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Abstract

This paper illustrates the philosophy which forms the basis of calibration exercises in

general equilibriummacroeconomic models and the details of the procedure, the advantages

and the disadvantages of the approach, with particular reference to the issue of testing

\false" economic models. We provide an overview of the most recent simulation-based

approaches to the testing problem and compare them to standard econometric methods

used to test the �t of non-linear dynamic general equilibrium models. We illustrate how

simulation-based techniques can be used to formally evaluate the �t of a calibrated model

to the data and obtain ideas on how to improve the model design using a standard problem

in the international real business cycle literature, i.e. whether a model with complete

�nancial markets and no restrictions to capital mobility is able to reproduce the second

order properties of aggregate saving and aggregate investment in an open economy.
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1 INTRODUCTION 1

1 Introduction

Simulation techniques are now used in many �elds of applied research. As shown elsewhere

in this book, they have been employed to compute estimators in situations where standard

methods are impractical or fail, to evaluate the properties of parametric and nonparametric

econometric estimators, to provide a cheap way of evaluating posterior integrals in Bayesian

analysis and to undertake linear and nonlinear �ltering with a computationally simple approach.

The task of this chapter is to describe how simulation based methods can be used to eval-

uate the �t of dynamic general equilibrium models speci�ed using a calibration methodology,

to compare and contrast their usefulness relative to more standard econometric approaches and

to provide an explicit example where the various features of the approach can be highlighted

and discussed.

The structure of this chapter is as follows. First, we provide a de�nition of what we mean

by calibrating a model and discuss the philosophy underlying the approach and how it di�ers

from standard dynamic time series modelling. Second, we discuss various approaches to the

selection of model parameters, how to choose the vector of statistics used to compare actual

with simulated data and how simulations are performed. Third, we describe how to formally

evaluate the model's approximation to the data and discuss alternative approaches to account

for the uncertainty faced by a simulator in generating time paths for the relevant variables.

Although we present a general overview of alternative evaluation techniques, the focus is on

simulation based methods. Finally, we present an example, borrowed from Baxter and Crucini

(1993), where the features of the various approaches to evaluation can be examined.

2 What is Calibration?

2.1 A De�nition

Although it is more than a decade since calibration techniques emerged in the main stream

of dynamic macroeconomics (see Kydland and Prescott (1982)), a precise statement of what

it means to calibrate a model has yet to appear in the literature. In general, it is common to

think of calibration as an unorthodox procedure to select the parameters of a model. This need

not to be the case since it is possible to view parameter calibration as a particular econometric

technique where the parameters of the model are estimated using an \economic" instead of a

\statistical" criteria (see e.g. Canova (1994)). On the other hand, one may want to calibrate

a model because there is no available data to estimate its parameters, for example, if one is

interested in studying the e�ect of certain taxes in a newly born country.

Alternatively, it is possible to view calibration as a cheap way to evaluate models. For

example, calibration is considered by some a more formal version of the standard back-of-

the-envelope calculations that theorists perform to judge the validity of their models (see e.g.

Pesaran and Smith (1992)). According to others, calibration is a way to conduct quantitative

experiments using models which are known to be \false", i.e. improper or simpli�ed approxi-

mations of the true data generating processes of the actual data (see e.g. Kydland and Prescott

(1991)).

Pagan (1994) stresses that the unique feature of calibration exercises does not lie so
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much in the way parameters are estimated, as the literature has provided alternative ways of

doing so, but in the particular collection of procedures used to test tightly speci�ed (and false)

theoretical models against particular empirical facts. Here we take a more general point of

view and identify 6 steps which we believe capture the essence of the methodology. We call

calibration a procedure which involves:

(i) Formulating an economic question to be addressed.

(ii) Selecting a model design which bears some relevance to the question asked.

(iii) Choosing functional forms for the primitives of the model and �nding a solution for the

endogenous variables in terms of the exogenous variables and the parameters.

(iv) Choosing parameters and stochastic processes for the exogenous variables and simulating

paths for the endogenous variables of the model.

(v) Selecting a metric and comparing the outcomes of the model relative to a set of \stylized

facts".

(vi) Doing policy analyses if required.

By \stylized facts" the literature typically means a collection of sample statistics of the

actual data such as means, variances, correlations, etc., which (a) do not involve estimation

of parameters and (b) are self-evident. More recently, however, the �rst requirement has been

waived and the parameters of a VAR (or the impulse responses) have also been taken as the

relevant stylized facts to be matched by the model (see e.g. Smith (1993), Cogley and Nason

(1994)).

The next two subsections describe in details both the philosophy behind the �rst four

steps and the practicalities connected with their implementation.

2.2 Formulating a question and choosing a model

The �rst two steps of a calibration procedure, to formulate a question of interest and a model

which bears relevance to the question, are self evident and require little discussion. In general,

the questions posed display four types of structure (see e.g. Kollintzas (1992) and Kydland

(1992)):

� Is it possible to generate Z using theory W?

� How much of the fact X can be explained with impulses of type Y?

� What happens to the endogenous variables of the model if the stochastic process for the

control variable V is modi�ed ?

� Is it possible to reduce the discrepancy D of the theory from the data by introducing

feature F in the model?
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Two economic questions which have received considerable attention in the literature in the last

10 years are the so-called equity premium puzzle, i.e. the inability of a general equilibrium

model with complete �nancial markets to quantitatively replicate the excess returns of equities

over bonds over the last hundred years (see e.g. Mehra and Prescott (1985)) and how much

of the variability of GNP can be explained by a model whose only source of dynamics are

technology disturbances (see e.g. Kydland and Prescott (1982)). As is clear from these two

examples, the type of questions posed are very speci�c and the emphasis is on the numerical

implications of the exercise. Generic questions with no numerical quanti�cation are not usually

studied in this literature.

For the second step, the choice of an economic model, there are essentially no rules

except that it has to have some relevance with the question asked. For example, if one is

interested in the equity premium puzzle, one can choose a model which is very simply speci�ed

on the international and the government side, but very well speci�ed on the �nancial side so

that it is possible to calculate the returns on various assets. Typically, one chooses dynamic

general equilibrium models. However, several authors have used model designs coming from

di�erent paradigms (see e.g. the neo-keynesian model of Gali (1994), the non-walrasian models

of Danthine and Donaldson (1992) or Gali (1995) and the model with union bargaining of

Eberwin and Kollintzas (1995)). There is nothing in the procedure that restricts the class

of model design to be used. The only requirement is that the question that the researcher

formulates is quanti�able within the context of the model and that the theory, in the form of

a model design, is fully speci�ed.

It is important to stress that a model is chosen on the basis of the question asked and

not on its being realistic or being able to best replicate the data (see Kydland and Prescott

(1991) or Kydland (1992)). In other words, how well it captures reality is not a criteria to

select models. What is important is not whether a model is realistic or not but whether it is

able to provide a quantitative answer to the speci�c question the researcher poses.

This brings us to discuss an important philosophical aspect of the methodology. From

the point of view of a calibrator all models are approximations to the DGP of the data and, as

such, false. This aspect of the problem has been appreciated by several authors even before the

appearance of the seminal article of Kydland and Prescott. For example, Hansen and Sargent

(1979) also concede that an economic model is a false DGP for the data. Because of this and

in order to test the validity of the model using standard statistical tools, they complete the

probabilistic structure of the model by adding additional sources of variability, in the form of

measurement errors or unobservable variables, to the fundamental forces of the economy.

For calibrators, the model is not a null hypothesis to be tested but an approximation of a

few dimensions of the data. A calibrator is not interested in verifying whether the model is true

(the answer is already known from the outstart), but in identifying which aspects of the data

a false model can replicate and whether di�erent models give di�erent answers because they

are false in di�erent dimensions. A calibrator is satis�ed with his e�ort if, through a process of

theoretical respeci�cation, a simple and highly stylized model captures an increasing number of

features of the data (confront this activity with the so-called normal science of Kuhn (1970)).

Being more explicit, consider the realization of a vector of stochastic processes yt (our

data) and some well speci�ed theoretical model xt = f(zt; 
) which has something to say about

yt, where zt are exogenous and predetermined variables and 
 is a parameter vector. Because
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the model does not provide a complete description of the phenomenon under investigation we

write

yt = xt + ut (1)

where ut is an error representing what is missing from f(zt; 
) to reproduce the stochastic

process generating yt and whose properties are, in general, unknown (it need not necessarily

be mean zero, serially uncorrelated, uncorrelated with the x's and so on). Let By and Bx

be continuous and di�erentiable functions of actual and simulated data, respectively. Then

standard econometric procedures judge the coherence of the model to the data by testing

whether or not Bx = By , given that the di�erence between Bx and By and their estimated

counterpart bBx and bBy arise entirely from sampling error. While this is a sensible procedure

when the null hypothesis is expected to represent the data, it is less sensible when it is known

that the model does not completely capture all aspects of the data.

The third step of a calibration exercise concerns the solution of the model. To be able

to obtain quantitative answers from a model it is necessary to �nd an explicit solution for

the endogenous variables of the model in terms of the exogenous and predetermined variables

and the parameters. For this reason it is typical to parameterize the objective function of the

agents so that manipulation of the �rst order conditions is analytically tractable. For example,

in general equilibrium models, it is typical to choose Cobb-Douglas production functions and

constant relative risk aversion utility functions. However, although the main objective is to

select simple enough functional forms, it is well known that almost all general equilibrium

models and many partial equilibrium models have exact analytical solutions only in very special

situations.

For general equilibrium models, a solution exists if the objective function is quadratic

and the constraints linear (see e.g. Hansen and Sargent (1979)) or when the objective function

is log-linear and the constraints linear (see e.g. Sargent (1987, ch.2)). In the other cases,

analytical expressions relating the endogenous variables of the model to the \states" of the

problem does not exist and it is necessary to resort to numerical techniques to �nd solutions

which approximate equilibrium functionals either locally or globally. There has been substantial

theoretical development in this area in the last few years and several solution algorithms have

appeared in the literature (see e.g. the special January 1990 issue of the JBES or Marcet

(1994)).

The essence of the approximation process is very simple. The exact solution of a model is

a relationship between the endogenous variables xt, the exogenous and predetermined variables

zt and a set of \deep" parameters 
 of the type xt = f(zt; 
) where f is generally unknown.

The approximation procedures generate a relationship of the type x�t = g(zt; �) where � = h(
)

and where jjf � gjj < � is minimal for some local or global metric. Examples of these types

of procedures appear in Kydland and Prescott (1982), Coleman (1989), Tauchen and Hussey

(1991), Novales (1990), Baxter (1992) and Marcet (1992), among others. The choice of a

particular approximation procedure depends on the question asked. If one is concerned with

the dynamics of the model around the steady state, local approximations are su�cient. On the

other hand, if one is interested in comparing economic policies requiring drastic changes in the

parameters of the control variables, global approximation methods must be preferred.
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2.3 Selecting Parameters and Exogenous Processes

Once an approximate solution has been obtained, a calibrator needs to select the parameters


 and the exogenous stochastic process zt to be fed into the model in order to generate time

series for x�t . There are several approaches to the choice of these two features of the model.

Consider �rst the question of selecting zt. This choice is relatively uncontroversial. One either

chooses it on the basis of tractability or to give the model some realistic connotation. For

example, one can assume that zt is an AR process with innovations which are transformations

of a N(0; 1) process and draw one or more realizations for zt using standard random number

generators. Alternatively, one can select the Solow residuals of the actual economy, the actual

path of government expenditure or of the money supply. Obviously, the second alternative is

typically preferred if policy analyses are undertaken. Note that while in both cases zt is the

realization of a stochastic process, in the �rst case the DGP is known while in the second it is

not and this has implications for the way one measures the uncertainty in the outcomes of the

model.

Next, consider the selection of the vector of parameters 
. Typically, they are chosen

so that the model reproduces certain observations. Taking an example from physics, if one is

interested in measuring water temperature in various situations it will be necessary to calibrate

a thermometer for the experiments. For this purpose a researcher arbitrarily assigns the value

0 C to freezing water and the value 100 C to boiling water and interpolates values in the

middle with, say, a linear scale. Given this calibration of the thermometer, one can then

proceed to measure the results of the experiments: a value close to 100 C indicates \hot"

water, a value close to 30 C indicates \tepid" water, and so on. To try to give answers to

the economic question he poses, a calibrator must similarly select observations to be used to

calibrate the model-thermometer. There are at least three approaches in the literature. One

can follow the deterministic computable general equilibrium (CGE) tradition, summarized,

e.g. in Showen and Walley (1984), the dynamic general equilibrium tradition pioneered by

Kydland and Prescott (1982) or employ more standard econometric techniques. There are

di�erences between the �rst two approaches. The �rst one was developed for deterministic

models which do not necessarily possess a steady state while the second one has been applied

to dynamic stochastic models whose steady state is unique. Kim and Pagan (1994) provide a

detailed analysis of the di�erences between these two approaches. Gregory and Smith (1993)

supplement the discussion by adding interesting insights in the comparison of the �rst two

approaches with the third.

In CGEmodels a researcher solves the model linearizing the system of equations by deter-

mining the endogenous variables around a hypothetical equilibrium where prices and quantities

are such that there is no excess demand or excess supply. It is not necessary that this equilib-

rium exists. However, because the coe�cients of the linear equations determining endogenous

variables are functions of these equilibrium values, it is necessary to measure this hypothetical

equilibrium. The main problem for this literature is therefore to �nd a set of \benchmark

data" and to calibrate the model so that it can reproduce this data. Finding this data set is

the most complicated part of the approach since it requires a lot of judgement and ingenuity.

The process of speci�cation of this data set leaves some of the parameters of the model typ-

ically undetermined, for example, those that describe the utility function of agents. In this
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situation a researcher either assigns arbitrary values or �xes them to values estimated in other

studies in the literature. Although these choices are arbitrary, the procedure is coherent with

the philosophy of the models: a researcher is interested in examining deviations of the model

from a hypothetical equilibrium, not from an actual economy.

In stochastic general equilibrium models, the model is typically calibrated at the steady

state: parameters are chosen so that the model, in the steady state, produces values for the

endogenous variables which match corresponding long run averages of the actual data. In both

this approach and the CGE approach point estimates of the parameters used to calibrate the

model to the equilibrium are taken to be exact (no standard deviations are typically attached to

these estimates). As in the previous setup, the steady state does not necessarily pin down all the

parameters of the model. Canova (1994) and Gregory and Smith (1993) discuss various methods

to select the remaining parameters. Brie
y, a researcher can choose parameters a-priori, pin

them down using values previously estimated in the literature, can informally estimate them

using simple method of moment conditions or formally estimate them using procedures like

GMM (see e.g. Christiano and Eichenbaum (1992)), SMM (see e.g. Du�e and Singleton (1993))

or maximum likelihood (see e.g. McGratten, Rogerson and Wright (1993)). As pointed out by

Kydland and Prescott (1991), choosing parameters using the information contained in other

studies imposes a coherence criteria among various branches of the profession. For example,

in the business cycle literature one uses stochastic growth models to examine business cycle


uctuations and checks the implications of the model using parameters typically obtained in

micro studies, which do not employ data having to do with aggregate business cycle 
uctuations

(e.g. micro studies of labor markets).

If one follows a standard econometric approach, all the parameters are chosen by mini-

mizing the MSE of the error ut in (1), arbitrarily assuming that the error and the model designs

are orthogonal, or by minimizing the distance between moments of the actual data and the

model or maximizing the likelihood function of the data given the model design. As we already

pointed out, this last approach is the least appealing one from the point of view of a calibrator

since it makes assumptions on the time series properties of ut which are hard to justify from

an economic point of view.

To clearly understand the merits of each of these procedures it is useful to discuss their

advantages and their disadvantages. Both the CGE and the Kydland and Prescott approach

where some of the parameters are chosen a-priori or obtained from a very select group of

studies are problematic in several respects. First, there is a selectivity bias problem (see

Canova (1995)). There exists a great variety of estimates of the parameters in the literature

and di�erent researchers may refer to di�erent studies even when they are examining the same

problem. Second, there is a statistical inconsistency problem which may generate very spurious

and distorted inference. As Gregory and Smith (1989) have shown, if some parameters are set a-

priori and others estimated by simulation, estimates of the latter may be biased and inconsistent

unless the parameters of the former group are the true parameters of the DGP or consistent

estimates of them. Third, since any particular choice is arbitrary, extensive sensitivity analysis

is necessary to evaluate the quality of the results. To solve these problems Canova (1994)-

(1995) suggests an approach for choosing parameters which allows, at a second stage, to draw

inferences about the quality of the approximation of the model to the data. The idea is

very simple. Instead of choosing one set of parameters over another he suggests calibrating
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each parameter of the model to an interval, using the empirical information to construct a

distribution over this interval (the likelihood of a parameter given existing estimates) and

conducting simulation by drawing parameter vectors from the corresponding joint \empirical"

distribution. An example may clarify the approach. If one of the parameters of interest is the

coe�cient of constant relative risk aversion of the representative agent, one typically chooses

a value of 2 and tries a few values above and below this one to see if results change. Canova

suggests taking a range of values, possibly dictated by economic theory, say [0,20], and then

over this range constructing a histogram using existing estimates of this parameter. Most of the

estimates are in the range [1,2] and in some asset pricing models researchers have tried values

up to 10. Given this information, the resulting empirical distribution for this parameter can

be very closely approximated by a �2(2), which has the mode at 2 and about 5% probability

in the region above 6.

The selection of the parameters of theoretical models through statistical estimation has

advantages and disadvantages. The main advantage is that these procedures avoid arbitrary

choices and explicitly provide a measure of dispersion for the estimates which can be used at

a second stage to evaluate the quality of the approximation of the model to the data. The

disadvantages are of various kinds. First of all, to undertake a formal or informal estimation

it is typically necessary to select the moments one wants to �t, and this choice is arbitrary.

The standard approach suggested by Kydland and Prescott can indeed be thought of as a

method of moment estimation where one chooses parameters so as to set only the discrepancy

between the �rst moment of the model and the data (i.e. the long run averages) to zero. The

formal approach suggested by Christiano and Eichenbaum (1992) or Langot and F�eve (1994),

on the other hand, can be thought of as a method of moment estimation where a researcher

�ts the discrepancies between model and data �rst and second moments to zero. The approach

of choosing parameters by setting to zero the discrepancy between certain moments has the

disadvantage of reducing the number of moments over which it will be possible to evaluate

the quality of the model. Moreover, it is known that estimates obtained with the method of

moments or GMM may be biased. Therefore, simulations and inference conducted with these

estimates may lead to spurious inference (see e.g. Canova, Finn and Pagan (1994)). In addition,

informal SMM may lead one to select parameters even though they are not identi�able (see

Gregory and Smith (1989)). Finally, one should note that the type of uncertainty which is

imposed on the model via an estimation process does not necessarily re
ect the uncertainty

a calibrator faces when choosing the parameter vector. As is clear from a decade of GMM

estimation, once the moments are selected and the data given, sample uncertainty is pretty

small. The true uncertainty is in the choice of moments and in the data set to be used to select

parameters. This uncertainty is disregarded when parameters are chosen using extremum

estimators like GMM.

Finally, it is useful to compare the parameter selection process used by a calibrator �a-la

Kydland and Prescott and the one used by a traditional econometric approach. In a traditional

econometric approach parameters are chosen so as to minimize some statistical criteria, for

example, the MSE. Such criteria do not have any economic content, impose stringent require-

ments on the structure of ut and are used, primarily, because there exists a well established

statistical and mathematical literature on the subject. In other words, the parameter selec-

tion criteria used by traditional econometricians does not have economic justi�cation. On the
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other hand, the parameter selection criteria used by followers of the Kydland and Prescott

methodology can be thought of as being based on economic criteria. For example, if the

model is calibrated so that, in the steady state, it matches the long run features of the actual

economy, parameters are implicitly selected using the condition that the sum (over time) of

the discrepancies between the model and the data is zero. In this sense there is an important

di�erence between the two approaches which has to do with the assumptions that one is willing

to make on the errors ut. By calibrating the model to long run observations a researcher selects

parameters assuming E(u) = 0 , i.e. using a restriction which is identical to the one imposed

by a GMM econometrician who chooses parameters using only �rst moment conditions. On

the other hand, to conduct classical inference a researcher imposes restrictions on the �rst and

second moments of ut.

The comparison we have made so far concerns, obviously, only those parameters which

enter the steady state conditions of the model. For the other parameters a direct comparison

with standard econometric practice is not possible. However, if all parameters are calibrated

to intervals with distributions which are empirically determined, the calibration procedure we

have described shares a tight connection with Bayesian inferential methods such as Consensus

Analysis or Meta-Analysis (see e.g. Genest and Zidak (1986) or Wolf (1986)).

Once the parameters and the stochastic processes for the exogenous variables are selected

and an (approximate) solution to the model has been found, simulated paths for x�t can be

generated using standard Monte Carlo simulation techniques.

3 Evaluating Calibrated Models

The questions of how well a model matches the data and how much con�dence a researcher

ought to give to the results constitute the most crucial steps in the calibration procedure. In

fact, the most active methodological branch of this literature concerns methods to evaluate the

�t of a model selected according to the procedures described in section 2. The evaluation of a

model requires three steps: �rst, the selection of a set of stylized facts; second, the choice of a

metric to compare functions of actual and simulated data and third, the (statistical) evaluation

of the magnitude of the distance. Formally, let Sy be a set of statistics (stylized facts) of the

actual data and let Sx�(zt; 
) be a set of statistics of simulated data, given a vector of parameters


 and a vector of stochastic processes zt. Then model evaluation consists of selecting a function

 (Sy; Sx�(zt; 
)) measuring the distance between Sy and Sx� and in assessing its magnitude.

The choice of which stylized facts one wants to match obviously depends on the question

asked and on the type of model used. For example, if the question is what is the proportion

of actual cyclical 
uctuations in GNP and consumption explained by the model, one would

choose stylized facts based on variances and covariances of the data. As an alternative to the

examination of second moments, one could summarize the properties of actual data via a VAR

and study the properties of simulated data, for example, by comparing the number of unit roots

in the two sets of data (as in Canova, Finn and Pagan (1994)), the size of VAR coe�cients

(as in Smith (1993)) or the magnitude of certain impulse responses (as in Cogley and Nason

(1994)). Also, it is possible to evaluate the discrepancy of a model to the data by choosing

speci�c events that one wants the model to replicate e.g., business cycle turning points, (as in

King and Plosser (1994) or Simkins (1994)) or variance bounds (as in Hansen and Jagannathan
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(1991)).

Classical pieces in the calibration literature (see e.g. Kydland and Prescott (1982) or

(1991)) are typically silent on the metric one should use to evaluate the quality of the approxi-

mation of the model to the data. The approach favored by most calibrators is to glare over the

exact de�nition of the metric used and informally assess the properties of simulated data by

comparing them to the set of stylized facts. In this way a researcher treats the computational

experiment as a measurement exercise where the task is to gauge the proportion of some ob-

served statistics reproduced by the theoretical model. This informal approach is also shared by

cliometricians (see e.g. Summers (1991)) who believe that rough reproduction of simple sample

statistics is all that is needed to evaluate the implications of the model (\either you see it with

naked eyes or no fancy econometric procedure will �nd it").

There are, however, alternatives to this informal approach. To gain some understanding

of the di�erences among approaches, but at the cost of oversimplifying the matter, we divide

evaluation approaches into �ve classes:

� Informal approaches.

� Approaches which do not consider sampling variability of actual or the uncertainty in

simulated data, but instead use the statistical properties of ut in (1) to impose restrictions

on the time series properties of  . This allows them to provide an R2-type measure of �t

between the model and the data (see Watson (1993)).

� Approaches which use the sampling variability of the actual data (a�ecting Sy and, in

some cases, estimated 
) to provide a measure of the distance between the model and

the data. Among these we list the GMM based approach of Christiano and Eichenbaum

(1992), Cecchetti, Lam and Mark (1993) or F�eve and Langot (1994), and the frequency

domain approaches of Diebold, Ohanian and Berkowitz (1995) and Ortega (1995).

� Approaches which use the uncertainty of the simulated data to provide a measure of

distance between the model and the data. Among these procedures we can distinguish

those who take zt as stochastic and 
 as given, such as Gregory and Smith (1991),

S�oderlind (1994) or Cogley and Nason (1994) and those who take both zt and 
 as

stochastic, such as Canova (1994) and (1995).

� Finally, approaches which consider the sampling variability of the actual data and the

uncertainty in simulated data to evaluate the �t of the model. Once again we can

distinguish approaches which, in addition to taking Sy as random, allow for variability in

the parameters of the model (keeping zt �xed) such as DeJong, Ingram and Whiteman

(1995) from those which allow for both zt and 
 to vary such as Canova and De Nicol�o

(1995).

Because the emphasis of this book is on simulation techniques, we will only brie
y exam-

ine the �rst three approaches and discuss in more detail the last two, which make extensive use

of simulation techniques to conduct inference. Kim and Pagan (1994) provide a thorough crit-

ical review of several of these evaluation techniques and additional insights on the relationship

among them.
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The evaluation criteria that each of these approaches proposes is tightly linked to the

parameter selection procedure we discussed in the previous section.

As mentioned the standard approach is to choose parameters using steady state condi-

tions. Those parameters which do not appear in the steady state are selected a-priori or with

reference to existing literature. Also, since Sy is chosen to be a vector of numbers and no

uncertainty is allowed in the selected parameter vector, one is forced to use an informal metric

to compare the model to the data. This is because, apart from the uncertainty present in the

exogenous variables, the model links the endogenous variables to the parameters in a deter-

ministic fashion. Therefore, once we have selected the parameters and we have a realization

of Sy, it is not possible to measure the dispersion of the distance  (Sy; Sx�(zt; 
)). >From the

point of view of the majority of calibrators this is not a problem. As emphasized by Kydland

and Prescott (1991) or Kydland (1992), the trust a researcher has in an answer given by the

model does not depend on a statistical measure of discrepancy, but on how much he believes

in the economic theory used and in the measurement undertaken.

Taking this as the starting point of the analysis Watson (1993) suggests an ingenious

way to evaluate models which are known to be an incorrect DGP for the actual data. Watson

asks how much error should be added to x�t so that its autocovariance function equals the

autocovariance function of yt. Writing yt = x
�

t + u
�

t where u
�

t includes the approximation error

due to the use x�t in place of xt, the autocovariance function of this error is given by

Au�(z) = Ay(z) + Ax�(z)� Ax�y(z)� Ayx�(z) (2)

To evaluate the last two terms in (2) we need a sample from the joint distribution of (x�t ; yt)

which is not available. In these circumstances it is typical to assume that either u�t is a

measurement error or a signal extraction noise (see e.g. Sargent (1989)), but in the present

context neither of the two assumptions is very appealing. Watson suggests choosing Ax�y(z) so

as to minimize the variance of u�t subject to the constraint that Ax�(z) and Ay(z) are positive

semide�nite. Intuitively, the idea is to select Ax�y(z) to give the best possible �t between the

model and the data (i.e. the smallest possible variance of u�t ). The exact choice of Ax�y(z)

depends on the properties of x�t and yt, i.e. whether they are serially correlated or not, scalar or

vectors, full rank processes or not. In all cases, the selection criteria chosen imply that x�t and

yt are perfectly linearly correlated where the matrix linking the two vectors depends on their

time series properties and on the number of shocks bu�eting the model. Given this framework

of analysis, Watson suggests two measures of �t, similar to a 1 � R
2 from a regression, of the

form

rj(!) =
Au�(!)jj

Ay(!)jj
(3)

Rj(!) =

R
!2Z

Au�(!)jjd!R
!2Z Ay(!)jjd!

(4)

where the �rst statistic measures the variance of the j-th component of the error relative to

the variance of the j-th component of the data for each frequency and the second statistic is

the sum of the �rst over a set of frequencies. This last measure may be useful to evaluate

the model, say, at business cycle frequencies. It should be stressed that (3) and (4) are lower
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bounds. That is, when rj(!) or Rj(!) are large, the model poorly �ts the data. However, when

they are small, it does not necessarily follow that the model is appropriate since it may still �t

the data poorly if we change the assumptions about Ax�y(z).

To summarize, Watson chooses the autocovariance function of y as the set of stylized

facts of the data to be matched by the model, the  function as the ratio of Au� to Ay and

evaluates the size of  informally (i.e. if it is greater than one, between zero and one or close

to zero). Note that in this approach, 
 and zt are �xed, and Ax� and Ay are assumed to be

measured without error.

When a calibrator is willing to assume that parameters are measured with error because,

given an econometric technique and a sample, parameters are imprecisely estimated, then model

evaluation can be conducted using measures of dispersion for simulated statistics which re
ect

parameter uncertainty. There are various versions of this approach. Christiano and Eichenbaum

(1992), Cecchetti, Lam and Mark (1993) and F�eve and Langot (1994) use a version of a J-test

to evaluate the �t of a model. In this case Sy are moments of the data while  is a quadratic

function of the type

 (Sy; Sx�(zt; 
)) = [Sy � Sx�(
)]V
�1[Sy � Sx�(
)]

0 (5)

where V is a matrix which linearly weights the covariance matrix of Sx� and Sy , and Sx� is

random because 
 is random. Formal evaluation of this distance can be undertaken following

Hansen (1982): under the null that Sy = Sx�(zt; 
) the statistic de�ned in (5) is asymptotically

distributed as a �2 with the number of degrees of freedom equal to the number of overidenti-

fying restrictions, i.e. the dimension of Sy minus the dimension of the vector 
. Note that this

procedure is correct asymptotically, that it implicitly assumes that xt = f(zt; 
) (or its approx-

imation x�t ) is the correct DGP for the data and that the relevant loss function measuring the

distance between actual and simulated data is quadratic.

The methods proposed by Diebold, Ohanian and Berkowitz (DOB) (1994) and Ortega

(1995) are slightly di�erent but can be broadly included into this class of approaches.

For DOB the statistic of interest is the spectral density matrix of yt and, given a sample,

this is assumed to be measured with error. They measure the uncertainty surrounding point

estimates of the spectral density matrix employing (small sample) 90% con�dence bands con-

structed using parametric and nonparametric bootstrap approaches and Bonferroni tunnels.

On the other hand, they take calibrated parameters and the realization of zt as given so that

the spectral density matrix of simulated data can be estimated without error simply by simu-

lating very long time series for x�t . Ortega (1995) also takes the spectral density matrix as the

set of stylized facts of the data to be matched by the model. Unlike DOB, she considers the

uncertainty in actual and simulated data by jointly estimating the spectral density matrix of

actual and simulated data and constructs measures of uncertainty around point estimates of

the spectral density matrix using asymptotic distribution theory.

In both cases, the measure of �t used is generically given by:

C(
; zt) =

Z �

0
 (Fy(!); Fx�(!; 
; zt))W (!)d! (6)

where W (!) is a set of weights applied to di�erent frequencies and F are the spectral density

matrices of actual and simulated data.
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DOB suggest various options for  (quadratic, ratio, likelihood type) but do not construct

a direct test statistic to examine the magnitude of  . Instead, they compute a small sample

distribution of the event that C(
; zt) is close to a particular value (zero if  is quadratic, 1 if  

is a ratio, etc.) Ortega, on the other hand, explicitly uses a quadratic expression for  and uses

an asymptotic �2 test to assess whether the magnitude of the discrepancy between the model

and the data is signi�cant or not. The set of asymptotic tools she develops can also be used

to compare the �t of two alternative models to the data and decide which one is more acceptable.

If a calibrator is willing to accept the idea that the stochastic process for the exogenous

variables is not �xed, she can then compute measures of dispersion for simulated statistics by

simply changing the realization of zt while maintaining the parameters �xed. Such a methodol-

ogy has its cornerstone in the fact that it is the uncertainty in the realization of the exogenous

stochastic process (e.g. the technology shock), an uncertainty which one can call extrinsic, and

not the uncertainty in the parameters, which one can call intrinsic, which determines possible

variations in the statistics of simulated data. Once a measure of dispersion of simulated statis-

tics is obtained, the sampling variability of simulated data can be used to evaluate the distance

between statistics of actual and simulated data (as e.g. Gregory and Smith (1991) and (1993)).

If one uses such an approach, model evaluation can be undertaken with a probabilistic

metric using well known Monte Carlo techniques. For example, one may be interested in �nding

out in what decile of the simulated distribution the actual value of a particular statistic lies,

in practice, calculating the \size" of calibration tests. This approach requires two important

assumptions: that the evaluator takes the model economy as the true DGP for the data and

that di�erences between Sy and Sx� occur only because of sampling variability. To be speci�c,

Gregory and Smith take Sy be a set of moments of the data and assume that they can be mea-

sured without error. Then, they construct a distribution of Sx�(zt; 
) by drawing realizations

for the zt process from a given distribution, given 
. The metric  used is probabilistic, i.e.

they calculate the probability Q = P (Sx� � Sy), and judge the �t of the model informally, e.g.

measuring how close Q is to 0.5.

An interesting variation on this setup is provided by S�oderlind (1994) and Cogley and

Nason (1994). S�oderlind employs the spectral density matrix of the actual data while Cogley

and Nason choose a \structural" impulse response function as the relevant statistics to be

matched. S�oderlind maintains a probabilistic metric and constructs the empirical rejection

rate for the event that the actual spectral density matrix of yt lies inside the asymptotic

90% con�dence band for the spectral density matrix of the simulated data. Such an event is

replicated by drawing vectors zt for a given distribution. Cogley and Nason choose a quadratic

measure of distance which, under the null that the model is the DGP for the data, has an

asymptotic �2 distribution and then tabulate the empirical rejection rates of the test, by

repeatedly constructing the statistic drawing realizations of the zt vector. To be speci�c, the

 function is in this case given by

 k;j(
) = [IRF k
x�(z

j

t ; 
)� IRF
k
y ]V

�1[IRF k
x�(z

j

t ; 
)� IRF
k
y ]
0 (7)

where j indexes replications and k steps, IRF k is the impulse response function and V is

its asymptotic covariance matrix at step k. Because for every k and for �xed j  k;j(
) is
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asymptotically �2, they can construct (a) the simulated distribution for  k;j and compare it

with a �2 and (b) the rejection frequency for each model speci�cation they examine.

In practice, all three approaches are computer intensive and rely on Monte Carlo meth-

ods to conduct inference. Also, it should be stressed that all three methods verify the validity

of the model by computing the \size" of the calibration tests, i.e. assuming that the model is

the correct DGP for yt.

The approach of Canova (1994)-(1995) also belongs to this category of methods, but,

in addition to allowing the realization of the stochastic process for the exogenous variables to

vary, he also allows for parameter variability in measuring the dispersion of simulated statistics.

The starting point, as discussed earlier, is that parameters are uncertain not so much because

of sample variability, but because there are many estimates of the same parameter obtained in

the literature, since estimation techniques, samples and frequency of the data tend to di�er. If

one calibrates the parameter vector to an interval, rather than to a particular value, and draws

values for the parameters from the empirical distribution of parameter estimates, it is then pos-

sible to use the intrinsic uncertainty, in addition to or instead of the extrinsic one, to evaluate

the �t of the model. The evaluation approach used is very similar to the one of Gregory and

Smith: one simulates the model repeatedly by drawing parameter vectors from the empirical

\prior" distribution and realizations of the exogenous stochastic process zt from some given

distribution. Once the empirical distribution of the statistics of interest is constructed, one can

then compute either the size of calibration tests or the percentiles where the actual statistics lie.

The last set of approaches considers the uncertainty present in the statistics of both

actual and simulated data to measure the �t of the model to the data. In essence what

these approaches attempt to formally measure is the degree of overlap between the (possibly)

multivariate distributions of Sy and Sx using Monte Carlo techniques. There are di�erences

in the way these distributions have been constructed in the literature. Canova and De Nicol�o

(1995) use a parametric bootstrap algorithm to construct distributions for the statistics of

the actual data . DeJong, Ingram and Whiteman (DIW) (1995), on the other hand, suggest

representing the actual data with a VAR and computing posterior distribution estimates for the

moments of interest by drawing VAR parameters from their posterior distribution and using

the AR(1) companion matrix of the VAR at each replication. In constructing distributions of

simulated statistics, Canova and De Nicol�o take into account both the uncertainty in exogenous

processes and parameters while DIW only consider parameter uncertainty. The two approaches

also di�er in the way the \prior" uncertainty in the parameters is introduced in the model. The

former paper follows Canova (1995) and chooses empirical based distributions for the parameter

vector. DIW use subjectively speci�ed prior distributions (generally normal) whose location

parameter is set at the value typically calibrated in the literature while the dispersion parameter

is free. The authors use this parameter in order to (informally) minimize the distance between

actual and simulated distributions of the statistics of interest. By enabling the speci�cation of

a sequence of increasingly di�use priors over the parameter vector, such a procedure illustrates

whether the uncertainty in the model's parameters can mitigate di�erences between the model

and the data.

Finally, there are di�erences in assessing the degree of overlap of the two distributions.
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Canova and De Nicol�o choose a particular contour probability for one of the two distributions

and ask how much of the other distribution is inside the contour. In other words, the �t of

the model is examined very much in the style of the Monte Carlo literature: a good �t is

indicated by a high probability covering of the two regions. To describe the features of the

two distributions, they also repeat the exercise varying the chosen contour probability, say,

from 50% to 75%, 90%, 95% and 99%. The procedure allows them to detect anomalies in

the shape of the two distributions due to clustering of observations in one area, skewness or

leptokurtic behavior. In this approach actual data and simulated data are used symmetrically

in the sense that one can either ask whether the actual data could be generated by the model, or

viceversa, whether simulated data are consistent with the distribution of the empirical sample.

This symmetry allows the researcher to understand much better the distributional properties of

error ut in (1). Moreover, the symmetry with which the two distributions are treated resembles

very much the process of switching the null and the alternative in standard classical hypothesis

testing.

DeJong, Ingram and Whiteman take the point of view that there are no well established

criteria to judge the adequacy of a model's \approximation" to reality. For this reason they

present two statistics aimed at synthetically measuring the degree of overlap among distribu-

tions. One, which they call Con�dence Interval Criterion (CIC) is the univariate version of the

contour probability criteria used by Canova and De Nicol�o and is de�ned as

CICij =
1

1� �

Z b

a

Pj(si)dsi (8)

where si; i = 1; : : : ; n is a set of functions of interest, a = �

2 and b = 1 � a are the quantiles

of D(si), the distribution of the statistic in the actual data, Pj(si) is the distribution of the

simulated statistic where j is the di�usion index of the prior on the parameter vector and

1 � � =
R
b

a
D(si)dsi. Note that with this de�nition, CICij ranges between 0 and 1

1��
. For

CIC close to zero, the �t of the model is poor, either because the overlap is small or because

Pj is very di�use. For CIC close to 1
1��

the two distributions overlap substantially. Finally, if

CIC > 1, D(si) is di�use relative to Pj(si), i.e. the data is found to be relatively uninformative

regarding si.

To distinguish among the two possible interpretations when CIC is close to zero, DeJong,

Ingram and Whiteman suggest a second summary measure analogous to a t-statistic for the

mean of Pj(si) in the D(si) distribution, i.e.,

dji =
EPj(si)� ED(si)p

varD(si)
(9)

Large values of (9) indicate that the location of Pj(si) is quite di�erent from the location of

D(si).

The �nal problem of the DIW methodology is to choose �. DeJong, Ingram and White-

man �x a particular value (� = 0:01) but, as in Canova and De Nicol�o, varying � for a given

j is probably a good thing to do in order to describe the feature of the distributions. This is

particularly useful when we are interested in partitions of the joint distributions of si because

graphical methods or simple statistics are not particularly informative about distributions in

high dimensional spaces.
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4 Policy Analyses

Although it is not the purpose of this chapter to discuss in detail how calibrated models can be

used for policy analyses, it is useful to describe the implications of the procedure for questions

which have policy implications and how policy experiments can be undertaken. As we have

already mentioned, a model is typically calibrated to provide a quantitative answer to very

precise questions and some of these questions have potential policy implications. To forcefully

argue the policy implications of the exercise one needs to be con�dent in the answer given by

the model and to do this it is necessary to undertake extensive sensitivity analysis to check

how results change when certain assumptions are modi�ed.

As we have seen, the answers of the model come in the form of continuous functions

h(x�t ) = h(g(zt; 
)) of simulated data. In theory, once g has been selected, the uncertainty in h

is due to the uncertainty in 
 and in zt. Since in standard calibration exercises the 
 vector is

�xed, it is therefore typical to examine the sensitivity of the results in the neighborhood of the

calibrated values for 
. Such experiments may be local, if the neighborhood is small, or global,

in which case one measures the sensitivity of the results to perturbations of the parameters

over the entire range. This type of exercise may provide two types of information. First, if

results are robust to variations of a parameter in a particular range, its exact measurement is

not crucial. In other words, the uncertainty present in the choice of such a parameter does not

make the answers of the model tenuous and economic inference groundless. On the other hand,

if results crucially depend on the exact selection of certain parameters, it is clearly necessary

to improve upon existing measurement of these parameters.

A local sensitivity analysis can be undertaken informally, replicating the experiments

for di�erent values of the parameters (as in Kydland and Prescott (1982)) or more formally,

calculating the elasticity of h with respect to 
 (as in Pagan and Shannon (1985)). A global

sensitivity analysis can be e�ciently undertaken with Monte Carlo methods or numerical semi-

deterministic techniques (see e.g. Niederreiter (1988)) if the function g is known and the

distribution of the 
 vector is speci�ed. If g is only an approximation to the functional linking

x to z and 
, one can use techniques like Importance Sampling (see Geweke (1989)) to take into

account this additional source of uncertainty. Clearly the two types of sensitivity analysis are

not incompatible and should both be undertaken to assess the degree of trust a researcher can

attach to the answer given by the model. Finally, one should note that the type of sensitivity

analysis one may want to undertake depends also on the way parameters are selected and

models evaluated. For example, if one uses the approach of Canova (1994)-(1995) or DeJong,

Ingram and Whiteman (1995), the evaluation procedure automatically and e�ciently provides

sensitivity analysis to global perturbations of the parameters within an economically reasonable

range.

Once model answers to the question of interest have been shown to be robust to reason-

able variations in the parameters, a researcher may undertake policy analyses by changing the

realization of the stochastic process for zt or varying a subset of the 
 vector, which may be

under the control of, say, the government. Analyses involving changes in the distribution of

zt in the g function are also possible, but care should be exercised in order to compare results

across speci�cations.
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5 An example

In the �eld of international economics, robust stylized facts are usually hard to obtain. One of

the most stable regularities observed in the data is the high correlation of national saving and

domestic investment, both in time series analysis of individual countries and in cross sections

regressions where the average over time of these variables is treated as a single data point for

each country. High saving and investment correlations are observed in small economies as well as

large ones, although the correlation tends to be lower for smaller countries. These �ndings were

originally interpreted as indicating that the world economy is characterized by a low degree of

capital mobility. Yet most economists believe that the world is evolving toward an increasingly

higher degree of international capital mobility. Baxter and Crucini (1993) forcefully turned

this initial interpretation around by providing a model in which there is perfect international

mobility of �nancial and physical capital but which generates high time series correlations of

national saving and investment. Their evaluation of the model lies entirely within the standard

Kydland and Prescott approach, i.e. parameters are �xed at some reasonably chosen values,

no uncertainty is allowed in actual and simulated statistics and the metric used to compare

actual and simulated data is informal.

The task of this section is three fold. First, we want to study whether the time series

properties of simulated saving and investment do indeed reproduce those of the actual data

when the model is formally examined with the tools described in this article. To this end we

provide several measures of �t which can be used to gauge the closeness of the model to the data

using variants of the simulation-based procedures described in the previous section. Second,

we wish to contrast the outcomes obtained with various evaluation procedures and compare

them with those obtained using more standard techniques. This will shed further light on the

degree of approximation of the model to the data, and point out, when they emerge, unusual

features of the model. Finally, we wish to provide a few suggestions on how to �ne tune the

model design so that undesiderable features are eliminated while maintaining the basic bulk of

the results.

5.1 The model

We consider a model with two countries and a single consumption good. Each country is

populated by a large number of identical agents and labor is assumed to be immobile across

countries and variables are measured in per-capita terms. Preferences of the representative

agent of country h = 1; 2 are given by:

U � E0

1X
t=0

�
t

1� �
[C

�

ht
L
(1��)

ht
]1�� (10)

where Cht is private consumption of the single composite good by the representative agent of

country h and Lht is leisure, � is the discount factor, � the coe�cient of relative risk aversion

and � the share of consumption in utility. Leisure choices are constrained by:

0 � Lht +Nht � 1 8 h (11)
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where the total endowment of time in each country is normalized to 1 and Nt represents the

number of hours worked. The goods are produced with a Cobb-Douglas technology:

Yht = Aht(Kht)
1��(XhtNht)

�
h = 1; 2 (12)

where Kt is the capital input, � is the share of labor in GDP, and where Xht = �xXht�1 8h

with �x � 1. Xht represents labor-augmenting Harrod-neutral technological progress with

deterministic growth rate equal to �x. Production requires domestic labor and capital inputs

and is subject to a technological disturbance Aht with the following properties:"
A1t

A2t

#
=

"
�A1

�A2

#
+

"
� �

� �

# "
A1t�1

A2t�1

#
+

"
�1t

�2t

#

where �t = [�1t �2t]
0
� N(0;

"
�
2
�  

 �
2
�

#
) and [ �A1;

�A2]
0 is a vector of constants. The parameter

 controls the contemporaneous spillover while � the lagged spillover of the shocks.

Capital goods are accumulated according to:

Kht+1 = (1� �h)Kht + �(Iht=Kht)Kht h = 1; 2 (13)

where �( Iht
Kht

) > 0 is concave and represents the costs of adjusting capital. As explained in

Baxter and Crucini (1993), there is no need to choose a functional form for �; it is su�cient

to describe its behavior near the steady state. We do this by specifying two parameters: 1
�0
,

which corresponds to Tobin's Q, i.e. the price of existing capital in one location relative to

the price of new capital and ��0 , the elasticity of the marginal adjustment cost function with

respect to the investment-capital ratio.

Governments �nance their consumption purchases, Ght, by taxing national outputs with

a distorting tax and transferring what remains back to domestic residents. For simplicity we

assume that Ght = Gh; 8t. The government budget constraint is given by:

Gh = TRht + �hYht 8 h (14)

where �h are tax rates and TRh are lump sum transfers in country h.

The economy wide resource constraint is given by:

�(Y1t � G1t � C1t � I1t) + (1� �)(Y2t �G2t � C2t � I2t) � 0 (15)

where � is the fraction of world population living in country 1.

Finally, following Baxter and Crucini (1993), we assume complete �nancial markets and

free mobility of �nancial capital across countries so that agents can write and trade every kind

of contingent security.

To �nd a solution to the model we �rst detrend those variables which drift over time

by taking ratios of the original variables with respect to the labor augmenting technological

progress, e.g. yht =
Yht
Xht

, etc. Second, since there are distortionary taxes in the model, the

competitive equilibrium is not Pareto optimal and the competitive solution di�ers from the

social planner's solution. As in Baxter and Crucini (1993) we solve the problem faced by a
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pseudo social planner, modifying the optimality conditions to take care of the distortions. The

weights in the social planner problem are chosen to be proportional to the number of individuals

living in each of the countries. The modi�ed optimality conditions are approximated with a

log-linear expansion around the steady state as in King, Plosser and Rebelo (1988). Time

series for saving and investment in each of the two countries are computed analytically from

the approximate optimality conditions. The second order properties of saving and investment

of actual and simulated data are computed eliminating from the raw time series a linear trend.

The parameters of the model are 
 = [�; �; �; �x; �; �; �; ��;  ; �; ��0 ; �
0
; �; ] plus

steady state hours and the steady state Tobin's Q which we set equal to 1. The exogenous

processes of the model are the two productivity disturbances so that zt = [A1t A2t]
0.

The actual data we use are per capita basic saving (i.e. computed as St = Yt �Ct�Gt)

and investment for the period 1970:1-1993:3 for the US and for Europe in real terms, seasonally

adjusted and are from OECD Main Economic Indicators. Plots of the detrended series appear

in �gure 1.

The statistics we care about are the diagonal elements of the 4 � 4 spectral density

matrix of the data and the coherences between saving and investment of the two \countries".

Spectral density estimates at each frequency are computed smoothing with a 
at window 13

periodogram ordinates. Figure 2 plots these statistics.

In the benchmark experiment the vector 
 is the same as in Baxter and Crucini (1993)

except for �� which they normalize to 1, while we set it equal to the value used in Backus,

Kehoe and Kydland (1995), and are reported in the �rst column of table 1. When we allow

for parameters to be random we take two approaches: the one of Canova (1994) and the one

of DeJong, Ingram and Whiteman (1995). In the �rst case empirical based distributions are

constructed using existing estimates of these parameters or, when there are none, choosing a-

priori an interval on the basis of theoretical considerations and imposing a uniform distribution

on it. The distributions from which the parameters are drawn and their features are displayed

in the second column of table 1. In the second case distributions for the parameters are assumed

to be normal, with means equal to the basic calibrated parameters presented in column 1 while

dispersions are a-priori chosen. The third column of table 1 reports these distributions.

We generate samples of 95 observations to match the sample size of actual data. Because

the initial conditions for the capital stock are set arbitrarily, the �rst 50 observations for each

replication of the model are discarded. The number of replications used for each exercise is

500.

5.2 The Results

Table 2 summarizes the results obtained using four di�erent evaluation approaches. Each row

reports how the model fares in reproducing the spectral densities of saving and investment and

the saving-investment coherence for US and Europe on average at business cycle frequencies

(cycles of 3-8 years).

As a reference for comparison, the two �rst rows report the average spectral densities

and coherences at business cycle frequencies for actual and simulated data when parameters

are �xed (Kydland and Prescott approach). National saving is highly correlated with domestic

investment but the average coherence at business cycle frequencies is higher for Europe than for
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the US. The variability of both US series is also higher and US investment are almost two times

more volatile than European ones. This pattern does not depend on the averaging procedure

we choose; in fact, it is present at every frequency within the range we examine.

Given the symmetry of the model speci�cation, the variability of simulated saving and

investment is similar in both continental blocks, it is somewhat lower than the actual data for

Europe, but de�nitively too low relative to the actual US series. Moreover, as in the actual

data, the variability is higher for national savings than for domestic investment. Consistent

with Baxter and Crucini's claims, the model produces high national saving and investment

correlations at business cycle frequencies. In fact, the model coherences for the US are higher

than those found in the actual data.

The following rows of table 2 check whether the above results persist when the perfor-

mance of the model is evaluated using some of the procedures described in this paper.

The �rst approach, which we use as a benchmark, is the one of Watson (1993). Given

the spectral density matrix of the actual saving and investment for the two economic blocks, we

calculate the spectral density matrix of the approximation error and compute the measure of �t

(4) where Z includes frequencies corresponding to cycles of 3-8 years. Since in the model there

are two technology disturbances, the spectral density matrix of simulated saving and investment

for the two countries is singular and of rank equal to two. Therefore, to minimize the variance

of the approximation error we consider two di�erent identi�cation schemes: in \identi�cation

1" we jointly minimize the error term of the saving and investment of the �rst country (row

3 of table 2) and in \identi�cation 2" we jointly minimize the saving and investment errors of

the second country (row 4 of table 2). Note that to generate Rj(!) we make two important

assumptions: (i) that the spectral density matrix of the actual and simulated data can be

measured without error and (ii) that the parameters of the model can be selected without

error.

The results suggest that the �t of the model depends on the identi�cation scheme used.

On average, the size of the error at business cycle frequencies is between 2% and 5% of the

spectral density of those variables whose variance is minimized and between 20% and 30% of

the spectral density of other variables, suggesting that \some" error should be added to the

model to capture the features of the spectral density matrix of the data. Overall, we �nd small

di�erences in the �t for the two continental blocks, and within continental blocks between the

two variables of interest. Changes in the coherences across identi�cations are somewhat rele-

vant and the model appears to �t coherences much better when we minimize the variance of

US variables.

To show how the Monte Carlo techniques discussed in this paper can be used to evaluate

the quality of the model's approximation to the data we compute three types of statistics. First,

we report how many times on average, at business cycle frequencies, the diagonal elements of

the spectral density matrix and the coherences of model generated data lie within a 95%

con�dence band for the corresponding statistics of actual data. That is, we report T1 =R
!2
!1

R S2(!)
S1(!)

p!(x)dxd! where S1(!) and S2(!) are the lower and upper limits for the asymptotic

95% con�dence band for the spectral density of actual data, !1 and !2 are the lower and upper

limits for the business cycle frequencies and p!(x) is the empirical distribution of the simulated
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spectral density matrix for the four series at frequency !.

If the spectral density matrix of the actual data is taken to be the object of interest to

be replicated, T1 reports the power of a test which assumes that the model is the correct DGP

for the actual data. If we are not willing to assume that the model is the correct DGP for the

actual data, these numbers judge the quality of the approximation by informally examining

the magnitude of the probability coverings. No matter which interpretation we take, a number

close to 95% would indicate a \good" model performance at a particular frequency band.

We compute 95% con�dence bands for the actual data in two ways: using asymptotic

distribution theory (as in Ortega (1995)) and using a version of the parameteric bootstrap

procedure of Diebold, Ohanian and Berkowitz (1995). In this latter case, we run a four variable

VAR with 6 lags and a constant, construct replications for saving and investment for the two

countries by bootstrapping the residuals of the VAR model, estimate the spectral density

matrix of the data for each replication and extract 95% con�dence bands after ordering the

replications, frequency by frequency.

Replications for the time series generated by the model are constructed using Monte Carlo

techniques in three di�erent ways. In the �rst case we simply randomize on the innovations

of the technology shocks, keeping their distribution �xed (as in Gregory and Smith (1991)),

and use the basic parameter setting displayed in the �rst column of table 1. In the second and

third cases parameters are random and drawn from the distributions listed in the second and

third columns of table 1. The results appear in rows 5 to 7 under the heading \Probability

Covering". To economize on space and because simulated results are similar when the 95%

con�dence bands for actual data are computed asymptotically or by bootstrap, row 5 presents

the probability covering using an asymptotic 95% band when only the stochastic processes of

the model are randomized, row 6 present the probability covering using an asymptotic 95%

band when we randomize on the stochastic processes of the model and parameters are drawn

from empirically based distributions, and row 7 when parameters are drawn from normal prior

distribution.

The results obtained with this testing approach highlight interesting features of simulated

data. With �xed parameters, the average percentage of times the model spectra is inside the

95% band of the actual spectra is, in general, much smaller than 95%, its magnitude depends

on the series and it is highest for European saving. When we randomize the parameters using

DIW approach, results are more uniform across series and the probability covering is always

of the order of 30% while when we randomize using empirical based distributions, the average

percentage of times model's spectra are inside the 95% con�dence band is somewhat lower.

These results occur because with random parameters, simulated distributions are shifted and

stretched: the model produces a wider range of variabilities than those possibly consistent with

the data and this reduces the percentage of times simulated data are inside the asymptotic

95% band for each frequency. For coherences the results are very similar across the three

rows: in this case, adding parameter variability does not change the outcomes. This is because

parameter variability increases the volatility of saving and investment and their covariance by

the same factor and this factor cancels out in the computation of coherences. In general, we

�nd that the model slightly \over�ts" US coherences, i.e. on average too many simulations fall

inside the asymptotic 95% band, while the opposite is true for European coherences. However,

with empirical based priors, the coverage in both cases is close to 95%.
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In sum, this evaluation procedure con�rms that the model is better suited in matching

coherences than volatilities at business cycle frequencies and that the covering properties of

the model do not improve when we allow the parameters to be random.

To gain further evidence on the properties of the simulated distributions of the data, we

next compute a second statistic: the percentile of the simulated distribution of the spectral

density matrix of saving and investment for the two countries, where the value of the spectral

density matrix of actual data (taken here to be estimated without an error) lies, on average,

at business cycle frequencies. Implicitly, this p-value reports, on average over the selected

frequency band, the proportion of replications for which the simulated data is less than the

historical value. In other words, if �Sy(!) is the spectral density matrix of the actual data

at frequency ! we report T2 =
R !2
!1

R �Sy(!)
�1

p!(x)dxd! where all variables have been previously

de�ned. Seen through these lenses the spectral density matrix of the actual data is treated as

a \critical value" in examining the validity of the theoretical model. Values close to 0% (100%)

indicate that the actual spectral density matrix is in the left (right) tail of the simulated

distribution of the spectral density matrix of simulated data at that particular frequency band,

in which case the model is poor in reproducing the statistics of interest. Values close to 50%, on

the other hand, suggest that the actual spectral density matrix at those frequencies is close to

the median of the distribution of the spectral density matrix of simulated data so the model is

appropriate at those frequencies. Note also that values of the statistic in the range [�; 100��],

where � is a chosen con�dence percentage, would indicate that the model is not signi�cantly at

odds with the data. We report the results of this exercise in rows 8 to 10 of table 2 under the

heading \Critical Value". Row 8 presents results when only the innovations of the technology

disturbances are randomized, row 9 displays results when the parameters are drawn for normal

priors and row 10 when parameters are drawn from an empirical based distribution.

As expected, the model with �xed parameters is unable to match the variabilities of the

four series at business cycle frequencies. For all variables the statistics of actual data are in the

right tail of the simulated distribution of the statistics at each frequency, i.e., a large proportions

of simulations generate average values for the spectral density at business cycle frequencies

which are lower than those found in the actual data. For European variables however, the

picture is less dramatic. With parameter variability the picture changes. For all variables it is

still true that actual variability exceeds the median of the simulated distribution on average at

business cycle frequencies, but, at least with empirical priors, it is now within the interquartile

range of the simulated distribution for three of the four variables. This is because parameter

variability pushes the median of the simulated distribution close to the actual values, shifting

the location to the left (less variability is generated). In essence, with parameter variability

the model generates two features which improve its overall distributional �t: a wider range of

variabilities at business cycle frequencies (with a somewhat larger percentage of more extreme

values) and a less concentrated and less skewed distribution.

For coherences the results are somewhat di�erent. With �xed parameters the model

generates average coherences at business cycle frequencies which are much higher than in the

data for the US but close to the median for Europe (actual values are in the 15th and 50th

percentile). With random parameters (and empirical based priors), the situation improves for

the US (actual coherence moves up to the 33rd percentile) but worsens for Europe. Once
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again, parameter variability enhances the range of possibilities of the model but it fails to tilt

the distribution so as to more adequately reproduce the data.

Taken together, the results of these two exercises suggest that with �xed parameters the

model generates a distribution for variability which is skewed to the left and only partially

overlapping with a normal asymptotic range of variabilities for the data. For coherences the

opposite occurs: the overlapping is high but also the skewness within the band is high. Param-

eter uncertainty, by tilting and stretching the shape of the simulated distribution, ameliorates

the situation and in terms of the distributions of certain statistics used, actual and simulated

data are almost indistinguishable.

To complete the picture, we �nally compute the distributional properties of the approx-

imation error by Monte Carlo methods, i.e. we compute the distribution of the error needed

to match the spectral density matrix of the actual data given the model's simulated spectral

density matrix. To compute the distributional properties of the log of the error, we draw,

at each replication, parameters and innovations from the posterior distribution of the VAR

representation of the actual data, construct time series of interest following the procedure of

DeJong, Ingram and Whiteman (1995) and estimate the spectral density matrix of the four

series. At each replication, we also draw parameters and innovations from the distributions

presented in table 1, construct the spectral density matrix of simulated data and compute

S
i
u(!) = S

i
y(!) � S

i
x(!), i.e. the error in matching the spectral density matrix of the data,

S
i
y(!) at replication i. By drawing a large number of replications we can construct a nonpara-

metric estimate of this distribution (using e.g. kernels) and compute moments and fractiles at

each frequency. If the model is the correct DGP for the data, the distribution for this error

would be degenerate at each frequency. Otherwise the features of this distribution (median

value, skewness, kurthosis, etc.) may indicate what is missing from the model to capture the

features of interest in the data. The last three rows in table 2 present the median (across repli-

cations) of the average error across business cycle frequencies for the six statistics of interest

under the heading \Error". Once again, we performed the calculations randomizing both on

the stochastic processes of the model and the parameters of the model. Row 11 reports the re-

sults when parameters are �xed and rows 12 and 13 when the simulated time series incorporate

uncertainty in both stochastic processes and parameters.

The results are quite similar in the three cases for the diagonal elements of the spectral

density matrix. The model fails to generate enough variability at business cycle frequencies for

US investments while for the other three variables the error is much smaller. The magnitude

of the di�erence is, however, signi�cant. For example for US savings and keeping parameters

�xed, the error is about one-third of the actual variability at business cycle frequencies. The

results for coherences depend on which of the two countries we consider. For US variables,

the model generates systematically higher coherences (negative spectral errors) while for Eu-

rope the opposite is true. Relatively speaking, the magnitude of these error are smaller than

those obtained comparing spectra. Adding parameter variability as in DeJong, Ingram and

Whiteman does not change the results too much. However, when parameters are drawn from

empirical based priors, the model generates higher coherences in both cases.
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5.3 What did we learn from the exercises?

Our exercise pointed out several important features of the model used by Baxter and Crucini

(1993). As claimed by the authors, we �nd it generates high coherences between national

saving and investment at business cycle frequencies which are of the same magnitude as the

actual ones for European saving and investment. However, we also saw that the model tends

to generate coherences which are uniformly higher than those observed in US data and this is

true regardless of whether we used �xed or random parameters. In particular, we show that

in only about 20% of the simulations is the simulated coherence smaller than the actual one

and that there is tendency of the model to cluster saving and investment correlations in the

vicinity of 1. Nevertheless, also in this case, the magnitude of the error is small. The model

performance is worse when we try to account for the variability of saving and investment for

the two continental blocks at business cycle frequencies. With �xed parameters, the simulated

distribution at business cycle frequencies is skewed toward lower than actual values for all

variables of interest and that the degree of overlap of simulated and actual distributions varies

between 8 and 50%. Parameter variability helps but it does not represent a complete solution

to the problem. This is clearly demonstrated by the size of the median value of the spectral

error at business cycle frequencies which is sometimes larger than the error obtained with �xed

parameters and always positive.

These results suggest that if one is interested in replicating the distributional properties

of the statistics of the data (rather than their point estimates), it is necessary to respecify

the model, at least for the US. What is primarily needed are two types of features. First, we

need some real friction, maybe by adding a new sector (non-traded goods) which uses capital

to produce goods; this modi�cation is likely to reduce the median value of the distribution

of correlation of saving and investment at business cycle frequencies. Second, we need an

additional propagation or variability enhancing device, maybe in the form of a lower adjustment

cost of capital or higher elasticity of investment to technology innovations. For the US this can

bring simulated variabilities at business cycle frequencies more in the range of the values we

found in the data.

6 Conclusions

The task of this chapter was to illustrate how simulation techniques can be used to evaluate the

quality of a model's approximation to the data, where the basic theoretical model design is one

which �ts into what we call a calibration exercise. In section 2 we �rst provide a de�nition of

what calibration is and then describe in detail the steps needed to generate time series from the

model and to select relevant statistics of actual and simulated data. In section 3 we overview

four di�erent formal evaluation approaches recently suggested in the literature, comparing and

contrasting them on the basis of what type of variability they use to judge the closeness of the

model's approximation to the data. In section 4 we describe how to undertake policy analysis

with models which have been calibrated and evaluated along the lines discussed in the previous

two sections. Section 5 presents a concrete example, borrowed from Baxter and Crucini (1993),

where we design four di�erent simulation-based statistics which allow us to shed some light on

the quality of the model approximation to the data, in particular, whether the model is able to
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reproduce the main features of the spectral density matrix of saving and investment for the US

and Europe at business cycle frequencies. We show that, consistent with Baxter and Crucini's

claims, the model qualitatively produces a high coherence of saving and investment at business

cycle frequencies in the two continental blocks but it also has the tendency to generate a highly

skewed simulated distribution for the coherence of the two variables. We also show that the

model is less successful in accounting for the volatility features of US and European saving and

investment at business cycle frequencies and that taking into account parameter uncertainty

helps in certain cases to bring the properties of simulated data closer to those of the actual

data.

Overall, the example shows that simulation based evaluation techniques are very useful

to judge the quality of the approximation of fully speci�ed general equilibrium models to the

data and may uncover features of the model which are left hidden by more simple but more

standard informal evaluation techniques.
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Table 1: Parameter values used in the simulations

Parameter Basic Empirical Density Prior Normal

Steady State hours ( �H) 0.20 Uniform[0.2, 0.35] Normal(0.2, 0.02)

Discount Factor (�) 0.9875 Trunc.Normal[0.9855, 1.002] Normal(0.9875, 0.01)

Risk Aversion (�) 2.00 Truncated �2(2)[0; 10] Normal(2, 1)

Share of Labor in Output (�) 0.58 Uniform[0.50, 0.75] Normal(0.58, 0.05)

Growth rate (�x) 1.004 Normal(1.004, 0.001) 1.004

Depreciation Rate of Capital (�) 0.025 Uniform[0.02, 0.03] Normal(0.025, 0.01)

Persistence of Disturbances (�) 0.93 Normal(0.93, 0.02) Normal(0.93, 0.025)

Lagged Spillover of Disturbances (�) 0.05 Normal(0.05, 0.03) Normal(0.05, 0.02)

Standard Deviation of

Technology Innovations (��) 0.00852 Truncated �2(1) [0, 0.0202] Normal(0.00852, 0.004)

Contemporaneous Spillover ( ) 0.40 Normal(0.35, 0.03) Normal(0.4, 0.02)

Country Size (�) 0.50 Uniform[0.10, 0.50] 0.5

Elasticity of marginal adjustment

cost function (��0) -0.075 -0.075 -0.075

Steady State Tobin's Q ( 1
�0
) 1.0 1.0 1.0

Tax Rate (�) 0.0 0.0 0.0

Notes: \Empirical density" refers to distributions for the parameters constructed using

either existing estimates or a-priori intervals as in Canova (1994). \Prior Normal"

refers to distributions for the parameters which are a-priori chosen as in DeJong,

Ingram and Whiteman (1995). The range for the parameter is reported inside the

brackets. The mean and the standard deviation for the distribution are reported

inside the parentheses.
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Table 2: Fit of the model at Business Cycle frequencies

US Spectra Europe Spectra US Coherence Europe Coherence

S I S I S-I S-I

Actual data 0.75 0.88 0.68 0.49 85.41 93.14

Simulated data 0.36 0.18 0.35 0.18 94.04 93.00

Watson approach

Identi�cation 1 0.02 0.05 0.20 0.23 0.04 0.13

Identi�cation 2 0.24 0.21 0.05 0.04 0.20 0.15

Probability Covering

Fixed parameters 46.46 8.63 55.71 43.57 98.99 92.91

Normal distribution 35.30 23.40 32.89 37.00 98.17 90.34

Empirical distribution 19.63 18.60 21.11 20.20 94.71 95.69

Critical Value

Fixed parameters 90.80 99.89 82.16 93.91 15.60 49.04

Normal Distribution 71.80 89.90 66.00 76.60 19.80 51.89

Empirical distributions 62.50 79.70 73.30 74.60 33.46 29.60

Error

Fixed parameters 0.25 0.55 0.30 0.28 -9.17 0.37

Normal Distribution 0.19 0.56 0.29 0.28 -9.01 0.81

Normal distribution 0.13 0.58 0.42 0.35 -6.07 -2.86

Notes: Actual and simulated data are linearly detrended and logged, in real per capita

terms. Simulations are undertaken using 500 draws. All rows except the third and

the fourth report numbers in percentage terms. \Watson approach" reports the

average statistic (4) at business cycle frequencies, \Probability covering" reports

the average covering at business cycle frequencies of the theoretical 95% range,

\Critical value" the percentile where the actual data lies on average at business

cycle frequencies, and \Error" the median error across simulations on average at

business cycle frequencies. S refers to saving and I to investment.


