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Abstract

One of the main difficulties in evaluating the profits obtained using technical anal-
ysis is that trading rules are often specified rather vaguely by practitioners and
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ing rules across the full range of possible parameter values is evaluated by means of
an aggregate test that does not depend on the parameters of the rules. The results
indicate that for a wide range of parameters moving-average rules generate con-
trarian profits (profits from the moving-average rules are negative). In bootstrap
simulations the returns statistics are significant indicating that the moving-average
rules pick up some form of systematic variation in returns that does not correlate
with the standard risk factors.

Keywords
Stock returns, Technical analysis, Momentum trading rules, Bootstrapping.

JEL Classification C22, C53, Q49

Corresponding author
Vlad Pavlov
School of Economics and Finance
Queensland University of Technology
Brisbane, 4001, Australia

email v.pavlov@qut.edu.au



1 Introduction

The concept of making risk-adjusted economic profits from implementing relatively simple

technical trading rules, which derive their buy/sell signals as functions of past prices,

has been discussed and implemented in equity, currency and other markets (see, inter

alia, Brock, Lakonishok and LeBaron, (1992; Jegadeesh and Titman, (1993); Levich and

Thomas, 1993; Blume, Easley and OHara, 1994; Osler and Chang, 1995; Chan, Jegadeesh

and Lakonishok, 1996, 1999; Hudson, Dempsey and Keasey, 1996; Bessembinder and

Chan, 1998; Gencay, 1998; Allen and Karjalainen, 1999; Sullivan, Timmermann and

White, 1999; Lo, Mamaysky and Wang, 2000; and for Australian equities see Hurn and

Pavlov, 2003; Demir, Muthuswamy and Walter, 2004; Pavlov and Hurn, 2010). There

is sufficient evidence in this body of literature to support the contention that technical

analysis is a profitable undertaking. This conclusion is intriguing from both a theoretical

and practical point of view, because it seems to provide evidence against efficiency in these

markets and suggests that investors are able to select a specific trading rule, ex ante, from

an infinite set of rules and generate excess profits in a real-world implementation.

A common strand which runs through much of the literature on the profitability of techni-

cal trading strategies is the data-snooping bias. Lo and MacKinlay (1990) demonstrated

that access to a relatively small amount of prior information can have a dramatic impact

on statistical inference. This prior information may arise from a number of sources, the

most obvious being that tests of the profitability of technical analysis traditionally focus

on a small number of trading rules with judiciously chosen parameters. Both the universe

of rules that attract attention in the empirical literature and the values of the parame-

ters may be regarded as the result of prior specification search, given that the rules and

parameter values that are chosen are the ones that have demonstrated good performance

ex post. Accordingly, the recent literature on the profitability of technical trading rules

has been mainly concerned with the elimination of data-snooping bias and much of the

subsequent work in this area uses the Reality Check due to White (2000) in which both

parameter uncertainty and rule-selection bias are incorporated into the testing procedure.
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This paper concentrates on moving-average (or cross-over) rules.1 Of course, in practice

investors may employ a complex trading strategy in which the informational input of many

rules is used and the learning and decision processes of the investor become important for

technical analysis (see Hsu and Kuan, 2005). There are, however, a number of advantages

to using these trading rules. The first and most obvious reason is that they are one of

the earliest documented rules for conducting technical analysis and are still very popular

with chartists. Perhaps more important in the context of this research is that the only

subjective judgement required to implement the rules is the choice of the moving-average

parameters. In order to avoid the data snooping bias, therefore, the distribution of

returns over all moving-average parameters will be examined rather than trying to pick

a particular set of parameters.

One potential complication arising from empirical tests based on the Reality Check is

that trading rules are likely to generate relatively infrequent signals. Consequently for

empirical tests based on the Reality Check to have satisfactory power, long series of

high frequency observations are required. As a result, much of the empirical research

on trading profits tends to concentrate on stock market indices or a small subsection of

financial returns such as currencies. The first central contribution of this paper is to

overcome potential limitations in time-series data by applying the technical trading rules

to cross-sections of stocks and then use the resulting buy and sell signals to form portfolios.

The returns to these portfolios form the basis of the tests. The second fundamental

contribution of the paper is to propose a set of tests to assess the statistical significance

of the portfolio returns for all possible values of the moving-average parameters. A

bootstrapping exercise is then undertaken to examine if the distribution of returns to

portfolios generated by moving-average rules is consistent with the distribution of returns

generated by bootstrapping the time course of the cross-section of stocks.

The rest of the paper is structured as follows. Section 2 describes the dataset used in

this research and deals with various methodological points related to the construction of

1Hsu and Kuan (2005) list 12 classes of simple technical trading rules, namely, filter rules, moving
averages, support-and-resistance, channel break-outs, on-balance volume averages, momentum strate-
gies in price and in volume, head-and-shoulders, triangle, rectangle and double tops and bottoms and
broadening tops and bottoms.
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portfolios based on buy and sell signals generated by moving-average rules. Section 3 sets

out the test statistics that will be used to assess the performance of technical analysis

as a portfolio selection device. Section 4 outlines the bootstrapping procedures employed

to assess the statistical significance of the portfolio returns. The results of the empirical

analysis are presented in Section 5. Conclusions are contained in Section 6.

2 Data and Portfolio Construction

The data are obtained from the Australian Centre for Research in Finance (CRIF). The

dataset contains monthly observations on prices, returns, dividends and capital recon-

structions for all securities listed on the Australian Stock Exchange (ASX) for the period

December 1973 to December 2008. The analysis is performed on simple monthly returns

defined as the sum of the capital gain and dividend yield taking into account any capital

reconstructions.

Table 1 reports the means and standard deviations of returns for equally weighted stocks

in different size cohorts. In computing these basic statistics, two different assumptions

are employed to handle periods during which there are no reported trades for a particular

stock. The first set of statistics assumes that all non-traded stocks are simply assigned

the average return based on all the traded stocks in the relevant cohort. In the second

approach, the common method for treating missing observations, especially when calcu-

lating an index return, namely that of setting the capital gains on a non-traded stock to

zero (effectively valuing the stock at the last available market price) is adopted. Return

statistics calculated under this assumption are in the columns 4 and 5 of Table 1.

As expected, inferring missing returns with zeros biases the estimate of the mean return

downwards (a random stock is expected to provide a positive return). It also implies zero

volatility for the periods of non-trading, so the effect on standard deviation estimates

is also to be expected. It should be noted, however, that estimating the returns based

on traded stocks only ignores exits and de-listings which tend to be associated with

distress (although stocks can also exit the database due to mergers). For smaller stocks,

in particular, an exit from the database is often preceded by a period of low liquidity

4



and depressed returns. It is reasonable to expect that the mean return estimates in the

second column are biased upward and provide an upper bound on the estimates of the

underlying expected return.

Filter Average Return Inferred Zero Return Inferred
CAP Mean Standard Deviation Mean Standard Deviation
Top 100 1.19 4.97 1.15 4.82
100-200 1.20 4.84 1.18 4.74
200-300 1.07 4.77 1.03 4.63
300-400 0.95 5.08 0.91 4.87
400-500 0.95 5.53 0.87 5.21
500-600 0.94 5.98 0.83 5.46
600-700 1.09 6.65 0.91 6.03
700-800 1.33 7.41 0.99 6.34
800-900 2.66 9.13 1.67 6.84
900-1000 3.54 10.47 1.49 6.53

Top 500
Equally weighted 1.07 4.75 1.03 4.57
Value weighted 1.12 4.90 0.91 4.44

Table 1: Monthly returns (%) by size for all corporate securities listed on the Australian
Stock Exchange for the period January 1973 to December 2008. Size is defined according
to the relative ranking based on the price of the last observed trade).

The important conclusion to be drawn from the statistics presented in Table 1 is that

for stocks up to the 400-500 cohort, the mean returns and standard deviations for both

methods of treating missing returns are relatively close (within 10 basis points of each

other). For small stocks (with ranks > 500) the estimates of mean returns are very sensi-

tive to the treatment of missing returns and stock exits. These features are symptomatic

of the fact that there is low liquidity in the Australian stock market for small stocks.

Consequently, in order to limit the effect of low liquidity on the empirical analysis, in

each period the trading rules are applied to the top 500 stocks on the ASX.

Two further criteria are applied in order to weed out thinly traded securities and to

control for the fact that over the period covered by the sample, a substantial number of

stocks were delisted and exited the database. To be included in the portfolio at time t the

security must have no recorded missing observations over the three years prior to portfolio
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formation. It is further assumed that investors can anticipate short term de-listings, so

that any stocks that exit the database in period t + 1 because they have been dropped

from the ASX register are not included in the portfolio. In point of fact, this assumption

makes no material difference to the results because of the focus on large stocks for which

exits are relatively rare. The number of securities that pass the liquidity criteria each

month ranges between 273 and 411 with the average being 342 securities.

In this paper, trading signals are generated by moving-average rules. These rules are

attractive for their analytical simplicity and lack of ambiguity and are still in widespread

use by technical traders.2 The rule is based on two moving averages (MA) on the values

of the stock. The long MA involves heavier averaging and is relatively smooth. The short

MA uses a shorter averaging window and is relatively volatile. In the folklore of technical

traders the former represents the established trend and the latter picks up a change in

this trend or may be regarded as a speculative component. In what follows, exponentially

weighted moving averages will be relied upon:

MAt(λ) = λMAt−1 + (1− λ)Vt (1)

where Vt is the value of the share at time t and λ is the averaging parameter. Momen-

tum rules based on simple averaging appear to be used more often than rules based on

exponentially weighted schemes, although both are used in practice. The motivation for

choosing exponential weighting for this analysis is that it provides continuous dependence

on the parameter and produces sharper statistical results.3

In order to construct portfolios, buy and sell signals generated by trading rules are used

to construct equally weighted share portfolios. Let Sit and Bit be indicator functions for

buy and sell signals respectively (set equal to 1 if a signal is generated for the stock i at

time t and zero otherwise). In the traditional interpretation of the momentum signals:

Bt,i =

{
1 if MAt(λS) > MAt(λL) andMAt−1(λS) < MAt−1(λL)

0 otherwise

2 Lo, Mamaysky and Wang (2000) discuss algorithmic representations for a much wider universe of
rules, but whether their interpretations of many of the rules are representative of their use by traders
can be questioned.

3This choice is discussed in greater detail in Pavlov and Hurn (2010).
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St,i =

{
1 if MAt(λS) < MAt(λL) andMAt−1(λS) > MAt−1(λL)

0 otherwise

where λS and λL respectively are the short and long MA parameters that satisfy the

restriction λS < λL. In other words, buy (sell) signals are generated when the short MA

crosses the long MA from below (above).

Denote the time t return on buys and sells by r+
t and r−t respectively. If N is the

total number of stocks available for investment at time t, then the returns on the long

(+)/short(-) portfolios respectively are calculated as

r+
t =

∑N
i=1 Bt,iRt+1,i∑N

i=1 Bt,i
(2)

r−t =

∑N
i=1 St,iRt+1,i∑N

i=1 St,i
(3)

The arbitrage portfolio is constructed by buying a unit of the long portfolio while financing

the purchase by selling a unit of the short portfolio. The return on the arbitrage portfolio

is then the difference between r+
t and r−t unless no buy or sell signals are generated in

which case no position is taken. The portfolio is held for 1 month and then sold. The

task of subsequent sections is to outline how the statistical significance of any profit to

this investment strategy may be assessed.

3 Test Statistics

In this section, a number of test statistics to assess the performance of portfolios chosen

on the basis of technical trading rules will be proposed. To simplify the analysis, the

value of the short MA parameter is fixed at zero, that is λS = 0. The implication of

this choice is that the short moving average is simply the stock price and consequently

the test statistics depend only on one parameter, λL. The results obtained allowing both

parameters to vary are very similar but add considerably to computational burden of the

bootstrap simulations that are necessary to generate the distribution of the test statistics.
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3.1 Cross-sectional Tests

These tests evaluate the performance of the long or short legs of the portfolio across

the cross sectional variation in the universe of stocks at any given time. There are two

variants of cross-sectional test.

CS Test

The idea of the CS test is to compare the return on the long or short legs of the portfolio

with the return on a randomly selected portfolio of Np,t stocks where Np,t is the number

of long or short trading signals generated by the trading rule. Let

rcs,t =
1

Nt

Nt∑
i=1

rt,i ,

and

σ2
cs,t =

1

Np,t(Nt − 1)

Nt∑
i=1

(rt,i − rcs,t)2 .

be the estimates of the mean and standard deviation of a portfolio of Np,t stocks randomly

selected from the population of available stocks but conditional on the number of stocks

in the momentum portfolio. Under the random selection hypothesis, the portfolio based

on the rules and the randomly selected portfolio should have the same volatility. The CS

test on the long leg of the portfolio is

T+
cs(λ) =

1

T

T∑
t=1

r+
t (λ)− rcs,t

σcs,t
, (4)

which represents the average difference between the information coefficients of the mo-

mentum portfolio and a random portfolio of the same size. The corresponding statistic

for the short leg of the portfolio is denoted T−cs(λ).

A large positive (negative) value of the CS test indicates that the relevant leg (long

or short) of the portfolio outperforms a randomly selected portfolio. It is expected that

subtracting the return on an equally weighted portfolio of shares makes the CS test robust

to time-series variation in expected returns. For example, in the presence of expected

returns variation, a cross-over rule may generate a large number of trading signals in the

periods of high expected returns and few or no signals when expected returns are low.
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Subtracting the cross-sectional average (the return on an equally weighted portfolio of all

available shares) would take this variation out of the test statistic.

Cross-sectional Arbitrage Portfolio Test (CSA)

Under the null hypothesis that the rule is a random sample from the universe of stocks,

both the long and the short legs of the portfolio have the same expected return. This

suggests a composite test statistic

T+
csa(λ) =

1

T

T∑
t=1

r+
t (λ)− r−t (λ)

σarb,t
, (5)

where

σ2
arb,t =

1

(N+
t +N−t )

Nt∑
i=1

(rt,i − rcs,t)2 ,

rcs,t is as defined for the CS test and N+
t and N−t are the numbers of stocks selected into

the long and short legs of the arbitrage portfolio.

3.2 Time-series Tests

These tests evaluate the performance of the long or short legs of the portfolio over the 36

months prior to portfolio formation but using the fixed weights selected by the trading

rule at the current time. Once again two variants are proposed.

Time-series Test (TS)

The test statistic is

T+
ts (λ) =

1

T

T∑
t=1

r+
t (λ)− rts,t

σts,t
, (6)

where

rts,t =
1

H

1∑
j=−H+1

rt−j ,

is the average return on the portfolio selected by the rule at time t over the previous H

months and σ2
ts,t is the corresponding sample standard deviation of the portfolio return.

Both rts,t and σ2
ts,t are estimated over the H months prior to portfolio formation using

the fixed weights selected by the trading rule at time t. In this analysis, H is set equal

to 36 months, the same values as used in the liquidity filter. So rts,t and σ2
ts,t are the
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average return and standard deviation on the portfolio based on rule signals at time t.

The corresponding statistic for the short leg of the portfolio is denoted T+
ts (λ).

The TS test examines the performance of the long/short leg of the portfolio over the

previous 3 years. This test controls for momentum type effects. For example, if the

trading rule tends to select past winners in the long leg and past losers in the short leg

then the historical mean return will pick up any persistence in the performance of the

respective portfolio. It can also be expected that the TS test will be robust to cross-

sectional selectivity and variation in the expected return, that is, if the rule tends to pick

stock with high (or low) mean returns into a particular portfolio leg. A large value of the

TS test would indicate that the trading rule is picking reversals.

Time-series Arbitrage Portfolio Test (TSA)

The test statistic is

T+
tsa(λ) =

1

T

T∑
t=1

r+
t (λ)− r−t (λ)− rarb,t

σarb,t
, (7)

where rarb,t and σarb,t are estimated as the mean and standard deviation respectively of

the arbitrage portfolio with the weights frozen at time t and over the 36 months prior to

the formation of the arbitrage portfolio.

3.3 A Composite Test

The test statistics above depend on the value of the averaging parameter λ. Since there

is no theory to guide the choice of this parameter a composite test is proposed that

eliminates the dependence of this parameter by averaging the tests over a range of λ

values.

Let T (λ) ∈ {T+
cs , T

+
csa, T

−
cs , T

−
csa, T

+
ts , T

+
tsa, T

−
ts , T

−
tsa} be the collection of tests suggested

thus far. The idea is to smooth these tests using a centred moving average on the interval

[λ− 0.1, λ+ 0.1] by computing

T̃ (λ) =
1

21

10∑
i=−10

T (λ+ ∆i)
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with ∆ = 0.01. Now define

λ = arg max
λ∈Λ

T̃ (λ) λ = arg min
λ∈Λ

T̃ (λ)

with Λ = {∆i}90
10 being a grid of the parameters of the trading rule.

Composite Tests

The composite test statistics are now defined on the the best M trading rules according

to the values of T̃ (λ) in the neighbourhoods of λ and λ given respectively by

τM =
1

M

M∑
i=1

T (λi)

σT (λi)
. (8)

In the empirical analysis M is fixed at 10 which, given the selected grid for λ, corresponds

to averaging over the interval of length 0.1 centred on the optimal value.

All the test statistics proposed in this section are non-standard and their statistical sig-

nificance must therefore be established by bootstrapping. A detailed description of the

bootstrapping procedure is the subject matter of the next section.

4 Bootstrapping

The fundamental assumption underlying the generation of bootstrapped panels of equity

returns is that the returns are generated by time-varying risk exposure to economy-

wide risk factors. Recognizing that all factors in these empirical asset-pricing models

are proxies for underlying economic sources of risk, the following pragmatic approach

was adopted to construct the factors used in a regression model.All the stocks under

consideration were ordered on size and sorted into 20 portfolios, each containing the same

number of stocks. To identify the appropriate factors to include a principle-component

analysis (PCA) of size-sorted portfolio returns was undertaken.

The results of the PCA suggested that a three-factor model was appropriate and the

scores of the 3 largest principle components of the unconditional variance-covariance

matrix of the returns to these size-sorted portfolios were then computed. As noted in

Hurn and Pavlov (2003), the first and second factors obtained from the PCA can easily

be interpreted - on the basis of correlations - as the market and the size factors commonly
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encountered in the empirical asset pricing literature. It would perhaps have been desirable

to be able to interpret the third factor as the excess return on value stocks. Unfortunately,

this is not possible as the information necessary to construct value portfolios for the entire

period of the dataset was not available. Also note that no additional variation in returns

due to industry-specific influences were included by using, for example, collection of

returns on equal-weighted industry portfolios.

Factor loadings for each stock are estimated by OLS

Rit = κi + β′ift + εit .

No asset pricing theory is imposed on the data so the regression includes a stock-specific

intercept. Furthermore, it is assumed that the factors account for all conditional het-

eroskedasticity and cross-sectional correlations in the data so that the error terms, εit,

in the factor regressions are independent across time and across cross-sections. Based on

these assumptions, the generic part of the bootstrapping procedure proceeds by regress-

ing observed returns on the reconstructed factor realizations and saving the residuals, ε̂it.

The resampling of the these regression residuals then forms the basis of the construction

of bootstrap intervals for the individual and composite tests outlined in the previous

section.

Three different models are now bootstrapped each differing in terms of the assumptions

made about the treatment of the factors.

Model 1: Fixed factor realizations.

In this case the factor realizations are fixed at the values constructed by the PCA.

Model 2: Independent factor realizations.

The factors are re-sampled assuming that the factors are conditionally as well as

unconditionally uncorrelated and factor conditional variances evolve according to

GARCH(1,1) models.

Model 3: Autoregressive factor realizations.

The factors are assumed to be serially correlated but conditionally independent.

The conditional variances of the factors are modelled as GARCH(1,1) processes.
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The following steps describe the bootstrap procedure for the most general model (Model

3). The starting point is the estimation of a GARCH(1,1) model for the three dominant

factors in stock returns

ft = ρft−1 + ζt

ζt = htνt

h2
t = ω + αζ2

t−1 + βh2
t−1

and saving the standardized residuals ν̂t. Table 2 shows the GARCH models estimates.

Since the PCA is applied to centred data, the factor realizations have zero mean by

construction.

Factor 1 Factor 2 Factor 3
Mean Equation

ρ 0.259 (0.062) 0.115 (0.055) 0.081 (0.052)

Variance Equation
ω 1.556 (0.656) 0.311 (0.132) 0.062 (0.025)

α 0.183 (0.049) 0.126 (0.048) 0.078 (0.031)

β 0.733 (0.078) 0.597 (0.143) 0.753 (0.092)

Table 2: Parameter estimates for the AR(1)-GARCH(1, 1) model of the factors. The
numbers in parenthesis are asymptotic standard errors.

Bootstrapping the panel of stock returns requires resampling from {ν̂jt} with j = 1, 2, 3

and t = 1, · · ·T and from {ε̂it} with i = 1, · · · , N and t = 1, · · · , T . The estimated model

parameters from Table 2 are then used with these resampled residuals to construct the

bootstrapped realizations of ht, ft and Rt.

5 Results

Figure 1 shows the values of the cross-section and time-series tests as a function of the

averaging parameter λ. At very small values of λ, the long average is very volatile and

the rules generate a large number of trading signals. The resulting portfolios for either

the long or short leg include large numbers of shares. Since such rules can be expected to
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respond to noise in the data these portfolios resemble random samples from the underlying

population of stocks. It is therefore not surprising that the performance of the rules at

small values of λ does not differ significantly from that of the equally weighted portfolio

of all shares (panel A). It is however interesting to note that the portfolio based on

sell signals actually outperforms the portfolio based on buy signals for all values of λ.

Setting aside for the moment the considerations of statistical significance this means that

the profitable strategy for exploiting the moving-average rules is actually a contrarian

strategy, that is it involves buying on a sell signal and selling on a buy signal.

The same pattern is observed in the panel B of Figure 1 which plots the time-series

based tests, indicating that this result does not reflect some form of selectivity bias in the

spirit of Conrad and Kaul (1998) who argue that the cross-sectional dispersion in mean

returns of individual stocks can be an important determining factor in generating profits

to technical trading based on momentum rules. The behaviour of the TS tests at low

levels of the smoothing parameter indicates that the rules tend to pick time periods when

the stocks tend to under-perform relative to the previous 3 years of returns histories,

but as will be seen subsequently when bootstrap intervals are generated, the effect is a

relatively small one. At very large values of the smoothing parameter the tests become

very volatile. This is again easy to understand by noting that the number of trading

signals declines dramatically at λ > 0.9. In this region the average number of signals per

period for either the short or the long leg is less than one.

A striking feature of the tests illustrated in Figure 1 is their behaviour in the range of the

parameter values 0.5 < λ < 0.9. The CS tests in particular display a very characteristic

hump in this area with the apparent maximum for the short rules and a minimum for

the long rules at λ = 0.8. Most interestingly the minimum for the long portfolio and the

maximum for the shot portfolio are attained at roughly the same parameter value. It may,

however, be dangerous to read too much into this appealing feature of the results. It is

worth noting that persistence in the performance of the rules can be expected, due to the

nature of the parameter dependence. Specifically, the compositions of the portfolios at

all points in the neighbourhood of a point are not dramatically different. A small change

in λ is likely to generate very few new signals and consequently it is to be expected that

14



the test statistics depend smoothly on the value of this parameter.
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Figure 1: Portfolio profitability tests as a function of the averaging parameter using
CRIF ASX stock price data from December 1973 to December 2008. The statistics are
calculated on a grid of λ from .01 to .99 with the increment of 0.1.

Figure 2 shows the time-series arbitrage portfolio test (top panel) and the cross-section

arbitrage portfolio test (bottom panel) as a function of the averaging parameter together

with the 90% bootstrap confidence intervals for the tests. To avoid a proliferation of

graphs and tables bootstrap results are graphed only for the arbitrage tests. The most

obvious feature of the plot is that none of the bootstrap models can reproduce the size of

the performance statistics for the tests on arbitrage portfolio returns, the values of both

cross-sectional and time-series tests for arbitrage portfolios are outside of the confidence

bounds for substantial regions of the space of the averaging parameter λ.

15



0.600

0.400

0.200

TSA test

0.000

Fixed Factors 5%

Fixed Factors 50%

Fixed Factors 95%

‐0.200

GARCH 5%

GARCH 50%

GARCH 95%

‐0.400

AR(1)‐GARCH 5%

AR(1)‐GARCH 50%

AR(1)‐GARCH 95%

‐0.600

AR(1) GARCH 95%

0 800

0.600

‐0.800

0.0
1

0.0
4

0.0
7 0.1 0.1
3

0.1
6

0.1
9

0.2
2

0.2
5

0.2
8

0.3
1

0.3
4

0.3
7 0.4 0.4
3

0.4
6

0.4
9

0.5
2

0.5
5

0.5
8

0.6
1

0.6
4

0.6
7 0.7 0.7
3

0.7
6

0.7
9

0.8
2

0.8
5

0.8
8

0.9
1

0.9
4

0.9
7

0.100

0.050

0.000 CSA test

Fixed Factors 5%

Fixed Factors 50%

Fixed Factors 95%
‐0.050 GARCH 5%

GARCH 50%

GARCH 95%

‐0.100

GARCH 95%

AR(1)‐GARCH 5%

AR(1)‐GARCH 50%

AR(1)‐GARCH 95%

‐0.150

AR(1) GARCH 95%

‐0.200

0.0
1

0.0
4

0.0
7 0.1 0.1
3

0.1
6

0.1
9

0.2
2

0.2
5

0.2
8

0.3
1

0.3
4

0.3
7 0.4 0.4
3

0.4
6

0.4
9

0.5
2

0.5
5

0.5
8

0.6
1

0.6
4

0.6
7 0.7 0.7
3

0.7
6

0.7
9

0.8
2

0.8
5

0.8
8

0.9
1

0.9
4

0.9
7

Figure 2: Arbitrage portfolio tests tests as a function of the averaging parameter using
CRIF ASX stock price data from December 1973 to December 2008. Bootstrapped 90%
confidence intervals for the various bootstrapping models are also shown.

It is interesting to note two additional features of the bootstrap intervals. First, fixing

the factors at their sample realizations does not lead to sizeably narrower bootstrapped

confidence intervals. The simple explanation for this behaviour is that the factor model

does not explain a lot of variation at the level of individual stocks. The average R-squared

for factor regressions is 16%. This suggests that the likely explanation for the documented

behaviour of the test statistics will be found at the level of idiosyncratic returns. Second,

the median of the bootstrap distribution of both tests is clearly positive when the factors

are fixed at their estimated sample realisations. This observation is consistent with the

well documented tendency of cross-over rules to produce positive profits when applied to

16



aggregate indices (see, for example, Brock et al., 1992). Comparison with the median of

the bootstrap distribution with serially correlated factors further confirms this impression.

When uncorrelated increments are imposed on the factors the median of the bootstrap

distribution is very close to zero (except for the cross-sectional test at extreme values of

the averaging parameter).

Table 3 shows the values of the composite statistics and the corresponding bootstrapped

percentiles. The table reports the composite statistics for the maxima of the short leg of

the arbitrage portfolio, minima of the long leg and the minima of the arbitrage portfolio.

The maximum CS test τ−cs is positive which indicates that the portfolio based on a sell

signal actually tends to outperform a randomly formed portfolio of the same size, but

the sample value of the statistic is well within the range of bootstrap simulations for the

GARCH model. The bootstrap percentile for τ−cs is 75.60% which means that about 25%

of the realizations constructed using simulations from the GARCH model are greater

than the sample value. However, the AR-GARCH bootstrap provides a tighter upper

limit and cannot replicate the size of τ−cs.

The TS tests for both legs of the portfolio indicate that the cross-over rules appear to

pick reversals. Both the portfolio based on sell signals and the portfolio based on buy

signals under-perform relative to the 3 year period prior to the formation of the portfolio,

but the TS test for the long portfolio indicates even greater under-performance. Neither

the GARCH nor the AR-GARCH model can explain the under-performance of the short

or long legs of the arbitrage portfolio (Figure 1). On balance the results indicate that the

arbitrage portfolio is driven to a large extent by the under-performance of the long leg

of the portfolio. This is an interesting feature indicating that the return patterns seen

in Figure 2 do not hinge on being able to short-sell stocks cheaply. Importantly, both

the model with serially correlated factors and the model with no autocorrelation have

trouble reproducing the pattern of arbitrage profits seen in the data. The GARCH(1, 1)

bootstrap percentiles for the arbitrage statistics are of the order of 2%. The AR(1)-

GARCH(1, 1) bootstrap which appears to be more empirically plausible has bootstrap

percentiles considerably less than 1%.
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CS Long CS Short CS Arbitrage TS Long TS Short TS Arbitrage
τ+
cs τ−cs τ csa τ+

ts τ−ts τ tsa

Data -0.2478 0.0483 -0.0799 -0.2145 -0.1108 -0.4070

GARCH(1, 1) Bootstrap Intervals

95% 0.083 0.118 0.049 0.066 0.078 0.231
50% -0.012 0.001 -0.005 0.011 0.019 -0.018
5% -0.126 -0.100 -0.061 -0.046 -0.043 -0.317

Bootstrap
Percentiles 0.20% 75.60% 2.10% 0.10% 0.30% 2.20%

AR(1)-GARCH(1,1) Bootstrap Intervals

95% 0.087 0.033 0.061 0.058 0.032 0.271
50% 0.027 -0.028 0.024 0.013 -0.014 0.107
5% -0.040 -0.093 -0.016 -0.028 -0.065 -0.063

Bootstrap
Percentiles 0.10% 98.20% 0.10% 0.10% 0.20% 0.10%

Table 3: Data values and bootstrap intervals for the composite statistics. The values
in the row titled ’Data’ are the sample values of the composite tests. The section titled
GARCH(1,1) reports the 10% confidence interval, the median (50%) and the exact per-
centile of the data value in bootstrap simulations for the GARCH model. The section
AR(1)-GARCH(1,1) reports the corresponding values for the AR(1)-GARCH(1,1) model.
The intervals are based on 10,000 replications.

To check if the contrarian returns pattern is stable over time, the full sample was split

into two equal length sub-periods; the first from December 1973 to February 1992 and the

second from March 1992 to December 2008. Figure 3 illustrates the pattern of average

returns across these sub-periods. Although the magnitude of contrarian returns appears

to be much smaller in the second sub-period, the general pattern of the arbitrage profit

is very similar across both these periods. When the long and short legs are examined

separately, the most obvious change in behaviour is in the returns on the portfolio formed

on the sell signals. A possible explanation for this behaviour of the average returns across

sub-periods is provided later.
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Figure 3: Returns to portfolios constructed by moving-average rules in two sub-samples;
December 1973 to February 1992 and March 1992 to December 2008.

At this stage it is necessary to comment on the strong positive autocorrelation observed in

the PCA factors reported in Table 2 and the implications of this for portfolio profitability.

As the factors are constructed from returns on size portfolios, significant autocorrelation

is unusual. The most likely source of the correlation is trading non-synchronicity. Some

of the stocks especially in the lower size cohorts may not trade daily, meaning that the

measured monthly returns may include an overap if no valid observation was available

for the last business day of the month. When the returns are aggregated into an index

this overlap manifests itself as positive autocorrelation.

The positive serial correlation in factor returns actually makes the contrarian profits more

difficult to explain. Consistent with intuition positive serial correlation tends to predict

positive profits to moving-average rules and helps explain how the results generated using

portfolios of stocks can be consistent with the common finding that cross-over rules gener-

ate positive profits when applied to stock indices. The natural question to ask is whether
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the results are driven entirely by the idiosyncrasies in the trading patterns of small stocks.

To check this conjecture, the sample of 500 stocks was split into two equal size groups; the

first containing the largest 250 stocks and the latter containing the remaining smallest

250. The trading rules were then applied separately to these size groups.
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Figure 4: Returns to portfolios constructed by moving-average rules applied separately
to the largest 250 stocks and the smallest 250 stocks.

Figure 4 shows the average returns on the long and short legs of the portfolio and the

full arbitrage portfolio for each size cohort as a function of the averaging parameter λ.

It is clear that the contrarian profits are observed in both size cohorts. It appears that

size or trading irregularities are unlikely to provide an explanation for the returns on

the momentum portfolio. Other possible explanations for the profitability of trading

rules returns include: behavioural phenomena such as over-reaction, under-reaction and

feedback trading; as yet undetermined risk factors, statistical anomalies; and liquidity or

trading anomalies. The explanation which is explored in more detail now is that economic

fundamentals can account for the behaviour of returns to portfolios based on cross-over

rules.

The starting point is the construction of the returns to the portfolio corresponding to

the largest contrarian profit over the full sample. The value λ = 0.81 yields the greatest
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profit over the grid of values for λ after smoothing the relationship between the average

return on the arbitrage portfolio, using a simple moving average of order 10. For lack of a

better term, this portfolio will be referred to as the optimal portfolio. Next, the monthly

returns are cumulated into yearly returns (June to June) and the correlations between

the optimal portfolio and a number of risk factors, aggregate volatility and some common

measures of the state of the business cycles including GDP growth, inflation and interest

rates, are examined. The relevant correlations are collected in the Table 4.

Return Return Return Return
Buys Sells Buy-Sells EW Market

Return Sells 0.75
Return Buy-Sells 0.15 -0.53
F1 (PCA) 0.86 0.88 -0.23 0.92
F2 (PCA) -0.47 -0.39 -0.02 -0.59
F3 (PCA) -0.04 -0.08 0.09 -0.03
REW Market 0.83 0.81 -0.14
R90D 0.00 0.28 -0.42 -0.05
R10Y 0.03 0.30 -0.42 0.05
Volatility -0.31 -0.30 0.04 -0.26
Inflation 0.11 0.42 -0.47 0.05
GDP -0.08 -0.11 0.03 -0.18
PC -0.26 -0.28 0.08 -0.39

Table 4: Correlations between returns on the cross-over strategy and selected variables.
F1 to F3 are the principal component scores of the unconditional sample correlations
matrix of the returns on 20 size sorted portfolios. REW Market is the return on the
equally weighted portfolio of all listed securities (CRIF). R90D and R10Y are the yields
on the 90 day bills and 10 year government bonds respectively (Source: RBA). Volatility
is constructed as realized annual volatility using monthly REW Market. Inflation is the
annual CPI inflation (ABS) and GDP and PC are the annual growth rates in real GDP
and private consumption (ABS, chain volume measures).

The correlation estimates are based on 31 yearly observations (1978 to 2008) and are,

of course, very imprecise, but they are nonetheless informative. The returns on the long

and short legs of the arbitrage portfolio are strongly correlated with the main principal

component score and the return on the broad based index. The arbitrage portfolio returns

are more interesting in that their correlations with the factors are small and are even

smaller at monthly frequencies. This indicates that the performance of the arbitrage
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portfolio is not explained by the exposure to systematic factors in returns. On the other

hand the return on the optimal arbitrage portfolio appears to correlate most strongly with

the nominal interest rates and inflation. In fact, with the exception of the correlations of

the returns with the index, the correlations of the arbitrage return with interest rates and

inflation are the strongest correlations between the variables that are considered here.
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Figure 5: A comparison of quarterly returns on shorting the optimal arbitrage portfolio
and quarterly CPI inflation.

Figure 5 plots the quarterly returns on the short position in the arbitrage portfolio and

quarterly CPI inflation and illustrates quite clearly the apparent co-movements between

the portfolio return and inflation. The returns on the optimal arbitrage portfolio tend

to be high in periods of high inflation and low in periods of low inflation. It appears

therefore that the performance of the cross-over portfolio can be explained simply as

compensation for providing an effective inflation hedge. Although this paper does not

suggest or explore an explicit mechanism through which this connection might work, the

observation alone is worth making and could provide a fertile avenue for future research.
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6 Conclusion

The research reported in this paper has examined the returns to portfolios formed on the

basis of the popular moving-average trading rules and some of the aggregate properties

of these portfolio returns have been documented. Over a significant range of values for

the smoothing parameter used in the specification of the moving-average trading rules,

portfolios constructed on the basis of the buy and sell signals generated by the rules

appear to generate substantial contrarian profits. Furthermore, simple models of the

returns generating process prove inadequate to explain these profits which are largely

driven by the abnormal behaviour of the stocks selected in the long leg of the portfolio.

One of the more intriguing results generated by the moving-average trading rules pertains

to the returns on the portfolio corresponding to the largest contrarian profit over the full

sample. The performance of the arbitrage portfolio is not explained by the exposure to

systematic factors in returns but is fairly strongly correlated with nominal interest rates

and inflation. Although this paper does not explore these relationships in any detail they

provide a tantalizing area for future research.
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