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Abstract

In this paper I explore the issue of nonlinearity (both in the data generation

process and in the functional form that establishes the relationship between the

parameters and the data) regarding the poor performance of the Generalized Met-

hod of Moments (GMM) in small samples. To this purpose I build a sequence of

models starting with a simple linear model and enlarging it progressively until I ap-

proximate a standard (nonlinear) neoclassical growth model. I then use simulation

techniques to �nd the small sample distribution of the GMM estimators in each of

the models.



1 Introduction

The Generalized Method of Moments (GMM) estimation technique is intuitively

appealing and easy to apply. It is suited for linear or nonlinear models and does

not require any distributional assumptions on the disturbances of the model. It

only requires orthogonality between the forecast errors and the instruments, and

this arises naturally from optimization in Rational Expectations models.

Inference in GMM is asymptotic. For a su�ciently large sample size, the esti-

mators of the model conveniently scaled behave as a Normal vector. It is possible

to test the overall �t of the model or to perform Wald type tests on the parameters,

but sample sizes are typically small and the asymptotic values are not well appro-

ximated. Many papers have studied the small sample distributions of the GMM

estimators of particular models. Often they �nd that these estimators are biased,

their asymptotic variance is not correctly estimated and therefore the con�dence

intervals are wrong, and the models tend to be under or over rejected. In some ca-

ses, the estimation results are "perverse": in many Monte Carlo simulations using

more instruments yields estimators with lower variances, but a higher mean square

error.

The type of models typically estimated by GMM share some common charac-

teristics. Often they are highly nonlinear and this nonlinearity may arise from two

sources: the functional form of the equation to estimate and/or the data genera-

ting process. The variables involved may exhibit a high degree of autocorrelation

or colinearity, or the residuals of the model might be heteroskedastic. I abstract

from other issues, such as measurement error in the data, autocorrelation of the
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residuals which gives rise to alternative ways of estimating the GMM weighting

matrix, or several other technical considerations. In this paper I ask myself the

following question: is it possible to know to what extent some of these commonly

shared characteristics are responsible for the poor performance of the GMM esti-

mation method? If the answer were yes, maybe one could learn more about small

sample properties of the GMM estimator from simpler models.

I start by simulating a standard neoclassical growth model. For this model both

the data generating process and the derived Euler equations are highly nonlinear. I

then extract a collection of many small samples, and derive the small sample distri-

butions of the GMM estimators of the parameters of the model. As expected, the

estimators are biased, and they concentrate more and more on the biased values as

one keeps adding instruments. I use the data generated by this model to calibrate

several of the parameters of the data generating processes in the simulation of a

sequence of models. This sequence starts with a simple classical linear regression

model and ends with a speci�cation that resembles the Euler equation of the neo-

classical growth model. In each step a new characteristic is added or subtracted

to the model, keeping constant some of the calibrated data parameters. By simu-

lation, I derive the small sample distribution of the parameters of each model and

then I try to establish a relationship between the characteristics of each model and

the performance of the GMM estimator. If, for a given model, it is possible to

discover the problem that causes the wrong estimates, one could try to �nd a way

to circumvent it or to take it into account to improve estimation.

After examining this sequence of models I have learned that although nonlinea-
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rity seems to be mostly responsible for the poor small sample behavior of GMM, it

is not easy to disentangle its e�ect from the e�ect of the rest of the characteristics

such as the degree of autocorrelation of the variables for instance. All of these

characteristics interact to yield a particular estimation result, and the way they do

it is very model dependent. I could not �nd a clear pattern and therefore I can

not extract some sort of a general set of rules or tests to take into consideration

when estimating models with the GMM technique. Instead I have learned that

each model has to be studied separately before attempting its estimation and si-

mulation seems to be a very powerful tool to understand the relationship between

the model's characteristics and the small sample performance of GMM estimation.

One can study the characteristics of the data, calibrate the model he thinks to be

correct, and investigate the behavior of the GMM objective function when samples

are small or the possibly systematic and model speci�c relationship between the

true parameters values and the bias in their estimation.

The outline of the paper is as follows. First, I review some of the relevant

literature in section 2. In section 3, I present an example of GMM estimation

applied to a simple growth model. I specify the model, comment on the simulation

technique I apply, and state the two stage GMM I use in estimation. Section

4 explores the sequence of models I just mentioned and section 5 concludes the

paper.
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2 Some common �ndings in the related literature

There exists some literature that explores the exact small sample properties of

instrumental variables estimation in the context of linear models. Nelson and Startz

(90) studied them in a linear model in which the instrument was a noisy measure

of the explanatory variable and the later was correlated with the error. They

found that the central tendency of the instrumental variable estimator was biased

away from the true value in the direction of the probability limit of the ordinary

least squares estimator. Furthermore, the standard errors associated with these

estimates were small relative to the bias. Also, when the instruments were poor

(not very correlated to the explanatory variable) the asymptotic distribution was

a poor approximation to the true distribution.

Many other papers have used Monte Carlo type strategies to evaluate the small

sample properties of IV or GMM estimators. In one of the �rst articles that looked

at the small sample properties of GMM, Tauchen (86) examined the properties of

the estimators of utility function parameters. He simulated stochastic nonlinear

exchange economies and used them to generate many small samples on which to

test the GMM properties. He found a variance/bias trade-o� regarding the number

of lags used to form instruments (short lags yielded nearly asymptotically optimal

estimates of the risk aversion parameter, but long lags tended to produce estimates

that concentrated around biased values). That bias depended on the covariance

structure of dividends and consumption. The test of the overidentifying restric-

tions performed well in small samples. If anything, the test was biased towards

acceptance of the null hypothesis.
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This type of results has been con�rmed by other authors such as Chang and

Judd (92) in a discrete time stochastic exogenous growth model, Kocherlakota (90)

in an asset pricing model similar to the one studied by Tauchen but including the

risk free asset and other parameters, or Rogerson and Rupert (93) in a simple real

business cycle model with measurement error in hours and wages.

Some papers concentrate on the idea that the GMM weighting matrix is badly

estimated and that improving that estimation will result in a better performance of

the method. The following are just a few examples. Hansen, Heaton and Yaron (95),

Christiano and den Haan (95), Altonji and Segal (94), or Burnside and Eichenbaum

(94) explore several alternatives regarding the estimation of the weighting matrix.

Although these papers are able to �nd some improvements, they are in general

small and the proposed solutions appear to be model speci�c or require a minimum

data size.

Andersen and S�rensen (95) studied the so-called lognormal stochastic autore-

gressive volatility model and found a fundamental trade-o� between the number of

moments, or information, included in estimation and the quality, or precision, of the

objective function used for estimation. It is generally not optimal to include a large

number of moments in the estimation procedure if the sample size is limited and

is virtually never advisable to rely on the alternative extreme of a just-identi�ed

model.

Another line of research tries to �nd a relationship between the quality of the

IV used in estimation and the performance of the IV or GMM procedures.

Fuhrer, Moore and Schuh (93) and West and Wilcox (95) studied and compared
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ML and GMM estimation in a linear-quadratic inventory model. They concluded

that it is the small sample bias that is the cause of so much di�erence in estimation

of the parameters of this model in the relevant literature. FIML gave a larger

asymptotic e�ciency when the data was highly serially correlated. Also, more

e�ciency was obtained when the number of instruments in GMM or IV was large,

but both methods yielded estimates with the wrong sign and wrong Wald type

tests.

Staiger and Stock (93) performed a similar exercise in the context of two stage

least squares estimation. They found that even in large samples 2SLS can be badly

biased and the conventionally constructed con�dence intervals will fail to have the

desired coverage rates. Then they compared this estimator with the LIML one.

The latter was in many cases approximately median unbiased and therefore more

reliable.

Finally, Pagan and Yung (93) advised to perform several previous tests to gain

intuition on the small sample performance of the instrumental variables estimators.

In particular they suggest the calculation of a pseudo-concentration estimator. This

would consist on a regression of the derivatives of the residuals with respect to the

parameters of the model, on the instruments one proposes to use. When they apply

this test to the Mao's model, they �nd low values of the R2 which they interpret

as a signal to bad performance of the GMM estimator in small samples. However,

they also warn the reader that the results of the tests they propose are not free

from contamination from other factors and they are, in general, model dependent.

These are just some examples of work in the �eld, the list is by no means ex-
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haustive. Although summarizing all the related literature in a few lines is very

di�cult, one can at least select a few common �ndings. First, it seems that a

large number of instruments (lags) improves e�ciency of the GMM estimator. But

shorter lags (which imply fewer instruments) seem to yield less biased estimates.

Second, the J-square statistic behaves somehow unpredictably. Whether the model

is overrejected or under rejected depends on the particular model I am studying.

Third, the estimated asymptotic variance of the estimators is usually far from the

true one and con�dence intervals are consequently wrong. Some authors believe

that the poor performance of the J-square or Wald tests is due to the bad esti-

mation of the parameters in small samples, but despite the e�orts to improve the

performance of the estimation method (mainly related to the improvement in the

estimation of the weighting matrix), the problem remains unsolved. Finally, the

size of the bias or the percentage of rejection of the model (based either on the

J-square or Wald tests) appears to be model speci�c and it could be related to the

covariance structure of the data. In this paper, I explore the last issue.

3 An example of GMM estimation: the neo-classical

simple growth model

In this section I state a simple stochastic neo-classical growth model (the same

used by Rogerson and Rupert ((93)), simulate it for a given choice of parameters,

produce 500 samples of 115 observation each, and use them to �nd the small sample

distributions of the parameters estimated by GMM, their estimated asymptotic

variance and the J- square statistic.
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3.1 The Model

The model is described by

maxE0

P
1

t=0 �
t

�
c
1�

t

1�
 �Al

L

t

�

 > 0 
L > 0

s:t: ct + kt = �tk
�
t�1l

�L

t + �kt�1

log �t = � log �t�1 + �t �t � N(0; �2)

0 � lt � 1

where

ct is consumption at time t

lt is hours of work at time t

kt is capital stock at the end of period t

�t is a technology shock that follows log(�t) = � log(�t�1) + �t

with �t � N(0; �2)

1� � is the depreciation rate and

�+ �L equal one

The �rst order conditions for the problem yield:

ct + kt = �tk
�
t�1l

�L

t + �kt�1 (1)

c
�

t = �Etc

�

t+1(�t+1l

�L

t+1�k
��1
t + �) (2)
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lt =

 
c
�

t �t�

Lk�t�1
A
L

! 1

(
L��L)

(3)

The decentralized version of the model implies that the representative agent

solves the following problem

maxE0

P
1

t=0 �
t

�
c
1�

t

1�

�Al


L

t

�

 > 0 
L > 0

s:t: ct + Bt � (1 + rt�1)Bt�1 + wtlt

ct � 0 0 � lt � 1

where rt is the interest rate, wt is the wage rate and Bt represents assets holdings

at the end of the period t.

The fwtg series is found by making the wage equal to the marginal product of

labor. In our case,

wt = �tk
�
t�1�

Ll�
L
�1

t (4)

The natural choice of the interest rate from the model is the risk-free interest

rate, which for our speci�cation is given by

1 + rt = (1=�)
c
�

t

Et(c
�

t+1)

(5)

The �rst order conditions for this model yield
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Et

(
�

�
ct+1

ct

�
�


(1 + rt)

)
= 1 (6)

or, equivalently:

Et

(
�

�
lt+1

lt

�
L�1 wt

wt+1

(1 + rt)

)
= 1 (7)

3.2 Simulation

The model can be solved numerically. Our particular solution is based on the

Parameterized Expectations Approach, formally presented in Marcet and Marshall

(94). A sketchy description is o�ered in the Appendix. The method substitutes

the conditional expectation in equation (2) by a suitable function  of the state

variables kt�1 and �t and iterates on the parameters of the � function to minimize

the distance between the series obtained in successive iterations. Consumption then

is given by c
�

t = � (�̂; kt�1; �t), I substitute it in equation (3) to �nd lt, and �nally

I obtain kt from equation (1) and the wage from (4). To �nd the risk-free interest

rate, I will have to approximate Etc
�


t+1 in the same fashion as before. Then Etc
�


t+1

is substituted by �(�̂; �t; kt�1).

The results are dependent on k0, �, var(�t), �, 
, A, 

L, �, �L, �, and the

particular draw for f�tg.

To try to reproduce some of the previous literature results, we choose
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� = 0.99 
L = 1

� = 0.975 � = 0.95


 = 1 �2 = 0.01034

� = 0.36 k0 = 12.6

�L = 0.64

A is chosen to be such that given the above parameters, the value of the steady

state equilibrium for labor is approximately equal to 1
3
. I assume that the economy

is already in the steady state in the initial period and consequently k0 takes the

steady state value for capital.

The stochastic steady state results are shown in table 1. The numbers under the

columns labeled c, k, l, �, w and r are the long-run means and standard deviations

of the generated series.

3.3 GMM estimation

Equation (7) implies that

E
�
ut+1(� ; 


L)
 zt

�
= 0

where

ut+1(� ; 

L) = �

�
lt+1

lt

�
L�1 wt

wt+1

(1 + rt)� 1

and zt is a vector of valid instruments, that is of variables belonging to the
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information set at time t.

Our GMM estimators of � and 
L minimize

 PT
t=1 ut+1(� ; 


L)
 zt

T

!
0

(SwT )
�1

 PT
t=1 ut+1(� ; 


L)
 zt

T

!

where the inverse of the weighting matrix is de�ned as:

SwT =

PT
t=1

 
�T

�
lt+1
lt

�
L
T
�1

wt
wt+1

(1 + rt)� 1

!

 ztzt0

T
(8)

and �T and 
LT are �rst stage estimates of the parameters.

The simplest method calls for using the identity matrix as a �rst stage esti-

mation weighting matrix. The �rst stage estimates are used to evaluate (8) and

second stage estimators are obtained. It is possible to improve the estimation by

repeating the iteration process several times, until convergence of the estimators is

achieved (see Hansen, Heaton and Yaron (95)). However, for the particular model I

am studying the estimators are still biased and the �t of the model is not generally

improved1.

Asymptotically,

p
T

0
BBB@
0
BBB@
�T


LT

1
CCCA �

0
BBB@

�


L

1
CCCA
1
CCCA D! N

�
0;
�
B0(Sw)

�1B
�
�1
�

where B is estimated by
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BT =

PT
t=1

��
lt+1
lt

�
L
T
�1

wt
wt+1

(1 + rt) ; �T

�
lt+1
lt

�
L
T
�1

wt
wt+1

(1 + rt) ln
�
lt+1
lt

��

 zt

T

(9)

Also

JT = T

 PT
t=1 ut+1(�T ; 


L
T )
 zt

T

!
0

(SwT )
�1

 PT
t=1 ut+1(�T ; 


L
T )
 zt

T

!

converges in distribution to a �2 variable with as many degrees of freedom as

the number of overidentifying restrictions of the model.

3.4 Small Sample Properties

In order to characterize the small sample properties of the GMM estimator, we

generate 500 series of 115 observations each2.

For each one of these samples, I estimate the � and 
L parameters with several

sets of instruments, which I choose among the variables that will be typically avai-

lable when estimating this type of models. These sets of instruments are shown in

table 2.

The results of estimating the model with each set of instruments are shown in

table 3.

3.5 Comments

Table 3 can be summarized in a few points. First, the bias of the parameters' esti-

mators is lower with the �rst set of instruments, the one I call Lag 0. Second, the
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small sample standard error of the parameters' estimators is systematically larger

than the asymptotic one, and both decrease as the number of instruments (lags)

increases. Third, the square root of the mean square error of the parameters' esti-

mators increases with the number of instruments (lags) being used in estimation.

Fourth, the model's overidentifying restrictions are always rejected at the 10% con-

�dence level3. The percentage of rejects decreases with the number of instruments

being used. Fifth, as noted before by Rogerson and Rupert (93) the estimator of �

displays very little bias.

These results are somehow \perverse". If the econometrician was to choose

among several sets of instruments, since he does not know the true value of the

parameters and all he sees is the asymptotic standard error estimate and the J-

statistic, he would undoubtedly prefer to include as many instruments as possible.

Our simulations show that unfortunately this would result in quite biased estima-

tors.

4 The role of nonlinearity

The preceding section simply documents a well known fact: usually (but not always)

GMM does not perform too well with small samples. A recurrent �nding in the

related literature is that the performance of GMM estimation and the possibility

of success in improving it, is model dependent.

Something is known about the behavior of instrumental variables estimation

in the context of linear models (see Amemiya (66) or Nelson and Startz (90)).

In particular, a lot of attention has been devoted to studying the e�ects of using
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poor instruments in IV estimation. Instruments that are lowly correlated with the

explanatory variables tend to produce biased estimators. But this does not seem to

be the problem in the model I just estimated. To the contrary, the instruments are

highly autocorrelated and the correlation among some of them is also large. Under

that circumstances, simple linear models tend to perform well.

That observation suggests that one could learn on the issue of nonlinearity

(either in the data generation process or in the relationship between data and

parameters) by considering a sequence of models, starting with a linear one and

ending with an approximation to the growth model I just estimated.

4.1 The Models

All the models include some degree of autocorrelation in the variables, which is com-

mon in Rational Expectations models. Such autocorrelation is absolutely necessary

if one is going to use lagged values of the variables as instruments.

Sometimes the autocorrelation structure is explicit in the equation one wants

to estimate, such as in models 4 to 7. In the other three cases the data generation

process of the autocorrelated variable is independent of the structure of the model.

I pay special attention to the role played by nonlinearity, both in the functional

form of the equation being estimated and in the data generating process, and how it

interacts with other characteristics of the models. Model 1 is linear in the variables

and in the parameters, while models 2 to 6 are nonlinear in the parameters, and

model 7 is nonlinear both in variables and parameters. I distinguish between models

in which the parameters enter in a nonlinear form just in the right hand side of
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the equation to be estimated (models 2 and 4), and models where that type of

nonlinearity is also present in the left hand side of the equation. The explanatory

variables in models 1 to 3 are correlated with the residuals of the model, as opposite

to the rest of the models. Models 6 and 7 include heteroskedastic residuals.

The sequence of models that I consider is the following:

Model Functional form Data Generating Process

1 yt = �xt + ut xt = !t + �ut ut � N(0; �2u)

!t = �!t�1 + u!t uwt � N(0; �2uw)

2 yt = x
�
t + ut ut = exp(�t)� exp

�
�2
�

2

�
�t � N(0; �2�)

!t = �!t�1 + u!t uwt � N(0; �2uw)

xt = exp(!t + �ut) +
�
exp

�
�2
�

2

�� 1
�

3 y
�+

t = x

�
t + ut ut = exp(�t)� exp

�
�2�
2

�
�t � N(0; �2�)

!t = �!t�1 + u!t uwt � N(0; �2uw)

xt = exp(!t + �ut) +
�
exp

�
�2�
2

�� 1
�

4 xt = x
�
t�1 + ut ut � N(0; �2u)

5 x
�+

t = x

�
t�1 + ut ut � N(0; �2u)

6 y
�+

t = x

�
t�1 + ~ut xt = x�t�1 + ut yt =

xt

x
���

t�1

ut � N(0; �2u) ~ut =
ut

x
���

t�1

7 �
�

xt
xt�1

��
 t � 1 = ~ut  t =

�
x
1��
t

x
��

t�1

�x
��

t�1

�
~ut =

ut
x�
t�1

xt = x�t�1 + ut ut � N(0; �2u)

There is only one parameter to estimate through all the models, �. Its true
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value is set to 0.9 through all the experiments and I also try to keep �xed some of

the rest of the parameters that govern the statistical properties of the explanatory

variables. In particular, if possible I will try to match the autocorrelation observed

in consumption in the model of section 3 (0.994), its standard deviation (0.0414),

and the standard deviation of the forecast errors (0.0047)4. The 
 parameter is set

to 0.1, thus making models 2 and 3 equivalent as well as models 4 and 5.

I will estimate each model with several sets of instruments. The instruments

will be divided in two classes: instruments which are noisy versions of the relevant

ones, and instruments which are lagged versions of the relevant ones.

For models 1 to 3 I de�ne the variables:

z1t = wt + v1t

z2t = wt + v2t

z3t = wt + v3t

z4t = xt�1

where v1t, v2t, and v3t are i.i.d. noises with mean 0 and standard deviation

equal to 0.15 times the standard deviation of wt.

I will use the following instruments sets:
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IV Set Variables

1 z1t

2 z1t, z2t, z3t

3 z1t, z2t, z3t,z1;t�1, z2;t�1, z3;t�1

4 z1t, z2t, z3t,z1;t�1, z2;t�1, z3;t�1,z1;t�2, z2;t�2, z3;t�2

5 z4;t

6 z4;t,z4;t�1

7 z4;t,z4;t�1,z4;t�2,z4;t�3

8 All of the above

For models 4 to 6, I rede�ne the variables:

z1t = xt + v1t

z2t = xt + v2t

z3t = xt + v3t

z4t = xt�1

where now v1t, v2t, and v3t are i.i.d. noises with mean 0 and standard deviation

equal to 0.15 times the standard deviation of xt.

The instrument sets used with models 4 to 6 are the same as the ones used for

models 1 to 3, taking into account the rede�nition of z1t, z2t, z3t and z1t.

Finally, the instruments sets for model 7 are:

18



IV Set Variables

1 xt�1

2 xt�1, xt�2

3 xt�1, xt�2, xt�3,xt�4

4  t�1

5  t�1,  t�2

6  t�1,  t�2,  t�3, t�4

7 xt�1,  t�1

8 xt�1, xt�2,  t�1,  t�2

9 xt�1, xt�2, xt�3, xt�4,  t�1,  t�2,  t�3, t�4

4.2 Calibration and Data Statistics of the Models

4.2.1 Model 1

Here I make � = 0.994 to match the autocorrelation of consumption in the growth

model of section 3, �uw = 0.0046 to match its standard deviation, and �u = 0.0047

to match the standard deviation of the forecast error. The presence of �ut in the

de�nition of xt justi�es the use of instruments to estimate the � parameter. The

reference value for � is 0.9, the one used by Nelson and Startz (90) in a very similar

model. I also use alternative values for this parameter, to better evaluate in which

way the estimation results are a�ected by the degree of correlation between the

instruments and the explanatory variable.

With these choices of parameters, the data statistics are as shown in table 4.

The numbers under the columns labeled T=10,000 are estimates of the popu-
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lation values of the reported statistics. Here �u and �x represent the standard

deviation of ut and xt respectively. The autocorrelation coe�cients for ut and xt

are represented as �u and �x respectively. The symbol �u;x refers to the correlation

between ut and xt. The numbers under the columns labeled T=115(500) are small

sample statistics. They report the means over 500 realization each of one is of

length 115. As can be seen from the table, the standard deviation of x is systema-

tically larger in the small samples while its autocorrelation is slightly smaller. The

correlation between x and u is also larger in the small samples.

4.2.2 Model 2

Again, � = 0.994 and I make �� = 0.0047 and �uw = 0.00456. That way I am able

to match the autocorrelation and standard deviation of consumption. I also match

the standard deviation of the forecast error.

With this choice of parameters, the data statistics are as shown in table 5.

It should be noted that the functional form of the model is not the only change

performed. In order to guarantee stability of the model, the data generating process

is also di�erent. In particular, the xt variable is lognormal.

4.2.3 Model 3

Here I make 
 = 0:1, therefore �+
 = 1. The rest of the parameters take the same

values as in model 2. Both models are -for this particular choice of parameters-

identical from the point of view of data generation.
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4.2.4 Model 4

For this particular model I can not match both the autocorrelation and the standard

deviation of consumption. If I choose �u = 0.01795 I match the standard deviation

of consumption, but its (linear) autocorrelation is low (0.9) and the standard de-

viation of the residuals is too big. Making �u =0.0047 as before implies that the

standard deviation of xt is only 0.01083, and its autocorrelation is still 0.9. I will

chose then �u = 0.01795. The small sample statistics associated to this choice are

0.0389 for the standard deviation of xt and 0.8866 for its (linear) autocorrelation.

4.2.5 Model 5

I make 
 = 0:1 and the rest of the parameters take the same values as in the

previous model. Both are identical from the point of view of data generation.

4.2.6 Model 6

I here separate the data generation mechanism from the model functional equation.

I make � = 0:994 and �u = 0.00458 so I can match the autocorrelation and standard

deviation of consumption. The small sample statistics are 0.0205 for the standard

deviation of xt and 0.9727 for its (linear) autocorrelation.

4.2.7 Model 7

The model is a transformation of the data generation equation for xt, just like

model 6. Again the � parameter is equal to 0.994. The � parameter is equal to

0.99 and �u = 0.00458. The small sample statistics are 0.02054 for the standard

deviation of xt and 0.9727 for its (linear) autocorrelation coe�cient.
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I have also estimated the same model with a lower autocorrelation of xt. For

� = 0:194 the small sample statistics are 0.00464 for the standard deviation of xt

and 0.8193 for its (linear) autocorrelation coe�cient.

4.3 Results

Tables 6 to 8 gather the estimation results for the sequence of models. Sometimes

I try alternative choices of some parameters , to learn more about the particular

structure of the model and its interaction with GMM.

The tables report the small sample estimated bias , the standard deviation and

the square root of the mean square error of the estimator. Also, I report the percen-

tage of rejects of the J�-statistic test at the 10% con�dence level. Finally I include

the estimated asymptotic standard deviation of
p
T�T divided by

p
T when T=115

((115)�1=2��T in the tables), and an approximation to the true asymptotic standard

deviation of
p
T�T as T goes to 1, divided by 115 ( (115)�1=2�� in the tables)5.

This approximation is calculated by computing the mean of (BT 0S�1wT
BT )

�1 with

T=10,000 over 150 realizations and then dividing it by 115 and taking the square

root.

The bias in model 1 is small, even when the quality of the instruments is poor

(� = 10:0). The small sample standard deviation of the parameter is a little larger,

usually around 0.02. However, when � = 10:0 and only lagged values of xt are used

as instruments, that standard deviation is considerably larger, with a maximum at

0.39. The �nding is explained by the fact that these instruments are very noisy

versions of the explanatory variable and therefore only weakly correlated with it.
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I also observe a trade-o� between bias and variance: when � is 0 or 0.9 the more

instruments I use, the lower the bias and the higher the small sample standard

deviation. However, when � = 10:0 the result is reversed.

In this model the small sample variance is larger than the estimated asymptotic

variance6, independently of the value of �. Also, the latter is larger than the

approximated true variance of the GMM estimate.

As for the value of the J-statistic, I observe that when � is 0 or 0.9 the percentage

of times the model is rejected is very close to the expected 10%. The percentage

diminishes as I include more and more instruments. For �= 10, the model is

underrejected with instruments sets 2, 3 or 4, sometimes rather badly. But when

I use sets 6 and 7 the model is overrejected very often and the situation becomes

worst as I increase the number of instruments used.

Models 2 and 3 work remarkably well. The bias is very small. The small sample,

estimated asymptotic and approximated true asymptotic standard deviations are

very similar and very small, and the percentage of rejects of the J-statistic test is

very close to the 10% level. Surprisingly enough, the bias and standard deviations

of model 3 are approximately equal to 10 times the ones reported for model 2. Both

models are identical from the point of view of data generation, but not from the

point of view of estimation. Two are the main di�erences with model 1. First, there

is a nonlinear function of the � parameter on the left hand side of the equation to

be estimated. Second, the xt variable is now lognormal, while in model 1 it was

normal.

Models 4 and 5 are purely autoregressive, with the � parameter entering in
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a nonlinear fashion. Both models are identical from the point of view of data

generation. Table 7 shows the results of the GMM estimation for these two models.

I emphasize a few points:

� The bias is large now, specially for model 5.

� The small sample standard deviation is also very large in both models.

� In model 4 the small sample deviation and the estimated asymptotic standard

deviation are very close, with the exception made for instrument sets 1 and

5. In model 5 the small sample standard deviation is much smaller than the

estimated asymptotic one.

� The trade-o� observed before between bias and variance is not observed

everywhere. In model 4 the bias and the estimated standard errors dimi-

nish as I increase the number of instruments. The same is true for model 5

and instruments sets 1 to 4, but the trade-o� reappears with instrument sets

5 to 8.

� In general, the models are estimated very badly when only one instrument is

used (sets 1 and 5).

Model 6 shows some important bias and large small sample variances. These

are usually larger than the estimated asymptotic standard deviation (exception

made of instrument sets 1 and 5), but smaller than the approximated true one.

It exhibits the trade-o� between bias and variance as the number of instruments

increases. Again, the results are meaningless when only one instrument is used in

estimation.
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The three models are always underrejected for what respects to the J-statistic

test. I could never reject the hypothesis of � = 0.9, but the estimated asymptotic

variance is so large that the estimation results o�er very little information on the

true value of that parameter.

Model 7 extremes the nonlinearity aspect of this type of setups. When I match

the sample data values of consumption (� = 0:994), the estimates are badly biased

and the estimated asymptotic standard deviation is large (larger than the small

sample one). But it still underestimates the \true" asymptotic standard devia-

tion. The model is underrejected or overrejected according to the J-statistic test,

depending on the particular instrument set considered.

Summarizing, one can observe that linear models do not pose estimation pro-

blems unless the instruments are poorly correlated with the explanatory variables.

Also, nonlinear models of the type explored work well with small samples. The

high autocorrelation in the data does not seem to interfere with the quality of the

small sample estimators.

GMM has problems to estimate the pure autocorrelation model 4. Although

models 5 and 4 are identical from the point of view of data generation, the func-

tional form in model 5 makes estimation very di�cult. The large estimated and

approximated standard errors suggest that the objective function (both in the small

and the large sample) are rather 
at. Figures 1 and 2 show the logarithms of T

times the objective functions of model 1 (for � = 0:9) and models 4 to 7 for di�e-

rent values of T. Figure 1 uses only lagged values of the explanatory variables as

instruments (instrument set 7). Figure 2 uses only one instrument, the one period
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lagged value of the explanatory variable. It is also easy to appreciate that these

functions are sometimes degenerate when only one instrument is used.

Separating the data generating process from the functional form of the model,

as in model 6, does not solve the problem posed by the autocorrelation of xt, but

makes the objective function better de�ned. Models 7 and 6 are also identical from

point of view of data generation. However, the particular functional form makes

the objective function ill behaved.

In the case of model 7 it can also be observed that when � is set to 0.194, the bias

diminishes although is still quite large. Now the estimated asymptotic deviation is

considerably larger than the approximated true one. The model's overidentifying

restrictions are now underrejected always. Again, the model can't be estimated

properly when just one instrument is used. Figure 1 help us understand why is

so. The last three graphics show that the high autocorrelation combined with

the particular functional form produce ill behaved objective functions (both for

small and large samples). Lowering the autocorrelation or transforming the model

help improve these objective functions and therefore give better (although still not

satisfactory) estimations.

Figure 3 shows the relationship between the true parameter value and the mean

of its GMM estimate over 500 data replications. The models studied are models

5, 6 and 7, all of them with a high autocorrelation in xt. I have worked with

instrument sets 5 and 7 for models 5 and 6 , and with instrument sets 3 and 4

for model 7. The graphics on the left in Figure 3 correspond to cases in which

the models are just identi�ed. The graphics on the right correspond to the case in
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which the instrument set includes four lags of the xt variable. Casual examination

of these pictures reveals that, in some cases, there is a low variance relationship

between the true parameter and the small sample mean of its GMM estimator.

I can disregard model 5, which I already know is badly behaved. Models 6 and

7 o�er the possibility of estimating a particular functional form relating the true

parameter and the mean GMM estimate. For model 5 this function is not de�ned

for a true parameter value of 1.0, but is de�ned elsewhere. In model 7 it seems

quite evident that a straight line describes the relationship between parameter and

estimator. There is too much variance when I use instrument set 4, for which the

model is just identi�ed. But when instrument set 3 is used, I can estimate a linear

regression between the GMM mean estimate and the true parameter for model 7.

The R2 is always very high. In this particular case, I could improve estimation

by adding a third step to GMM. For example, for instrument set 3, the estimated

linear regression is �T 0 = �1:012555 + 1:001963�, with an adjusted R2 of 0.9999.

Here �T 0 is the small sample mean of the GMM estimator, obtained by simulation.

I could de�ne a third step GMM estimator as �̂T = �T+1:012555
1:001963

, where �T is the

standard two steps GMM estimate. Of course, the asymptotic theory associated

with this estimator needs to be derived.

5 Concluding Remarks

In this paper I have tried to establish some relationship between several charac-

teristics present in Rational Expectations models, such as nonlinearity, cross and

autocorrelation of the data processes or heteroskedasticity in the forecast errors;
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and the performance of the generalized method of moments in small samples.

The results of such e�ort are somehow disappointing since I have learned that

although nonlinearity seems to be mostly responsible for the poor small sample

behavior of GMM, it is not easy to disentangle its e�ect from the e�ect of the rest

of the characteristics. All of them interact to yield a particular estimation result,

and the way they do it is very model dependent. I could not �nd a clear pattern

and therefore it is not possible for us to extract some sort of a general set of rules to

take into consideration when estimating models with the GMM technique. In some

cases, such as in models 6 and 7, a transformation of the model makes an important

di�erence in estimation, but it is not obvious at all which transformation one should

try. Also, although lowering the autocorrelation improved estimation in model 77, I

can not just change the characteristics of the data in estimation. Some voices have

pointed out that models such as 7 yield wrong estimates when one uses aggregated

data because there is a high correlation between xt=xt�1 and  t. Therefore, it

seems reasonable to try to estimate these models with panel data, when this is

possible. Panel data will show more dispersion and could improve estimation, but

is sometimes subject to measurement error. Furthermore, the objective function

changes since I then need as many moment equations as time periods in the data

so it is not clear what the �nal outcome would be. Although I have not tried to

simulate a panel here, I have tried to break the high correlation between xt=xt�1

and  t in model 7 by adding an i.i.d. shock to xt=xt�1. I tried with several variances

for the shock, but estimation did not improve signi�cantly or it worsened.

The poor small sample performance of GMM is a fact and very little can be
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done to avoid it. However, some further exploration of the results and the litera-

ture leads us to conclude that it may be possible to correct the GMM estimations

afterwards. The bootstrap method has already been applied in the GMM context

in a recent paper by Hall and Horowitz (96), but this method can sometimes be

very computationally intensive, especially with the autocorrelated data typically

present in the models I have explored here. Its success will still depend to some

extent on the size of the sample.

The preliminary graphical exploration of Figure 3 seem to suggest that, in the

cases in which the relationship between the true parameter and its GMM estimate

is smooth, it may be worthwhile to exploit the parametrics of the models to remove

the bias and improve the con�dence intervals in a cheap and reliable way. This is

the subject of further theoretical research that will be attempted in a sequel to this

paper.

29



APPENDIX 1

PEA algorithm

I describe here how to apply PEA to simulate the model in section 3. Given the

parameters of the model and a starting value of capital, I �nd
n
ct; wt; lt; lt; kt; rt

o

that satisfy equations (1) to (7) for all t.

� Step 1; substitute the conditional expectation in the right side of (6) and

the conditional expectation in (5) by 
exible functional forms of the state

variables of the model to obtain

u0(c1;t) = �  1(�; kt�1; �t) (10)

and

1 + rt = (1=�)
c
�

t

 2(�; kt�1; �t)
(11)

Here, I choose  1 and  2 as exponentiated polynomials that are insured to

take on only positive values; the parameters � and � are the parameters in

the polynomials. Fix � and �.

� Step 2. Obtain a long simulation fct(�; �); lt(�; �); wt(�; �); rt(�; �);

kt(�; �)
oT
t=0

; consistent with these parameterized expectations for large T 8.

This is done by, in each period, for given state variables, obtaining ct(�; �)

from the parameterized version of (6), lt(�; �) from (3), wt(�; �) from (4),
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rt(�; �) is obtained from (11); �nally, kt(�; �) is obtained from (1) and I can

move to the next period.

� Step 3. Perform a non-linear regression of u0(c1;t+1(�; �)) ((rt+1(�; �) + 1)

(the expression inside the conditional expectation in (6) on the functional form

 1(�; kt�1(�; �); �t): and of c1;t+1(�; �) (the expression inside the conditional

expectation in (5) on the functional form  2(�; kt�1(�; �); �t): Call the result

of these regressions G(�; �).

� Step 4. Iterate on � and � to �nd (�f ; �f) = G(�f ; �f):

The approximate solution is given by
n
cj;t(�f ; �f); lt(�f ; �f); wt(�f ; �f); rt(�f ; �f);

kt(�f ; �f)
oT
t=0

This is a very simple version of the method. I only need long run stochas-

tic steady state paths for the variables and I assume that the initial capital stock

is already in the stochastic steady state support. The PEA method can encom-

pass other situations, in particular it can be used when one must approximate the

transition path of the variables to the steady state very accurately. The reader

is referred to (94) and (94) for a formal presentation of the model, to (94) for a

discussion in accuracy of simulations with the PEA method, or (92), (96), and (93)

for applications.

31



Endnotes

1. Most of the time the value of the objective function depends on the units

being used. For instance, if I compare the estimation results from using a

particular set of instruments in one hand and their logarithms in the other,

the estimated values of the parameters and their asymptotic variances are very

similar but the percentage of rejects of the model is much lower when I use the

logarithmic instruments. At least for this particular model, that di�erence

disappears when I use an iterative method to evaluate the weighting matrix

instead of the simplest one described and adopted here.

2. Rogerson and Rupert (93) also use 115 observations. Kocherlakota (90) uses

90 and Tauchen (86) generates series of length 50 or 75.

3. In fact I have learned that the model is very sensitive to the units of the

instruments. When I use levels on the instruments I get over rejection. If

I use logarithms I sometimes get under rejection. The units e�ect can be

removed when I use an iterative method to compute de weighting matrix.

Then the overall result is over rejection.

4. All these numbers have been calculated with 10,000 simulated data points.

5. Note that (BT 0S�1wT
BT )

�1 gives us the estimated asymptotic variance of
p
T�T .

To �nd con�dence intervals for �T , I have to divide that number by T to get

the estimated asymptotic variance of �T . When T takes di�erent values,

such as in our exercise, the estimates of
p
T�T are of similar magnitude, but

this is not the case when I divide by T. This is why I have chosen to report
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p
T�T (115)

�1 in both cases.

6. With an exception for instrument set 5 and � = 10:0. In this case, a few

realizations give very bad estimations, and the means reported in the table

re
ect just that.

7. In fact, only the risk-free interest rate depends both on � and �, since it is a

function of consumption. The rest of the variables do not depend on rt and

therefore they not depend on �.

8. I tried the same strategy with models 5 and 6, but the estimation did not

improve and even worsened.
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Table 1: Steady State Distribution (T=10,000)

ct kt lt rt wt

Mean 0.9202 12.6354 0.3335 1.0100 2.3760

Std. Dev 0.0414 0.7964 0.0115 0.0015 .1068

Correlations

wt ,wt�1 0.994

lt ,lt�1 0.895

rt ,rt�1 0.908

wt ,lt 0.337

lt ,rt 0.866

rt ,wt -0.178

Table 2: Lists of instruments for the neoclassical growth model.

Instrument Set Variables

Lag 0 1, lt , wt, rt
Lag 1 1, lt , wt ,rt, lt�1 , wt�1, rt�1
Lag 2 1, lt , wt ,rt, lt�1 , wt�1, rt�1, lt�2 , wt�2, rt�2
Lag 3 1, lt , wt ,rt, lt�1 , wt�1, rt�1, lt�2 , wt�2, rt�2, lt�3 , wt�3, rt�3
Lag 4 1, lt , wt ,rt, lt�1 , wt�1, rt�1, lt�2 , wt�2, rt�2, lt�3 , wt�3, rt�3

lt�4 , wt�4, rt�4
Lag 5 1, lt , wt ,rt, lt�1 , wt�1, rt�1, lt�2 , wt�2, rt�2, lt�3 , wt�3, rt�3

lt�4 , wt�4, rt�4, lt�5 , wt�5, rt�5
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Table 3: GMM estimation results of the standard neoclassical growth

model

IV Small Sample Parameters Asymptotic St. Dev.

Set Statistics Estimates Estimates�� J-statistic

�T 
LT s�T s
L
T

Mean 0.990069 1.105563 0.000286 0.065376 4.490467

Lag 0 Std. Dev. (0.000460) (0.084809) (0.000161) (0.048911) (5.491713)p
MSE 0.135411

Rejects� (%) 34.80

Mean 0.990080 1.147016 0.000275 0.055486 8.081440

Lag 1 Std. Dev. (0.000464) (0.063156) (0.000168) (0.042841) (7.364672)p
MSE 0.160008

Rejects (%) 33.00

Mean 0.990085 1.174735 0.000265 0.047949 11.406011

Lag 2 Std. Dev. (0.000460) (0.051896) (0.000172) (0.037244) (8.923698)p
MSE 0.182279

Rejects (%) 34.0

Mean 0.990092 1.191062 0.000256 0.042948 14.318159

Lag 3 Std. Dev. (0.000461) (0.045439) (0.000175) (0.033666) (10.286553)p
MSE 0.196391

Rejects (%) 33.2

Mean 0.990098 1.203559 0.000249 0.039037 17.139470

Lag 4 Std. Dev. (0.000458) (0.040682) (0.000177) (0.031593) (11.909869)p
MSE 0.207585

Rejects (%) 32.8

Mean 0.990105 1.212147 0.000243 0.036189 19.681924

Lag 5 Std. Dev. (0.000462) (0.039145) (0.000173) (0.029025) (13.651788)p
MSE 0.215728

Rejects (%) 29.2

� I calculate the square root of the Mean Square Error of 
̂L, in the fourth column

of the table. I also calculate the percentage of rejects in the J-statistic test at the

10% level, in the last column of the table.
�� These are estimators of the diagonal elements of

q
(B0(Sw)�1B)

�1 =T .
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Table 4: Data Statistics for Model 1

� = 0 � = 0:9 � = 10:0

T=10,000 T=115(500) T=10,000 T=115(500) T=10,000 T=115(500)

�u 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047

�x 0.0414 0.0207 0.0416 0.0212 0.0626 0.0512

�x 0.9937 0.9644 0.9831 0.9098 0.4303 0.1587

�u -0.0002 -0.0036 -0.0002 -0.0036 -0.0002 -0.0036

�u;x -0.0002 0.0020 0.1026 0.2251 0.7522 0.9098

Table 5: Data Statistics for Models 2 and 3

� = 0 � = 0:9 � = 10:0

T=10,000 T=115(500) T=10,000 T=115(500) T=10,000 T=115(500)

�u 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047

�x 0.0414 0.0208 0.0417 0.0212 0.0629 0.0514

�x 0.9937 0.9835 0.9831 0.9560 0.4300 0.2431

�u -0.0002 -0.0036 -0.0002 -0.0036 -0.0002 -0.0036

�u;x -0.0001 0.0021 0.1027 0.1633 0.7515 0.8627
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Table 6: Models with explanatory variables that are correlated with the

residuals

IV Statistics Model 1 Model 2 Model 3

Set � = 0 � = 0:9 � = 10:0 � = 0:9 � = 0:9

Bias 0.001367 0.001029 -0.003005 0.000020 0.000217 0

Std. Dev. 0.019393 0.019259 0.026822 0.000349 0.003488

1 Root MSE 0.019441 0.019287 0.026990 0.000349 0.003494

% Rejects - - - - -

(115)�1=2��T 0.016487 0.016409 0.019769 0.000337 0.003371

(115)�1=2�� 0.010506 0.010506 0.010487 0.000338 0.003383

Bias 0.001496 0.001749 0.004333 0.000024 0.000219

Std. Dev. 0.019804 0.019825 0.017998 0.000353 0.003529

2 Root MSE 0.019861 0.019902 0.018512 0.000354 0.003536

% Rejects 11.4 11.4 7.8 11.4 11.6

(115)�1=2��T 0.016187 0.016106 0.017494 0.000331 0.003312

(115)�1=2�� 0.010503 0.010503 0.010483 0.000338 0.003382

Bias 0.001452 0.002592 0.011641 0.000024 0.000163

Std. Dev. 0.019838 0.019938 0.017440 0.000360 0.003601

3 Root MSE 0.019892 0.020106 0.020969 0.000361 0.003605

% Rejects 11.2 11.4 4.2 11.6 11.6

(115)�1=2��T 0.015881 0.015788 0.015558 0.000324 0.003243

(115)�1=2�� 0.010501 .010501 0.010478 0.000338 0.003381

Bias 0.001194 0.003153 0.016765 0.000023 0.000111

Std. Dev. 0.020491 0.020778 0.018955 0.000372 0.003723

4 Root MSE 0.020526 0.021016 0.025305 0.000373 0.003725

% Rejects 8.4 7.8 2.0 8.4 8.4

(115)�1=2��T 0.015597 0.015507 0.014827 0.000317 0.003170

(115)�1=2�� 0.010497 0.010475 0.010473 0.000338 0.003381

Bias 0.001500 0.000453 -0.006738 0.000019 0.000207

Std. Dev. 0.020391 0.020267 0.388575 0.000349 0.003492

5 Root MSE 0.020446 0.020272 0.388634 0.000350 0.003498

% Rejects - - - - -

(115)�1=2��T 0.017085 0.017518 1.540764 0.000338 0.003384 0

(115)�1=2�� 0.010573 0.010612 0.016024 0.000338 0.003383

Bias 0.001301 0.000767 0.008313 0.000022 0.000210

Std. Dev. 0.020601 0.020545 0.066613 0.000355 0.003552

6 Root MSE 0.020601 0.020560 0.067129 0.000356 0.003558

% Rejects 12.4 10.0 13.8 9.2 9.2

(115)�1=2��T 0.017062 0.017313 0.046860 0.000337 0.003369

(115)�1=2�� 0.010572 0.010592 0.013593 0.000338 0.003383

Bias 0.001285 0.001430 0.017142 0.000014 0.000098

Std. Dev. 0.021008 0.021260 0.029638 0.000365 0.003645

7 Root MSE 0.021048 0.021308 0.034238 0.000365 0.003646

% Rejects 8.6 10.0 14.2 8.8 8.8

(115)�1=2��T 0.016877 0.017155 0.018604 0.000331 0.003308

(115)�1=2�� 0.010567 0.010586 0.012228 0.000334 0.003353

Bias 0.000987 0.003862 0.021927 0.000015 -0.000025

Std. Dev. 0.021004 0.021609 0.020181 0.000383 0.003834

8 Root MSE 0.021028 0.021952 0.029801 0.000384 0.003834

% Rejects 8.6 9.0 5.2 8.4 8.4

(115)�1=2��T 0.015168 0.015093 0.011747 0.000306 0.003066

(115)�1=2�� 0.010491 0.010469 0.010465 0.000334 0.003353

(115)�1=2��T : Estimated asymptotic standard deviation of �̂, where
p
(T )(�̂ � �)

converges in distribution to a N(0, ��) variable.

(115)�1=2�� : Approximated true asymptotic standard deviation of �̂ divided by

square root of 115. (The value of �� has been calculated with 150 realizations of

the stochastic process, of length 10,000).
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Table 7: Explicit Autoregressive models
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Table 8: Model 7
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Figure 1: Objective Function: Instrument Set 7
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Figure 2: Objective Function: Instrument Set 5
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Figure 3: Relationship between the true parameter and the GMM esti-

mate
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