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Abstract

A central role for economic policy involves understanding and reducing the impact of unex-

pected, extreme events. In this paper, we develop a simple economic framework with latent

regime switches. This framework explains why investors andpolicymakers can decide not to

hedge against extreme events, even those that are exogenous, with well understood probabil-

ities and consequences. We also examine endogenous probabilities, where the consequences

are less well understood. Our most striking finding is that the benefits of sustained optimal

investment are bounded and small. Thus, investors may knowingly ignore or exacerbate the

likelihood of extreme events, especially if there are informational costs to learning the structure

of the financial environment. We also discover that the benefits of leverage represent a large

percentage of income. These results obtain both in the theoretical model and upon calibration

to the last half-century of US economic experience.
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1 Introduction and motivation

”We all learn by experience, and your lesson this time is thatyou should never lose

sight of the alternative.” Sherlock Holmes:The Adventure of Black Peter.

Unexpected economic events can have massive, disruptive effects on a nation.1 The experience

of crises in the 1990s and 2000s has stimulated researchers’interest in understanding extreme

events in the US economy. When such events occur, they tend todo so in multiple settings, which

amplifies their impact.2 For example, the collapse of a major lending institution affects many

households, and can cause total insurance claims to increase geometrically, since several classes

are affected, including property loss and job loss.3 Such correlated outcomes are interesting not

only for their practical relevance, but also economically,since they resemble results from a broad

class of theoretical research on herding and strategic complementarities.4

The main goal of this paper is to develop a simple economic framework with rare extreme events,

in order to understand their impact and ramifications.5 Our model delivers insight into how indi-

viduals respond to extreme events in terms of hedging and asset demands. Interestingly, we find

that agents may rationally choose to ignore information about extreme events, if this information

is costly. Such a finding ties our work closely to research on rational inattention, including Wilson

(1975), Sims (2003), and Veldkamp and Van Nieuwerburgh (2009). There are two other impor-

tant areas of research intersection. First is the recent flurry of work on extreme events, largely

in response to the economic crisis.6 Much of this research analyzes systemic instability.7 Sec-

ond, historically there is a long literature examining financial crises and bubbles, in both rational

and behavioral frameworks.8 The quantitative models in most of these research areas focus on

1 For evidence on welfare costs of extreme events, see Chatterjee and Corbae (2007), Barro (2009), and the refer-
ences therein.

2See Barro (2006) and Barro (2009). Also, see Horst and Scheinkman (2006), and Krishnamurthy (2009) for
economic explanations of such amplifications.

3 For details on insurance during periods of economic disruptions, see Jaffee and Russell (1997); Jaffee (2006);
and Ibragimov, Jaffee, and Walden (2009b).

4 See Wilson (1975); Bikhchandani, Hirschliefer, and Welch (1992); Cooper (1999); and Vives (2008), chapter 6.
5By extreme, we refer to events that have a high impact on the particular system. This impact can be in terms

of financial or social cost, or in terms of disruption of equilibrium. By rare, we refer to events that are not observed
frequently, as in Table 1.

6For overviews of the crisis, see Acharya and Richardson (2009); Brunnermeier (2009); Reinhart (2008); and
Reinhart and Rogoff (2009).

7See Caballero and Krishnamurthy (2008); Ibragimov, Jaffee, and Walden (2009b); Ibragimov, Jaffee, and Walden
(2009a); and Shin (2009).

8 See Fisher (1933); Keynes (1936); Blanchard (1979); Minsky(1982); Friedman and Laibson (1989); Shleifer and
Vishny (1997); Kindleberger (2000); Abreu and Brunnermeier (2003); Allen and Gale (2007); and Hong, Scheinkman,
and Xiong (2008).
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a stationary environment. Evidently the economic climate is subject to sudden shifts.9 Despite

the clear policy and academic relevance, little existing research examines the economic impact

of regime shifts in the probability of encountering extremeevents. Therefore our research fills a

much-needed role, by incorporating a simple model of regimeshifts in extreme events. We find

that the existence of such shifts may help explain the experience of unhedged extreme events in

the US economy, both theoretically and empirically.

The remainder of the paper is as follows. In Section 2 we review theoretical and empirical literature

on extreme events. In Section 3 we develop and calibrate a simple model of risky choice, where

extreme events undergo exogenous regime shifts. Section 4 extends this model to endogenous

extreme events, and Section 5 concludes.

2 Background and related literature

The paper builds on three strands of research, related to extreme events and crises, information

choice, and regime shifts. Regarding extreme events, previous research includes behavioral work

such as Kunreuther and Pauly (2006), who focus on the role of individual myopia in precipitat-

ing catastrophes. It also includes research on bubbles by Abreu and Brunnermeier (2003), and

Blanchard (1979), among others.10 There is still no consensus modeling approach for analysis of

extremes. A major challenge is that it is unclear how individuals behave towards extreme or low

probability events. Initial evidence by Allais (1953) and Kahneman and Tversky (1979) suggested

that agents overweight low-probability events. However, more recent research has uncovered three

additional results. First, there is evidence that agents underweight low probability events in realis-

tic situations where they must estimate probabilities based on experience, documented by Barron

and Erev (2003), Hertwig, Barron, Weber, and Erev (2005), and Rabin (2002). Second, econo-

metrically there is a bias to under-estimate rare events, examined by King and Zeng (2001), and

de Haan and Sinha (1999). Third, expected utility does not effectively incorporate low probabil-

ities, a phenomenon studied by Bhide (2000) and Chichilnisky (2000). The finding that agents

may systematically under-estimate low probability eventsis particularly interesting, and suggests

a systematic lack of knowledge that is not possible to address in current economic frameworks

such as robust control and the theory of ambiguity aversion.These frameworks typically presume

9For empirical research on regime shifts in the economy, see Hamilton (1989); Hamilton and Lin (1996); Ang and
Bekaert (2002); Ang and Bekaert (2004); and Ang and Bekaert (2005). For theoretical modelling of regime shifts, see
Reitz (1988); Evans (1996); Bekaert, Hodrick, and Marshall(2001); and Angeletos, Hellwig, and Pavan (2007).

10Other relevant research includes Jaffee (2006); Ibragimov, Jaffee, and Walden (2009b); and Lorenzoni (2008).
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that agents are aware of their lack of knowledge. By contrast, the most devastating types of rare

events involve situations where agents are unaware of theirlack of knowledge, which we may term

meta-ignorance.11

Regarding information choice, work by Morris and Shin (2002), Sims (2003), Veldkamp and

Wolfers (2007), Skreta and Veldkamp (2009), and Veldkamp and Van Nieuwerburgh (2009) shows

that agents do not always use all available information. This approach appeals to costs of in-

formation processing, so that agents choose to ignore potentially valuable, available information.

However, these papers generally do not specify the form and size of costs. The information choice

approach has been able to explain a number of anomalies in economics, including the home bias

puzzle, asymmetric business cycles, portfolio under-diversification, and ratings inflation. Regard-

ing regime shifts, there is ample evidence that the economicstructure of major economic and

financial variables is subject to sharp breaks. Hamilton (1989) develops the modern methodology

of regime shifts, and shows its applicability to the macroeconomy. In financial markets, evidence

of regime shifts is documented by Hamilton and Lin (1996), Ang and Bekaert (2002), Ang and

Chen (2002), Ang and Bekaert (2004), and Ang and Bekaert (2005). Recent theoretical research

has also examined economic foundations for regime changes,such as Angeletos, Hellwig, and

Pavan (2007). Recent economic experience suggests that an impediment to market performance is

lack of knowledgeabout how to forecast and hedge extreme events. This lack of knowledge reflects

non-stationarity of the economic environment, which we embed in our model with the device of

regime shifts.

2.1 Contribution of our paper

Our paper contributes to the literature in several important ways. First, we examine extreme events

using a simple well-understood porfolio choice framework,with constant relative risk aversion

and lognormal returns. We therefore obtain stylized facts about the impact of extreme events,

in a transparent, rational setting. Second, based on theoretical and empirical considerations, we

incorporate latent regime switches in the likelihood of extreme events, which may be exogenous

or endogenous. Our paper appears to be the first to analyze theeconomic impact of extreme events

using this framework. Finally, we provide support for the information choice literature of Sims

11 Negative examples of meta-ignorance include the current financial market crises of fall 2008, climate change,
impact of new technology and natural catastrophes. See Bazerman and Watkins (2004) and Taleb (2005). Positive
examples could include discovery of North Sea oil in the 1960s.
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(2003) and Veldkamp and Van Nieuwerburgh (2009), since we give evidence on the size of costs

needed to make agents ignore information about important extreme events.

3 Risky choice with exogenous extremes

In this section, we describe risky choice of an individual, faced with rare extreme events. There

are three basic ingredients in our setup. First, the base model features a lognormal distribution

with constant relative aversion (CRRA) utility. This CRRA-lognormal approach is very tractable

and replicates key features of financial data. Therefore it is commonly used for macroeconomics,

portfolio choice and asset pricing, as in the work of Campbell (1994), Campbell (1996), and Camp-

bell and Viceira (2002).12 Second, our framework consists of a single representative agent. This

framework allows us to simplify analysis of a situation where large numbers of similar investors

are engaged in risky borrowing, by studying their average behavior.13 The representative agent

approach is typical of modern finance research in the tradition of Lucas (1978). Third, the case

of rare events is handled by a regime switch approach. Regimeswitches have been shown to

characterize both economic and financial data, by Hamilton (1989) and Hamilton and Lin (1996).

Regime switches are also empirically significant in modelling stock market correlations and vari-

ances, as shown by Ang and Chen (2002), Dueker (1997), and Haas, Mittnk, and Paolella (2004).

Moreover, regime switches have been utilized to model rare events in finance, by Evans (1996))

and Gourieroux and Monfort (2004).

Notation and Calibration . In the remainder of the paper, we will use the following notation.

• The quantityd denotes agents’ demand for risky investment, relative to available wealth;

• Superscript∗ denotes an optimum;

• SuperscriptE denotes a decision or wealth level during extreme periods;

• SuperscriptP denotes a prudent investment or wealth level;

• dP = 1. That is, the prudent investor will invest a maximum of all herwealth in risky investment,

and will not borrow.

12For further details on the rationale and implementation of the CRRA-lognormal model, see Campbell (1994) page
469; Campbell (1996) page 304; and Campbell and Viceira (2002) Chapter 2. Other textbooks that use this approach
are Huang and Litzenberger (1988) and Lyons (2001).

13The analysis of large numbers of similar investors is also examined by the literature on strategic complementari-
ties, see Cooper (1999).
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• SuperscriptL denotes a leveraged (excessive) investment or wealth level

• Subscriptn denotes an endogenous investment or wealth level;

• Subscriptx denotes an exogenous investment or wealth level.

In order to calibrate the various models, we use the following empirical estimates from US data.14

• Annualized excess stock return̂µ = 0.081 − 0.009 = 0.072, from Campbell (2003), page 805.

• Annualized stock market volatilityσ = 0.156, from Campbell (2003), page 805.

• Annualized average borrowing rate15 r = 0.018;

• Discount factorβ = 0.99, from Mehra and Prescott (2003), page 907;

• Risk aversionγ ∈ {1, 2, ..., 10}, from Lewis (1999) page 576; Mehra and Prescott (2003), page907;

and Mehra and Prescott (1985) page 154;

• Annualized likelihood of an extreme eventα = 0.017, from Barro (2006) page 837.

3.1 Excessive investment in a risky asset: A general case

Much of economic research concerns the aggregate effects ofexcess borrowing for investment, as

discussed by researchers from Fisher (1933) to Allen and Gale (2007). Such excessive borrowing

is often motivated as irrational. While irrationality can certainly drive excess behavior in many

settings, it is valuable to determine whether such behaviormay arise in a simple, rational frame-

work. In Proposition 1 we show that such excessive investment is consistent with rational behavior

in a very general setting. Consider a general neoclassical utility function U(W ) that depends on

wealthW .16 Among other qualities, this utility function is strictly increasing, bounded, continuous

and concave. Following the approach of Campbell and Viceira(2002), the agent is endowed with

14Other sources for calibrating regime switches include Hamilton (1989), Hamilton and Lin (1996), and Mehra-
Prescott (2003).

15We compute this as the average of the monthly (log) Prime BankLoan rate, from 1947 to 2009. The Prime Bank
Loan rate is available from the Federal Reserve Bank of St. Louis.

16 By neoclassical utility function, we mean one that is strictly increasing and differentiably continuous, as in Allen
and Gale (2007), chapter 2.
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initial wealthW0, and invests a proportiond in a risky asset with returnsr = rf +ε. The remainder

is invested in a riskfree asset with returnsrf . Thus,W = dW0(1 + r) + (1 − d)W0(1 + rf), or

W = dW0(1 + rf + ε̃) + (1 − d)W0(1 + rf) (1)

= dW0(1 + rf) + dW0ε̃ + (1 − d)W0(1 + rf)

= W0(1 + rf) + dW0ε̃

We will use the expression for the objective function in (1) for proving the propositions below. The

agent maximizes utility subject to the wealth constraint, which as a strictly convex program, yields

a unique solutiond∗, and unique expected wealthW ∗(d∗). We have the following proposition and

corollary.

Proposition 1 If the investor deviates from the optimal investment strategyd∗ by choosing a sub-

optimal investment strategŷd during a small proportionα of the time, her expected utility loss is

bounded above.

Proof. See Appendix.

Corollary 1 If there are high enough costs to learning whether she is behaving suboptimally a

small proportionα of the time, the investor will rationally choose to continuebehaving subopti-

mally.

Proof. See Appendix.

Theorem 1 and Corollary 1 show that for standard expected utility functions, if agents are subop-

timal some of the time and there are costs to detecting extremes, then agents can rationally choose

to be suboptimal. While this insight is valuable, it is important to relate the result to observable

economic parameters. In order to do so, we need to use standard parametric utility functions and

return processes, which we do for the remainder of the paper.

3.2 Base model

We first consider a base model of ’typical’ events, where asset returns obey a simple stochastic law.

The decision environment consists of a single individual with initial wealthW0, choosing a fraction

of wealthd to invest in a risky asset. For these typical economic environments, the investor’s
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problem is straightforward: she maximizes expected utility by choosing the fractiond to invest

in the risky assets. In order to develop the intuition of the previous subsection more concretely,

we utilize an important class of preferences and return processes. In particular, we suppose that

the investor’s preferences exhibit constant relative riskaversion over wealthW , U(W ) = W 1−γ

1−γ
,

whereγ is the coefficient of relative risk aversion. We also assume that the random terms in risky

asset returns are lognormally distributed,

r̃ ≡ log(1 + R̃) ∼ N(µ, σ2). (2)

These classes of preferences and returns are widely used in financial economics, for example

Campbell (1996), and Campbell and Viceira (2002). To solve the investor’s problem, observe

that the expectation of a lognormal variablez satisfies logE(z) = E(log z) + 1
2
V (log z). Then,

ignoring the constant1 − γ, and exchanging logs and expectations, we can write the investor’s

maximization problem as

max
d

log EW 1−γ = (1 − γ)E(w) +
1

2
(1 − γ)2V (w),

subject tow = r + w0, wherew = log W, r = log(1 + R), andw0 = log W0. To evaluate the

above objective function, we therefore must compute the mean and variance of portfolio returns.

The mean excess return isE[r − f f ] = d[E(r) − rf ] + 1
2
d(1 − d)V [r]. The variance of the

portfolio return isd2V [r]. Using equation (2), and standard algebraic manipulation asin Chapter 2

of Campbell and Viceira (2002), we can rewrite the investor’s problem as

max
d

d[E(r) − rf ] +
1

2
d(1 − d)V [r] +

1

2
(1 − γ)d2V [r] (3)

= dµ̂ +
1

2
d(1 − d)σ2 +

1

2
(1 − γ)d2σ2,

whereµ̂ = [E(r) − rf ]. Taking derivatives yields first order conditionsµ̂ + 1
2
(1 − 2d)σ2 + (1 −

γ)dσ2 = 0, or d[σ2 − (1 − γ)σ2] = µ̂ + 1
2
σ2. The optimal solution is therefore

d∗ =
µ̂ + σ2

2

γσ2
=

2µ̂ + σ2

2γσ2
. (4)

Equations (3) and (4) represent the basic form of objective function and optimum, which we shall

use throughout the remainder of this paper. Intuitively, the optimal risky investment is increasing

in expected returns and decreasing in risk aversion and variance.
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3.3 A model of exogenous extremes

Now we consider the case of rare extreme events. Following the literature on peso problems, we

model this situation as a small-probability regime switch in risky asset returns. Specifically, the

structure of the problem is unchanged from above, except that the risky return now obeys (2) most

of the time, but a small fractionα of the time, there is a regime shift to a period of larger tail events:

r̃ ∼ N(µ, σ2), with probability1 − α (Typical regime) (5)

∼ N(µ,
σ2

α
), with probabilityα (Extreme regime),

whereα is small.1718 In this subsection, we examine two levels of investor awareness about the

stochastic environment: complete knowledge, and completemisunderstanding.

Agent completely understands the environmentFirst, consider a situation where the individual

knows the stochastic environment. At the very beginning of each period, she knows which regime

prevails, and just solves for the optimal demand in each regime.19 Using the same optimization

approach as before, the optimal demand will now depend on theregime, and is a vector. Now the

investor accounts for the greater variance in the extreme regime, and her optimal investment is a

vectord∗ = (dL, dE). Leverage-friendly times occur with probability1 − α and extreme periods

occur with probabilityα. Therefore the optimal demand vector is

dL =
µ̂ + σ2

2

γσ2
=

2µ̂ + σ2

2γσ2
, with probability1 − α (6)

dE =
µ̂ + σ2

2α

γ σ2

α

=
2αµ̂ + σ2

2γσ2

= αdL +
1 − α

2γ
, with probabilityα.

17 In this simple specification, the probability of the rare event is inversely proportional to its impact: the lower the
probability, the higher the impact on variance. Therefore it is an easy way to deliver a low probability, high impact
event. This specification is similar to that of Gourieroux and Jasiak (2001).

18We might want to compare this to empirical research on the proportion of funds invested in the US, eg Blume and
Friend (1976), Polkovnichenko (2007).

19 The individual does not know the value of risky returns, justthe distribution from which they come. Observe that
the mixture of log-normals is not restrictive on the unconditional distribution. Conditionally, each regime satisfieslog-
normality, but unconditionally, a mixture of normals can approximate most empirically observed return distributions
arbitrarily closely. For more details on normal mixtures, see McLachlan and Peel (2000).
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This is the basic form of investment demand with exogenous extremes in our framework.20

Properties of the SolutionWe can note two things about the solution in (6). First,dE depends

positively and linearly on the probabilityα of extremes. Second, for positive excess returnsµ̂, it is

the case thatdL > dE , which is intuitive.21

To glean a quantitative sense of this differential, we calibrate expression (6) to US data, displayed

in Table 1. dL always greatly exceedsdE, as expected. For example, with risk aversionγ = 5,

we find thatdL = 0.69 anddE = 0.11. Thus the risky demand in extreme times is around 6

times smaller than in typical times. This result is qualitatively intuitive, if we think of the extreme

regimes as high volatility, disaster periods, where most investors hold small amounts of risky

assets, and typical regimes as good or boom periods, when it is relatively more attractive to hold a

large position in risky assets.

We also examine another perspective on investors’ risk positions, since a central part of our paper

concerns the propensity of individuals to spend more than they can reasonably repay.22 In terms

of our model above, the ratiod of individuals’ borrowing to their available, disposable income

increases over time, and is close to1 or exceeds1. In order to see whether this situation obtains for

the US economy as a whole, we calculate an empirical version of d in two ways. First, we measure

d as the ratio of total US consumer credit outstanding to available, real disposable income.23 The

results are illustrated in figure 1. Evidently, this ratio isincreasing over time, and has consistently

exceeded unity since July 1986. Second, we measured as the ratio of total US household credit

market debt to available real disposable income. This quantity is shown in figure 2. Once again

20To see the third row, note that

dE =
µ̂ + σ2

2α

γ σ2

α

=
αµ̂ + σ2

2

γσ2
= αdL +

σ2

2
− ασ2

2

γσ2

= αdL +
σ2

2
(1 − α)

γσ2
= αdL +

1 − α

2γ
.

21 To see this, observe that the condition fordL > dE can be written, using expression (6), asdL > αdL + 1−α
2γ

, or

dL > 1

2γ
. Substituting in the definition ofdL yields µ̂+ σ

2

2

γσ2 > 1

2γ
, which simplifies to2µ̂ > 0.

22This propensity is related to the concept of ”over-borrowing,” used by Fisher (1933) in the context of financial
crises. For related research on excessive expansion of credit, see Abreu and Brunnermeier (2003); Lorenzoni (2008);
and Shin (2009).

23In order to capture the total amount of income that is available to consumers to repay their borrowing, we subtract
real consumption from real income. We call this quantity available, real disposable income.
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the ratio is increasing, and consistently exceeds unity since 1959. Thus, the historical experience

of the US economy indicates thatd has been large and growing throughout the last half century.24

Agent misunderstands the environmentIn the preceding example, the investor was aware of the

extreme risks she faced. By contrast, some of the most significant extreme events in history have

beenunknown and unforeseenby the public at large.25 One way to model our ex ante ignorance

about such extremes is to use a hidden regime shift.26 Specifically, although the true risky return

distribution features a regime shift as in (5), the investorbelieves that̃ε ∼ N(µ, σ2) with prob-

ability 1. Accordingly, she demandsd = dL with probability 1, instead of probability1 − α as

in equation (6). The investor is therefore over-leveredα% of the time, investingdL instead of the

optimaldE.

We may ask two important questions about the investor’s behavior. First, how much does this

suboptimal investment hurt her? This question is natural inlight of Proposition 1 because the

suboptimality only occurs a small percentage of the time. Second, if there are costs associated

with learning about extremes, would the investor change hersuboptimal strategy? We summarize

the answers to these questions in Proposition 2 and Corollary 2, below.

Proposition 2 The cost to investors of suboptimal behavior during extremes is bounded above by

a constantK, which is proportional to squared, standardized excess returns
(

µ̂

σ

)2
.

Proof. See Appendix.

Corollary 2. If the costs of learning about extreme events are above a finite threshold, the investor

will prefer to over-invest during extreme periods.

24Theoretically, we can also show thatdL involves leverage. This means we need to show thatdL > 1, or using

definition (6), this meansµ̂+ σ
2

2

γσ2 > 1. By positivity of γ andσ2, we can write this as

2µ̂ + σ2 > 2γσ2 (7)

=⇒
µ̂

σ2
>

2γ − 1

2
.

Given a risk aversion of 2, for example, expression (7) says that leverage is optimal when the Sharpe ratio exceeds 1.5.
25In addition to 2008’s financial crisis, other negative examples include the Black Death of 1348; the 1929 US stock

market crash; the set of events leading up to the creation of the atomic bomb; global warming; and the devastation of
2005’s Hurricane Katrina. Positive examples include the invention of the wheel; signing of the first US copyright law
in 1790; the Wright brothers’ 1903 flight; and the record-breaking US stock market levels of the 1990s.

26To the best of our knowledge, this formulation of hidden extreme events is novel to the current paper. A parallel
framework is used by Gourieroux and Jasiak (2001), who provide an asset demand application, although they do not
consider hidden regimes, nor endogenous extremes.
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Proof. See Appendix.

Thus, if there are large enough costs to learning about extremes, the investor’s strategy is insensitive

to rare extreme events. This is true even when extremes deliver a large effect on return volatility.27

To summarize this subsection, we have shown that in an environment of exogenous extremes, a

knowledgeable investor will invest much more in normal times than in extreme times. We have also

provided a bound on the utility loss from suboptimal behavior by investors who do not understand

the economic environment. The existence of this bound is consistent with the literature on global

games, rational attention and information choice.28 It suggests that even if agents were informed of

the suboptimality of their investment strategy, a high enough level of costs associated with learning

about extremes will prevent them from shifting their strategy.

3.4 Calibration to the US economy

We calibrate Proposition 2 to US data using equation (12) from the Appendix. The results are

displayed in Figure 3. This figure shows that the costs of excess leverage range from2% to 6% of

wealth. These costs decrease with risk aversion, since morerisk averse investors would have lower

leverage.

4 Risky choice with endogenous extremes

The likelihood of extreme and rare events is affected by the behavior of agents in social settings.

Such endogenous extreme events include the effect of human activity on extreme climate changes,

and the effect of risky borrowing on financial crises.29 Accordingly, in this section, we consider a

situation where excessive risky borrowing permanently raises the likelihood of being in the high

variance regime.30 This environment entails more complex information processing for investors,

27The key to this insensitivity may be the combination of regime shifts and CRRA-lognormal framework. Insen-
sitivity of general expected utility functionals to rare events has been examined by Chichilnisky (2000); For related
contexts involving biased perception of virgin risks and fearsome risks, see Chichilnisky (2007); Chichilnisky and
Heal (2003); Pavlov and Wachter (2006); Sunstein and Zeckhauser (2008); and Weber (2006).

28See Morris and Shin (2002) Sims (2003); Skreta and Veldkamp (2009); Veldkamp and Van Nieuwerburgh (2009).
29For climate change, see the cover story of Time, March 30, 2007; and Stern (2007). For risky borrowing, see

Grossman (1988), Fisher (1933), and various issues of the Economist in March 2007 and October 2008.
30It is possible to account for endogenous regimes in a less draconian way, for example if the probability of extremes

lowers after a few periods of prudent behavior. The role of excess borrowing in precipitating extreme financial market
behavior has been motivated in many ways. One approach emphasizes heightened investor and bank fragility due to
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since their returns depend on the likelihood of extremes, which in turn depends on their investment

strategies. Similar to the literature on information choice of Sims (2003), such processing costs

may lead investors to ignore potentially important information. A further layer of complexity

concerns complete lack of knowledge, when individuals are unaware of their collective impact on

the likelihood of unforeseen extremes.31 In light of these considerations, we formalize endogenous

extremes by considering an investor who believes the risky return comes from a single distribution

as in equation (2), while in truth, the distribution switches endogenously. Optimally the investor

should use a cutoff level for risky investment, as we showed in (6). However, unaware of the

consequences, she follows the approach of (4) and just chooses risky demand equal todL.

Once more we may ask two questions. First, does this situation harm the investor? In order to

answer this question, we compute the expected wealth from behaving optimally and suboptimally.

Optimal investment involves a cutoff rule, with potentially non-constantd, while suboptimal in-

vestment involves a constantdL. Therefore this situation can in principle hurt the investor if α is

large enough, since the elevated extremes are permanent. Second, under what conditions will she

learn? It turns out that if costs are high enough, there is nothing in the model to alert the investor

to extreme events. Therefore a risk averse individual can ignore endogenous, high-impact regime

shifts.

4.1 A Two-period model

There is a lot of evidence that excessive credit and risky borrowing are related to extreme financial

events.32 We summarize this evidence by saying that there are two periods in the economy, with

the consequences of first-period investment choices being felt in the second period. In particular,

if the investor is too leveraged in the first period, then the likelihood of extremes is increased to

αn in the second period.33 For simplicity, we setαn = 2α. Thus, in this endogenous extreme

lack of liquidity. Prominent examples are the cases of LTCM in 1998 and Lehman Brothers in 2008. Such firms and
investors are especially susceptible to even small liquidity shocks and margin calls, see Shleifer and Vishny (1997).
Another approach is taken by the research on bubbles and financial crises, see Allen and Gale (2000) and Blanchard
(1979).

31Examples include climate change, or stock market bubbles. This class of extreme events is related to rare events of
Taleb (2005), and oblivious ignorance of Bhide (2000). In geopolitics, an instance of unknown endogenous extremes
could be the set of events in the early cold war that culminated in the Cuban missile crisis of 1962. This resembles
a reverse peso problem: by failing to account for their own ignorance, rational individuals do not anticipate extreme
events, which they themselves precipitated.

32See Fisher (1933); Bernanke (1983); (Allen and Gale (2007);Lorenzoni (2008); and Shin (2009).
33For ease of notation, we will use the terms ”prudent” and ”leveraged” to denote an investor who is unlevered and

who is over-levered, respectively. The prudent levels of wealth and investment are denoted by a superscriptP , and the
leveraged levels are denoted by a superscriptL.
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events model, leverage-friendly times occur with probability 1 − 2α and extreme periods occur

with probability2α. Using the same approach as in Section 2, the optimal demand vector is

dL =
2µ̂ + σ2

2γσ2
, with probability1 − 2α (8)

dE
2α =

µ̂ + σ2

4α

γ σ2

2α

=
4αµ̂ + σ2

2γσ2

= 2αdL +
1 − 2α

2γ
, with probability2α.

We will use this expression to calculate the effect of endogenous extremes on risky behavior.34

First Period: The first period is a typical regime. We assume that the investor’s optimal demanddL

exceeds her wealth,dL > 1. If the investor wishes to be prudent, she can instead investdP = 1.

Now her investment choice is more involved since she also hasto consider credit market effects.

She can investdP = 1, which has the benefit of ensuring a constant level of extremesand the cost

of foregone returns; or she can borrow to investdL > 1, which has the benefit of higher possible

returns and the cost of increased danger of extremes.

Second Period: In the second period, the probability of extremes is

Pr(extremes) = α, if investor chosedP

2α, if investor chosedL.

The investor is only allowed to borrow for the first period, and if so, she repays with interest at

the end of the second period. Therefore, in the second periodthe investor must choosedP if there

is a typical regime. Thus, depending on the investor’s choices, the economy can evolve along a

path with a low levelα of extremes or with a high level2α of extremes. To determine which

path the investor will choose, we again consider two levels of investor awareness of the economic

environment, corresponding to complete understanding andmisunderstanding.

34To see the third row, note that

dE
2α =

µ̂ + σ2

4α

γ σ2

2α

=
2αµ̂ + σ2

2

γσ2
= 2αdL +

σ2

2
− ασ2

γσ2

= 2αdL +
σ2

2
(1 − 2α)

γσ2
= 2αdL +

1 − 2α

2γ
.
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Agent completely understands the environmentIn this case, the representative investor under-

stands that the environment features regime shifts in the likelihood of extreme events. Further,

she knows that excess leverage may raise the likelihood of extreme events. We summarize the

investor’s strategy in Proposition 3 below.

Proposition 3 There is a net benefit of leverage for investors who know that the environment

features regime-switching in extreme events. This benefit may be expressed as a polynomial inµ̂

andσ2.

Proof. See Appendix.

Agent misunderstands the environmentIn this case, the investor does not know that there are

regime shifts and does not know that she can influence the likelihood of extremes. In period 1,

she can demand eitherdL or dP . In period 2, she repays any borrowing, and since she mistakenly

believes that the world is always in the typical regime, she demands the largest fraction she can,

dP = 1. We summarize the results of this investor’s decisions in Proposition 4 below.

Proposition 4 The utility loss from following a suboptimal strategy is bounded, for an investor

who does not understand that the environment features regime-switching in extreme events.

Proof. See Appendix.

The import of Proposition 3 is that rational investors will knowingly increase the likelihood of ex-

treme events in the second period. In a related sense, Proposition 4 shows that investors who do not

understand the environment face losses that are bounded. Therefore if the costs of learning about

the environment are large enough, investors may choose to continue with a suboptimal strategy.

4.2 Calibration to the US economy

We calibrate Propositions 3 and 4 to US data, using expressions for the net benefits and costs from

the Appendix.35 The results are displayed in Figures 4 and 5. From Figure 4 thenet benefit of

leverage is always positive. It increases with risk aversion, because in equations 6 and (8), individ-

uals invest more during endogenous than in exogenous extremes. This occurs because the former

feature lower volatility. From Figure 5 we see that the relative benefits from optimal investment

35The expressions for Propositions 3 and 4 are in equations (16), (19) and (20).
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100% of the time versus100 − α% of the time are low, between 2 and 11 per cent of available

wealth.

5 Conclusions

In this paper we construct a simple latent regime-switchingmodel of portfolio choice, in order to

assess the implications for over-investing. Motivated by theoretical and empirical considerations,

we examine the benefits and costs of leverage, and of suboptimal investment. Our most striking

finding is that in both one and two-period models, the benefitsof sustained optimal investment are

bounded. Thus, investors may knowingly ignore or exacerbate the likelihood of extreme events,

especially if there are costs to learning the structure of the financial environment. We also discover

that the benefits of leverage represent a large percentage ofincome. Upon calibration to the US

economy, we document that the costs of ignoring extreme events are small and the benefits of

leverage are substantial.

Our paper therefore provides both a theoretical framework for examining extreme events, and

empirical evidence on the scope of costs related to learningabout extremes. From an academic

perspective, our results may provide support for theoretical research on costs to information pro-

cessing and rational inattention.
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Table 1: Examples of Extreme and Rare Events

Frequent Rare

Non-Extreme No war, post-1990 ↓ CO2 pollution
(Small Impact) western Europe

Extreme ↑ CO2 Pollution Multi-nation war, post-
(Large Impact) 1990 western Europe

Multi-country stock market
crash, post-Great Depression

Table 2: Risky Asset Demand in Extreme and Normal Times

The table presents risky demanddE anddL during extreme and normal times respectively, using equation
(6). The calibration is as in Section 2. The parameterγ denotes the coefficient of relative risk aversion.

γ dL dE

1 3.4586 0.5503
2 1.7293 0.2751
3 1.1529 0.1834
4 0.8646 0.1376
5 0.6917 0.1101
6 0.5764 0.0917
7 0.4941 0.0786
8 0.4323 0.0688
9 0.3843 0.0611

10 0.3459 0.0550
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Figure 1: Consumer Credit Ratio for US Households: 1959-2009

The figure shows the ratio of total US consumer credit to available income, where the latter is computed as
real disposable income minus real consumption. All variables are available from the Federal Reserve Bank
of St. Louis. The frequency is monthly, and the time period isJanuary 1959 to June 2009.
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Figure 2: Credit Market Debt Ratio for US Consumers: 1953-2009

The figure shows the ratio of total US household credit marketdebt to available income, where the latter is
computed as real disposable income minus real consumption.All variables are available from the Federal
Reserve Bank of St. Louis. The frequency is quarterly, and the time period is January 1953 to January 2009.

0

5

10

15

20

25

30

Ja
n-

53

Ja
n-

57

Ja
n-

61

Ja
n-

65

Ja
n-

69

Ja
n-

73

Ja
n-

77

Ja
n-

81

Ja
n-

85

Ja
n-

89

Ja
n-

93

Ja
n-

97

Ja
n-

01

Ja
n-

05

Ja
n-

09

Household Credit Market Debt
Ratio

22



Figure 3: Investor Costs of Excess Leverage: US Stock Returns

The figure calibrates the bound from Proposition 2, using US data and the calibration of Section 2. The
bound shows the cost to an investor of excess leverage duringrare extreme events. According to Corollary
2 this bound may also be interpreted as the minimum cost of learning about regime shifts in the likelihood
of rare events, as discussed in Section 3 of the text.
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Figure 4: Net Benefits from Leverage for a US investor

The figure calibrates the bound from Proposition 3, equation(16). We use US data and the calibration values
described in Section 2 of the text. The bound shows the net benefit from being leveraged during endogenous
extreme regimes, as discussed in Section 3.
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Figure 5: Benefits from optimal investment for a US investor

The figure calibrates the bounds from Proposition 4, equations (19) and (20). We use US data and the
calibration values described in Section 2 of the text. The bound shows the net benefit of optimal investment
relative to suboptimal investment during endogenous extreme regimes. This bound may be interpreted as
the minimum cost to learning about regime shifts in the likelihood of rare events, as discussed in Section 3.
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A Proofs of Propositions

Proposition 1. If the investor deviates from the optimal investment strategy d∗ by choosing a suboptimal

investment strategŷd during a small proportionα of the time, her expected utility loss is bounded above.

Proof. We need to show that the expected utility loss∆EU satisfies∆EU ≤ K, for someK < ∞. First, let

us denote the suboptimal wealth levelŴ (d̂) Now note that the expected utility loss is the difference between

optimal utility with probability one and with probability1 − α. Thus∆EU ≡ U(W ∗) − [αU(Ŵ ) + (1 −

α)U(W ∗)], where we drop the argument inW () for simplicity. Computing the expected utility loss, we

obtain

∆EU ≡ U(W ∗) − [αU(Ŵ ) + (1 − α)U(W ∗)] (9)

= α[U(W ∗) − U(Ŵ )].

By boundedness of the utility function, the quantity in (9) is finite and bounded above, for example, by

αU(W ∗). Thus, forK = αU(W ∗), we have that∆EU satisfies∆EU ≤ K, as was to be shown.

Corollary 1. If there are high enough costs to learning whether she is behaving suboptimally a small

proportionα of the time, the investor will rationally choose to continuebehaving suboptimally.

Proof. From Proposition 1, we know that the investor loses at mostK from investing suboptimally for a

small portion of the time. If we set costs toK, it follows that the investor is better off using the suboptimal

strategy.

Proposition 2. The cost to investors of suboptimal behavior during extremes is bounded above by a constant

K, which is proportional to squared, standardized excess returns
(

µ̂
σ

)2
.

Proof. We need to show that the utility loss∆EU from investing a proportiondL instead ofdE during

extreme periods is of the form∆EU ≤ K, whereK = θµ̂2 for some positive, finiteθ. In order to compute

the utility loss, we just calculate the investor’s objective function (3) in both cases.

Optimal: The optimal strategy is to investdE , yielding an objective function

U(W (dE)) = dE µ̂ +
1

2
dE(1 − dE)

σ2

α
+

1

2
(1 − γ)(dE)2

σ2

α
(10)

=

(

αdL +
1 − α

2γ

)

µ̂ +
1

2

(

αdL +
1 − α

2γ

)(

1 − αdL −
1 − α

2γ

)

σ2

α

+
1

2
(1 − γ)

(

αdL +
1 − α

2γ

)2 σ2

α
,
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where the second line uses the fact thatdE = αdL + 1−α
2γ

, from expression (6).

Suboptimal: In similar fashion, the suboptimal payoff can be calculatedas

U(W (dL)) = dLµ̂ +
1

2
dL(1 − dt)

σ2

α
+

1

2
(1 − γ)(dL)2

σ2

α
. (11)

Now the expected utility loss from suboptimal investment isjust the difference between (10) and (11):

∆EU = µ̂

(

αdL +
1 − α

2γ
− dL

)

+
1

2

σ2

α

[(

αdL +
1 − α

2γ

)(

1 − αdL −
1 − α

2γ

)

− dL(1 − dL)

]

+
1

2
(1 − γ)

σ2

α

[

(

αdL +
1 − α

2γ

)2

− (dL)2
]

= µ̂

[

1 − α

2γ
− (1 − α)dL

]

+
1

2

σ2

α

[

αdL − α2(dL)2 −
αdL(1 − α)

2γ
+

(1 − α)

2γ
−

αdL(1 − α)

2γ
−

(

1 − α

2γ

)2

− dL + (dL)2
]

+
1

2
(1 − γ)

σ2

α

[

α2(dt)2 +
2αdL(1 − α)

2γ
+

(

1 − α

2γ

)2

− (dL)2
]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

dL(α − 1) + (dL)2(1 − α2) −
2αdL(1 − α)

2γ
+

(1 − α)

2γ
−

(

1 − α

2γ

)2
]

+
1

2
(1 − γ)

σ2

α

[

(dL)2(α2 − 1) +
αdL(1 − α)

γ
+

(

1 − α

2γ

)2
]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

dL(α − 1) + (dL)2(1 − α2 + (1 − γ)(α2 − 1))
]

+
1

2

σ2

α

[

(1 − γ)αdL(1 − α) − αdL(1 − α)

γ
+

(1 − α)

2γ
+

(

1 − α

2γ

)2

(1 − γ − 1)

]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α
[dL(α − 1) + (dL)2(1 − α2 + α2 − 1 − γ(α2 − 1))

γαdL(1 − α)

γ
+

(1 − α)

2γ
− γ

(

1 − α

2γ

)2

]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

(1 − α)

2γ
− (1 − α)dL − γ(α2 − 1)(dL)2 − αdL(1 − α) −

(1 − α)2

4γ

]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

2(1 − α) − (1 − α)2

4γ
− dL(1 − α)(1 + α) − (dL)2γ(α2 − 1)

]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

2 − 2α − 1 + 2α − α2

4γ
− dL(1 + α − α − α2) + (dL)2γ(1 − α2)

]

= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

1 − α2

4γ
− dL(1 − α2) + (dL)2γ(1 − α2)

]
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= µ̂

[

(1 − α)(
1

2γ
− dL)

]

+
1

2

σ2

α

[

(1 − α2)

(

1

4γ
− dL + γ(dL)2

)]

.

We can now substitute the expression fordL from equation (6), to obtain

∆EU = µ̂

[

(1 − α)

(

1

2γ
−

µ̂ + σ2

2

γσ2

)]

(12)

+
1

2

σ2

α






(1 − α2)







1

4γ
−

µ̂ + σ2

2

γσ2
+ γ

(

µ̂ + σ2

2

)2

γ2σ4













= µ̂

[

(1 − α)
σ2 − 2µ̂ − σ2

2γσ2

]

+
1

2

σ2

α

[

(1 − α2)
σ4 − 4σ2µ̂ − 2σ4 + 4µ̂2 + 4σ2µ̂ + σ4

4γσ4

]

= −
(1 − α)µ̂2

γσ2
+

1

2

σ2

α

[

(1 − α2)
4µ̂2

4γσ4

]

= −
(1 − α)µ̂2

γσ2
+

1

2

σ2

α

(1 − α2)µ̂2

γσ4

=
(1 − α2)µ̂2

2αγσ2
−

(1 − α)µ̂2

γσ2

=
(1 − α2)µ̂2 − 2α(1 − α)µ̂2

2αγσ2

=
µ̂2[1 − α2 − 2α + 2α2]

2αγσ2

=
µ̂2[1 − 2α + α2]

2αγσ2

=
µ̂2(1 − α)2

2αγσ2
.

The expression in (12) is of the formK = θ
(

µ̂
σ

)2
, whereθ = (1−α)2

2αγ
, as was to be shown.

Corollary 2. If the costs of learning about extreme events are above a threshold, the investor will prefer to

over-invest during extreme periods.

Proof. From the previous proposition, it follows that if costs are above K, the investor will be better off by

over-investing.

Proposition 3. There is a net benefit of leverage for investors who know that the environment features

regime-switching in extreme events. This benefit may be expressed as a polynomial in̂µ andσ2.
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Proof. We need to show that for some parameter values, the investor’s objective function from leveraged

investment,PL, exceeds that from prudent investment36, PP . That is, we must show that sometimesPL −

PP > 0. In order to do this, we calculate the investor’s expected payoff from choosing prudent and leveraged

investment levels. We denoteEU as the expected utility, from the objective function in equation (3). The

environment is that the first period is always a low-volatility regime with varianceσ2. In the first period the

investor decides whether to borrow and investdL, or else invest the prudent amountdP = 1. In the second

period, the investor will choose optimally for that period:eitherdE (dE
2α) if it is extreme (endogenous), or

elsedP for normal economic climates. First we compute the payoffPP as follows37

PP = EU(dP |σ2) + β

[

αEU(dE |
σ2

α
) + (1 − α)EU(dP |σ2)

]

. (13)

Then we compute the payoff from leverage,PL, as follows. In this case, the investor has to repay borrowing

r(dL − 1)W0 in the second period, where we normalizeW0 = 1 to obtainr(dL − 1). Hence the payoff is

PL = EU(dL|σ2) + β

[

2α

(

EU(dE
2α|

σ2

2α
) − EU(r(dL − 1)|

σ2

2α
)

)]

(14)

+β
[

(1 − 2α)
(

EU(dP |σ2) − EU(r(dL − 1)|σ2)
)]

Now to see conditions under which it is optimal to have excessive leverage (excess in the sense that it raises

the likelihood of extremes), we computePL − PP from (13) and (14) and see when it is positive:

PL − PP = EU(dL|σ2) − EU(dP |σ2)[1 + β(1 − α) − β(1 − 2α)] (15)

+αβ

[

2EU(dE
2α|

σ2

2α
) − EU(dE |

σ2

α
)

]

−β

[

2αEU(r(dL − 1)|
σ2

2α
) + (1 − 2α)EU(r(dL − 1)|σ2)

]

= EU(dL|σ2) − (1 + αβ)EU(dP |σ2) + αβµ̂

[

3αµ̂ + σ2

2γσ2

]

−β

[

r(dL − 1)µ̂ + (2 − 2α)
σ2

2
r(dL − 1)[(1 − r(dL − 1)) + (1 − γ)r(dL − 1)]

]

,

36 Alternatively, we could phrase it in terms of whether expected borrowing costsB are beneath a certain threshold.
Then we need to show that the optimal choice is a cutoff

d = dP , if B < B̄

= dL, if B > B̄.

37 We show in (7) thatdL involves leverage. So in the second period, since it is the end of economic activity, the
agents cannot borrow, they just invest as much as they can,dP = 1.
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where the second and third terms come from substitution intothe EU definition (3) in the following way.

Let us denote the second termS (for second) and the third termT (for third). To see the second term, use

equation (3) to obtain

S = αβ

[

2EU(dE
2α|

σ2

2α
) − EU(dE |

σ2

α
)

]

= αβ

[

2dE
2αµ̂ + dE

2α(1 − dE
2α)

σ2

2α
+ (1 − γ)(dE

2α)2
σ2

2α

]

−αβ

[

dE µ̂ +
1

2
dE(1 − dE)

σ2

α
+

1

2
(1 − γ)(dE)2

σ2

α

]

= β

[

2αdE
2αµ̂ + dE

2α(1 − dE
2α)

σ2

2
+ (1 − γ)(dE

2α)2
σ2

2

]

−β

[

αdE µ̂ + dE(1 − dE)
σ2

2
+ (1 − γ)(dE)2

σ2

2

]

= β

[

αµ̂(2dE
2α) +

σ2

2

(

dE
2α − γ(dE

2α)2
)

]

− β

[

αµ̂(dE) +
σ2

2

(

dE − γ(dE)2
)

]

= β

[

αµ̂(2dE
2α − dE) +

σ2

2

(

dE
2α − dE − γ(dE

2α)2 + γ(dE)2
)

]

.

Now we can substitute in the definitions ofdE anddE
2α from (6) and (8), to obtain

S = βαµ̂

(

8αµ̂ + 2σ2 − 2αµ̂ − σ2

2γσ2

)

+ β
σ2

2

(

4αµ̂ + σ2 − 2αµ̂ − σ2

2γσ2

)

+β
σ2

2

(

−γ
(16α2µ̂2 + 8αµ̂σ2 + σ4)

4γ2σ4
+ γ

4α2µ̂2 + 4αµ̂σ2 + σ4

4γ2σ4

)

= β

[

αµ̂

(

6αµ̂ + σ2

2γσ2

)

+
σ2

2

(

2αµ̂

2γσ2
−

12α2µ̂2 + 4αµ̂σ2

4γσ4

)]

= β

[

αµ̂

(

6αµ̂ + σ2

2γσ2

)

+
αµ̂

2γ
−

12α2µ̂2 + 4αµ̂σ2

8γσ2

]

= β

[

6α2µ̂2 + αµ̂σ2 + αµ̂σ2

2γσ2
−

4(3α2µ̂2 + αµ̂σ2)

4(2γσ2)

]

= β

[

6α2µ̂2 + αµ̂σ2 + αµ̂σ2 − 3α2µ̂2 − αµ̂σ2

2γσ2

]

= β

[

3α2µ̂2 + αµ̂σ2

2γσ2

]

= αβµ̂

[

3αµ̂ + σ2

2γσ2

]

.
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Similarly, for the third term in (15), we use expression (3) to obtain

T = 2αEU(r(dL − 1)|
σ2

2α
) + (1 − 2α)EU(r(dL − 1)|σ2)

= r(dL − 1)µ̂ + (2 − 2α)

[

σ2

2
r(dL − 1)(1 − r(dL − 1))

]

+(2 − 2α)

[

σ2

2
(1 − γ)(r(dL − 1))2

]

= r(dL − 1)µ̂ + (2 − 2α)
σ2

2
r(dL − 1)[(1 − r(dL − 1)) + (1 − γ)(r(dL − 1))].

Now we return to computingPL −PP , from expression (15), as follows: First, we use (3) withdP = 1 and

dL to obtain

PL − PP = dLµ̂ +
1

2
dL(1 − dL)σ2 +

1

2
(1 − γ)(dL)2σ2

−(1 + αβ)

[

µ̂ +
1

2
(1 − γ)σ2

]

+ αβµ̂

[

3αµ̂ + σ2

2γσ2

]

−β

[

r(dL − 1)µ̂ + (2 − 2α)
σ2

2
r(dL − 1)[(1 − r(dL − 1)) + (1 − γ)r(dL − 1)]

]

= dLµ̂ +
1

2
dL(1 − dL)σ2 +

1

2
(1 − γ)(dL)2σ2

−(1 + αβ)

[

µ̂ +
1

2
(1 − γ)σ2

]

+ αβµ̂

[

3αµ̂ + σ2

2γσ2

]

−β

[

r(dL − 1)µ̂ + (2 − 2α)
σ2

2
r(dL − 1)[1 − γr(dL − 1)]

]

.

Expanding this expression, then collecting terms indL , (dL)2, µ̂, and σ2

2 yields

PL − PP = dLµ̂ +
1

2
dLσ2 −

1

2
(dL)2σ2 +

1

2
(dL)2σ2 −

1

2
γ(dL)2σ2

−(1 + αβ)

[

µ̂ +
1

2
(1 − γ)σ2

]

+ αβµ̂

[

3αµ̂ + σ2

2γσ2

]

−β

[

dL(rµ̂) − rµ̂ + (2 − 2α)
σ2

2
rdL − (2 − 2α)

σ2

2
r − (2 − 2α)

σ2

2
γr2(dL)2

]

−β

[

2(2 − 2α)
σ2

2
γr2dL − (2 − 2α)

σ2

2
γr2

]

= dL

[

µ̂ +
σ2

2
− βrµ̂ − β(2 − 2α)

σ2

2
r − 2β(2 − 2α)

σ2

2
γr2

]
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+(dL)2
[

−
1

2
γσ2 + β(2 − 2α)

σ2

2
γr2

]

+µ̂

[

αβ

(

3αµ̂ + σ2

2γσ2

)

− (1 + αβ) + βr

]

+
σ2

2
[−(1 + αβ)(1 − γ) + β(2 − 2α)r + β(2 − 2α)γr2]

= dL

[

µ̂(1 − βr) +
σ2

2
[1 − β(2 − 2α)r(1 + 2γr)]

]

+(dL)2
[

γσ2

2
[β(2 − 2α)r2 − 1]

]

+µ̂

[

αβ

(

3αµ̂ + σ2

2γσ2
− 1

)

− 1 + βr

]

+
σ2

2
[β(2 − 2α)r(1 + γr) − (1 + αβ)(1 − γ)].

We now remove all terms except the basic parametersµ̂, α, γ, σ2, by expressingdL = 2µ̂+σ2

2γσ2 as in (6) to

obtain

PL − PP =
2µ̂ + σ2

2γσ2

[

µ̂(1 − βr) +
σ2

2
[1 − β(2 − 2α)r(1 + 2γr)]

]

+
4µ̂2 + 4µ̂σ2 + σ4

4γ2σ4

[

γσ2

2
[β(2 − 2α)r2 − 1]

]

+µ̂

[

αβ

(

3αµ̂ + σ2 − 2γσ2

2γσ2

)

− 1 + βr

]

+
σ2

2
[β(2 − 2α)r(1 + γr) − (1 + αβ)(1 − γ)]

=
µ̂

γσ2

[

µ̂(1 − βr) +
σ2

2
[1 − β(2 − 2α)r(1 + 2γr)]

]

+
1

2γ

[

µ̂(1 − βr) +
σ2

2
[1 − β(2 − 2α)r(1 + 2γr)]

]

+
µ̂2

γσ2

[

1

2
[β(2 − 2α)r2 − 1]

]

+
µ̂

γ

[

1

2
[β(2 − 2α)r2 − 1]

]

+
1

4γ

[

σ2

2
[β(2 − 2α)r2 − 1]

]

+ µ̂

[

αβ

(

3αµ̂ + σ2 − 2γσ2

2γσ2

)

− 1 + βr

]

+
σ2

2
[β(2 − 2α)r(1 + γr) − (1 + αβ)(1 − γ)]

=
µ̂

γσ2
[µ̂(1 − βr)] +

µ̂

2γ
[1 − β(2 − 2α)r(1 + 2γr)]
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+
µ̂

2γ
[1 − βr] +

σ2

4γ
[1 − β(2 − 2α)r(1 + 2γr)]

+
µ̂2

2γσ2
[β(2 − 2α)r2 − 1] +

µ̂

2γ
[β(2 − 2α)r2 − 1] +

σ2

8γ
[β(2 − 2α)r2 − 1]

+µ̂

[

αβ

(

3αµ̂ + σ2 − 2γσ2

2γσ2

)

− 1 + βr

]

+
σ2

2
[β(2 − 2α)r(1 + γr) − (1 + αβ)(1 − γ)].

Now we collect the terms to obtain the desired polynomial inµ̂, µ̂2, andσ2 :

PL − PP = µ̂

[

1 − β(2 − 2α)r(1 + 2γr) + 1 − βr + β(2 − 2α)r2 − 1

2γ

]

+µ̂

[

αβ
(1 − 2γ)

2γ
− 1 + βr

]

+µ̂2

[

1 − βr

γσ2
+

β(2 − 2α)r2 − 1 + 3α2β

2γσ2

]

+
σ2

2

[

1 − β(2 − 2α)r(1 + 2γr)

2γ
+

β(2 − 2α)r2 − 1

4γ

]

+
σ2

2
[β(2 − 2α)r(1 + γr) − (1 + αβ)(1 − γ)]

= µ̂

[

1 − β(2 − 2α)r(1 + 2γr) − βr + β(2 − 2α)r2

2γ

]

+µ̂

[

αβ(1 − 2γ) − 2γ + 2βγr

2γ

]

+µ̂2

[

2 − 2βr + β(2 − 2α)r2 − 1 + 3α2β

2γσ2

]

+
σ2

2

[

2 − 2β(2 − 2α)r(1 + 2γr) + β(2 − 2α)r2 − 1

4γ

]

+
σ2

2

[

4βγ(2 − 2α)r(1 + γr) − 4γ(1 + αβ)(1 − γ)

4γ

]

= µ̂

[

1 + (2 − 2α)βr(r − 1 − 2γr) − βr + αβ − 2αβγ − 2γ + 2βγr

2γ

]

+µ̂2

[

1 − 2βr + 2βr2 − 2αβr2 + 3α2β

2γσ2

]

+
σ2

2

[

1 − (4βr − 4αβr)(1 + 2γr) + 2βr2 − 2αβr2 + (8βγr − 8αβγr)(1 + γr)

4γ

]

+
σ2

2

[

−4γ(1 + αβ) + 4γ2(1 + αβ)

4γ

]

= µ̂

[

1 + 2βr(r − 1 − 2γr) − 2αβr(r − 1 − 2γr) − βr + αβ − 2αβγ − 2γ + 2βγr

2γ

]
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+µ̂2

[

1 − 2βr + 2βr2 − 2αβr2 + 3α2β

2γσ2

]

+
σ2

2

[

1 − (4βr − 4αβr) − (8βγr2 − 8αβγr2) + 2βr2 − 2αβr2 + 8βγr − 8αβγr

4γ

]

+
σ2

2

[

8βγ2r2 − 8αβγ2r2 − 4γ − 4αβγ + 4γ2 + 4αβγ2

4γ

]

.

This expression can be further simplified for calibration purposes, as

PL − PP = µ̂

[

1 + 2βr2 − 2βr − 4βγr2 − 2αβr2 + 2αβr + 4αβγr2 − βr + αβ − 2αβγ − 2γ + 2βγr

2γ

]

+µ̂2

[

1 − 2βr + 2βr2 − 2αβr2 + 3α2β

2γσ2

]

+
σ2

2

[

1 − 4βr + 4αβr − 8βγr2 + 8αβγr2 + 2βr2 − 2αβr2 + 8βγr − 8αβγr

4γ

]

+
σ2

2

[

8βγ2r2 − 8αβγ2r2 − 4γ − 4αβγ + 4γ2 + 4αβγ2

4γ

]

= µ̂

[

1 + 2βr2 − 2αβr2 − 3βr + 2αβr + αβ − 2γ + 2βγr − 4βγr2 + 4αβγr2 − 2αβγ

2γ

]

+µ̂2

[

1 − 2βr + 2βr2 − 2αβr2 + 3α2β

2γσ2

]

+
σ2

2

[

1 − 4βr(1 − α) − 8βγr2(1 − α) + 2βr2(1 − α) + 8βγr(1 − α) + 8βγ2r2(1 − α)

4γ

]

+
σ2

2

[

−4γ − 4αβγ + 4γ2 + 4αβγ2

4γ

]

.

Finally, we can factor the above expression further in termsof β everywhere to obtain

PL − PP = µ̂

[

1 − 2γ + β[α + 2r2(1 − α) + 2αr − 3r + 2γr − 4γr2(1 − α) − 2αγ]

2γ

]

(16)

+µ̂2

[

1 + β[3α2 − 2r + 2r2(1 − α)]

2γσ2

]

+
σ2

2

[

1 + 4γ(γ − 1) + 2β[−2r(1 − α) − 4γr2(1 − α) + (4γr + 4γ2r2 + r2)(1 − α) + 2αγ(γ − 1)]

4γ

]

= µ̂

[

β[α(1 + 2r) + (1 − α)(2r2 − 4γr2) − 3r + 2γr − 2αγ] + (1 − 2γ)

2γ

]
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+µ̂2

[

1 + β[3α2 − 2r + 2r2(1 − α)]

2γσ2

]

+
σ2

2

[

1 + 4γ(γ − 1) + 2β[(1 − α)(4γr + 4γ2r2 + r2 − 2r − 4γr2) + 2αγ(γ − 1)]

4γ

]

.

Equation (16) is the desired polynomial inµ̂ andσ2, which represents the net utility gain from following the

leveraged versus the prudent strategy. Upon inspection this quantity can be confirmed as bounded.

Proposition 4. The utility loss from following a suboptimal strategy is bounded, for an investor who does

not understand that the environment features regime-switching in extreme events.

Proof. We have to show that∆EU ≤ K, for some positive constantK. To do this, we compute the differ-

ence between payoffs to the optimal strategies(PL, PP ) and their suboptimal counterparts(P̂L, P̂P ). That

is, we computePL − P̂L andPL − P̂L. Below we first compute the optimal, then suboptimal payoffs.

Optimal Payoffs (PL, PP ). These are the same as above, in equations (14) and (13):

PP = EU(dP |σ2) + β

[

αEU(dE |
σ2

α
) + (1 − α)EU(dP |σ2)

]

and

PL = EU(dL|σ2) + β

[

2α

(

EU(dE
2α|

σ2

2α
) − EU(r(dL − 1)|

σ2

2α
)

)]

+β
[

(1 − 2α)
(

EU(dP |σ2) − EU(r(dL − 1)|σ2)
)]

.

Suboptimal Payoffs(P̂L, P̂P ). The strategy here involves demanding eitherdL or dP in period 1 (again de-

pending on parameter values). Then in period 2 the investor repays any borrowing, and since she mistakenly

believes the world is always in the typical regime, she always demands the most she can,dP = 1, regardless

of whether the realized regime is extreme or typical. To compute the results, we proceed as follows. If

she over-invests by choosingdL in the first period, the likelihood of extremes raises fromα to 2α, and her

payoff P̂L is

P̂L = EU(dL|σ2) + β

[

2α

(

EU(dP |
σ2

2α
) − EU(r(dL − 1)|

σ2

2α
)

)]

(17)

+β
[

(1 − 2α)
(

EU(dP |σ2) − EU(r(dL − 1)|σ2)
)]

.
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Conversely, if she choosesdP in the first period, the likelihood of extremes remains unchanged atα and her

payoff P̂P is

P̂P = EU(dP |σ2) + β

[

αEU(dP |
σ2

α
) + (1 − α)EU(dP |σ2)

]

. (18)

Utility Differentials PL − P̂L and PP − P̂P . First we computePL − P̂L. Using equations (14) and (17),

we obtain

PL − P̂L = 2αβ

[(

EU(dE
2α|

σ2

2α
) − EU(dP |

σ2

2α
)

)]

,

which from equations (3) and (6) yields

PL − P̂L = 2αβ

[

dE
2αµ̂ +

1

2
dE
2α(1 − dE

2α)
σ2

2α
+

1

2
(1 − γ)(dE

2α)2
σ2

2α

]

−2αβ

[

dP µ̂ +
1

2
dP (1 − dP )

σ2

2α
+

1

2
(1 − γ)(dP )2

σ2

2α

]

= 2αβ

[

dE
2αµ̂ +

1

2
dE
2α(1 − dE

2α)
σ2

2α
+

1

2
(1 − γ)(dE

2α)2
σ2

2α

]

− 2αβ

[

µ̂ +
1

2
(1 − γ)

σ2

2α

]

.

We now factor this expression into terms involvingµ̂ and σ2

2 , to obtain

PL − P̂L = β
σ2

2
[dE

2α(1 − dE
2α) + (1 − γ)(dE

2α)2 − (1 − γ)] − 2αβµ̂ [1 − dE
2α]

= β
σ2

2
[dE

2α − (dE
2α)2 + (dE

2α)2 − γ(dE
2α)2 − (1 − γ)] − 2αβµ̂ [1 − dE

2α]

= β
σ2

2
[dE

2α − 1 − γ(dE
2α)2 + γ] − 2αβµ̂ [1 − dE

2α]

= β
σ2

2
[dE

2α − 1 + γ(1 − (dE
2α)2)] − 2αβµ̂ [1 − dE

2α]

= βγ
σ2

2
[1 − (dE

2α)2] − β(1 − dE
2α)[2αµ̂ +

σ2

2
].

Now, substitutingdE
2α = 4αµ̂+σ2

2γσ2 from (8) yields

PL − P̂L = βγ
σ2

2

[

4γ2σ4 − 16α2µ̂2 − 8αµ̂σ2 − σ4

4γ2σ4

]

−β

[

2γσ2 − 4αµ̂ − σ2

2γσ2

] [

4αµ̂ + σ2

2

]

= β

[

4γ2σ4 − 16α2µ̂2 − 8αµ̂σ2 − σ4

8γσ2

]

−β

[

8αγµ̂σ2 + 2γσ4 − 16α2µ̂2 − 4αµ̂σ2 − 4αµ̂σ2 − σ4

4γσ2

]
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=
β

8γσ2

[

4γ2σ4 − 16α2µ̂2 − 8αµ̂σ2 − σ4 − 16αγµ̂σ2 − 4γσ4 + 32α2µ̂2 + 16αµ̂σ2 + 2σ4
]

=
β

8γσ4
[4γ2σ4 + 16α2µ̂2 + 8αµ̂σ2 + σ4 − 16αγµ̂σ2 − 4γσ4]

=
β

8γσ2

[

µ̂(16α2µ̂ + 8ασ2 − 16αγσ2) + σ4(4γ2 − 4γ + 1)
]

=
β

8γσ2

[

8αµ̂(2αµ̂ + σ2(1 − 2γ)) + σ4[4γ(γ − 1) + 1]
]

=
β

8γσ2

[

8αµ̂(2αµ̂ − σ2(2γ − 1)) − σ4[−1 − 4γ(γ − 1)]
]

. (19)

The expression in (19) represents the net utility gain from following the optimal versus the suboptimal

strategy, in the case of leverage. Upon inspection this quantity can be confirmed as bounded.

We now consider the differential betweenPP and its suboptimal counterpart̂PP .

PP − P̂P : From equations (13) and (18) we have

PP − P̂P = αβ

[

EU(dE |
σ2

α
) − EU(dP |

σ2

α
)

]

= αβ

[

dE µ̂ +
1

2
dE(1 − dE)

σ2

α
+

1

2
(1 − γ)(dE)2

σ2

α

]

−αβ

[

µ̂ +
1

2
(1 − γ)

σ2

α

]

= αβµ̂[dE − 1] + β
σ2

2
[dE(1 − dE) + (1 − γ)(dE)2 − (1 − γ)]

= β
σ2

2
[dE − γ(dE)2 − 1 + γ] − αβµ̂[1 − dE ]

= β
γσ2

2
[1 − (dE)2] − β[1 − dE ]

[

αµ̂ +
σ2

2

]

.

Now we can substitutedE = 2αµ̂+σ2

2γσ2 from (6) to obtain

PP − P̂P = β
γσ2

2

[

4γ2σ4 − 4α2µ̂2 − 4αµ̂σ2 − σ4

4γ2σ4

]

−β

[

2γσ2 − 2αµ̂ − σ2

2γσ2

] [

2αµ̂ + σ2

2

]

= β

[

4γ2σ4 − 4α2µ̂2 − 4αµ̂σ2 − σ4

8γσ2

]

−β

[

4αγµ̂σ2 + 2γσ4 − 4α2µ̂2 − 2αµ̂σ2 − 2αµ̂σ2 − σ4

4γσ2

]
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=
β

8γσ2

[

4γ2σ4 − 4α2µ̂2 − 4αµ̂σ2 − σ4 − 8αγµ̂σ2 − 4γσ4 + 8α2µ̂2 + 8αµ̂σ2 + 2σ4
]

=
β

8γσ2

[

4γ2σ4 + 4α2µ̂2 + 4αµ̂σ2 + σ4 − 8αγµ̂σ2 − 4γσ4
]

=
β

8γσ2

[

µ̂(4α2µ̂ + 4ασ2 − 8αγσ2) + σ4(4γ2 + 1 − 4γ)
]

=
β

8γσ2

[

4αµ̂(αµ̂ − σ2(2γ − 1)) − σ4(−4γ(γ − 1) − 1)
]

. (20)

The expression in (20) represents the net utility gain from following the optimal versus the suboptimal

strategy, in the case of prudent first-period investment. Upon inspection this quantity can be confirmed as

bounded.
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