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Abstract

The knowledge constraints and transactions costs imposed by geographical
distance, network connections and time conspire to justify local behavior as
a good approximation for global rationality. We consider a class of games to
illustrate this relationship and raise some questions as to what constitutes a
satisfactory solution concept.
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1 On Rational Optimizing Behavior

Much of economics and game theory has been based on models of rational optimizing
individuals with well-defined preferences, considerable ability to compute and com-
mon knowledge. Attempts to escape from this structure have posed many difficulties.
Keynes, like Alexander, cut the Gordian knot. He directly and brazenly assumed ha-
bitual behavior such as “propensity to consume.” Much of macroeconomics, since
then has avoided the “rationality trap” of the theory of consumer choice and of general
equilibrium theory. No macro-economist worthy of her salt worries too much about
individual utility functions being optimized, but is more concerned with whether one
can characterize consumer behavior in a manner that provides at least a reasonable
fit with short term data.

The game theorists doing evolutionary game theory can argue reasonably that the
genes or the birds or bugs being discussed act as local optimal response mechanisms
and do not worry heavily about how rational the agents are. Some of us believe that
a better case can be made for the use of Nash noncooperative equilibrium theory
in evolutionary games than in many situations involving intelligent humans. There
are some situations where even a unique noncooperative equilibrium appears to be
unsatisfactory (the best example was provided by Shapley, see Shubik, 1996).

Herbert Simon (1984) coined the phrase “satisficing” to indicate the situation
that many practitioners in finance and economics recognize clearly. The more or



less rational optimizing human being chasing after profits usually settles for “good
enough.” Once a reasonable goal has been achieved the hunter relaxes.

A skilled mathematical game theorist with a sense of reality knows full well that
for many situations many of us operate without common knowledge. This leads
to an elegant and difficult branch of game theory where we study how much the
rational intelligent players without common knowledge can infer from the information
provided by the playing of the game (see Aumann, 1976). John Harsanyi (1967, 1968a,
b), before the development of this work devised a theory of incomplete information
concerning the player types. The initial subjective probabilities needed to get his
construct off the ground were assumed to be given.

In spite of Simon’s clarion call to model limited or capacity constrained or habit
constrained rational behavior this has proved to be far more difficult than was orig-
inally expected. A separate but parallel development in artificial intelligence (see
Minsky, 1986) has shown that it is far more difficult to build machines to perform
simple but even mundane non-routine tasks.

A practicing applied micro-economist knows that he is dealing with approxima-
tions. For many applied problems almost always logical niceties such as precision in
the specification of the rules of the game and checking for completeness and consis-
tency are not important. Implicitly “good enough” is implied in most modeling and
analysis. It is not the evil forces of capitalism or socialism at work which makes it
possible to find two sets of respectable practitioners willing to give expert witness
testimony on both sides of almost any question. It is the unfortunate fact that hu-
man individual and group behavior is horrendously complex. The questions we can
answer are only answered up to some degree of accuracy and are context constrained.
The art of modeling is heavily devoted to providing the appropriate abstractions of
the context most useful in answering the question being posed. Part of the art of
modeling is to know what to accept as the primitive concepts and when to state that
the subjective probability distribution being used to jump start an elaborate analysis
is the author’s best guess based on whatever research or learning assumptions she
chooses to supply.

Many mathematical economists and game theorists are far more deeply concerned
than are applied macro- or micro-economists with clarity, logical consistency and
completeness of their models before they apply the heavy artillery of the mathematical
analysis. We support this view because many of the questions being addressed are
posed at a higher level of generality and abstraction than most of the ad hoc questions
considered by applied social scientists. Questions that are both deep and difficult to
tackle include: Do there exist invariant principles of efficiency and fair division; can we
provide an abstract definition of power, are there basic abstractions of individual and
group preferences? These are specific questions related to the more general question
concerning what constitutes a satisfactory solution to an n-person non-constant sum
game.

In order to approach these questions many game theorists immediately take as
implicit assumptions the full definitions of the rules of the game. The pure abstraction
of the rational decision-maker that forms the backbone of much economic theory and



game theory provides a valuable abstraction of considerable use both in teaching and
analysis. Yet it is easy to point out its limitations and to show many aspects of human
behavior where this rationalistic model is a poor descriptor of human behavior. It
is far more difficult to replace this model and the theories based on it with general
behavioral models and with better theories based on them.

The approach adopted here is to consider how far we can go with models of
strategic situations with context-constrained agents, i.e. are there conditions which
result in agents who share common knowledge and know all the rules of the game
nevertheless behave as though they were local optimizers?

2 Context Constrained Optimizing Behavior

There are three sets of literature and two approaches which appear to be of im-
portance to future developments. They are models in which proximity in measurable
space and time both play a direct role; models in which the key feature is the presence
of network connections where distance has little influence, and the third is models
based on social analogies to statistical mechanics (Durlauf, 1997). We concentrate
on the first two. When even the most rationalistic game theorist pauses to reflect on
his or her behavior, several items can be noted. In much of our activity we appear to
be more or less rational, but to a great extent our nonconscious selves supply consid-
erable limitations to the context of what we consider the game to be. In particular
we are constrained by:

1. Space

2. Time and

5. Net

2.1 The Constraints of Space

We are a species living on a two-dimensional surface. In spite of private jet planes,
large airlines, railroads and highway systems much of our day is spent in walking
short distances around the house and office. Most of us do not walk at a speed of
more than three to four miles an hour. Distance still matters in many aspects of daily
existence. Since the work of Hotelling (1929) and Chamberlin (1933) the possibility
that space confers local monopoly power has been considered. In our every day lives
commuting time and distance matter; how far we will travel to go out to dinner
and where the show is playing are all part and parcel of daily existence. When an
individual in a Boston suburb goes out for a casual dinner she does not even allow
her knowledge of Los Angeles restaurants to reach her consciousness, except possibly
to make some comparisons.

The ruling out of consideration features which might be expected to produce at
most second and third order effects is part and parcel of context constrained rational
behavior.



2.2 The Constraints of Time

Both cardinal and ordinal time are of importance in different ways in the modeling
and understanding of human behavior. The ordering of events is critical to the
treatment of information in the consideration of strategic behavior. Possibly one of
the major contributions of game theory to our understanding of decision-making is
how information enlarges individual strategic choice.

When dealing with process there are several natural questions we must ask. If
the situation under study is embedded in time, how much does history matter? Do
reputations of individuals matter? Does the situation we are studying have an explicit
termination date? Or is it that the termination is event driven?

Much of micro-economics and game theory has been devoted to equilibrium con-
ditions. In Marshallian micro-economics and in oligopoly theory comparative static
analysis is often discussed. Two time slices of a part of the economy are considered
and the changes in the state of the system are examined. Except for careful ad
hoc studies of specific economic institutions a believable full dynamics complete with
equations of motion is a rarity in economics. At best even the most accurate of eco-
nomic forecasts is local. Equations are updated and a prediction is made concerning
motion for a limited time, after which a re-estimation is made and a new prediction
is based on the re-estimation.

A key and, in our opinion unanswerable question, in general, in economics and in
non-cooperative game theory is how a system out of equilibrium attains an equilib-
rium state. This is a far different question from if a system already in equilibrium is
given a small displacement does it return to equilibrium? The Nash equilibrium analy-
sis and allied concepts in economics such as rational expectations offer, in essence,
no indication of the nature of the dynamics.

When we contemplate actual human behavior and try to construct games to il-
lustrate what is going on, several natural questions arise. Suppose that we construct
a game where we initialize all conditions such that the individuals begin with ex-
pectations supplied by the game briefing; should the players believe the referee’s
briefing? Where do the priors come from? If one explains the rules of a game such
as a simultaneous double auction market without giving the individuals any briefing
about previous prices and volume of trade the players have little on which to base
their expectations. As the double auction market is a peculiarly efficient structure
experimental experience from many experimenters (see e.g., Smith, 1965; Sundar and
Bosch, 2000) indicate that after a few plays, at least a competitive price emerges. But
in many other situations the convergence speed to an equilibrium is not necessarily
fast.

In the study of human behavior a reasonable question to ask is how many times,
or for how long does a game have to be played until we believe that it has a reasonable
chance to approach an equilibrium? We suggest that the answer is ad hoc. It depends
on the situation and its context. In particular many of the most important decisions
faced by the individual such as what profession to select, who to marry, where to live,
when to change jobs are made over a life time with low frequencies. They provide
at best extremely small samples to utilize to adjust behavior. Social network infor-



mation and pressures provide a considerable reinforcement for these low frequency
events. But this indicates that the gap between the equilibrium analysis of a game
repeated infrequently and the explanation of adjustments towards equilibrium where
the sample size may be only one, two, three or four offers us little on which to base
the updating towards equilibrium. The dedicated Bayesian can reply: One takes the
initial priors as given and then does a Bayesian updating as more information comes
in. The logic is impeccable provided that one accepts that the priors are appropriate
and that the context for the updating is given. Even if this were true the number of
iterations may be far too small to achieve an equilibrium. Unfortunately in general,
in important decision-making the problem is far worse. The key to good decision-
making may be the realization that the individual has the appropriate model and the
relevant variables, The key to good forecasting (see Ascher 1978) is less the formal
methodology, but the selection of the appropriate variables.

2.3 The Constraints of Net

Along with the developments in our understanding of biology, of computer science
and along with the vast changes in the speed and scope of low cost communication
and calculation, for many, but not all purposes, space has been replaced by net. If
A knows B well and one is in Melbourne, while the other is in New York they can
be in e-mail communication with each other as easily as if they lived next door. The
world of web connections deals more with connectivity than distance. Proximity is
in terms of communication rather than transportation.

3 The Extended Advertising or Promotion Model

We consider the structure of some games where the operational aspects of operating at
a geographical or network distance is such that what appears to be locally optimizing
behavior is globally justified. Out of sight may operationally mean out of mind.

In particular, we start with a game whose simplest version has been in the compet-
itive advertising literature for many years (Mills, 1961, Gupta and Krishnan, 1966).
There are n players in the game, each of whom has to allocate his resources among
various markets. The players win “market share” according to how much they spend
in a market compared with other players. The payoff for a player within a market is
just his market share multiplied by the market size, and the total payoff for a player
is the sum of his payoffs over all the markets.

In this paper, we consider a “localized version” of the above game in which players
are given geographical locations. Each player is allowed to compete only in his “home
region” (where he has a certain competitive advantage) and in the home regions of his
“neighbors.” The idea here is to model a “global game” whose outcome is completely
determined by local interactions.

In the next sections we formally define this model, solve it (showing that there is
a unique Nash equilibrium), and perform some sensitivity analysis. Then we consider
an extension of the model where players may also compete in the home regions of their



neighbors’ neighbors. Finally, we show how the Nash equilibrium existence result
outlined above fits into the literature on general existence results from noncooperative
theory.

Finally, we remark that certain assumptions of ours allow us to solve our game by
considering each region on its own and solving it “separately.” The aggregated result
solves the entire model. One might argue that this amount of simplification renders
the results from Sections 5 and 6 less meaningful. However, the separability does
allow us to compute closed form solutions to the model. This allows us to generate
sensitivity analysis which would carry over to “nearby” nonseparable cases.

4 The Model

Let P = {1,...,p} be the set of players in a game. Each player ¢ € P is based in
his own “home region,” which we denote as “region ¢.” Certain pairs of regions are
designated as “neighbors,” and it is this “neighbor” relation which helps define the
local interactions of the game. This is because players are only allowed to act in their
home region and/or in some neighboring region to their home region. Let N; denote
the set of neighbors of (region) i, with n; = |N;|. We assume n; > 1 for all 4, i.e.,
every player has at least one neighbor.! We see that j € N; iff i € N; for anyi, j.

Finally, we remark that ¢ is not considered a neighbor of himself, i.e., i ¢ N; for all
1€ P.

The relation described above naturally defines a graph H, in which the vertex set
is P and edge ¢j exists if and only if region ¢ and region j are neighbors. We note
that the relation of neighborness is not necessarily geographically defined; hence it is
permitted for H to be nonplanar.

Each player i is endowed with a large finite amount M, of investable resource
(money), which she divides up into investment into her own region, investments into
each of her neighboring regions, and money-not-spent (savings). Hence her strategies
(in a game theoretic sense) are vectors = € X* = {(xy, {Tij}jen,) : i+ ZjeNi xij <
M; and x;; > 0Vj € N;U{i}}. The interpretation is that x;; is the amount ¢ spends
in region j. Let X = XjcpX’. Then X represents the strategy space for all players.
We note that the dimension of X will be |P|+3 .. 14, and that the set X is compact.

At this point we should remark that our assumption that M; is large? essentially
means that ¢ is not hampered by financial constraints as he searches for ways to
optimize his net payoff.> This has some important ramifications. First, it means that
i always has the option of transferring money spent in a region (either her own region
or a neighbor’s) to the “unspent” category, where it obtains a marginal revenue of

'In the case where some player has no neighbor, that player’s actions are trivial and he may be
removed from the game without changing the analysis for the rest of the players.

?In Section 4 we give a bound on just how high the M,’s need to be.

31n this respect our assumption is similar to the standard one made in transferable-utility cooper-
ative games — that coalitions always have enough money on hand to effect any desired redistribution
of payoff. We believe that the results with M; of any size are qualitatively similar, but the boundary
solutions would be computationally messy to obtain.



1.* Also, there are savings always available which may be transferred to investments.

Given a strategy vector x € X, i’s revenue r;j(x) from investing in region j
depends on three factors — the “size” of region j, the relative size of her investment
compared with that of other players’ investments in region, and whether or not region
j is her home region. Specifically, we have

mjamij

Tjj + D gen, Tqj

if j # i. (4.1)

rij(x) =

Tii + QY e, Tai
Here a, {m;},c N;u{i}, and k; are parameters described below.

Let us now explain formulas (4.1) and (4.2). If j # 4, the quantity ax;;/(z;; +
O‘qu N xq;) represents the proportion of influence that ¢ has in region j. This is
just 4’s proportion of the total monetary investment in region j, except with her
contribution (and the contributions of all the other neighbors of j) “damped” by
a factor of a. Hence o € [0, 1] is a measure of how much “power” players have in
neighboring regions: if a = 0, a player has no power in a neighboring region and hence
has no incentive to invest there, while if @« = 1 the parameter makes no distinction for
a player between a neighboring region and his home region. At any rate, multiplying
the above proportion of influence by the “size” m; of region j (m; > 0) gives the
return 7“1']'.5

If j =4, the term @y /(xii+a ) 4EN; %) again describes ¢’s proportion of influence
(note that there is no “damping” if one is operating in one’s own region). We again
multiply by m; to get a return, but then further by k; to get the actual revenue. The
k; represents the multiplier effect of getting a return in ones own region over getting
a return in other regions — we assume k; > 1 for all i.

Finally, in the degenerate case where formulas (4.1) or (4.2) give “0/0,” we inter-
pret the fraction to be 0. This reflects the natural assumption that if no one invests
in a region, then the revenue to everyone from that region is zero.%

To figure i’s total net payoffs resulting from a vector x € X, we need to add the
quantities 7;; over all j € N; U {i} and then subtract off the amount she spends, i.e.

(4.2)

T‘M(l‘) =

uz(a:) = : + ~ J J - Ti; — E Tij- (43)
Lii +a ZqENi qu JEN; x]] T ZqENj mqj JEN;

The notations above are sufficient to define a local advertising game (LAG). For-
mally, a LAG is given by a sextuple G = (P,{N; }icp, @, {ki}icp, {mi}icp, X), where
P = player set = {1, ...,p}.

"The marginal revenue is 1 because of the last two terms of the payoff function (2.3), below, imply
that the marginal cost of spent money is 1.

>The reader will note that we can model a player with no home region simply by assigning him
a “dummy region” of size 0.

“However, we should remark here that our payoff functions ({u;}iep, defined below) are not
continuous at z’s in which there is a region where noone invests. This causes problems when we try
to prove existence in generalizations of our model. See Section 9.



N; = set of neighbors for player i.
a = measure of players’ power in neighboring regions (« € [0, 1]).
k; = multiplier effect of ¢’s evaluation of revenue in her home region (k; > 1).
m; = size of region i (m; > 0).
X = strategy space for the players (see above).
Let us also remind the reader of two other notations we have made above:
rij(x) = revenue function for player i in Region j.
u'(x) = payoff function for player i.

To close the section, we compare our model to those of Harker (1986) and Miller—
Tobin—Friesz (1991). We may think of our model as corresponding to a case of theirs
in which there are no transportation costs, the “production function” is linear, and
the “inverse demand functions” have the specific functional form §(D) = 1/D (their
notation). However, their models cannot accomodate our parameters « and {k;},
and the function 1/D does not satisfy the continuity and concavity conditions which
ensure existence/uniqueness of Nash equilibria in their papers.

5 Nash Equilibrium

Our aim now is to “solve” the game, by finding a Nash equilibrium for it. Recall that
in a noncooperative game with player set P = {1, ..., p}, strategy set X = (X!,..., XP)
and payoff function u = (u!,...,uP), a Nash equilibrium (NE) is defined as a set of
strategies # € X for which u*(2) > u’(2?, ..., 2"~ 2%, 2% .. 4P) for all i and all
x' € X', In words, an NE is a set of strategies, one for each player, with the property
that each player is simulataneously playing a best response against what the others
are doing.

In our game, we can find a closed form solution for an NE. Specifically, we have

Theorem 5.1: Let G = (P, {Ni}iGP;aa{ki}iePa{mi}ieP;X) be a LAG, with a >
0.7 Then an NE for G is given by:

am;n;k; o ) .
————= Vi,j € P:i#}], 5.1
(kjnj + a)? (5-1)

l‘ij =

akzmznl(kmz — a(ni — 1))
(kini + a)?

~

Ty =

, VieP. (5.2)

Proof: Suppose i € P, and let us assume that all other players (except for i) are
playing according to (5.1) and (5.2). We need to show that (5.1) and (5.2) give a

"{The reader will note that the formulas (5.1)-(5.2) do not constitute an NE in the case where
a = 0. Indeed, the proof below involves many algebraic cancellations, and so does not work when
o = 0 because in this case many of these cancellations are “0/0”’s. In fact, we shall show in Remark
5.9 (at the end of this section) that when o = 0 there are no NEs! It thus may be useful to look at
the cases where a approaches zero, as these will not have the strange behavior of the oo = 0 case.}



best response for i. This means that the vector (Zs,{Zi;} en,) (as defined in (5.1)
and (5.2)) is the optimal solution to the nonlinear program (NLP)

o kimii; n QM Tij g Z o
X - 5 5 - 5 ©“ v
(zii{zi}jen;) Tio T Q ZjeNi Tji jen, Tii +awi; +a quNj;qyéz' Lqj

JEN;
s.t. @y + Z Tij < M,; (53)
JEN;

We note two items. First, since we assume M; is large, 2 (given by (5.1)-(5.2))
satisfies (5.3). Second, it is clear that &% is also nonnegative. Hence, since the
objective function is concave in its variables, all we need to do to prove the theorem
is show that 2 satisfies the first-order-conditions for the objective function f of
(NLP). The first such condition is:

of _, (i + @Y e, Tji)kimi — kimgay

= — —1=0
Oxi; (@i + @) jen, T30)?
= akimi Z :%jz' = (ib'u + Z i’ji)Q.
JEN; JEN;

We see from (5.1) that Y.y & is equal to n;[amgnik; /(kin; + «)?]. Hence our first
first-order-condition becomes

21.2,,2,,2 2 2\ 2

a“kimin; O kimin;
(kini + a)? O (king + a)?

One may readily verify (using a bit of algebra!) that the expression for z;; = &;; does

indeed satisfy this equality.
Our second (set of) first-order-conditions is for each j # 1,

of (Zj5 + awij + @ 3o N g Tag)amy — aPmyjay;
= — ~ —-1=0
Oy (Zj5 + Q@ij + Y e N gti Tas)”
2
= amj:%jj + a2mj Z ii'qj = .i'jj + QZij + o Z ii'qj
qEN;:q#i qEN;:q#i

From (5.1) we have quNj:q# B = (nj — Damynjk;/(kjn; + «)?] and equation
(5.2) gives &j; = [akjm;n;j(kjn; —a(nj —1))/(kjn;+«)?]. Our first-order-conditions
become

a2kjm?nj(kjnj —a(n; —1)) a3kjm?nj(nj -1)

(kjnj + 04)2 (kjnj + a)2
2
akjmgn;(kin; — a(n; —1)) a’myn;k;
— . )
< (kjn; + a)? F o (1 = 1) (kjnj + )?
Again we may verify that x;; = &;; satisfies this. |



Theorem 5.2: The NE found in (5.1)—(5.2) for G is unique.

Proof: For the uniqueness, we shall show that if # is an NE, then 217 and {Z1 }ien,
are uniquely determined; the same proof could be used to show that &;; and {Z;; }ic N;
are uniquely determined for any j € P.

Our proof begins with a series of small lemmas:

Lemma 5.3: If my =0, then &;1 must be equal to zero for all i € Ny U{1}.

Proof: Otherwise, #;; > 0 for some ¢ € N7 U {1}. But then 7 has a profitable
deviation by diverting investment from region 1 to savings. So Z is not an NE. W

Hence, for the rest of the proof we assume that m; > 0.

Lemma 5.4: There must be at least two distinct players © and q for which Ty >0
and Tq > 0.

Proof: If there was no such player i (or q), then any player would have a profitable
deviation from & by switching funds from savings to Region 1. If there was exactly one
such player, then that player would have a profitable deviation from & by switching
half his investment in Region 1 to savings (he would still win 100% of the Region
1 market, but only use half the expenditure to do so). Either way, since there is a
profitable deviation & would not be an NE. |

An important consequence of Lemma 5.4 is that, since there is positive total
spending in region 1 from &, the derivatives (0/0z11)[kimiz11/(x11 + azqul mql)]
and (0/0x;1)[amyz; /(x11 + anEN1 xq1)] (for any ¢ € N;) must exist at © = 2.
Also, we have
Lemma 5.5: There exists a neighbor i of 1 for whom Z;; > 0.

Proof: Follows directly from Lemma 5.4. |

Without loss of generality, let us assume that player 2 is a neighbor of 1 with
ZTo1 > 0.

Lemma 5.6: If either

’;c:a%

0 kimyx1y
Oor1n \ z11 +« quNl Tq1
0 ( amixi

Oxin \zn1+a), Zq1
qeEN1 4

) < land &1, =0, OR (5.5)

d € N1 with ’w:j ) <1 and z;1 =0, (56)
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then

0 amixo]
|z:j < 1.
Oma1 \ T11 + @) e n, Tql

Proof: If (5.5) holds, we have

’;c:a%

A A 2 A
0 ( amix21 ) o mia(Z11 + o quleqﬁ Tq1) Mo ZqGNl,q7é2 Lq1
1

091 \r11 + @ e, T (@11 + D 4en, Tq1)? (@11 Yogen, Bq1)?

kimiay ey, Tq1 0 ( kiymyry ) <1
1

< a— - = alp—z
(&1 + Dgen, Eq1)? o= \omr D en, Tq

[Here the second equality follows from the assumption 217 = 0; the first inequality
follows because k1 > 1 and Z9; > 0; and the last inequality follows from assumption
(5.5).]

Similarly, if (5.6) holds for 1,

|z:£

0 ami oy ~ omia(@1 4 a Y ey g0 Tq1)
0xo1 \ 11 + « quNl Tq1 (.%11 + qu]\h .i'ql)2
M1 + D geny q2,0i Ta1)
(@11 + D gen, Tq1)?
mia(®11 + 3 e N, g Ta1)
(@11 + D gen, Lq1)? ]

Lemma 5.7: If % is an NE, then

T ( fuma 211 ):1, and (5.7)

Orn \ T11 + Q) en, Tql
o =2 dle = 1for all i € N (5.8)
T=I 855'2’1 711 +a quNl mql - 1- .

Proof: Suppose (57) did not hold, with ‘x:;?: (8/81‘11) [klmll‘u/(l‘n “+« ZqGNl qu)} >
1. The left-hand side of this inequality is the rate-of-return (at x = %) of investment
for player 1 in his home region; the “1” on the right-hand-side represents the rate-of-
return of saving (see footnote 2). The inequality here means that at Z, player 1 could
take some money that he was saving and do better by investing it in his home region.
Hence & could not be an NE. Next, if |,—z(9/0z11)[kimiz11/(x11 + ZieNl xin)] < 1,
there are two cases. If £11 > 0, player 1 can profitably deviate from & by diverting
some money from his home region to savings. If 17 = 0, Lemma 5.6 implies that
le=z(0/0x91)[amyzar /(x11 + a ien, x;1)] < 1. But then player 2 can profitably
deviate. Either way, 2 is not an NE, and we have a contradiction.

A similar proof shows (5.8). [

11



Lemma 5.7 implies that if & is an NE, then

kimiay e n, Tq1

(@11 +ad e, Tq1)

5 =1, and (5.9)

myo(&11 + « quNl,q¢i Zq1)
(@1 +ad en, Tq1)?

Now let y = 211 + azqul Zg1. It is clear that since 2 is an NE, that y > 0 (see
Lemma 5.4). Thus, we can rewrite (5.9) and (5.10) as:

=1 for all i € Ny. (5.10)

kimi(y — Z11) = y? (5.11)

mia(y — adi) = y? Vi e Ni. (5.12)

y=1in+a Z Zq1. (5.13)
qEN1

Equations (5.12) imply that #;; is constant over all ¢ € Ny, say &3 = W Vi € N.
Then (5.13) gives y = x11 + aniW or y — x11 = an1W. Replacing into (5.11) gives
EimianiW = y?, or W = y2/k1m10m1. Finally, since W = &;1, replacement into
(5.12) gives

k1m1 ang

2
o
mla(y—¢> =y’ =>y=0o0ry= i o

klmlanl
But y = 0 is impossible, so y = kymyany /(kin1+a). Since y thus is uniquely defined,
it 1s clear that ;1 = W = y2 /k1mian, is also uniquely defined for ¢ € N;j. Finally,
Z11 is uniquely defined because of (5.13). [ |

Remark 5.8: As a first remark, let us comment that the NE given by (5.1)—(5.2)
is never Pareto optimal.® Indeed, if we consider the outcome 6, where § < 1, we see
that each player’s proportion of influence (see section 2) in every region is unchanged,
and so his revenue is unchanged; hence, since his expenditures have gone down, he is
better off.

Remark 5.9: As a second remark, we now can describe what happens in the case
where ae = 0. If m; = 0 for all ¢, we are in a trivial case where the unique NE is for no
player to invest any money in any region. Otherwise, suppose WLOG that m1 > 0.
Lemma 5.5 still holds here; i.e., in any NE there must be a neighbor of player 1 who
invests a positive amount in Region 1. Yet it is clear that since & = 0 that neighbor
would have incentive to cancel that investment. Conclusion: in the case where a = 0
there are no NEs.

8Ex(:ept in the trivial case where m; = 0 for all 7.
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6 Sensitivity Analysis

We now perform sensitivity analysis on the NE (5.1)—(5.2), to examine the effects of
varying some of the model’s parameters.

The first thing we notice is that the expressions for #;; have j’s and a’s in them
but not ¢’s; in other words, the size of investments are dependent on characteristics of
the region into which the investments are made, and on the overall power of players
in neighboring regions, but not on the identity of the investors. [The only exception
to this is that investment in a region will be larger (all other things being equal) if
the region happens to be the investor’s home region.] We suspect that this will cease
to be the case if a) we allow the a’s to become pair-specific or b) if the quantities
{M;}icp are lowered.

We now get some interesting results by taking derivatives of the expressions (5.1)—
(5.2) with respect to some of the parameters, starting with the size parameters {m;}:

ai‘ij anjk:j

_ if i .
8771]' (kjnj +Of)2 ne 7&']

8@'11 i akmi (kmz - oz(nz- — ].))
omy - (kjnj + 04)2

Since the quantities on the right are both positive, this gives the intuitive result that
as the size of a region gets bigger, players will invest more in it.

Next consider changes in a. Recall that o measures, on a scale from 0 to 1, how
much power players have in neighboring regions:

8@'1’]’ kjmjnj(kjnj - Od) p .
= f .
Ja (kjnj + a)? £

The quantity on the right is always positive, so this gives the intuitive result that as
players have more power in neighboring regions, their investments there go up.
Next we investigate what happens to “home region investments” as « changes.

da (kin; + a)3

The quantity on the right is positive if & < k;n;/(2n; — 1) and negative when a >
kini/(2n; — 1). We can explain these results by noting two “effects” as a increases.
First is a “substitution effect”: as « increases, neighboring regions become more
attractive investments, and therefore players replace some spending in their home
regions with spending in neighboring regions. Second is a “home competition effect”:
as « increases, it requires more spending in one’s home region to compete with
outsiders. We see that for values of a near 0, a player need not spend much in his home
region to “win” it, but as « rises the home competition effect causes him to increase
his spending. However, at a certain level (k;n;/(2n; — 1)) the substitution effect
becomes stronger, and home spending decreases thereafter. Note that in the case
where k; > (2n; —1)/n; the substitution effect never dominates the home competition
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effect, because the “dividing line” k;n;/(2n; — 1) is greater than 1; in this case it is
so important for ¢ to win his home region that he always responds to a rise in « by
an increase in home spending.

Next, let us examine changes to a player’s spending habits as the number of his
neighbors changes, and as the number of his neighbor’s neighbors changes:

8.@']’ _ amjkj(a — kjnj)
an a (kjnj + 04)3

The quantity on the right is always negative. This is again intuitive, because n; is a
measure of how much competition there is in region j for market share. So, the more
such competition in a region, the less each competitor (from a neighboring region)
will want to spend.

Gﬁcu anzmz(kmz — 20&7% + OA)

Gni a (kmz + 04)3

This partial derivative is positive if k; > 2o —a/n; and negative if k; < 2a—a/n;. To
interpret this, we begin by pointing out that n; is a measure of outside competition
in i’s home region. The condition k; > 2« — av/n; means that ¢ values revenue in his
home region relatively highly and has relatively low power in neighboring regions.
Hence he reacts to an increase in the number of competitors in his home region by
raising spending there. If k; < 2a — a/n; he replaces some home spending with
spending in newly available regions.

Finally, we note how far one may lower the M;’s without changing the validity of
formulas (5.1)—(5.2). This is equivalent to calculating upper bounds on the amounts
Tii+ Y JEN; Z;5. We do this now in the “symmetric case,” where k; = K, and m; =m
for all 7, and where the associated graph H is regular (i.e., n;, = N for all 7):

aKmN(KN — a(N —1)) aKmN

P g Ne—""__
. (KN+ap U (ENTap

aK?*mN? — a2KmN? + a2KmN + aKmN?
(KN + «)? ’

We note two things — first, that the quantity on the right is less than m if a = 1.7
Second, the derivative (9/0a)(Zi + > e, Zi5) 18 positive for all a € (0, 1).1% Hence
i + ZjeNi &5 is less than m for all a.

However, the above bound on spending does not hold for all LAGs. In particular,
if there is an agent who has incentive to spend money in neighboring regions, she
will frequently spend much more than m. For instance, consider the case where the
network H is a star, i.e with one central player adjacent to each of N “satellite”
players. [None of the satellite players are adjacent to one another.| The central
player thus has incentive to spend in the satellite regions, because each such region

In fact it is equal to m[K2N? + KN]/[K?N? + 2KN + 1].
Y1n fact it works out to [KZN3(K — 2a + 1) + aK2N? + 3aKN?]/[(KN + a)*m${K"2N"3(K-
2\alpha, which is clearly positive because K > o and 1 > a.
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only has one neighbor. In addition, suppose K = 1 and « = 1. Then it turns out
that Zi; +> e, 2ij 1s equal to N(1/4+1/(N + 1)?)m, which is quite large for large
values of N (or m).

To get a crude upper bound on the quantity &;; +> jen; Lij for any player i in any
LAG, suppose M be the maximal size of any region and suppose IV is the maximal
number of neighbors that any region can have. From our sensitivity analysis above
we see that 2;; (for any j € N;) is maximized when m; = M, k; = 1 and when
n; = 1. We also see that & is maximized when m; = M. So,

R R akiMn;(kin; — a(n; — 1) aM
’ gz; ? (kini + @) "1+ a)?

which is less than M(1+ N).

7 Beyond Immediate Neighbors

An intriguing extension to our model is to allow players to operate further away from
their home regions. In particular, what happens if the players are also allowed to
invest in regions which are neighbors of their neighbors? Will players invest much in
such “second-degree neighbor" regions?

To answer this question, we consider a symmetric case in which each player ¢ has
a set N;1 of “first degree” neighbors and a set Njo of “second-degree” neighbors, with
|N;1| = n1 and |Njo| = ng for all i.'' We also assume that for simplicity, k; = 1
and m; = 1 for all 7. Finally, the damping factor « remains in effect for first-degree
neighbors, but becomes a? for second-degree neighbors.

Player 4’s utility function is
i) = Tis oL

(@) Tij + « quNﬂ Tgi + a? qum2 Tqi - jeNy LTIl +a qule Tgj + quNﬂ Lqj

2
Ty
g - — Lt — g Lij — g Lig-

2
Top + ) Tge + 2 N, T
teNy Y qENg “at qE€Ng2 at JENn lEN;2

To analyze the model above, we again write down player ¢’s maximization prob-
lem:
max u'(x)
Tii {Tijtjen; ATiteen;y

s.t. @i + Z Tij + Z Ty < M;
jeNil lENiQ
Ty >0, 245 > 0Vj € Ny1, e > 0V € Nyo.

Again assume the constraint is vacuous (i.e., M; is large), and, for now, ignore the
nonnegativity constraints. Since u® is concave in its variables, we see that if & is

" Necessarily na < ny(ng — 1).
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nonnegative and satisfies

out

(9.7)1',1

=0 for all 4,q € N;; U Ny U {i}, (7.1)

then 2 is an NE.

To find such an %, we take advantage of the model’s symmetry and assume that
a) each player spends the same amount A in his home region; b) each player spends
the same amount B in each of his first-degree-neighbor regions; and c¢) each player
spends the same amount C' in each of his second-degree-neighbor regions. In this
case, the functions {u‘};cp become

u'(z) = i Z XLi
Ty + any B + a?nyC A+ azij + a(n; —1)B + a?neC

JEN;1
oy > - Y
— Ty — Lij — Lig-
A+ aniB+ a2z + a?(n
(N, AT aME i (n2 — JEN: IEN»

The first-order-conditions (7.1) become

aBny + a?CN»

2 _ 3
aA + a?B(ny 1)+O‘0n2_1:0 (7.3)
(A+ aBnj 4+ a2Cny)?
2 3 4 —
a*A+ a’Bny + a*C(ng 1)_1:0 (7.4)

(A+ aBny + a?Cng)?

This solves (again, after a lot of algebra) with

ab(ny +n9)(ng + any + a? — a®ny — a’ny)
(atny — at — 2a3n1 — a?ng — aning + 2a2n1ng — adning)?

A= (7.5)

a®(ny +ng)(ng — ang + a?)
2

B= (7.6)

(atny — ot — 2a3n1 — a®ng — aning + 2a’ni1ng — adning)?
4 2
a“(ny+n9)(a®+any —n
C— ( 1 2)( 1 1) (7_7)

(atng — ot — 2a3n; — a2ng — anyng + 2a2n1ng — adning)?

We see that in the case where @ = 1 we have A = B = (', and all three quantities are
equal to the positive quantity (n; +n2)/(1 + nq + ng)?. Essentially this is because
a? = a, so we can think of this as a symmetric case of our original game in which
each player has nj + ng neighbors.

As we lower a from 1 we see that NE investments in first- and second-degree
neighbor regions to both fall, with those in second-degree regions falling faster. In
fact, A and B are nonnegative for any value of «, but that C' is nonnegative only if
a?+any —ny >0, ie, a> (y/n? +4ny —ny)/2. The quantity (/n? + 4ny —ny)/2
is equal to /(N +1)2 —1— N (where N = n;/2), which approaches 1 as n; gets
large.
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In conclusion, we see that while first-degree investments stay positive for any
positive «, second-degree investments hit zero at a value of « very close to 1. This
suggests an interesting rationale for the theory that human behavior is based only on
extremely local conditions.

8 Extending the Player Set

We remark here that all of the results from Sections 5, 6, and 7 hold if we allow the
player set P to be countably infinite, i.e. P = {1,2,3,...}.12 However, we would still
require that the number of neighbors for any player would be finite.

9 Generalizing the Model

In this section we generalize the model from Section 4 by replacing the specific func-
tional forms for given in (4.1)—(4.2) with arbitrary revenue functions. We then inves-
tigate in what sense we still have NE existence results.

We begin by presenting the generalized model. Let P = {1,...,p} be the player
set, and let RY be p-dimensional Euclidean space in which the coordinate axes are
associated with the players in P. Suppose i € P. Then, as in Section 4, let N; the
set of neighbors of Player ¢ and M; the monetary endowment of Player .

Again let i € P. We define X = {z € RY . Zjepwij < M;, x;; >0Vj € P,
and x;; = 0if j £N; U {i}}. This definition of i’s strategy set is technically different
than the one proposed in Section 4: now ¢’s strategies are no longer 1 4+ N;-vectors,
but instead are p-vectors with all but 1 + N; components set to 0. Also, this time we
define the strategy space X to be an arbitrary compact subset of X;epX*®. Hence it
will be possible to forbid certain joint strategies for the players.

If x € X is a vector of joint strategies for the players, the revenue for player
i from Region j is given by an arbitrary function r;;(z). We assume the following
concerning these functions {r;;}:

1) rij(z) =0if 2;; =0 for any ¢ € P, j € P.

The first assumption states that if a player invests zero into a region, he gets a
revenue of zero out of that region.

For the second assumption, we need some notation. Let x be a joint strategy
vector. Then z~%=Y is the same vector as x, except with the 7jth component changed
to y.

2) rij(x~*=Y) = ryi () for any x,y,4,5,k, 1 : 1 # j.

This assumption says that if a player changes his investment in a single region, it
does not affect anyone’s revenue from any other region.

3) 7i;(x) is an increasing concave function of z;;, for all 4, j.

Player i’s revenues in any region are an increasing concave function of his invest-
ment there.

4) 7;;(x) is a decreasing function of x4;, for any i and for g # <.

'2We note that the strategy set X is no longer compact in this case.
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The last assumption says that Player i’s revenue from any region is a decreasing
function of what other players invest there.

Under this notation, Player ¢’s utility function is simply his total revenues (added
up over all regions) minus his topal expenditures, or u'(x) = 25:1 rij(x) — Z§:1 Tij.
We can think of the functions {u'},cp as payoff functions in a noncooperative game,
in which the player set is P and the joint strategy set is X. Formally, we say that
the quantities G = (P, {N;}icp, {rij}ijcp, X) define a generalized local advertising
game (GLAG).

We note that the model described in Section 4 is an example of a GLAG, in
which the functions {r;;} are given by 7;;(x) = am;x;;/(v;; + Zq:quj xg;) if i #j
and 5+ e, Tag > 0, 10i(@) = kimaza /(i + 3 jen, Tig) 2+ 5 5en, 15 > 0,
and riq(x) = 0 if xgq + ZleNq z, = 0.13

Theorem 9.1: Let G = (P, {N;}icp, X, {rij}ijer,X) be a GLAG. If the functions
{rij(z)} are continuous on X, then there exists an NE for G.!4

Proof: Follows directly from Theorem 1 of Rosen (1965). [

In Theorem 5.1 we proved the existence of NE in a model in which the functions
{ri;} are not continuous on all of X. Hence Theorem 9.1 is not completely satisfactory
because it does not imply (the existence result part of) Theorem 5.1. We now rectify
this problem by doing the following:

1) Given a LAG G, we define the “snipped game" G, which is the same as
G except we “snip off" the corners of the strategy set X on which the r;;’s are
discontinuous. We shall prove that G¥ is “equivalent" to G in that both games must
have the exact same (unique) NE.

2) The snipped game does satisfy the hypotheses of Theorem 9.1, and so that
theorem does imply the existence of an NE in G°, and hence in G.

Let G = (P,{Ni}icp,a, {ki}icp,{mi}icp, X) be a LAG. Define the snipped game
GS by GS = (P, {Nz’}iePa a, {ki}ieP; {mi}iep, XS), where

ak;m;n;
iEN; 2(0& + k‘jnj)

Vjerp

Our aim is to show that the set of G’s NEs is exactly the same as the set of G®’s
NEs.

Lemma 9.2: Let G be a LAG, and let j any region for which m; > 0. If x* is an
NE of game G or of G°, then
ak:jmjnj

* *
T+« x> ——
33 §: ij =
a+kin;
i€ N; TR

YNote that even if m; > 0 and z4; = 0 for all q # i, the function r;;(2) is a concave function of
Zij, although it is not a continuous function of x;;.
14YWe note that the Theorem holds even if we drop the assumption of “largeness” for the M;’s.
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Proof: First, we remark that the quantity z73; + O‘qu N; xy; cannot be zero. In

game G, this is by virtue of the definition of X“:' in game G this is because of
Lemma 5.6.19 Either way, we note that |,—g« (9, /6a,;) eXists for all i,j € P.

Now we prove the Lemma by assuming it is false. Thus, suppose there exists
a region j and a positive ¢ < akymyn;/(a + kjn;) with 27; + a} oy 23 = e 17
Now suppose i # j. Since z* is an NE, it is true that ¢ cannot profitably switch
resources from savings to Region j. Hence [y—y+(or,/02,,) < 1, le. (am;a}; +

O{27TLj ZqENj:q;éi x;])/(x;] + aneNj x;;j)2 <1, or
am;xy; + a’m, Z Ty < 2. (9.1)
qEN;:q#i

Adding up inequalities (9.1) over all ¢ € N; gives

am;n;xj; + a*mj(n; — 1) Z Ty < e*n;. (9.2)
9€N;

We also know that j cannot profitably switch resources from savings to his home
region. Hence |y—z (0rj;/0xj;) < 1, i.e., akjm; quNj Ty, (:U;‘] +O‘quNj w(’;j)Q <1,

or
2
. ae
a’m; Z Ty < - (9.3)
qeN; J
Adding (9.2) and (9.3) gives
(6%
amn;r;; + amjn; Z Ty < g2 <nj + k_>
qENj J
The last inequality above gives a contradiction. |

Theorem 9.3: Suppose G is a LAG. Then x* is an NE of G iff x* is an NE of
G*.

Proof: First let us suppose z* is an NE of G. We see that if m; = 0, we trivially
have x7; + aZieNj xf; > [akymyng/2(a + kjn;)]; and, if m; > 0, Lemma 9.2 ensures
that 7, + aZieNJ_ xf; > akjmn;/[2(a + kjn;)]. Hence, 2* € X9, But X C X, so
this implies that z* is an NE of G° as well.

For the converse, let us suppose z* is an NE of G* but not an NE of G. Hence,

there is some player ¢ who has a deviation from x* to some & which makes him better
offin G, i.e., u* (%) > u’(z*). Since 2* is an NE in G°, the deviation # must lie in X but

'“The assumption m; > 0 is crucial here.
16GSee in particular the sentence immediately following the proof of Lemma 5.6.
'"The assumption that m; > 0 is necessary here to ensure that e is positive.
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not in X°. Hence the set J = {j € P: &j; + ) gen, To < akjmyng/[2(o+ kjng)]}
must be nonempty. Note that necessarily m; > 0 for all j € J.
By virtue of Lemma 9.2 and the fact that * is an NE of G°, we have

" o s Qkjmyng
xjj+a2xqj2 T 'VJEJ.
Q-+ kjng
qGNj

Now consider the line segment connecting & and x*. There must be a point y on
this segment for which y # 2* but still y;; + O‘quNj Ygj > akjymjng/[2(a + kjn;)]
for all j € P, i.e., y € X7.

But then

u'(y) = u'(\e* + (1 — \)Z) for some X € (0,1)

Hence y is also a deviation which makes ¢ better off.
But, since y € X, we have a contradiction of the fact that z* is an NE of G°.1

10 Concluding Remarks

In Section 2 the constraints of space, time and net were noted. In Sections 3-4 a
model was specified. In section 5 we carried out an analysis, which by the appro-
priate selection of parameters could be interpreted either in terms of space or net.
Time and information conditions were left out in the sense that we considered the
noncooperative game as a one period game in strategic form and solved for its NE.
We did not perform a sensitivity analysis of the solution concept.

We close with a simple example, which serves to illustrate some of the basic
differences in the treatment of what is considered to be a solution to a game as we
vary the complexity of available strategies. We consider a four player game where
each player has two neighbors:

Player 1 has 2 and 3 as neighbors
Player 2 has 1 and 4 as neighbors
Player 3 has 1 and 4 as neighbors
Player 4 has 2 and 3 as neighbors

Each pair of neighbors plays either a prisoner’s dilemma or coordination game,
as follows. First, in the game of 2 vs. 4, and the game of 1 vs. 3, the agents play the
prisoner’s dilemma:

(3,3) (-1,4)
L (47—1) (070)

Meanwhile, the games 1 vs. 2 and 3 vs. 4 play a coordination game:

[ (3,3)  (0,0)
(0,0) (-1,-1)

Hence each player plays two others, one in one game and the other in a different
game.
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We may use this four person game to illustrate four solution concepts of differing
levels of complexity ranging from zero intelligence and perceptions to a strategy using
recent memory.

Solution 1 A fixed strategy

Solution 2 Select either A or B for all games

Solution 3 Select A or B for each game separately

Solution 4 Select A or B for each game separately, based on previous history

Suppose that survival requires a positive payoff. The first solution is a no intel-
ligence, no learning solution. If by chance all agents are hard-wired to play A, each
will earn 6 each period and survive well. If there is a mixture of agents playing A
and B the A agents will be wiped out in their encounters with the B agents and then
the B agents will wipe each other out.

In the second solution, if the agents do not use any history, but are locally optimal,
but are constrained (like many mass anonymous agencies) to treat all agents in the
same manner, then each will select strategy B and wipe each other out. [See Morris
(2000) for an analysis of this type of game.]

The third solution is still purely local in time, but an agent is able to distinguish
between neighbors. In this instance each agent will play B in the prisoner’s dilemma
game and A in the coordination game. This permits all to survive and make 2 each
period.

The fourth solution extends locally into time. It permits strategies to be selected
contingently based on the history in the previous period. Thus the strategy is based
on AA, AB, BA, or BB. In the prisoner’s dilemma game the agent can resort to a
“tit-for-tat” strategy, as was selected by Rapoport. In the coordination game it is not
clear that the “tit-for-tat” strategy has the nice intuitive “eye-for-eye” interpretation
that it has in the prisoner’s dilemma.

In order to well define the game with history, initial conditions must be supplied.
For example if all agents are informed the their neighbors played A in both games,
then the solution where all play A in both games is a noncooperative equilibrium
enforced by strategies using one period of history. If the initialization is, say BA then
the agents will cycle on the tit-for-tat strategy without further learning. Humans
tend to learn from more than immediate history. Furthermore, unlike in Axelrod’s
(1984), simulation, encounters with neighbors are not like new random encounters
with strangers.

In the analysis part of this paper we have investigated the NE solution based
on considerations of neighborhood in space, and net. Further solutions differ based
on the flexibility and information processing abilities we attribute to the individuals
embedded in time. The simple four person game example presented here illustrates a
sensitivity analysis on solution concepts. The simple treat all-alike behavior appears
to be better associated with models of simple animal or organism behavior than for
humans; games such as “blockwatch” or “keep our town green.” These depend on
the facts of locality which in turn make moderately simple strategies utilizing not too
many contingencies, reasonably effective, yet they do require learning and intelligence
higher than offered by evolutionary game theory models.
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