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1 Introduction

Spatial differences in wages across the US are very large. Average wages in the

private sector, without agriculture and mining, of the top 50 US counties in 1990

were more than three times average wages of the bottom 50 counties. Average

wages of the top 300 counties, 10 percent of all US counties, were more than twice

average wages of the bottom 300 counties. Average wages in New Jersey were one

third greater than average wages in Illinois, and average wages in Illinois one third

greater than average wages in South Dakota. What explains these spatial differences

in wages? Research on differences in labor productivity across US cities and states

suggests that spatial differences in wages may be partly determined by spatial

differences in total factor productivity (TFP). Spatial differences in TFP may in turn

be driven by spatial externalities due to the aggregate scale of production

(Sveikaukas, 1975; Henderson, 1986), the average level of human capital (Lucas,

1988; Rauch 1993), or the density of economic activity (Ciccone and Hall, 1996).

Which of these factors is most important is not clear. Other factors that may explain

spatial differences in wages, but have not been explored so far, are related to the

spatial diffusion of technology. For example, if technology spreads more rapidly

among neighboring counties, then counties will have higher wages the higher levels

of TFP of their neighbors. Furthermore, human capital externalities across

neighboring counties imply that counties whose neighbors have high levels of

human capital will have higher wages (Lucas, 1999).

I look at these issues using data on basically all US counties (2826) in 1990. My

empirical results indicate that differences in TFP across counties are key for

explaining differences in average wages across counties. Furthermore, the two main

determinants of a county’s level of TFP are the levels of TFP of neighboring

counties and the aggregate scale of production in the county. One empirical finding

supporting the importance of neighboring counties’ levels of TFP is that average
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wages in a county decrease with the average level of schooling in neighboring

counties when employment in the county and average wages in neighboring counties

are held constant. This finding is robust and easily explained with spatial technology

diffusion as higher schooling in neighboring counties implies lower TFP in

neighboring counties when their wages are held constant. My point estimate of the

long-run rate of spatial technology diffusion indicates that a 10 percent increase in

levels of TFP of a county’s neighbors increases wages in the county by 6 percent.

Doubling the aggregate scale of production (measured by employment) in a county

increases wages by 3.6 percent. I do not find evidence suggesting that counties with

high schooling or high density of economic activity (measured by employment per

acre) have high TFP. Schooling does increase wages however. One additional year

of average schooling in a county increases average wages by 6.9 percent.

The main problem in estimating the effect of the aggregate scale of production

or the density of economic activity on TFP at the county-level is reverse causation.

Suppose for example that we suspect that high wages in some counties are driven by

high TFP due to externalities from the density of economic activity. The reverse

causation problem is that a positive partial correlation between average wages and

employment per acre across counties may not necessarily indicate such externalities.

Instead, the positive partial correlation may be due to workers moving to counties

where TFP is high for reasons not controlled for. A natural way to identify the effect

of employment per acre on wages would be an instrumental-variables approach.

This requires variables that are correlated with employment-density across counties

but uncorrelated with determinants of TFP not controlled for. However, no such

variables have been identified at the county-level so far. I suggest that one possible

candidate would be employment-density across US counties in the early 19th-

century. Let me neglect for a moment that such data is not available and explain the

logic of this instrument. There is little doubt that the spatial distribution of

employment in the early 19th-century in the US was driven by factors that may have

affected the spatial distribution of TFP then. For example, people migrating to North



3

America from Europe probably settled close to the eastern seaboard, railroads,

natural ports, and river-crossings mainly because of lower transportation-costs given

the transportation-technology. Furthermore, people moved to areas rich in natural

resources or areas where agricultural productivity was high because of land-quality

and climate. It seems however reasonable to suspect that most of the potential

determinants of the spatial distribution of TFP in the early 19th-century (except

maybe coastal location or climate, which can be controlled for) do not have much of

an effect on TFP outside of agriculture and mining today. This is because today,

railways, highways, and airports are available all over the US; the relative

importance of agriculture and mining has much declined; air-conditioning and

heating has improved and so on. In fact, these factors combined explain in part why

production in the last 50 years or so grew rapidly in regions of the US that were

sparsely populated in the early 20th-century.

This leaves the question of how to deal with the lack of data on employment-

density at the county-level in the early 19th-century. I suggest a proxy. The variable

used in the empirical work is the size of the administrative territory of counties—i.e.

their total land-area. Total land-area of counties is a historically predetermined

variable, as more than 95 percent of the counties in the US today already existed and

had the same territory in the late 19th-century. The vast majority of counties is even

older (Encyclopedia Americana, 1918). For example, the nine counties that make up

the consolidated metropolitan area south and east of San Francisco (S.F.-Oakland-

San Jose)—including Santa Clara County which contains Silicon Valley—have not

changed since 1856 (Coy, 1917). Furthermore, the few adjustments to the land-area

of US counties made during the late 19th-century and the 20th-century have to do

with geographic considerations and are unrelated to population. This is evidenced by

the fact that Los Angeles County, by far the most populated county today, has not

been broken up despite the more than thousandfold increase in population.

Despite being historically pre-determined, total land-area of counties is strongly

negatively correlated with current employment-density. Regressing the logarithm of
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employment-density of counties in 1990 on the logarithm of their total land-area and

state dummies yields a highly significant coefficient on total land-area of 0.48− .

This is due to two main reasons. First, one of the criteria used for dividing up states

into counties was the equalization of population-size of counties. General Vallejo,

chairman of the 1850 commission that formed the first counties in California, stated

so explicitly when asked to explain why El Dorado County, where gold was found

in 1848, was so small and Los Angeles County, largely uninhabited, so large (Coy,

1917). This criterion induced a negative correlation between population-density and

land-area of counties. Second, the spatial population-distribution in the US has

proven to be persistent. This may be because populated places became increasingly

productive as a result of externalities or because people acquired a taste for the

location where they grew up. Equalization of population-size was however not the

only criterion used to divide the territory into counties. Other criteria induced a

positive correlation between population and land-area of counties that also endured.

Regressing the logarithm of employment of counties in 1990 on the logarithm of

their total land-area and on state dummies yields a highly significant coefficient on

land-area of +0.57.

There seems to be no previous work analyzing the role of technology diffusion

and spatial externalities for the wage-distribution across US counties.1 Empirical

studies of spatial externalities in the US generally focus on MSAs (metropolitan

statistical areas; MSAs contain three counties on average) or states. Sveikauskas

(1975), Segal (1976), and Moomaw (1981,1985) combine data on employment or

population with data on output to estimate the elasticity of productivity with respect

to employment or population. Henderson (1986) studies the elasticity of industry

productivity with respect to industry employment at the same level of geographic

detail. Glaeser et al. (1992) and Henderson et al. (1995) also focus on MSAs but

                                                       
1 Hanson (1998) is a very interesting contribution using data on counties. Following Krug-
man (1991), he relates (the change over time of) average wages and employment across
counties to (the change over time of) income across states. His theoretical and empirical
approach is very different from my approach however and therefore difficult to compare.
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examine the determinants of employment growth rates instead of productivity.

Rauch (1993) and Glaeser and Mare (1994) look at human capital externalities using

data on individuals in MSAs. Ciccone and Hall (1996) explore the role of spatial

externalities due to the density of economic activity for explaining differences in

labor productivity across states.

The rest of the paper is organized in the following way. Section 2 presents the

model and Section 3 discusses estimation. Section 4 describes the data and Section 5

presents results and specification tests. Section 6 summarizes.

2  The Model

The main features of the model that serves as a basis for estimation are summarized

in the next subsection. The summary is followed by details on the derivation.

2.A  Summary of the Model

The model reduces to two equations. The first is basically aggregate labor-demand

across counties. The equation states that the log of wages across counties (the vector

w) increases with average years of schooling across counties (the vector SCHOOL)

and the log of TFP across counties (the vector TFP) but decreases with the log of

employment per acre of land across counties (the vector DEN):

ν β= + −w TFP SCHOOL DEN , (1)

, 0ν β ≥ . It is clear why TFP and schooling enter positively. Density enters

negatively because, given TFP and schooling, more employment per acre implies

that less land is available per worker which lowers workers’ productivity. The

derivation of (1) assumes that markets for labor and land are competitive in each

county and that all firms face the same rental cost of capital.

The second equation of the model captures the potential determinants of TFP

across counties. To capture spatial  externalities, log-TFP across counties is  allowed

to depend on log-employment (the vector EMP), log-density, and schooling across

counties as well as on the unweighted average level of schooling in neighboring
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counties ( NSCHOOL ). To capture spatial technology diffusion, log-TFP across

counties is also allowed to depend on the unweighted average level of log-TFP in

neighboring counties ( NTFP ):

γ θ η φ σ= + + + + +TFP CNTR EMP DEN SCHOOL NSCHOOL NTFP ; (2)

CNTR stands for other control variables. Equation (2) can be derived as the steady-

state equation of a model with dynamic externalities in counties and technology

diffusion across neighboring counties. Parameters on the right-hand side can

therefore be interpreted as measuring long-run effects. For example, γ  can be

interpreted as the long-run externality from employment in counties and σ  as the

long-run degree of technology diffusion across neighboring counties.

The equation that will serve as the basis for estimation combines (1) and (2)

with the fact that β  is equal to the share of land in income paid to labor and land:

( )

            ( )

γ θ ν η

σ φ νσ

= + + + +

+ + − +

AdjW CNTR EMP DEN SCHOOL

NAdjW NSCHOOL u
(3)

where β̂= +AdjW w DEN , with β̂  equal to the share of land in income paid to

labor and land; NAdjW denotes the unweighted average of adjusted log-wages of

neighbors; u  will capture, among other things, differences in log-TFP across

counties not explained by the model (“exogenous” TFP).

To better understand some of the implications of the model, suppose that

average levels of schooling across counties do no matter for TFP, i.e. 0η φ= =  in

(2). In this case, (3) implies that a high average level of schooling of a county’s

neighbors should decrease adjusted wages in the county. This is an implication of

spatial technology diffusion because the higher the average level of schooling of

neighbors, the lower the average level of TFP of neighbors once their wages are

controlled for. Spatial technology diffusion not only predicts the sign of the effect of

average schooling of neighbors on adjusted log-wages but also the magnitude. In the

case where 0η φ= = , the effect of average schooling of neighbors on adjusted log-
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wages must be just offset by the effect of average adjusted log-wages of neighbors

multiplied by the effect of schooling.2 This restriction will not be satisfied however

if there are strictly positive schooling externalities. To see this, denote the

coefficient on SCHOOL with B and the coefficient on NSCHOOL  with C. (3)

implies that B Cσ ση φ+ = + . Schooling externalities in counties ( 0η > ) and across

neighboring counties ( 0φ > ) therefore imply that C Bσ+  will be strictly positive

instead of zero. Notice also that if spatial technology diffusion is irrelevant, i.e.

0σ = , then (3) predicts that high levels of schooling of neighbors increase adjusted

wages in the county if there are schooling externalities across neighboring counties.

2.B  Details of the Model

Assume that firms produce goods with labor, human capital, physical capital, and

land. Their production function is (1 ) 1( )fc c fc fc fc fc
a b ab aY A H L K M− −=  with 0 1a≤ ≤  and

0 1b≤ ≤  where fcY  denotes output of firm f  in county c ; cA  denotes the level of

TFP in county c ; fcH  denotes the employment-weighted average quantity of human

capital of firm f  in county c ; fcL  denotes employment; K fc  denotes the total

quantity of physical capital; and fcM  denotes the total quantity of land. This

production function implicitly assumes that there are constant returns to scale to

labor, physical capital, and land at the firm-level. Assume also that firms in all

counties face the same rental cost of physical capital. Output at the firm-level can

then be written as
1( )fc c fc fc fcY DA H L Mβ βα −= (4)

where D  depends on the cost of physical capital, and 1/(1 )abα = −  and

(1 )aβ α= − .

Suppose that markets for labor and land are perfectly competitive in each county.

Workers with the same level of human capital in the same county will therefore earn

the same wage. I make no assumptions about wages of workers with the same level

                                                       
2 This is because levels of TFP of neighbors remain unchanged if log-wages of each
neighbor are increased by 1 at the same time as levels of schooling are increased by 1/ν .
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of human capital in different counties. They may or may not differ. How can

counties be in equilibrium at different wages? The simplest answer is that lower

prices of housing compensate workers in low-wage counties. Furthermore, different

workers may value the degree of urbanization, air pollution, and crime of different

counties as well as their climate or geographic characteristics in different ways. The

assumption of competitive labor markets in each county combined with (4) implies

that average labor productivity is proportional to average wages. Average wages

across counties are therefore characterized by

(1 )  t t t t t t tδ α β β α ν β= + + − − = + −w 1 a h d a S d (5)

where ,  ,  ,  ,  w a h d S  denote vectors (with as many elements as counties in the

sample) that collect the logarithm of average wages, the logarithm of levels of TFP,

the logarithm of average levels of human capital, the logarithm of employment-

densities /ct ctL M , and average years of schooling across counties. δ  is an

unimportant constant and 1  denotes the unit-vector.3 The second equality in (5) has

been obtained by following Mincer (1974) in assuming that levels of human capital

depend exponentially on years of schooling: =λh S . It is straightforward to show

that β  in (5) is equal to the share of land in income paid to labor and land.

Different theories in the literature suggest that the level of TFP in a county may

be endogenous and driven by aggregate employment, aggregate employment-

density, or aggregate human capital because of externalities. For some of these

theories see Arrow (1962), Fujita (1989), Henderson (1986), Jacobs (1969), Lucas

(1988), Marshall (1890), and Porter (1990).4 The exposition that follows will for

simplicity assume that externalities are driven by aggregate employment only.

                                                       
3 Details of this derivation can be found in the Appendix.
4 Romer (1986) suggests that externalities are driven by the aggregate stock of physical
capital. There is no data on physical capital at the county-level however. This is why I made
use of the assumption that all firms face the same rental cost of capital. It can be shown that
this approach implies that physical capital externalities will show up as externalities related
to aggregate employment or average schooling in the county. This is because the
complemetarity between labor and human capital on the one hand and physical capital on
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Furthermore, the level of TFP in a county may also depend on levels of TFP in

neighboring counties because of spatial technology diffusion. A simple and

convenient way to capture the determinants of TFP in county c at time t is the

following constant-elasticity specification

1 1( ) ( )t t t tL L− −= + Γ + Σa f l Na , (6)

where l  denotes the vector that collects the logarithm of employment across

counties and f  captures difference in log-TFP unrelated to log-employment or log-

TFP of neighboring counties. ( )LΓ  denotes the distributed lag,

1 2( ) ( / ) ( / ) ( / ) G
GL L Lγ α γ α γ αΓ = + +⋅ ⋅ ⋅+ , (7)

and captures that externalities may take some time to set in. N  in (6) denotes a

square matrix collecting weights ω cm . These weights will be equal to the inverse of

the number of county c’s neighbors if county c  and m  are neighbors. t g−Na

therefore denotes the unweighted average level of log-TFP of each county’s

neighbors at time t g− . Finally, ( )LΣ  denotes

1 2( ) I
IL L Lσ σ σΣ = + + ⋅ ⋅ ⋅+ (8)

and captures lags in technology diffusion. According to (6), TFP in county c  at time

t  may depend on past employment in the county as well as past TFP in neighboring

counties. The specification implies that the elasticity of TFP in county c  at time t

with respect to employment g  periods back in the same county is /gγ α ; the

elasticity with respect to TFP i  periods back in neighboring county m  is i cmσ ω .

Denote the long-run effect of employment on TFP in (6) with 
1

/ /G

g gγ α γ α
=

= ∑
and the long-run effect of the average level of TFP of neighboring counties with

1

I

i iσ σ
=

= ∑ . These long-run effects can be estimated with data across counties. To

see how, suppose that tf  and tl  follow stationary stochastic processes around a

                                                                                                                                                           
the other in the production function implies that counties with higher employment and levels
of schooling will also have higher levels of physical capital.
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trend where exogenous TFP in all counties grows at the same rate and employment

in all counties grows at same rate. Then—under a technical condition ensuring that

the effect of past TFP on current TFP in (6) is not too strong—(5) and (6) can be

combined to

( )  t t t t t t t t tv vβ δ γ σ β α+ = + + + + − + +w d 1 l S N w d S f v , (9)

where tv  depends on the deviations of current and past values of TFP and

employment from trend.5 Average wages will therefore be positively related to

employment if the long-run externality of employment is positive 0γ > ; average

wages will be positively related to the average level of TFP of neighboring counties

if the parameter capturing long-run technology diffusion is positive 0σ > .

To see in some more detail how (9) can be derived, suppose that t t tE−f f  and

t t tE−l l  follow stationary stochastic processes. Assume also that different counties

have expected levels of exogenous technology and employment given by

=t tE tκ+f f 1  and =  t tE tϕ+l l 1 . Then, (6) implies under the aforementioned

technical condition that t tE a  will converge to a steady-state t
∗a  given by

t t t t t tE Eγ σ∗ ∗= + +a f l Na . This equation basically states that the strength of long-run

externalities and the long-run degree of technology diffusion show up as static

externalities and technological interdependence in steady-state. The equation cannot

be implemented empirically however because we neither observe the relevant

expectations nor t
∗a . Substituting the actual variables into the last equation yields a

new, blurry version

t t t t tγ σ= + + +a f l Na υυ ; (10)

tυυ  arises because we do not observe the relevant expectations but only realized

values. Also, t tE a  is never exactly equal to the steady-state value t
∗a . Inferring TFP

from (5) and substituting in (10) yields (9).

                                                       
5 The condition is that the solutions of 2

1 2 0I

Iz z zσ σ σ− − −⋅ ⋅ ⋅− =I N N N  lie outside the

unit-circle.
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3 Estimation

The equation that will serve as the basis for estimation is (3). The control variables

used are 44 state dummies (one dummy for each state in the sample) and a dummy

for Washington DC, 17 CMSA dummies (one dummy for each consolidated

metropolitan statistical area in the sample), a MSA dummy, and 24 variables

describing the climate in each county. These dummies allow counties in different

states and CMSAs as well as counties in an MSA to have different levels of TFP and

hence different wages for reasons that are unrelated to employment, density, or

schooling in the county or in neighboring counties. Estimation also includes an

Ocean-Great Lakes dummy to allow for exogenous TFP differences that arise

because some counties touch on the Atlantic Ocean, the Pacific Ocean, or the Great

Lakes.

The main problem in estimating (3) is that employment across counties is

endogenous. Furthermore, the adjusted average wage of neighbors is also

endogenous. The method of estimation used will therefore be based on instrumental

variables. Instruments used for estimation are total land-area, average total land-area

of neighbors, years of schooling, average years of schooling of neighbors, and the

control variables. The implicit assumption is that land-area and schooling are

unrelated to TFP not explained by (2), i.e. neither explained by the control variables

(climate, state/Washington DC dummies, and CMSA/MSA dummies) nor explained

by externalities associated with employment, employment-density, schooling,

neighbors’ schooling, or neighbors’ TFP. Furthermore, land-area and schooling must

also be unrelated to tυυ  in (10). The assumption that schooling can be used as an

instrument can be tested in a restricted version of the model.6 It is also possible to

estimate a restricted version of the model without schooling as an instrument. Notice

                                                       
6 It may be worthwhile to emphasize that to use average years of schooling across counties
as an instrument it is not necessary to assume that schooling across counties is unrelated to
TFP across counties. Schooling may be related to differences in TFP captured by (2).
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that the number of instruments available is insufficient to estimate the unrestricted

version of (3). Estimation will therefore be based on restricted versions.

Another concern in the estimation of (3) is heteroskedasticity and spatial

correlation in exogenous TFP as  captured by u. The  preferred method of estimation

is therefore generalized two-stage least-squares (G2SLS).

4  Data

All the data required for estimation of (3) is available for 1990. The data covers total

land-area, average wage level, level of employment, and average years of schooling

by county. Average years of schooling is prepared by the U.S. Bureau of Census

(1992) and comes from the 1990 Census of Population. The data on wages,

employment, and area by county is prepared by the Regional Economic

Measurement Division of the U.S. Bureau of Economic Analysis (1993). Wages

reflect firms’ cost of labor: wages are measured before deductions such as social

security and union dues, and include commissions, bonuses, tips, and pay-in-kind;

they also include employers’ contributions to pension benefits, social security, and

health benefits. Employment is measured as the number of full-time and part-time

jobs.7 Average wages and employment used are for the private economy without

agriculture and mining, as the model assumes that all land is equivalent.

The share of land in income paid to labor and land in the private sector without

agriculture and mining required to construct adjusted wages is calculated as 0.5

percent from the Flow of Funds Accounts of the United States, 1982-1990 prepared

by the Board of Governors of the Federal Reserve System (1997). Varying the value

between 0 and 1.5 percent changes the estimates of all other parameters very little.

The climate variables for counties are 24 variables for average daily temperature

and rainfall by month. The averages are calculated over the period 1890 to 1980 and

are available upon request from the National Climatic Data Center.

                                                       
7 This gives rise to measurement error, another reason to use instruments for employment.
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Counties in the sample cover Washington DC and all continental states except

Alaska, Louisiana, West Virginia, Wyoming, and Virginia. Virginia has been

excluded because the data on average wages and employment could not be matched

to the data on the area of counties. The other states have economies that depend

heavily on the mining sector: mining contributes on average 21 percent to value

added in these states, compared to 1 percent in all other states (Ciccone and Hall,

1996). The total number of counties in the sample is 2826. Two counties are defined

as neighbors if they have a common border. Counties have 5 neighbors on average.

Spatial differences in wages are large. The states with the lowest average wages

are South Dakota, 33 percent below the national average; Nebraska, 29 percent

below the national average; Missouri, 27 percent below the national average; and

North Dakota, 26 percent below the national average. New Jersey and Connecticut

are the states with highest average wages, 24 and 19 percent respectively above the

national average. Differences in wages across CMSAs are also large. The CMSA

around Detroit has average wages that are 35 percent higher than average wages in

Michigan and 24 percent higher than the national average. Average wages in the

CMSA around New York City are 31 percent higher than average wages in New

York State and 26 percent higher than the national average. The frequency

distribution of the logarithm of average wages across counties in the sample is

plotted in the Appendix.

5  Results

A useful starting point is estimation of (3) assuming that TFP in each county is

unrelated to TFP or schooling in neighboring counties. Table 1 presents GLS-

estimates of the key parameters. All parameters in the table are significant at the

one-percent level. The three groups of control variables (not in the table) for TFP-

differences across states and Washington DC, for TFP-differences across CMSAs,

and for TFP-differences driven by climate are each jointly significant at the 0.1-

percent level. The MSA dummy is significant at the one-percent level. The Ocean-
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Great Lakes dummy is insignificant at the 1-percent level. Combining the estimates

of the effect of employment-density and employment on adjusted wages suggests

that doubling employment in a county increases average wages by 7.2 percent. This

estimate may overstate the true effect of employment on wages however as

employment is probably positively related to exogenous TFP. It is for this reason

that I re-estimate the equation of Table 1 using G2SLS with area and average area of

neighbors as instruments for density and employment. Table 2 indicates that the

effect of density becomes very small and is no longer significant when instruments

are used.8 Employment remains significant but is only 60 percent of the value

estimated in Table 1. These estimates suggest that the GLS-estimates in Table 1

suffered from endogeneity bias. It is interesting to note that the estimated effect of

schooling on adjusted wages increases using G2SLS. The effect of one additional

year of schooling on average wages is estimated to be 11 percent. This is somewhat

higher than the effect of schooling estimated in individual wage-regressions (Card,

1999) and may therefore suggest schooling externalities. The control variables for

states plus Washington DC, CMSAs, and climate remain significant at the 0.1-

percent level. The MSA dummy remains significant at the five-percent level. The

Ocean-Great Lakes dummy stays insignificant at the 1-percent level.

Table 3 re-estimates the equation of Table 2 without density as a determinant of

TFP, but allows for technology diffusion across neighboring counties, as well as

schooling externalities across neighboring counties. The method used is G2SLS and

the full set of control variables is included. The results show that all key variables

are significant at the five-percent level. It is interesting to note that average

schooling of neighbors decreases adjusted wages as predicted by the model with

technology diffusion. Technology diffusion predicts a negative effect because,

holding average wages of neighbors constant, a higher average level of schooling in

neighboring counties implies a lower level of TFP in neighboring counties.

                                                       
8 The 2R  of the regressions of the endogenous right-hand side variables on the set of
instruments is never smaller than 60 percent (see the Tables in the Appendix for details).
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However, the results in Table 3 also indicate that parameters are estimated rather

imprecisely. It turns out that this is due to the inclusion of CMSA and MSA

dummies in the estimation. The coefficients on these dummies are small and highly

insignificant. For example, the MSA dummy is estimated to be 2.2 percent with a

standard error of 2.5 percent. The employment-weighted absolute value of the

estimated CMSA dummies is 5 percent and the hypothesis that all CMSA dummies

are zero has a P-Value of 0.85. For comparison, in the model without technology

diffusion the G2SLS-estimate of the MSA dummy is 5.8 percent with a standard

error of 2.1 percent; the employment-weighted absolute value of the estimated

CMSA dummies is 22 percent; and the hypothesis that all CMSA dummies are zero

has a P-Value of 0.001. The comparison suggests that technology diffusion explains

much of the variation in average wages that would be attributed to CMSA and MSA

dummies in a model without technology diffusion.

Re-estimating the equation of Table 3 without the insignificant CMSA and

MSA dummies using G2SLS yields the results in Table 4. All parameters are now

estimated more precisely. The point-estimates of the effect of employment and

schooling fall and the point-estimates of the effect of average adjusted wages of

neighbors and average schooling of neighbors are also lower than in Table 3.

Average schooling of neighbors continues to have a negative effect on adjusted

wages as predicted by the technology diffusion model. The Ocean-Great Lakes

dummy stays insignificant at the 1-percent level and will therefore also be dropped.

There is a simple way to test for the significance of schooling externalities in

the equation of Table 3. Denote the coefficient on SCHOOL with B and the

coefficient on  NSCHOOL with C. The equation of Table 4 implies that

0B Cσ + =  is equivalent to 0φ ση+ = . We should therefore be unable to reject

0B Cσ + =  if there are no schooling externalities (neither from schooling in the

county nor from schooling in neighboring counties). The point estimate of B Cσ +

implied by Table 4 is -0.016 . The null-hypothesis 0B Cσ + =  has a P-value of 0.28

and can therefore not be rejected at conventional significance levels.
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Table 5 re-estimates the equation of Table 4 under the assumption that

C Bσ= − . The resulting estimate of the effect of the aggregate scale of production

on wages is 0.036. Doubling employment in a county increases wages by 3.6

percent.9 The estimate of the long-run degree of technology diffusion between

neighboring counties is 0.62. This implies that a 10 percent increase in the level of

TFP of a county’s neighbors eventually increases wages in the county by 6.2

percent. The effect of one additional year of schooling in a county on average wages

is 6.9 percent. It may be worthwhile to point out that this estimate is similar to the

return to schooling estimated in individual, Mincerian wage-regressions (Card,

1999). The equation of Table 5 can be re-estimated without schooling as an

instrument once the effect of schooling on wages is restricted to be equal to the

estimate in individual wage-regressions. Setting 0.08ν =  (the middle of the range

estimated in individual wage-regressions) and re-estimating does not change the

effect of employment or average TFP of neighbors on adjusted wages of counties.

The equation estimated in Table 5 explains 49 percent of the large variation in

wages across US counties. The hypothesis that all climate variables are equal to zero

has a P-value of 11.6. The hypothesis that all state dummies are equal to zero has a

P-value of 9.6. The employment-weighted average of the absolute values of state

dummies is 4 percent. It is interesting to compare the last two results to the estimates

and significance of the state dummies in the model without technology diffusion.

There, the hypothesis that all state dummies are zero has a P-value of 0.001 and the

employment-weighted absolute value of the state dummies is 15 percent (four times

greater). Technology diffusion therefore appears to explain much of the variation in

average wages that would be attributed to state dummies in a model without

technology diffusion.

Table 6 re-estimates the equation of Table 5 with employment-density as an

additional determinant of wages. The result is an estimate of the effect of density on

                                                       
9 The effect of employment on wages increases when state dummies are dropped. Re-
estimating the equation of Table 4 without state dummies yields an estimate of 0.052.
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wages of –0.001 with a standard error of 0.008 percent. All other estimates are

basically unchanged. These results differ from those obtained by Ciccone and Hall

(1996). They found density at the county-level to be key in explaining differences in

average labor productivity across states.10 The discrepancy is mainly due to the fact

that the results in Table 6 control for differences in TFP across states while Ciccone

and Hall’s approach did not allow them to do so. Another difference with their

results is that schooling at the county-level is significant in Table 5 while they find

schooling to be an insignificant determinant of average labor productivity across

states.

The robustness of the results in Table 5 can be checked by including additional

regressors in the estimating equation. One possibility is to include average adjusted

wages of counties that are not neighbors but neighbors of neighbors. Including this

variable makes it possible to check to what extent technology diffusion works

through neighbors. It turns out that average adjusted wages of counties that are not

neighbors but neighbors of neighbors enter with a small, negative coefficient and are

insignificant at the two-percent level. All other coefficients remain significant at the

two-percent level. Another possibility is to include total wages of neighbors. This

makes it possible to check whether spillovers between neighboring counties are

linked to the size (employment) of neighbors. The total wages of neighbors enter

with a small, positive coefficient but are insignificant at the three-percent level. All

other coefficients remain significant at the four-percent level.

The residuals of the first step of the G2SLS-estimation of the equation in Table

5 can be used to test for heteroskedasticity and spatial correlation in exogenous TFP

across counties. There is evidence for heteroskedasticity of the residuals associated

with presence in different states. The estimated variance of the residuals by state is

in fact used in the second step of the G2SLS-estimation. There is however no

evidence of any significant correlation between the residuals of counties and the

                                                       
10 The correlation between average wages and average labor productivity across states is
0.92.
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average residuals of their neighbors. Regressing the residual of counties on the

average residuals of their neighbors yields a small, positive estimate that is

insignificant at the one-percent level.

The equation of Table 5 is overidentified. This can be used to test the

specification using two standard tests. The test of overidentifying restrictions

described by Gallant and Jorgenson (1979) and the test of exogeneity of instruments

described by Hausman (1983). The test of overidentifying restrictions yields that the

overidentifying restrictions cannot be rejected at the 35 percent significance level.

The test of exogeneity yields that exogeneity of the instruments cannot be rejected at

the 27 percent significance level.

I also explore two alternative specifications for the matrix N  by weighting the

TFP of neighbors by their share in employment and wages of all neighbors. The

results change very little. In particular, density remains insignificant and there are

still increasing returns to employment.

6  Summary

The paper tackles two main issues. The first is whether total factor productivity

(TFP) at the county-level is driven by the aggregate scale of production, the average

level of schooling, or the density of economic activity. The second issue is whether

the distribution of wages across US counties provides evidence for spatial

technology diffusion. The empirical findings in the paper suggest that the spatial

distribution of TFP is driven by the aggregate scale of production. Furthermore,

there is evidence of a substantial degree of spatial technology diffusion. One of the

findings supporting this view is that average wages in a county decrease with the

average level of schooling of neighboring counties once employment in the county

and average wages in neighboring counties are controlled for. This finding is robust

and consistent with theories of spatial technology diffusion as higher average levels

of schooling in neighboring counties are equivalent to lower levels of TFP when

neighbors’ average wages are held constant. Point-estimates suggest that a 10
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percent increase in the TFP of a county’s neighbors increases wages in the county by

6 percent. Doubling employment in the county increases wages by 3.6 percent. The

model with externalities driven by aggregate employment at the county-level and

technology diffusion across neighboring counties developed in the paper explains

half of the large variation of wages across counties.
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Appendix

Appendix A: Results

Table 1: GLS-estimates of the model without technology diffusion

Coefficient Std. Error
DEN 0.026 0.006
EMP 0.046 0.006

SCHOOL 0.028 0.005
Notes: Results of estimating ( )γ θ ν η= + + + +AdjW CNTR EMP DEN SCHOOL  where

β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826 observations. The method used is GLS.
CNRT variables are 24 variables for climate, 44 state dummies and a dummy for
Washington DC, 17 CMSA dummies, a MSA dummy, and an Ocean-Great Lakes dummy.

Table 2: G2SLS-estimates of the model without technology diffusion

Coefficient Std. Error
DEN 0.0002 0.008
EMP 0.027 0.009

SCHOOL 0.11 0.017
Notes: Results of estimating ( )γ θ ν η= + + + +AdjW CNTR EMP DEN SCHOOL  where

β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826 observations. The method used is
G2SLS. CNRT variables are 24 variables for climate, 44 state dummies and a dummy for
Washington DC, 17 CMSA dummies, a MSA dummy, and an Ocean-Great Lakes dummy.
The instruments used are the CNTR variables, area of each county, the average area of
counties’ neighbors, and schooling. The 2R  of the regression of EMP on the instruments is
62 percent. The 2R  of the regression of DEN on the instruments is 70 percent.

Table 3: A first model with technology diffusion

Coefficient Std. Error
EMP  0.044  0.012

SCHOOL  0.069  0.035
NadjW  1.25  0.51

NSCHOOL -0.11  0.05
Notes: Results of estimating ( )γ ν η σ= + + + +AdjW CNTR EMP SCHOOL NAdjW

( )φ σν+ − NSCHOOL  where β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826
observations. The method used is G2SLS. CNRT variables are 24 variables for climate, 44
state dummies and a dummy for Washington DC, 17 CMSA dummies, a MSA dummy, and
an Ocean-Great Lakes dummy. The instruments used are the CNTR variables, area of each
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county, the average area of counties’ neighbors, schooling, and average schooling of
counties’ neighbors. The 2R  of the regression of NAdjW on the instruments is 65 percent.

Table 4: The model with technology diffusion without CMSA, MSA dummies

Coefficient Std. Error
EMP  0.035  0.007

SCHOOL  0.064  0.022
NadjW  0.65  0.12

NSCHOOL -0.057  0.018
Notes: Results of estimating ( )γ ν η σ= + + + +AdjW CNTR EMP SCHOOL NAdjW

( )φ σν+ − NSCHOOL  where β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826
observations. The method used is G2SLS. CNRT variables are 24 variables for climate, an
Ocean Great-Lakes dummy, and 44 state dummies plus a dummy for Washington DC. The
instruments used are the CNTR variables, area of each county, the average area of counties’
neighbors, schooling, and average schooling of counties’ neighbors.

Table 5: The model with technology diffusion only

Coefficient Std. Error
EMP  0.036  0.007

SCHOOL  0.069  0.021
NadjW  0.62  0.09

Notes: Results of estimating γ ν σ= + + +AdjW CNTR EMP SCHOOL NAdjW

σν− NSCHOOL  where β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826 observations. The
method used is G2SLS. CNRT variables are 24 variables for climate, and 44 state dummies
plus a dummy for Washington DC. The instruments used are the CNTR variables, area of
each county, the average area of counties’ neighbors, schooling, and average schooling of
counties’ neighbors.

Table 6: The model with technology diffusion and density

Coefficient Std. Error
EMP  0.038  0.009
DEN -0.001 0.008

SCHOOL  0.071  0.022
NadjW  0.62  0.1

Notes: Results of estimating γ θ ν σ= + + +AdjW CNTR EMP + DEN SCHOOL NAdjW

σν− NSCHOOL  where β̂= +AdjW w DEN  and ˆ 0.005β = . There are 2826 observations. The
method used is G2SLS. CNRT variables are 24 variables for climate and 44 state dummies
plus a dummy for Washington DC. The instruments used are the CNTR variables, area of
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each county, the average area of counties’ neighbors, schooling, and average schooling of
counties’ neighbors.

Appendix B: Derivation of Equation (5)

The capital demand equation is
/fc fcK abY r= , (A1)

where r  denotes the national rental cost of capital. The land demand equation is
(1 ) /fc fc cNM a Y r= −  where rcN  is the rental cost of land in county c . Aggregation

implies
/fc c fc cM M Y Y= . (A2)

Making use of the capital demand equation (A1) and the land demand equation (A2)
in the production function and aggregating yields

1
1 (1 ) 11

1 1( ) ( )

ab
a b abb

c cab ab
c c

c c

Y ab L
A H

L r M

−
−− −−

− −
  =   

   
. (A3)

(A1), (A2), and constant returns to scale of the production function imply
(1 )c fc fcw L a b Y= −  where cw  denotes average wages in county c . Aggregation

yields

(1 ) c
c

c

Y
w a b

L
= − . (A4)

(A3) and (A4) combined yield (5) in the main text.

Appendix C: Frequency of Average Wages Across 2826 US Counties in 1990

Notes: In 1990 US$.
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