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1 Introduction.

Pierce expansions, see [2, 6, 7, 8, 9, 12, 13], permit the expression of any real
number in (0, 1] through a series of the form:

α =
1
a1

− 1
a1a2

+ · · · + (−1)k+1

a1a2 · · · ak
+ · · · ,(1)

where {ai} is a strictly increasing sequence of positive integers. If the number
of terms in (1) is finite, then α is a rational number; otherwise, the series
represents an irrational number. In the finite case, to ensure the uniqueness of
the representation, we require that the last two coefficients be not consecutive.

The expansion (1) will be denoted by:

α = 〈a1, a2, . . . , ak, . . .〉,(2)

and we shall refer to the ai as the coefficients or the partial quotients of the
development.

As this representation model identifies a rational number in (0, 1] with a
finite, strictly increasing sequence of positive integers, we used this fact in [6]
to exhibit an actually computable enumeration of all positive rationals.

In this paper, we will use the mentioned ordering of the rationals in (0, 1]
to define a partial order in the set IR1 = (0, 1] − {1 − 1/e}. This will be done
through a ‘next’ operator:

σ : IR1 −→ IR1

which assigns a well–defined successor and predecessor for any number in IR1.
Then, with the help of the axiom of choice, the partial ordering will be trans-
formed into a total ordering.

We will prove that, for any α ∈ IR1, the sequence {σn(α)}n∈ZZ is dense in
(0, 1], and all its elements are of the same arithmetical character than α.

Lastly, the asymptotic distribution functions of the sequences formed by
the half–orbits, {σn(α)}n∈IN , will be studied, proving all to be identical: a
continuous, strictly increasing, singular function very similar to Minkowski’s
?(·) function, see [4, 11]. This is not a novelty, many interesting examples of
singular functions come from considering the distribution of certain sequences,
for instance, Erdös studied in this connection the sequence of fractional parts
of log Φ(n)/n, see [1] and [3]. A good exposition on singular functions can be
found in the excellent classic of Riesz & Nagy [10].

2 The enumeration of the rationals in (0, 1].

Let us reproduce briefly the enumeration described in [6]. We define

f : IN −→ Q+

in the following way: if n is a positive integer whose dyadic expression is

n = 2a1 + 2a2 + · · · + 2ak−1 + 2ak , with 0 ≤ a1 < a2 < · · · < ak−1 < ak,
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then, in the case, ak − ak−1 > 1 we define:

f(n) = 〈a1 + 1, a2 + 1, . . . , ak−1 + 1, ak + 1〉;

otherwise:
f(n) =

1
〈a1 + 1, a2 + 1, . . . , ak−2 + 1, ak + 1〉 .

It is easy to see that f is a bijection that provides an enumeration for the
rationals.

We restrict now this enumeration exclusively to the rationals in (0, 1] which
amounts to saying that we need to establish an ordering within the set of all
finite, strictly increasing sequences of positive integers in which the last two
terms are not consecutive. We will denote this last set by P∗

F (IN), and we will
call its elements admissible sequences

Definition 1 Given an admissible sequence,

{a1, . . . , ak−1, ak}, with ak − ak−1 > 1,

its successor will be the sequence defined as follows:

• If a1 > 1, then
σ({a1, . . . , ak}) = {1, a1, . . . , ak}.

• If a1 = 1, and r is the greatest integer such that ar = r, then:

σ({1, . . . , r, ar+1, . . . , ak}) = {r + 1, ar+1, . . . , ak}.

• In the case r = k − 1 and ak = k + 1, then:

σ({1, 2, . . . , k − 1, k + 1}) = {k + 2}.

It is easy to see that the operator just defined, σ, generates from the sequence
{1}, all other admissible sequences in P∗

F (IN), and consequently provides an
enumeration of the rationals in (0, 1], identical to the one described at the
beginning of the section restricted to the unit interval.

3 Extension of the ordering to all real numbers
in IR1.

Let P∗(IN) be set formed by:

a) all strictly increasing sequences of positive integers, with the sole exception
of the sequence formed by all positive integers;

b) all finite admissible sequences.
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We are going to extend σ to P∗(IN).

Definition 2 In the finite admissible case, σ operates on a sequence as we saw
in definition 1. Now, given {a1, a2, . . . , ak, . . .}, if a1 > 1, then:

σ({a1, a2, . . . , ak, . . .}) = {1, a1, a2, . . . , ak, . . .};

otherwise, if r is the greatest integer such that ar = r, then:

σ({1, . . . , r, ar+1, . . .}) = {r + 1, ar+1, . . .}.

The exclusion of the sequence an = n permits to ensure the existence of the
integer r in the above definition.

The ‘next’ operator σ just defined in P∗(IN) can be immediately transferred
to all reals in IR1 just identifying strictly increasing sequences of positive integers
with the real number whose Pierce expansion correspond to the sequence:

σ(〈a1, . . . , ak, . . .〉) = 〈b1, . . . , bk, . . .〉 ⇐⇒(3)
σ({a1, . . . , ak, . . .}) = {b1, . . . , bk, . . .} in P∗(IN).

The sole real number that would not have a successor would be

〈1, 2, 3, . . . , n, . . .〉 = 1 − 1
e
.

4 An analytical expression for σ.

In the Pierce expansion of the number 1 − 1/e:

1 − 1
e

= 〈1, 2, 3, . . . , n, . . .〉

let us consider its approximants (truncations):

Ri = 1 − 1
2!

+
1
3!

+ · · · + (−1)i+1

i!
.

We have the following infinite chain of inequalities:

0 = R0 < R2 < R4 < · · · < 1 − 1
e
< · · · < R5 < R3 < R1 = 1.

We can now consider the following family of half–open intervals, mutually
disjoint, taken at left and right of 1 − 1/e: on the left, [R2k, R2k+2) and on the
right, (R2k+1, R2k−1], such that, being mutually disjoint we have:

∞⋃
k=0

[R2k, R2k+2) = [0, 1 − 1
e
)

∞⋃
k=1

(R2k+1, R2k−1] = (1 − 1
e
, 1].
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Theorem 4.1 If Ri is the sequence of approximants of 1− 1/e, the function σ
defined on IR1, has the following analytical expression:

σ(x) =




− (2k)!
2k+1 (x−R2k) + 1

2k+1 if x ∈ [R2k, R2k+2) (k = 0, 1, 2, . . .);

(2k−1)!
2k (x−R2k−1) + 1

2k if x ∈ (R2k+1, R2k−1] (k = 1, 2, . . .).

Proof.
We are going to find the expression of σ only for the intervals on the left of

1−1/e, that is to say for the intervals of the form [R2k, R2k+2), as the procedure
is the same for the intervals on the other side.

The Pierce expansion of the reals in (R2k, R2k+2) are:

〈1, 2, 3, . . . , 2k, a2k+1, . . .〉 where a2k+1 ≥ 2k + 2.

The function σ operates on these numbers as we described in definition 2:

σ(〈1, 2, 3, . . . , 2k, a2k+1, . . .〉) = 〈2k + 1, a2k+1, . . .〉.(4)

This last equation can be written as:

σ(R2k +
1

(2k)!
〈a2k+1, . . .〉) =

1
2k + 1

− 1
2k + 1

〈a2k+1, . . .〉.(5)

If we denote by x the expression R2k + 1
(2k)! · 〈a2k+1, . . .〉, it is easy to see that

with simple transformations we obtain:

1
2k + 1

− (2k)!
2k + 1

(x−R2k) =
1

2k + 1
− 1

2k + 1
〈a2k+1, . . .〉 = σ(x).

We can sum up in the following way:

x ∈ (R2k, R2k+2) ⇒ σ(x) = − (2k)!
2k + 1

(x−R2k) +
1

2k + 1
(k = 0, 1, . . .).(6)

Thus σ is a linear function within the intervals considered. Let us see what
happens in the end–points of the intervals.

Developing R2k we have:

R2k = 〈1, 2, . . . , 2k − 2, 2k〉,

and
σ(R2k) =

1
2k + 1

,

according to the definition of σ. Now, this is exactly the value obtained with
the expression (6) applied to R2k; thus we can add this point to the domain of
validity of (6):

x ∈ [R2k, R2k+2) ⇒ σ(x) = − (2k)!
2k + 1

(x−R2k) +
1

2k + 1
(k = 0, 1, . . .).
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For the other end-point, R2k+2, we find a jump discontinuity: on the one hand
we have

σ(R2k+2) =
1

2k + 3
;

and, on the other:

lim
x→R2k+2

R2k<x<R2k+2

σ(x) = − (2k)!
2k + 1

(R2k+2 −R2k) +
1

2k + 1
=

1
2k + 2

.

4.1 The inverse function of σ.

It is seen at once that σ−1 exists and can be written as:

σ−1(x) =




− 1
(2k)! ((2k + 1)x− 1) + R2k if x ∈

(
1

2k+2 ,
1

2k+1

]
(k = 0, 1, . . .)

1
(2k−1)! (2kx− 1) + R2k−1 if x ∈

(
1

2k+1 ,
1
2k

]
(k = 1, 2, . . .).

5 Ordering IR1.

The orbits of σ, that is to say the sets of the form {σn(α)}n∈ZZ form a partition
of IR1 and within each orbit, σ operates as a ‘next’ operator. We have thus a
partial order immediately defined:

α � β if it exists n ∈ IN, σn(α) = β.(7)

Such a partial order can be made total in IR1 just by choosing a representa-
tive of each orbit (we need the axiom of choice to do that) which we will denote
by fα. The total order is now established as:

γ � δ ⇐⇒ fγ ≤ fδ,(8)

when γ and δ do not belong to the same orbit.
Let us denote by [fα] the equivalence class of fα.

Theorem 5.1 For all α ∈ IR1 we have:

1. If α ∈ Q, then
∀α1 ∈ [fα] ⇒ α1 ∈ Q.

2. If α is an algebraic irrational of degree k, then

α1 ∈ [fα] ⇒ α1 is an algebraic irrational of degree k.

3. If α is transcendental, then

α1 ∈ [fα] ⇒ α1 is transcendental.

The proof is immediate as both σ and σ−1 have linear expressions which preserve
the arithmetical character of numbers.

It is worth mentioning in passing that the set {fγ} of all the orbit represen-
tatives is not Lebesgue measurable.
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6 Density of the orbits.

Lemma 6.1 If the Pierce expansions of two real numbers, α and β coincide
from a determined position, they belong to the same orbit.

Proof.
Let

α = 〈a1, . . . , ar−1, ar, ar+1, . . .〉
β = 〈b1, . . . , bk−1, bk, bk+1, . . .〉,

with ar+i = bk+i, i = 0, 1, . . ..
If bk−1 > ar−1, then σn(α) = β, where n:

n = 2bk−1−1 + · · · + 2b1−1 −
(
2ar−1−1 + · · · + 2a1−1

)
.

From the previous lemma, the following theorem is easily proved:

Theorem 6.2 The closure of each orbit is [0, 1].

Proof.
In the case of the orbit of all rationals in (0, 1], the result is obvious. Now, let

α = 〈a1, . . . , an, . . .〉 be any irrational and let us consider its orbit {σn(α)}n∈ZZ .
Let γ be an irrational not belonging to the orbit of α, and let ε > 0.

Let the Pierce expansion of γ be:

γ = 〈c1, . . . , ck, . . .〉.

As the sequence of the ci is strictly increasing there has to exist a subscript r
for which

1
c1c2 · · · cr

< ε.

Let us consider now any element, α′, of the orbit of α whose Pierce expansion
starts with c1, . . . , cr, which is always possible thanks to lemma 6.1. We have:

|α′ − γ| ≤ 1
c1 · · · cr

< ε.

7 The asymptotic distribution function of an or-
bit.

In this section we are going to find the asymptotic distribution function (a.d.f.)
of the sequence formed by the orbit of all rationals. We are going to prove
that it is a function similar to Minkowski’s ?(x) function, see [4]: a continuous
singular function, strictly increasing transforming a set of measure zero into a
set of measure one and viceversa. For the sake of completeness we remind the
definition of an a.d.f. More details can be found in [5, page 53].
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Definition 3 A sequence {αn}n∈IN of real numbers in [0, 1] is said to have the
a.d.f. F (x) if

lim
n→∞

#{αi ≤ x; i = 1, 2, . . . , n}
n

= F (x) for 0 ≤ x ≤ 1.

The two following lemmas are easy to prove:

Lemma 7.1 If two sequences {an} and {bn} belonging to [0, 1], coincide from
a given position, then if one of them has an a.d.f. the other one has the same
a.d.f.

Lemma 7.2 Given a sequence {an} such that for a fixed k:

lim
n→∞

#{ai ≤ x; i = 1, 2, . . . , kn}
kn

= F (x),

then F (x) is the a.d.f. of the sequence.

Lemma 7.3 Given the sequence qn = σn(1), the unitary fraction 〈m〉 occupies
position n = 1 + 2m−2.

Proof.
The number of rational numbers whose Pierce expansion ends with a given

integer s is 2s−2, where s ≥ 2. Consequently all Pierce expansions ending with
an integer less than m form a set of

∑m−1
s=2 2s−2 + 1 = 2m−2 elements. Then

q2m−2+1 = 〈m〉.
Lemma 7.4 Given a positive integer m and a finite sequence of positive integers
{ci}, such that m < c1 < . . . < cr−1 < cr − 1 we have that all the elements in
the sequence {qi} = σi(1) of the form

〈b1, . . . , br, c1, . . . , cr〉, with br ≤ m,

constitute a block of 2m consecutive elements.

Proof.
The first element of the block is 〈c1, . . . , cr〉, and the last is 〈1, 2, . . . ,m,

c1, . . . , cr〉, so all in all we have as many elements as subsets of the set {1, 2, . . . ,
m}.
Lemma 7.5 Given a positive integer m, the sequence {qi} can be organized
in blocks of length 2m in such a way that the first block is formed by all the
rationals whose Pierce expansion ends with a integer less than m + 2, and the
rest of blocks has the composition indicated in lemma 7.4.

Proof.
According to lemma 7.3 the element 〈m + 2〉 is placed in position 2m +

1. Therefore the first 2m elements of the sequence {qi} are formed by all the
expansions ending with an integer less than m + 2. The rest of blocks are
formed by 2m elements as they correspond to the requirements of lemma 7.4.
Each block starts and ends with subscripts of the form 1 + r2m and (r + 1)2m.
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Lemma 7.6 If x = 〈a1〉, then

lim
n→∞

#{σi(1) ≤ x; i = 1, 2, . . . , n}
n

=
1

2a1−1
.

Proof.
Let m be an integer such that m ≥ a1 + 2. By lemma 7.3 we know that

q2m+1 = 〈m + 2〉. According to lemma 7.1 we know that the a.d.f. of {qi}
coincides with that of {q̄i}, where q̄i = q2m+i, and whose first element is q̄1 =
〈m + 2〉.

By lemma 7.5 we can organize {q̄i} in blocks of 2m elements in such a way
that the requirements of lemma 7.4 are fulfilled. For each of these blocks the
terms of the sequence which are less or equal than 〈a1〉 will be of the form:

〈b1, . . . , br, c1, . . . , cs〉, with b1 ≥ a1.

There will be as many of these as subsets of the set {a1, . . . ,m}, that is 2m+1−a1 .
Consequently, for each block we have:

#{q̄i ≤ x, i = r2m + 1, . . . , (r + 1)2m}
2m

=
2m+1−a1

2m
=

1
2a1−1

.

As the same is verified by all blocks we have:

#{q̄i ≤ x, i = 1, . . . , k · 2m}
k · 2m =

1
2a1−1

.

According to lemma 7.2 we finally have:

F (〈a1〉) = lim
n→∞

#{q̄i ≤ x, i = 1, 2, . . . , n}
n

=
1

2a1−1
.

Lemma 7.7 If x = 〈a1, . . . , an〉, then

lim
n→∞

#{σi(1) ≤ x; i = 1, 2, . . . , n}
n

=
1

2a1−1
− 1

2a2−1
+ · · · + (−1)n+1

2an−1
.(9)

Proof.
We will use induction on the length of the Pierce expansion of x. Lemma

7.6 takes care of length 1. Let us suppose that (9) is true for an odd length,
n = 2r− 1; we are going to prove that in this case, it is also true for n = 2r and
n = 2r + 1.

As we did to prove lemma 7.6, let m ≥ a2r+1, and let us organize our
sequence in blocks of length 2m. By the induction hypothesis, we will have that
for x2r−1 = 〈a1, . . . , a2r−1〉 we have:

#{q̄i ≤ x, i = 1 + (k − 1)2m, . . . , k · 2m}
2m

=
1

2a1−1
− · · · + 1

2a2r−1−1
.

If we now consider x2r = 〈a1, . . . , a2r〉, then the q̄i ≤ x2r in the block we are
considering will be the same as before, q̄i ≤ x2r−1, except for those of the form:

〈a1, . . . , a2r−1, b2r, . . . , b2r+i, c1, . . . , cr〉,
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where the bj verify a2r ≤ b2r < · · · < b2r+i ≤ m. There are a total of 2m−a2r+1

verifying this. So, in each block we would have:

#{qi ≤ x2r}
2m

=
#{qi ≤ x2r−1}

2m
− 2m−a2r+1

2m
=

1
2a1−1

− · · · − 1
2a2r−1

.

In the same way, if we take x2r+1 = 〈a1, . . . , a2r+1〉, the q̄i ≤ x2r+1 in a block
are as many as those for x2r plus those of the form

〈a1, . . . , a2r, b2r+1, . . . , b2r+i, c1, . . . , ck〉,

where the bj verify a2r+1 ≤ b2r+1 < · · · < b2r+i ≤ m. Thus to the previously
found quantity we have to add 2m−a2r+1+1 obtaining a total of:

#{q̄i ≤ x2r+1}
2m

=
#{q̄i ≤ x2r}

2m
+

1
2a2r+1−1

.

This ends the proof of lemma 7.7.

Theorem 7.8 If x = 〈a1, a2, . . . , ak, . . .〉 is irrational, then

lim
n→∞

#{σi(1) ≤ x; i = 1, 2, . . . , n}
n

=
1

2a1−1
− 1

2a2−1
+ · · · + (−1)k+1

2ak−1
+ · · · .

Proof.
For x a rational number in [0, 1], let

F (x) = lim
n→∞

#{σi(1) ≤ x; i = 1, 2, . . . , n}
n

whose existence has been proved in lemmas 7.6 and 7.7. F (x) is by its own
nature a non–decreasing function. Thus if now we take x irrational, for any pair
of its approximants we have,

R2k < x < R2k+1 =⇒ F (R2k) ≤ F (x) ≤ F (R2k+1).

And as we have
F (R2k+1) − F (R2k) =

1
2a2k+1−1

,

tending to 0 as k → ∞, we have

F (x) = lim
n→∞

F (Rn) =
∞∑

n=1

(−1)n+1

2an−1
.

Theorem 7.9 All half–orbits, {σn(α)}n∈IN have F (x) as their a.d.f.

Proof.
Let α = 〈a1, . . . , ak, . . .〉 be any irrational. There exists a n < 2m such that

σn(α) = 〈m + 1, . . . , ai, . . .〉. Now, the same proof we have just used in the
preceding lemmas can be applied to the sequence {σn+i(α)}.

Exactly in the same way, the sequences of the form {σ−n(α)} have also the
same a.d.f.
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8 The singularity of F (x).

It is easy to see that F (x) is continuous because any irrational β ∈ [0, 1] can be
uniquely expanded in the form (alternated dyadic system):

β =
∞∑

n=1

(−1)n+1

2bn
, 0 ≤ b1 < · · · < bn < · · ·

(Rationals have finite expansions in the alternated dyadic system). This implies
that F (x) is one to one and onto, and being non–decreasing it has to be contin-
uous. By Lebesgues’s theorem it has a finite derivative almost everywhere. We
have the following result:

Lemma 8.1 On irrational numbers of the form 〈a1, . . . , ak, . . .〉, the derivative
F ′(x), when it exists, takes the value:

lim
k→∞

a1 · a2 · · · ak
2ak−1

.

Proof.
Let x = 〈a1, . . . , ak, . . .〉 be an irrational. The sequence {Ri} of its approxi-

mants verify
F (R2k) < F (x) < F (R2k+1).

The derivative, when it exists, coincides with the limit:

F ′(x) = lim
k→∞

F (R2k+1) − F (R2k)
R2k+1 −R2k

=
1

2a2k+1−1

1
a1···a2k+1

=
a1 · · · a2k+1

2a2k+1−1
.

Theorem 8.2 F ′(x) = 0 almost everywhere.

Proof.
Let K be the set of the x ∈ (0, 1], such that their Pierce expansion verify:

lim
k→∞

log ak(x)
k

= 1.(10)

As Shallit proved in [12], K is a set of measure 1. Let H denote the set where
F ′(x) exists, whose measure is also 1. Let x ∈ K ∩H. Condition (10) implies
that given ε > 0 there exists a subscript n0, (n0(x)), such that for n ≥ n0 the
following inequality is verified:

en(1−ε) < an(x) < en(1+ε),

Let us see that F ′(x) = 0. We have

F ′(x) = lim
k→∞

a1(x) · · · ak(x)
2ak(x)−1

.
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Let us denote by

bk(x) =
a1(x) · · · ak(x)

2ak(x)−1
.

For k ≥ n0:

bk(x) =
2 · a1(x) · · · ak(x)

2ak(x)
,

log bk(x) = log 2 + log a1(x) + · · · + log ak(x) − ak(x) log 2 ≤
≤ log 2 + k · log ak(x) − ak(x) log 2,

log bk(x) ≤ log 2 + k2 · log ak(x)
k

− ek(1−ε) log 2 =

= log 2 + k2

(
log ak(x)

k
− ek(1−ε) log 2

k2

)
︸ ︷︷ ︸

(�)

.

As the first term of ( ) tends to 1 when k → ∞ and the second term tends to
−∞, we have:

lim
k→∞

log bk(x) = −∞, ⇒ lim
k→∞

bk = 0

and, consequently, F ′(x) = 0.
In the previous proof, x can be considered in a much larger set than K. The

same proof can be applied to any x ∈ H whose Pierce expansion verify:

lim
n→∞

log an(x)
n

= r > 0.

If x ∈ H, a necessary (but not sufficient) condition for F ′(x) > 0 is:

lim
n→∞

log an(x)
n

= 0.

9 F (x) and the metrical properties of two sys-
tems for representing real numbers.

As we have seen, F (x) relate two systems of representation: the one based on
Pierce expansions and the alternated dyadic. This bridge between both systems
permits an analysis of the metrical properties of both models. Let us state a
result in that sense:

Theorem 9.1 The a.d.f. F (x) transforms a set of measure 1 into a null set.

Proof.
Let K and H be defined as before. If x ∈ K ∩H, its image F (x) is:

F (x) =
∞∑

n=1

(−1)n+1

2an(x)−1
.(11)
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This last expression is the development of a number in the alternated dyadic
system, where the an(x) − 1 can be considered its ‘digits’. In this system, an
irrational number has a unique expression of the form:

∞∑
n=1

(−1)n+1

2dn(x)−1
,

which can also be written as a list of 0’s and 1’s. For instance,

1
22

− 1
25

+
1
26

− · · · = [0, 0, 1, 0, 0, 1, 1, . . .]

with 1 in place dn(x) and 0 elsewhere, signs alternating.
Going back to our images, F (x), as found in (11), these images are not

‘normal’ in the alternated dyadic system, understanding by normal a number
whose ‘digits’, dn(x), verify:

lim
n→∞

n

dn(x)
=

1
2
.(12)

Equation (12) has to be interpreted as the distribution of 1’s in the expression
of a normal number: n is the number of 1’s in the first dn(x) places.

Equivalently, we can write (12) as an asymptotic equality:

dn(x) = 2n + o(n),

and hence:

lim
n→∞

log dn(x)
n

= 0.

This shows that a necessary condition for F (x) to be normal in the alternated
dyadic system is:

lim
n→∞

log an(x)
n

= 0.

The condition is not sufficient.
This analysis shows that the image of K ∩H by F (x), is a subset of the set

of not–normal numbers in the alternated dyadic system and, consequently,

λ(K ∩H) = 1, λ(F (K ∩H)) = 0,

where λ is the usual Lebesguian measure.
In the same way we could prove that the set M of the x ∈ (0, 1] such that

their Pierce expansions verify:
∞∑

n=1

1
an(x)

= ∞,

which is null set as Shallit proved in [12], is transformed by F (x) into a set of
measure 1 as in the alternated dyadic system the property just mentioned is an-
tithetic to the corresponding property in the Pierce expansion model, obtaining

λ(M) = 0, λ(F (M)) = 1.
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