% taper        -0.691401     0.002237     0.062009  
15% taper       -0.691438     0.002493     0.126730  

Variable             W*St 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.000172     0.000001     0.000000  
4% taper        -0.000173     0.000002     0.287405  
8% taper        -0.000173     0.000002     0.362994  
15% taper       -0.000173     0.000001     0.386389  

Variable             W*St 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.          -0.000147     0.000000     0.000000  
4% taper        -0.000147     0.000001     0.035961  
8% taper        -0.000147     0.000001     0.078470  
15% taper       -0.000148     0.000001     0.129007  

Variable              W^2 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.           0.000107     0.000001     0.000014  
4% taper         0.000108     0.000002     0.079681  
8% taper         0.000107     0.000002     0.078051  
15% taper        0.000107     0.000001     0.101609  

Variable              W^2 
NSE estimate         Mean       N.S.E.  Chi-sq Prob  
i.i.d.           0.000086     0.000000     0.000000  
4% taper         0.000087     0.000001     0.006544  
8% taper         0.000088     0.000001     0.035210  
15% taper        0.000088     0.000000     0.084125  

Table A.9: Convergence evaluation of πk.; model 1
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Figure A.12 : Sequences of the polynomial’s coefficients of Model 1; type 1 
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Figure A.13 : Sequences of the polynomial’s coefficients of Model 1; type 2 
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