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Abstract

In this article two aims are pursued: on the one hand, to present a
rapidly converging algorithm for the approximation of square roots; on
the other hand and based on the previous algorithm, to find the Pierce
expansions of a certain class of quadratic irrationals as an alternative way
to the method presented in 1984 by J.O. Shallit; we extend the method
to find also the Pierce expansions of quadratic irrationals of the form
2(p− 1)(p−

√
p2 − 1) which are not covered in Shallit’s work.
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1 Introduction.

In the year 1937, E.B. Escott published his paper Rapid method for extracting a
square root, [4], where he presented an algorithm to find rational approximations
for the square root of any real number. Escott’s algorithm is based upon the
algebraic identity: √

x1 + 2
x1 − 2

=
x1 + 1
x1 − 1

· x2 + 1
x2 − 1

· x3 + 1
x3 − 1

· · · ,

where the xi are obtained through the following recurrence:

xn = xn−1(x2
n−1 − 3).

It is obvious that in order to calculate
√
N , Escott’s algorithm must use rational

xi and thus the actual computation is considerably retarded.
More recently, in 1993, Y. Lacroix [5] refers to Escott’s algorithm in the

context of the representation of real numbers by generalized Cantor products
and their metrical study.

In section 2 of this paper, we present an algorithm similar to Escott’s but
improved in the sense that we only use positive integers in the recurrence leading
to the computation of

√
N. Moreover, the approximating fractions obtained by

our algorithm constitute best approximations (of the second kind).
In 1984, J.O. Shallit [14] published the recurrence relations followed by the

coefficients in the Pierce series development of irrational quadratics of the form
(c−

√
c2 − 4)/2. Shallit’s method is based upon Pierce’s algorithm, [11], applied

to the polynomial x2 − cx + 1.
In section 3, we use the infinite product expansion provided by our square

root algorithm to find the Pierce expansions, corresponding to irrationals of
the form p −

√
p2 − 1, as an alternative way to the one used by Shallit in

[14]. The same method can also be used in the case of irrationals of the form
2(p− 1)(p−

√
p2 − 1) as we show in section 4.

2 The expansion of a quadratic irrational as an
infinite product.

It is well–known (see [8, 9]) that the convergents pn/qn of the regular continued
fraction development of

√
r, with r a positive integer, verify alternatively Pell’s

equations
p2
n − rq2

n = ±1,

and we get the recurrence relationships:

pn = 2p1pn−1 − pn−2, qn = 2p1qn−1 − qn−2,(1)

that allow us to find all the solutions of Pell’s equation from the first one (p1, q1);
(we take p0 = 1, q0 = 0).
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Lemma 2.1 Let (p1, q1) be a positive solution (p1 > 0, q1 > 0) of Pell’s equation
x2−ry2 = 1 where r is a positive integer free of squares. The sequence {(p̄n, q̄n)}
obtained recurrently in the way:{

p̄n = p̄n−1(4p̄2
n−1 − 3), p̄1 = p1

q̄n = q̄n−1(4p̄2
n−1 − 1), q̄1 = q1

(2)

is a subsequence of the sequence {(pn, qn)} of all solutions of the given Pell’s
equation, with the peculiarity that each solution is an integer multiple of the
preceding.

Proof. We shall proceed by induction on n. Let us suppose that p̄2
n−1 =

rq̄2
n−1 + 1 is verified. We must ascertain that:

p̄2
n = rq̄2

n + 1.(3)

We replace p̄n and q̄n using the recurrence (2):

p̄2
n−1

(
4p̄2

n−1 − 3
)2

= rq̄2
n−1

(
4p̄2

n−1 − 1
)2

+ 1.(4)

To simplify let us denote by α the expression

α = 4p̄2
n−1 − 2.

Equality (4) becomes:

p̄2
n−1(α− 1)2 = rq̄2

n−1(α + 1)2 + 1,

which can be written as

p̄2
n−1(α

2 − 2α + 1) = rq̄2
n−1(α

2 + 2α + 1) + 1.

Grouping together the terms corresponding to α2 + 1, we obtain:

(α2 + 1)(p̄2
n−1 − rq̄2

n−1) − 2α(p̄2
n−1 + rq̄2

n−1) = 1,(5)

and by the induction hypothesis (3),

p̄2
n−1 − rq̄2

n−1 = 1,

and also
p̄2
n−1 + rq̄2

n−1 = 2p̄2
n−1 − 1.

Thus equality (5) becomes

α2 − 2α(2p̄2
n−1 − 1) = 0,(6)

and, as we have α = 2(2p̄2
n−1 − 1), we deduce that (6) is in point of fact an

algebraic identity. ♦
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Theorem 2.2
√
r expands in an infinite product of the form:

√
r =

p1

q1

∞∏
n=1

α2
n − 3

α2
n − 1

=
p1

q1

∞∏
n=1

(
1 − 2

α2
n − 1

)
,

where (p1, q1) is a positive solution of Pell’s equation x2 − ry2 = 1; α1 = 2p1

and αn = αn−1(α2
n−1 − 3).

Proof. With the same notations as in theorem 2.1 we have, on the one hand,

√
r = lim

n→∞
p̄n
q̄n

,(7)

and on the other we have the recurrence:

p̄n
q̄n

=
p̄n−1

q̄n−1
· 4p̄2

n−1 − 3
4p̄2

n−1 − 1
.(8)

Iterating we obtain the expansion:

p̄n
q̄n

=
p1

q1
· 4p̄2

1 − 3
4p̄2

1 − 1
· 4p̄2

2 − 3
4p̄2

2 − 1
· · · 4p̄2

n−1 − 3
4p̄2

n−1 − 1
,(9)

or, if we prefer it, we can simplify expression (9) defining the new recurrence:

αn = αn−1(α2
n−1 − 3), α1 = 2p1,(10)

which allow us to write:

p̄n
q̄n

=
p1

q1
· α

2
1 − 3

α2
1 − 1

· · · α
2
n−1 − 3

α2
n−1 − 1

.(11)

Finally, taking limits as n → ∞, the expansion of
√
r in an infinite product

is:
√
r =

p1

q1

∞∏
n=1

α2
n − 3

α2
n − 1

=
p1

q1

∞∏
n=1

(
1 − 2

α2
n − 1

)
. ♦(12)

Using the recurrence (10) in (11) we obtain:

p̄n
q̄n

=
αn

2q1(α2
1 − 1) · · · (α2

n−1 − 1)
.(13)

The recurrence (10) is a fast way to compute the fractions of (13) which
constitute best approximations of the second kind of any irrational quadratic
of the form

√
r where r is a positive integer; to start, we just need a positive

solution of Pell’s equation x2− ry2 = 1. With ten iterations of the algorithm we
obtain a fraction whose approximation to the irrational is of the order 10−30,000.
With 14 iterations the approximation gives us a million correct decimal figures.

Expansion (12), among others, is the one considered by Y. Lacroix in [5],
in connection with Cantor’s representation of real numbers by infinite products
(see [1]).
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3 The Pierce expansion of p− (p2 − 1)1/2.

Any real number α ∈ (0, 1] has a unique Pierce expansion of the form:

α =
1
a1

− 1
a1a2

+ · · · + (−1)n+1

a1a2 · · · an
+ · · · ,(14)

where {an} is a strictly increasing sequence of positive integers. These ai will
be called coefficients or partial quotients of the development.

Following Erdös and Shallit [3] we will denote the right hand side of (14) by
the special symbol:

〈a1, a2, . . . , an, . . .〉.
If expansion (14) is infinite, then α is irrational. Otherwise α is rational.

One of the first mathematicians to consider these developments was Lambert
in [7]. Later, Lagrange refers to them in [6], but we have to wait to Sierpinski,
[16], and Ostrogadsky, [12], (independently) to see their numerical properties
studied. Perron mentions them in [10] among other unusual series representa-
trions of real numbers. T. A. Pierce in [11] used them to approximate roots
of algebraic equations, and quite recently, in 1986, J. O. Shallit [15] studied
their metrical properties using methods developed by Rényi in [13] to study the
metrical properties of Engel’s series (series of the type (14) but with all its signs
positive, see [2, 10, 13]). The same Shallit, using Pierce’s algorithm obtained in
1984, see [14], the Pierce expansion of all irrational quadratics of the form

c−
√
c2 − 4
2

with integer c, c ≥ 3.(15)

If c = 2k, the irrational in (15) is directly of the form k−
√
k2 − 1. If c = 2k+1

it can be seen that the irrational in (15) can be written as:

1
2k

− 1
2k(2k + 2)

+
1

2k(2k + 2)
·(p−

√
p2 − 1) with p = (2k+1)(2k2+2k−1).

Thus, Pierce expansion of irrationals of the form studied by Shallit are a
particular case of irrationals of the form p −

√
p2 − 1. The aim of this section

is to find the Pierce expansion of all irrationals of the form p−
√
p2 − 1.

Now, if
√
p2 − 1 = q

√
r with r free of squares, (p, q) is a solution of Pell’s

equation x2 − ry2 = 1.

Theorem 3.1 Given r, a positive integer free of squares, let (p, q) be a positive
solution of Pell’s equation x2 − ry2 = 1. The Pierce expansion of the irrational
p− q

√
r is exactly

p− q
√
r = 〈α1 − 1, α1 + 1, α2 − 1, α2 + 1, . . .〉(16)

where α1 = 2p, and αn+1 = αn(α2
n − 3).
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Proof. Using expression (13):

p̄n
q̄n

=
αn

2q1(α2
1 − 1) · · · (α2

n−1 − 1)
,

we can write its right hand side as:

αn−1

2q1(α2
1 − 1) · · · (α2

n−2 − 1)
·α

2
n−1 − 3

α2
n−1 − 1

=
αn−1

2q1(α2
1 − 1) · · · (α2

n−2 − 1)

(
1 − 2

α2
n−1 − 1

)
.

Now, as we have the algebraic identity:

αn−1

b(α2
n−1 − 1)

=
1

b(αn−1 − 1)
− 1

b(αn−1 − 1)(αn−1 + 1)
,

iterating the former process we eventually reach the expansion:

p̄n
q̄n

=
p1

q1
− 1

q1(α1 − 1)
+

1
q1(α1 − 1)(α1 + 1)

+ · · · +

+
1

q1(α2
1 − 1) · · · (α2

n−2 − 1)(αn−1 − 1)
− 1

q1(α2
1 − 1) · · · (α2

n−1 − 1)
.

In our case, p1 = p and q1 = q and we can write:

p

q
− pn

qn
=

1
q(α1 − 1)

− 1
q(α1 − 1)(α1 + 1)

+ · · ·+

+
1

q(α2
1 − 1) · · · (α2

n−2 − 1)(αn−1 − 1)
− 1

q(α2
1 − 1) · · · (α2

n−1 − 1)
.(17)

As n → ∞ we obtain the infinite Pierce expansion:

p

q
−
√
r =

∞∑
i=1

(
1

q
∏i−1

k=1(α
2
k − 1) · (αi − 1)

− 1

q
∏i

k=1(α
2
k − 1)

)
,(18)

which is equivalent to (16). ♦

4 The Pierce expansion of 2(p− 1)[p− (p2 − 1)1/2].

In this section we are going to see how the method we have just used can
be extended to find the Pierce expansion of irrational quadratics of the form
2(p− 1)(p−

√
p2 − 1).

As above, our starting point will be Pell’s equation x2 − ry2 = 1, and we
will choose a subsequence of the sequence of its solutions. We will need the
following result:

Lemma 4.1 Given a positive solution (p, q) of Pell’s equation x2 − ry2 = 1,
with r free of squares, the recurrent sequence {(p̄n, q̄n)} obtained in the form:{

p̄n = 2p̄2
n−1 − 1, p̄1 = p

q̄n = 2p̄n−1q̄n−1, q̄1 = q

is a subsequence of the sequence {(pn, qn)} of all the equation solutions.
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Proof. The result is easily proved by induction. Let us suppose that p̄n−1, q̄n−1

verify p̄2
n−1 − rq̄2

n−1 = 1. For the next index we will have:

p̄n
2 = 2p̄2

n−1 − 1 = 4p̄4
n−1 − 4p̄2

n−1 + 1
rq̄2

n = r4p̄2
n−1q̄

2
n−1,

and subtracting:

p̄2
n − rq̄2

n = 4p̄2
n−1(p̄

2
n−1 − rq̄2

n−1) − 4p̄2
n−1 + 1 = 1. ♦

Once proved that all pairs (p̄n, q̄n) are solutions of the given Pell’s equation
and using that

√
r = lim

n→∞
p̄n
q̄n

,

we will try, as before, to expand the fraction p̄n/q̄n as a finite Pierce expansion,
and then, taking limits, obtain the infinite Pierce expansion corresponding to
the irrational

√
r, or an equivalent one.

Let us start with the fraction p̄n/q̄n, and let us express its numerator and
denominator in terms of the preceding pair of solutions:

p̄n
q̄n

=
2p̄2

n−1 − 1
2p̄n−1q̄n−1

=
p̄n−1

q̄n−1
− 1

2p̄n−1q̄n−1
.(19)

Proceeding with the expansion of the equation above, we will eventually reach
the first one, p̄1/q̄1 and the chain of equalities:

p̄n
q̄n

=
p̄1

q̄1
− 1

2p̄1q̄1
− 1

2p̄2q̄2
− · · · − 1

2p̄n−1q̄n−1
=

=
p̄1

q̄1
− 1

q̄12p̄1
− 1

q̄12p̄12p̄2
− · · · − 1

q̄12p̄12p̄2 · · · 2p̄n−1
=

=
p̄1

q̄1
− 1

q̄1

(
1

2p̄1
+

1
2p̄12p̄2

+ · · · + 1
2p̄12p̄2 · · · 2p̄n−1

)
.

Taking limits in this last expression, and remembering that p̄1 = p and q̄1 = q
we obtain:

√
r =

p

q
− 1

q

(
1
2p

+
1

2p2p̄2
+ · · · + 1

2p2p̄2 · · · 2p̄n−1
+ · · ·

)
,(20)

where the p̄i follow the recurrence

p̄n = 2p̄2
n−1 − 1, p̄1 = p.

The series within the parenthesis in the right hand side of (20) is an Engel’s
series.

Equality (20) can also be expressed in the form:

p− q
√
r =

1
2p

+
1

2pp̄2
+ · · · + 1

2p2p̄2 · · · 2p̄n−1
+ · · ·(21)

or even, if we prefer it, we can state the result:

7



    

Lemma 4.2 For all positive integers, p, we have:

p−
√
p2 − 1 =

1
2p̄1

+
1

2p̄1p̄2
+ · · · + 1

2p̄12p̄2 · · · 2p̄n−1
+ · · ·(22)

with p̄i = 2p̄2
i−1 − 1, p̄1 = p.

Expression (22) is known as Stratemeyer’s formula, and can be obtained
algebraically by the method described in Perron’s [10, Ch. IV]. We mention
in passing that the recurrence (22) verified by the p̄i is exactly the recurrence
verified by the denominators in the infinite product expansion presented by
Cantor in [1].

Now we are ready for the following result:

Theorem 4.3 If p is a positive integer greater than one,

2(p− 1)(p−
√
p2 − 1) = 〈1, p1, p2, p3, · · ·〉,

where p1 = p and the pi verify:{
p2n = 4(p2n−1 + 1)
p2n+1 = 2p2

2n−1 − 1.

Proof. To prove theorem 4.3 we just have to change the Engel’s series in (22)
into a Pierce expansion. In order to do that let us consider the Pierce expansion
of theorem 4.3:

〈1, p1, p2, p3, · · ·〉(23)

with the recurrence

p2n = 4(p2n−1 + 1)
p2n+1 = 2p2

2n−1 − 1, p1 = p.

If we denote by S the irrational number represented by (23) we have the following
expansion

S = 1 − 1
p1

+
1

p1p2
− · · · =

=
p1 − 1
p1

+
p3 − 1
p1p2p3

+ · · · + p2n+1 − 1
p1p2 · · · p2n+1

.

We want to see that each fraction in the sum above is of the form:

p2n+1 − 1
p1p2 · · · p2n+1

=
p1 − 1

p12p3 · · · 2p2n+1
.(24)

We will proceed by induction on n. For n = 0 it is trivially true. Let us expand
the left hand side of (24) in the following way:

p2n+1 − 1
p1 · · · p2n−1p2np2n+1

=
p2n−1 − 1
p1 · · · p2n−1︸ ︷︷ ︸

(�)

·
(
p2n+1 − 1
p2n+1p2n

)
· 1
p2n−1 − 1︸ ︷︷ ︸

(��)

.(25)
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The term (��) can be written as follows:

2p2
2n−1 − 1 − 1

p2n+14(p2n−1 + 1)
· 1
p2n−1 − 1

=
2(p2

2n−1 − 1)
p2n+14(p2

2n−1 − 1)
=

1
2p2n+1

.

Now, by the induction hypothesis applied to factor (�) in (25), we obtain finally

p2n+1 − 1
p1 · · · p2n−1p2np2n+1

=
p1 − 1

p12p3 · · · 2p2n−1
· 1
2p2n+1

.(26)

Thus S can be written as:

S = 〈1, p1, p2, · · ·〉 =

=
p1 − 1
p1

+
p1 − 1
p12p3

+ · · · + p1 − 1
p12p3 · · · 2p2n+1

+ · · · =

=
p1 − 1
p1

(
1 +

1
2p3

+
1

2p32p5
+ · · · + 1

2p32p5 · · · 2p2n+1
+ · · ·

)
=

= 2(p1 − 1)
(

1
2p1

+
1

2p12p3
+ · · · + 1

2p12p3 · · · 2p2n+1

)
.︸ ︷︷ ︸

(���)

But by Stratemeyer’s formula (22) the term (� � �) is precisely p1 −
√
p2
1 − 1.

This ends the proof of theorem 4.3. ♦

5 Conclusions

The algorithm presented in this article provides fast best approximations to any
irrational of the form

√
r, where r is a positive integer. At the same time, the

algorithm provides the necessary background to obtain the Pierce expansion
of some quadratic irrationals whose partial quotients, ai, grow as x3. The
procedure used proves also that the convergents in the Pierce expansions of
these irrationals are best approximations of the second kind.

We also present the Pierce series development of the irrationals of the form
2(p− 1)(p−

√
p2 − 1), whose partial quotients grow as x2.

There exist though quadratic irrationals that escape the above laws, and
whose partial quotients obey the metrical behaviour limn→∞ n

√
an = e, found

by J.O Shallit in [15].
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[13] A. Rényi. “A new approach to the theory of Engel’s series”. Ann. Univ.
Sci. Budapest Sec. Math. 5 pp. 25–32, 1962.

[14] J.O. Shallit. “Some predictable Pierce Expansions”. Fibonacci Quart. 22,
pp. 332–335, 1984.

[15] J.O. Shallit. “Metric theory of Pierce Expansions”. Fibonacci Quart. 24,
pp. 22–40, 1986.

[16] W. Sierpinski. “Sur quelques algorithmes pour développer les nombres réels
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