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Abstract

This paper uses a model of boundedly rational learning to account
for the observations of recurrent hyperin°ations in the last decade.
We study a standard monetary model where the fully rational expec-
tations assumption is replaced by a formal de¯nition of quasi-rational
learning. The model under learning is able to match remarkably well
some crucial stylized facts observed during the recurrent hyperin°a-
tions experienced by several countries in the 80's. We argue that,
despite being a small departure from rational expectations, quasi-
rational learning does not preclude falsi¯ability of the model, it does
not violate reasonable rationality requirements and it can be used for
policy evaluation.
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1 Introduction
The goal of this paper is to develop a model that accounts for the main
features of the hyperin°ations of the 80's and to study the policy recommen-
dations that arise from it. The model is standard, except for the assumption
of quasi-rational learning. Modern macroeconomics has been reluctant to use
boundedly rational expectations models to match empirical observations. It
is commonly believed that such models are not falsi¯able and expectations
are not consistent with the model. This view is stated clearly in the follow-
ing quotation from Sargent (1993): "... the literature on adaptive decision
processes seems to me to fall far short of providing a secure foundation for a
good theory of real-time transition dynamics. There are problems of arbitrari-
ness and the need for prompting, with a concomitant sensitivity of outcomes
to details of adaptive algorithms". A side contribution of the paper is to show
with an example that, contrary to Sargent's statement, if certain rational-
ity requirements are imposed, learning models can be useful to understand
real-time transition dynamics.

The long run relationship between money and prices is a well understood
phenomenon. The price level and the nominal quantity of money over real
output hold an almost proportional relationship so that the in°ation rate is
essentially equal to the growth rate of money supply minus the growth rate
of output. There is widespread consensus in the profession that successfully
stopping in°ation involves substantial reductions in money growth rates. On
the other hand, long periods of high money growth rates are associated with
large seignorage collection required to ¯nance government de¯cits. A simple
story about hyperin°ations is often told: when the government is unable to
either reduce its ¯scal de¯cit or ¯nance it through the capital market, high
seignorage is required and high in°ation rates are unavoidable. This is the
logic behind the IMF advice to countries experiencing high in°ation rates.
Cross country evidence very strongly supports this story. Hyperin°ations
have occurred in countries with high seignorage, and many countries that
successfully stopped in°ation did so by eliminating the ¯scal imbalance that
required high seignorage.

However, this simple story fails when we closely look at time series of
in°ation and seignorage for very high in°ation countries. Countries that un-
dergo very rapid price increases typically exhibit periods of relatively high but
stable in°ation rates, followed by a sudden explosion in the rate of in°ation;
this often happens without any important change in the level of seignorage.
We observe in°ation rates multiplying by 8 or 10 in a couple of months while
seignorage remains roughly the same or even decreases. This could challenge
the validity of the IMF advice to hyperin°ationary countries to decrease their
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seignorage.
In this paper we develop a model that accounts for this and other crucial

observations that occurred during the hyperin°ations of the 80's. These
episodes involve very high in°ation rates (for instance, in°ation in Argentina
in June 89 peaked at 200% a month) and all we know about the welfare
e®ects of in°ation suggest that they are very costly.

Sargent and Wallace (1987) explained these hyperin°ations as bubble
equilibria. Their model generates a standard La®er curve with two station-
ary rational expectations equilibria; hyperin°ations could occur as specu-
lative equilibria converging to the high-in°ation steady state. Their paper
explains how in°ation can grow even though seignorage is stable; but it fails
to explain other facts observed in the hyperin°ationary episodes. Our work
builds upon Sargent and Wallace's by introducing learning; we show that,
with this modi¯cation, the model matches observations much better. Our
model is consistent with the very high hyperin°ations, their recurrence, the
fact that exchange rate rules temporarily stop hyperin°ations, the cross coun-
try correlation of in°ation and seignorage, and the lack of serial correlation
of seignorage and in°ation in hyperin°ationary countries.

The last decade has witnessed a renewed interest in learning models in
macroeconomics. This literature focussed on limiting properties, studying
convergence of learning to rational expectations1. This literature has made
enormous progress, and convergence of learning models to rational expecta-
tions can now be studied in very general setups. Nevertheless, few attempts
have been made to explain observed economic facts with models of bound-
edly rational learning: among others, Arifovic, Bullard and Du®y (1997) and
Evans and Honkapohja (1993) have compared the overall behavior of learning
models with some general features of the data; Timmermann (1993,1996) and
Chung (1990) have attempted to match concrete facts in set ups very di®er-
ent from ours. However, with the partial exception of Evans and Honkapohja
(see our discussion following De¯nition 3), none of them formally addressed
the critique to boundedly rational models that is commonplace in today's
macro literature and that is clearly stated in the above quote from Sargent.
This critique is based on the nowadays standard view in macroeconomics
that using models of boundedly rational learning would entail problems sim-
ilar to those found in models of adaptive expectations of the pre-rational-
expectations era, namely: i) there are too many degrees of freedom available
to the economist so that the model is not falsi¯able, ii) agents' expectations
are inconsistent with the model, and iii) the model does not predict how
expectation formation will change if there is a change in policy.

1See Sargent (1993), Marimon (1997) and Evans and Honkapohja (1999, 2001) for
reviews.
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We address these criticisms by restricting the learning mechanisms to
produce good forecasts within the model. We only consider learning mech-
anisms that produce small departures from rationality within the model, in
a way that is precisely de¯ned in the paper. We show that the model has
empirical content and that expectations are endogenous to policy.2

Some papers have presented models that explain some of the facts we
consider. Eckstein and Leiderman (1992) and Bental and Eckstein (1996)
explain the very large in°ation rates in Israel with an ever increasing La®er
curve. Zarazaga (1993) develops a model of endogenous seignorage, where
spikes in in°ation can happen because of moral hazard in the demands for
revenue of several branches of government. These papers account for some
of (but not all) the facts we describe in the paper. Their stories could be
combined with the story of the current paper.

The paper is organized as follows. Section 2 presents the stylized facts and
provides supporting evidence. Section 3 presents the model and characterizes
rational expectations equilibria. Section 4 discusses the lower bounds in
rationality in a general setup. Section 5 discusses the behavior of the model
under the lower bounds on rationality. The paper ends with some concluding
remarks.

2 Evidence on Recurrent Hyperin°ations
A number of countries, including Argentina, Bolivia, Brasil and Per¶u experi-
enced during the eighties the highest average in°ation rates of their history.
While the duration and severity of the hyperin°ations and the policy experi-
ments di®er substantially, there are several stylized facts that are common to
those experiences (and, to some extent, to those of some European countries
after the ¯rst world war, and those of East European countries after the end
of the cold war). These stylized facts are

1. Recurrence of hyperin°ationary episodes. Time series show relatively
long periods of moderate and steady in°ation, and a few short periods
of extremely high in°ation rates.

2. Exchange rate rules (ERR) stop hyperin°ations. In most circumstances,
however, these plans only lower in°ation temporarily, and new hyper-
in°ations eventually occur.

2Recent literature imposing consistency requirements in learning models are Evans and
Honkapohja (1993), Kurz (1994), Fudenberg and Levine (1995) and Hommes and Sorger
(1998).
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3. For a given country where hyperin°ations occur, the contemporaneous
correlation across time between seignorage and in°ation is low.

4. Average in°ation and seignorage are strongly correlated across coun-
tries. Hyperin°ations only occur in countries where seignorage is high
on average.

Points 2 and 4 can be combined to state the following observation on mon-
etary policy: stabilization plans based on ERR -"heterodox" policy - that do
not permanently reduce average seignorage, may be successful in substan-
tially reducing the in°ation rate only in the short run. Some stabilization
plans not only relied on the ¯xing of the exchange rate but also permanently
reduced the de¯cit -"orthodox" policy- and the need for seignorage. It is now
relatively well accepted that this combination of both orthodox and hetero-
dox ingredients has been successful at stopping hyperin°ations permanently.
To our knowledge, ours is the ¯rst economic model that satisfactorily explains
the above facts and is consistent with this policy recommendation.

Our summary of stylized facts should be uncontroversial3, but ¯rst-hand
evidence to support them is provided in Figure 1, which presents data on
the recent in°ationary experiences of Argentina, Bolivia, Brasil and Per¶u.
In°ation rates were computed from IFS consumer price indices. Periods when
an explicit ¯xed ERR was in place are indicated by shaded areas. The end of
the shading indicates the date in which the ERR was explicitly abandoned.
Figures 1 illustrates quite clearly stylized facts 1 and 2.

Figure 2 depicts the quarterly in°ation rate for Argentina together with
the seignorage as a share of GDP for the period 1982 to 19904. Note that
while seignorage is between two and eight percent of GDP, in°ation ranges
from almost zero to 300% a quarter. The Figure shows, for instance, that
the level of seignorage leading to the spectacular hyperin°ation at the end
of 1989 (more than 250% a quarter) is very similar to the one of the second
quarter of 1984, with subsequent in°ation rates that were around 60%. Also,
note that in the second half of 1984 seignorage and in°ation were going in
opposite directions. This documents fact 3.5

3See Bruno et al. (1988) and (1991).
4Given the banking regulation during the period, there is some debate regarding the

right monetary aggregate to compute the resources raised by the government. We report
seignorage computed using the monetary base, but a similar picture arises if we use M1.
Figure 2 reports, for both series, four-period averages (using current and the three previous
quarters) to eliminate the strong seasonal movements that obscure the picture.

5A closer look at Figure 2 points to some interesting facts that merit a more careful
empirical investigation. Note, in particular, that seignorage appears to lead the hyperin-
°ationary bursts. Also, there is some correlation between in°ation and seignorage in the
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3 The Model

3.1 Economic Fundamentals
The assumptions in this subsection are standard. The model consists of
a portfolio equation for the demand of real money balances, a government
budget constraint relating money creation and changes in reserves, and a rule
for establishing ¯xed exchange rates.6

Money demand

The demand for real balances is given by

Mdt
Pt

= Á¡ °ÁP
e
t+1
Pt

if 1 ¡ ° P
e
t+1
Pt
> 0

= 0 otherwise
(1)

where °,Á > 0 are parameters, Pt;Mdt are price level and nominal demand
of money; P et+1 is the price level that agents expect for next period.

Money supply

We assume that money creation is driven by the need to ¯nance seignor-
age. On the other hand, government's concern about current levels of in-
°ation prompts the adoption of ERR when in°ation gets out of hand or to
restore equilibrium.

In periods that the ERR is not in place, the government budget constraint
is given by

Mt =Mt¡1 + dtPt (2)

Seignorage is given by an exogenous i.i.d. stochastic process fdtg1t=0 with
mean E(dt) and variance ¾2d, and it is the only source of uncertainty in
the model7. Equations (1) and (2)plus a hypothesis of expectations forma-
tion, determine the equilibrium values for fMt; Ptg1t=0 inperiods of °oating
exchange rates.

Exchange Rate Rules

sub samples periods when in°ation was not too high. Both of these features are consistent
with our model but they are not studied carefully in this version of the paper.

6Appendix 1 shows that the following equations can be rationalized as the equilibrium
conditions of an OLG monetary model of a small open economy.

7The i.i.d. assumption is made for simplicity. For example, if dt were a Markov process,
P e

t+1 would have to depend on dt for the learning scheme to satisfy the lower bounds on
rationality, and agents would have to learn about at least two parameters. It would be
interesting to generalize the model to this case, specially since seignorage is, indeed, serially
correlated in the data. We conjecture that the main results of the paper would go through
with serially correlated seignorage, but some analytical results would be harder to prove.
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In periods of ERR, the government pegs the nominal exchange rate by
buying or selling foreign reserves at an exchange rate et satisfying

P ft
P ft¡1

et
et¡1

= ¹̄;

where ¹̄ is the targeted in°ation rate, and P ft is the price level abroad.
Assuming full mobility of goods, purchasing power parity implies

Pt
Pt¡1

= ¹̄ (3)

and the targeted in°ation rate is achieved. In the case that targeted in°ation
¯ is the same as foreign in°ation, the government announces a ¯xed exchange
rate. Otherwise, a crawling peg is followed.

Under ERR, equilibrium price level is determined by (3). Given this
price level and an expectations hypothesis, (1) determines money demand.
In general, this money demand will not match money supply as determined
by (2). As it is standard in ¯xed exchange rate models, international reserves
(denoted below Rt) adjust so the right level of money balances is achieved.
Thus, instead of (2) the following equation holds in periods of ERR:

Mt =Mt¡1 + dt Pt + et (Rt ¡Rt¡1): (4)

Finally, we impose the rule that government acts to satisfy

Pt
Pt¡1

· ¯U ; (5)

where ¯U is the maximum in°ation tolerated. ERR is only imposed in periods
when in°ation would otherwise violate this bound or in periods where no
positive price level clears the market if Rt = Rt¡1:8

Our model makes the implicit assumption that ERR can always be en-
forced. In fact, governments may run out of foreign reserves, and they may be
unable to enforce ERR for a su±ciently long period. Hence, we are making
the implicit assumption that the non-negativity constraint on foreign reserves
is never binding. Since we will choose the target in°ation rate ¯ to be the
lower stationary rational expectations equilibrium steady state in°ation, the
loss of reserves is likely to be small. Modelling reserve accumulation formally
is unlikely to change our main results, but it opens up a host of interesting

8It may be that no positive price level clears the market, for example, if perceived
in°ation is too high. See Section 5.2 for details.
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issues. For example, the government may run out of reserves during a hy-
perin°ation, so that \orthodox" measures can not be avoided, a feature that
is consistent with our model. Alternatively, by increasing the length of the
ERR after a hyperin°ation the monetary authority could accumulate reserves
since the real value of the money stock is increased after the stabilization9.

We have modelled policy in this way because it mimics the broad fetures
of policies followed by South-American countries during the 80's. The issue
of why these countries followed this kind of policy is not addressed formally in
this paper, but we can advance three possible justi¯cations for using this rule
in our model. First, the fact that ERR has been established only after some
periods of high in°ation is justi¯ed because then the value of foreign reserves
is high, and a large part of the domestic money can be backed with existing
reserves10. Second, in principle, any reduction in the government de¯cit of
et(Rt¡Rt¡1) units would also ¯x the in°ation to ¯ in periods of ERR. In fact,
the reduction in seignorage that is needed to achieve an in°ation equal to ¯
is often quite moderate, which raises the issue of why governments have used
ERR instead of lowering the ¯scal de¯cit (and seignorage) su±ciently. One
possible answer is that the exact value of et(Rt¡Rt¡1); can only be inferred
from knowledge of the true model and all the parameter values, including
those that determine the (boundedly rational) expectations P et+1; and all the
shocks. By contrast, an ERR can be implemented only with knowledge of
the foreign price level and the policy parameters ( ¹̄; ¯U). A third advantage
of establishing ERR for real governments would be the existence of institu-
tions that can implement this measure quickly, while lowering government
expenditures or increasing taxes often takes a long time.

An important policy decision is how long to maintain the ERR. Obviously,
the longer the ERR is maintained, the closer expected in°ation will be to ¯:
In our simulations, we hold the ERR till expected in°ation is close to ¯ in a
sense to be made precise below.

In summary, the government in our model sets money supply to ¯nance
exogenous seignorage; if in°ation is too high, the government establishes
ERR. The parameters determining government policy are ¯, ¯U and the
distribution of dt:

9For instance, Central Bank reserves grew, in Argentina, from 1991 (year in which the
Convertibility plan was launched) to 1994 from 500 millon dolars to more than 12 billion.

10This interpretation would suggest that the burst in in°ation at the begining of 1991
in Argentina was crucial for the success of the Convertibility Plan launched in April of
the same year, because it substantially reduced the value of the money stock to a point
where, at a one dollar=one peso exchange rate, the government could back the whole
money stock.
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3.2 The Model under Rational Expectations.
If we assume that agents form expectations rationally, the model is very
similar to that of Sargent and Wallace (1987) (SW from now on). As long
as seignorage is not too high, the model has two stationary equilibria with
constant expected in°ation levels (called low- and high-in°ation equilibria),
and a continuum of bubble equilibria that converge to the high-in°ation
equilibrium11.

The main motivation behind the work of SW was to explain 'fact 3' in
section 2 as rational bubble equilibria12. Their original model does not allow
for recurrence of hyperin°ations (fact 1), but the work by Funke et al. (1994)
shows that recurrence can be explained by introducing a sunspot that turns
rational bubbles on and o®. Even if one accepts rational sunspots as an
explanation, fact 1 is not matched quantitatively: for reasonable parameter
values, the magnitude of the hyperin°ations that can be generated with this
model is very small13. Fact 4 is contradicted: the long run in°ation rate in
any rational bubble equilibrium is lower when seignorage is higher, so the
model under RE predicts that hyperin°ations are less severe in countries
with high seignorage.

The papers of Obstfeld and Rogo® (1983) and Nicolini (1996) introduce
ERR that goes into e®ect if in°ation goes beyond a certain level and, there-
fore, these papers can be used to address fact 2. Their results show that just
the threat of convertibility eliminates bubble equilibria altogether and that
the ERR, under rational expectations equilibria, never takes place. Thus,
once ERR is introduced, the rational expectations equilibrium is inconsis-
tent with the existence of hyperin°ations, since convertibility was certainly
a credible threat and hyperin°ations were indeed observed in the 80's.

Marcet and Sargent (1989b) studied stability of rational expectations
equilibria in the SW model under least squares learning. They found that
the low-in°ation equilibrium is locally stable and the high-in°ation equilib-
rium is always unstable. Taken literally, these results would say that bubble
equilibria can not be learned by agents. Therefore, none of the above facts
is appropriately matched if we restrict our attention to rational expectations
equilibria that are stable under learning.14

11We reproduce these results in appendix 2. As our model is, contrary to SW, stochastic,
some of the results are slightly di®erent.

12There has been some work testing the existence of rational bubbles in the German
hyperin°ation of the twenties. A summary of the literature and a test of bubble versus
stationary equilibria in the SW model can be found in Imrohoroglu (1993).

13This is documented in our discussion of Figure 4 in subsection 5.5 below.
14Marcet and Sargent (1989b) is a special case of the present paper when uncertainty is

eliminated, ¯U is arbitrarily high, and agents forecast Pi by regressing it on Pi¡1. These
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In the next section we propose several criteria to assess models with quasi-
rational learning and to address the criticisms of learning models commonly
found in the literature.

4 Learning and Lower Bounds on Rationality
Before the rational expectations revolution, economic agents' expectations
were speci¯ed in macroeconomics according to ad-hoc assumptions; one pop-
ular alternative was 'adaptive expectations'. This practice was criticized
because: i) it introduced too many degrees of freedom in the speci¯cation of
expectations so it made the models less falsi¯able and, ii) agents' expecta-
tions were inconsistent with the model; then rational agents would be likely
to abandon their ad-hoc expectations after a while, and the predictions of
the model would be invalid. Related to this point, the model does not say if
expectations will change when policy changes. The ¯rst criticism is hyper-
bolized by the sentence: 'any economic model can match any observation by
choosing expectations appropriately'; the second criticism is typi¯ed by the
sentence 'economic agents do not make systematic mistakes'.

The rational expectations hypothesis solved these two issues: under RE,
expectations are determined by the model and, after some time, agents will
just realize that their beliefs are right.

In this paper we use a boundedly rational learning model to explain styl-
ized facts, so a natural question is: are we slipping into a use of learning
models that is as objectionable as, say, adaptive expectations?

The term boundedly rational learning (which, in this paper, we use as
synonymous with the term learning) is used to denote learning mechanisms
that place upper bounds on rationality. For example, agents are assumed not
to know the exact economic model or to have bounded memory. But this
admits too many models of learning. Indeed, once we rule out RE, anything
can be a boundedly rational learning scheme and we could be falling back
into old mistakes and the 'wilderness of irrationality'15.

Our approach is to allow for only small deviations from rationality, both
along the transition and asymptotically. Given an economic model we only
admit learning mechanisms that satisfy certain lower bounds on rationality

authors noted that if in°ation goes beyond the high steady state it may enter an unstable
region where in°ation tends to grow without bound. This feature of the model with
learning constitutes the core of the dynamics in the current paper.

15It might seem that Bayesian learning is a way out of this dilemma, but the literature
has recognized many problems with this approach. See, for example, Bray and Kreps
(1987), Easley and Rustichini (1995) and Marimon (1997) for descriptions of paradoxes
and shortcomings of Bayesian learning about the model.
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within this model. In section 5 we will show how this small departure from
rationality generates equilibria that are quite di®erent from RE, precisely in
the direction of improving the match of empirical observations.16

4.1 A general framework and quasi-rationality
Let us now be precise about the lower bounds that we place on rationality.
Assume that an economic model satis¯es

xt = g(xt¡1; xet+1; »t; ´) (6)

where g is a function determined by market equilibrium and agents' behav-
ior, xt contains all the variables in the economy, xet+1 is agents' expectation
of the future value of x; »t is an exogenous shock, and ´ is a vector of pa-
rameters, including the parameters of government policy and the parameters
that govern the distribution of »t. For example, in our model, xt is in°ation
and real balances, »t is seignorage, the function g is given by the demand for
money (1), the government budget constraint (2), and the ERR rule, while
the vector of parameters ´ includes °; Á; ¯, ¯U and the parameters of the
distribution of seignorage:

Assume that agents' expectations are given by

xet+1 = z(¯t(¹); xt) (7)

where ¯t(¹) is a vector of statistics inferred from past data and z is the
forecast function. The statistics ¯ are generated by a learning mechanism f
and learning parameters ¹ according to

¯t(¹) = f (¯t¡1(¹); xt; ¹): (8)

The learning mechanism f dictates how new information on xt is incorporated
into the statistics ¯. The learning parameters ¹ govern, for example, the
weight that is given to recent information. For now, (z; f; ¹) are unrelated
to the true model (g; ´); but later in this section we will de¯ne bounds on
rationality that amount to imposing restrictions on the space of (z; f; ¹) given
a model (g; ´).

In the context of our model in section 3, the function z will be de¯ned as

P et+1 = ¯tPt (9)

where ¯t is expected in°ation, estimated somehow from past data.
16Easley and Rustichini (1995) and Marimon (1997) also argue that learning can be

used for more than a stability criterion.

11



Equations (6), (7) and (8) determine the equilibrium sequence for given
learning parameters ¹. Obviously, the process for xt depends on the param-
eters ¹. This dependence will be left implicit in most of the paper, and we
will write x¹t only if we want to make the dependence explicit.

Let ¼²;T be the probability that the perceived errors in a sample of T
periods will be within ² > 0 of the conditional expectation error. Formally:

¼²;T ´ P
Ã

1
T

TX

t=1

£
xt+1 ¡ xet+1

¤2 < 1
T

TX

t=1

[xt+1 ¡ E¹t (xt+1)]
2 + ²

!
(10)

where E¹t is the true conditional expectation under the learning model.
The ¯rst lower bound on rationality we propose is:

De¯nition 1 Asymptotic Rationality (AR): the expectations given by
(z; f; ¹) satisfy AR in the model (g; ´) if, for all ² > 0;

¼²;T ! 1 as T ! 1 :

This requires the perceived forecast to be asymptotically at least as good
as the forecast from the conditional expectation in terms of sample mean
square prediction error. In this case, agents would not have any incentive to
change their learning scheme after they have been using it for a su±ciently
long time.

AR can be viewed as a minimal requirement in the sense that it only rules
out behavior that is inconsistent forever. It rules out, for example, learning
mechanisms where a relevant state variable is excluded from the forecasting
rule z (this feature would exclude adaptive expectations, for example, if dt
were serially correlated). It is satis¯ed by least squares learning mechanisms
in models where this mechanism converges to RE and certain continuity
assumptions are satis¯ed.17 Similar concepts can be found in the literature18.

However, AR admits learning mechanisms that generate very bad fore-
casts along the transition for very long periods. For example, OLS in a model
with recurrent hyperin°ations would generate very bad forecasts every time
a hyperin°ation starts, and their forecast would be worse for each new hy-
perin°ation, because least squares learning gives less and less importance to

17Perhaps surprisingly, AR excludes many 'rational equilibria' in the terminology of
Kurz (1994), which allows for agents to make systematic mistakes forever, as long as these
mistakes are not contemplated in the prior distribution.

18This requirement was implicitely imposed in the literature on stability of RE under
learning, where least squares learning was optimal in the limit. Also, AR is related to the
(² ¡ ±) consistency of Fudenberg and Levine (1995), where agents in a game are required
to only accept small deviations from best response asymptotically.
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recent events as time goes by, so it would take longer and longer for agents
to realize that a hyperin°ation is starting.

To use only learning mechanisms that generate good forecasts along the
transition we impose the next two lower bounds.

De¯nition 2 Epsilon-Delta Rationality (EDR): the expectations given
by (z; f; ¹) satisfy EDR for (²; ±; T ) in the model (g; ´) if:

¼²;T ¸ 1 ¡ ±

If EDR is satis¯ed for small ²; ± > 0, agents are unlikely to switch to
another learning scheme after period T , even if they were told "the whole
truth"19.

It is only interesting to study EDR for moderately high values of T : the
sample mean of the prediction error has no chance to settle down for very low
T; and EDR is unlikely to be satis¯ed for low (²; ±) because of large sampling
error. Also, for learning mechanisms that are asymptotically rational, EDR
is satis¯ed for T large enough even if agents made large mistakes along the
transition. The precise empirical application that the researcher has in mind
should suggest an interesting value for T . For example, in our application
below, we choose T = 10 years, which is the length of the hyperin°ationary
period in many of the countries studied.

AR is unambiguously satis¯ed (there is a yes or no answer), but EDR can
only be satis¯ed in a quantitative way, for certain ² and ±.

The next bound on rationality requires agents to use learning parame-
ters ¹ that are nearly optimal within the learning mechanism f: Denote by
ēt(¹;¹0) the forecast produced by the learning parameter ¹0 when all agents
are using the parameter ¹: Formally,

ē
t(¹; ¹0) = f ( ēt¡1(¹; ¹0); x¹t ; ¹0);

De¯nition 3 Internal Consistency (IC): Given (g; ´); the expectations
given by (z; f; ¹) satisfy IC for (T ,²) if

E

Ã
1
T

TX

t=1

¡
x¹t+1 ¡ z(¯t(¹); x¹t )

¢2
!

·

· min
¹0
E

Ã
1
T

TX

t=1

³
x¹t+1 ¡ z( ēt(¹;¹0); x¹t )

´2
!

+ ²: (11)

19Bray and Savin (1986) study whether the learning model rejects the hypothesis of
serially uncorrelated prediction errors by assuming that agents run a Durbin and Watson
test. That exercise carries the °avor of EDR.
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Thus, if IC is satis¯ed, agents are doing almost as well as possible within
the learning mechanism speci¯ed after T periods, so that they are likely to
stay with ¹.20

IC is, in general, more restrictive than AR. In particular, any ¹ satisfying
AR also veri¯es internal consistency for T large enough. As in the case of
EDR, it only makes sense to study IC in the context of 'moderately high' T .

The ¯rst two bounds compare the performance of the learning mechanism
used by agents relative to an external agent who knows the best prediction
that can be computed from knowledge of (f; ¹; z; g; ´). The bound IC, in-
stead, compares the learning mechanism with forecasts that use the same
family of mechanisms f but are allowed to pick alternative parameter values
¹: This last bound contains some of the intuition of rational expectations,
in the sense of looking for an approximate ¯xed point in which agents' ex-
pectations minimize the errors within the mechanism f . Notice that this
restriction will, in general, imply that agents under di®erent policy environ-
ments use di®erent learning parameters ¹; so that the learning parameter
that satis¯es IC is endogenous to the model and to government policy. For
example, in our model, agents in high seignorage countries (say, Argentina in
the 80's) will use a di®erent learning parameter from agents in low seignor-
age countries (say, Switzerland). These De¯nitions can be generalized to
more complicated models or to objective functions other than the average
prediction error.

Imposing these lower bounds on rationality is our way of relaxing ratio-
nal expectations while maintaining the requirement that agents do not make
mistakes forever. Certainly, agents have a certain amount of forward-looking
capabilities under De¯nitions 2 and 3 but far less than under rational expec-
tations.

Rational expectations can be interpreted as imposing extreme versions of
the second and third bounds. Obviously, RE satis¯es AR. It would appear
that requiring EDR for all ²; ± > 0 and all T is the same as imposing rational
expectations, but a careful proof should be worked out. Also, if the REE is
recursive, if the appropriate state variables are included in z; if z is a dense
class of functions (for example, polynomials), then imposing IC for any ²; T
is them same as rational expectations.

5 Learning Equilibrium
In this section, we propose a learning mechanism f that combines least
squares learning with tracking, and we show that it satis¯es the three lower

20Evans and Honkapohja (1993) developped a very similar criterion in a di®erent context.
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bounds on rationality de¯ned in the previous section.

5.1 The Learning Mechanism
In the model of section 3 with expectations given by (9), we assume that the
learning mechanism is given by

¯t = ¯t¡1 +
1
®t

µ
Pt¡1
Pt¡2

¡ ¯t¡1
¶

(12)

for given ¯0: That is, perceived in°ation ¯t is updated by a term that depends
on the last prediction error21 weighted by the gain sequence 1=®t: This is a
simple version of stochastic approximation algorithm. Equation (12) together
with the evolution of the gains 1=®t determines the learning mechanism f in
equation (8).

One common assumption for the gain sequence is

®t = ®t¡1 + 1 (13)

for ®1 = 1. In this case, ®t = t; and simple algebra shows that (with ¯0 = 0)

¯t+1 =
1
t

tX

i=1

Pi
Pi¡1

so that, under (13), perceived in°ation is just the sample mean of past in°a-
tions or, equivalently, it is the OLS estimator of the mean of in°ation.

Another common assumption for the gain sequence is ®t = ~® > 1. These
have been termed 'tracking' or 'constant gain' algorithms.22 In this case,
perceived in°ation satis¯es (with ¯0 = 0)

¯t+1 =
1
~®

tX

i=0

µ
1 ¡ 1

~®

¶i Pt¡i
Pt¡i¡1

so that past information is now a weighted average of past in°ations, where
the past is discounted at a geometric rate.23

21As usual in models of learning, we make the convenient assumption that the last
observation used to formulate expectations is dated at t ¡ 1. Including today's in°ation
in ¯t would make it even easier for the learning scheme to satisfy the lower bounds and to
match the stylized facts, and it would not change the dynamics of the model.

22Evans and Honkapohja (1993), Sargent (1993) and Chung (1990) also discuss the use
of tracking algorithms.

23In this simple model 'tracking' is equivalent to adaptive expectations with a delay.
In a more general model tracking is di®erent from adaptive expectations and it generates
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Notice that least squares gives equal weight to all past observations, while
tracking gives more importance to recent events. Tracking produces better
forecasts when there is a sudden change in the environment, because it adapts
more quickly while OLS is known to be a consistent estimator of the mean
in stationary setups.

Both alternatives are likely to fail the lower bounds on rationality of
section 4 in a model that replicates fact 1, where periods of stability are
followed by hyperin°ations. Tracking performs poorly in periods of stability
because perceived in°ation is a®ected by small shocks even though, in truth,
the shocks are i.i.d. and they should not a®ect today's expected in°ation:
formally, tracking does not converge to RE and it does not even satisfy AR,
while OLS has a chance of converging and satisfying AR.

On the other hand, least squares does not generate 'good' forecasts along
a hyperin°ation, because it will be extremely slow in adapting to the rapidly
changing in°ation level. During hyperin°ations 'tracking' performs better.
Least squares does not satisfy EDR or IC and its performance is likely to
worsen as there are more successive hyperin°ations.

We will specify a learning mechanism that mixes both alternatives: it
will use OLS in stable periods and it will switch to 'tracking' when some
instability is detected. This amounts to assuming that agents use an endoge-
nous gain sequence such that, as long as agents don't make large prediction
errors, ®t follows a least squares rule, but in periods where a large prediction
error is detected, ®t becomes a ¯xed positive value ¹® ¸ 1 as in 'tracking'.24

Formally, the gain sequence follows

®t = ®t¡1 + 1 if
¯̄
¯̄
Pt¡1
Pt¡2

¡¯t¡1
¯t¡1

¯̄
¯̄ < º

= ¹® otherwise
(14)

The learning mechanism is the same whether or not ERR is enforced in a
given period. The conventional wisdom that the importance of an ERR is the
e®ect it has on expectations is consistent with the model, since the exchange
rate rule has an impact on expectations by its e®ect on the current price level
and by setting the gain factor to its base value ¹®.

In summary, the gain sequence is assumed to be updated according to
OLS in periods of stability, but it uses constant gain (or tracking) in periods

better forecasts. For example, if seignorage is autoregressive of order 1, expected in°ation
would have to depend on current seignorage in order to satisfy any of the lower bounds
on rationality. In that case, tracking would be fundamentally di®erent from adaptive
expectations.

24Evans and Ramey (1998) also analyze the properties of a learning mechanism that
responds endogenously to the performance of the predictions within the model and within
the realization.
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of instability. The learning mechanism f is fully described by equations (12)
and (14), and the learning parameters ¹ are given by (º,¹®):

5.2 Learning and Stylized Facts

The variables we need to solve for are
n
Pt
Pt¡1
; ¯t; ®t

o
: Simple algebra shows

that equilibrium in°ation satis¯es

Pt
Pt¡1

= H(¯t; ¯t¡1; dt) (15)

where25

H(¯t; ¯t¡1; dt) = 1¡°¯t¡1
1¡°¯t¡dt=Á if 0 < 1¡°¯t¡1

1¡°¯t¡dt=Á < ¯
U and 1 ¡ °¯t¡1 > 0

= ¯ otherwise,
(16)

Equations (12), (14) and (15) de¯ne a system of stochastic, second-order
di®erence equations. Characterizing the solution analytically is unfeasible
since the system is highly non-linear.

We now provide some intuition on the behavior of in°ation. Let h(¯; d) ´
H(¯; ¯; d): Notice that if ¯t ' ¯t¡1; then Pt=Pt¡1 ' h(¯t; dt); so that letting
S(¯) ´ E(h(¯; dt)), we have that S(¯t) ' Et(Pt+1

Pt
). Then, the graph of h in

Figure 3 provides an approximation of the actual in°ation rate as a function of
perceived in°ation and it can be used to describe the approximate dynamics
of the model (see appendix 2 for the properties of S = E(h(¯; dt)) ).

The ¯rst graph corresponds to a realization for low average seignorage
E(dt). The low rational expectations equilibrium ¯1RE is locally stable under
least squares learning (see appendix 2). The horizontal axis can be split into
the intervals S, U and ERR.

If ¯t 2 S; actual in°ation is on average closer to ¯1RE than perceived
in°ation and the learning mechanism pushes perceived in°ation towards ¯1RE:
Roughly speaking, S is the stability set of perceived in°ation. On the other
hand, if perceived in°ation is in U; actual in°ation is on average higher than
¯t; perceived in°ation tends to increase and a hyperin°ation is likely to occur.

25Notice that an ERR will prevail at t if one of the following (mutually exclussive) cases
occur:

-Case i): 1 ¡ °¯t¡1 < 0; which implies Mt¡1 = 0; so the budget constraint of the
government is incompatible with the demand for real balances unless reserves adjust.

-Case ii): 1 ¡°¯t ¡ dt=Á < 0 and 1 ¡ °¯t¡1 > 0 so only a negative price level clears the
market, and

-Case iii): none of the above and 1¡°¯t¡1
1¡°¯t¡dt=Á > ¯U , such that the market generates a

level of in°ation unacceptable to the government if reserves do not adjust.
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Then, when the set ERR is reached, a ¯xed exchange rule is established and
in°ation is sent back to S. The economy may end up in the unstable set
U due to a number of reasons: a few high shocks to seignorage when 1/®t
is not yet close to zero, initially high perceived in°ation, the second-order
dynamics adding momentum to increasing in°ation, etc.

It is clear that the model can only generate recurrent hyperin°ations if
there is uncertainty. Otherwise, once the economy is in the stable set, there
is no force to take it out of it. Another di®erence with the deterministic case
is that the stable region S shrinks with higher ¾2d (see part 4 of proposition
3 in appendix 2). Hence, for a high variance of seignorage, the probability
of hyperin°ations is high for two reasons: i) a shock large enough to send ¯t
to the unstable region U is more likely to occur and, ii) the stable region S
shrinks.26

If a shock to in°ation occurs agents will switch to tracking and set
1=®t = 1=®; perceived in°ation will then be more heavily in°uenced by ac-
tual in°ation and it is more likely to end up in U than under pure OLS.
The presence of hyperin°ations prompts agents to pay more attention to re-
cent observations by switching to tracking, this in turn makes hyperin°ations
more likely to occur and predictions with tracking better, thus reinforcing
the switch to tracking in periods of instability. Only if 1=®0 is very small
relative to the variance of in°ation and if initial in°ation starts out in S (and
º is large enough), hyperin°ations are impossible.

This intuition suggests that the model is consistent with stylized fact 1,
since a number of hyperin°ations may occur in the economy before it settles
down. Also, it is clear that an ERR will end each hyperin°ation temporarily,
so that fact 2 is found in this model. Also, once ¯t is in the set U, in°ation
is likely to grow even if seignorage does not, which is consistent with fact 3.

To analyze fact 4, consider the second graph of Figure 3, which corre-
sponds to a high average level of seignorage. Now, the unstable set U is
much larger. Furthermore, U is \dangerously" close to the rational expecta-
tions equilibrium ¯1RE where the economy tends to live, and it is likely for the
model to end up inU and a hyperin°ation to occur even if in°ation has been
stable for a while. Thus, a country with a high average seignorage tends to
have hyperin°ationary episodes more often, and fact 4 is consistent with the
model.

26That a high ¾2
d increases the probability of a hyperin°ation is roughly consistent with

the data, but we will not study this property of the model any further in this paper.
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5.3 Asymptotic Rationality
We show that asymptotic rationality obtains by ¯rst proving convergence to
RE.

Proposition 1 In addition to Asumptions 1-2 of Appendix 2, assume that
average seignorage and its variance are low enough for two stationary REE
to exist, that ¯ 2 S (targeted in°ation belongs to the stability set) and that ®
and º are large enough27. Then

¯t ! ¯1RE a.s.,

and Asymptotic Rationality obtains.

Proof
We will show the theorem holds for

® >
1 ¡ °¯
K¡=Á

and º >

¯̄
¯̄
¯̄

¯U

min
³
1; K

¡=Á
1¡K¡=Á ; ¯

´ ¡ 1

¯̄
¯̄
¯̄ : (17)

In order to show that the learning mechanism stays in the OLS form in all
periods t > ®, we ¯rst show that in°ation is bounded below. For each t and
each realization, only three cases are possible: Case i): an ERR is activated
at t; ii): an ERR is not activated at t and 1 ¡ °¯t¡1 ¡ dt¡1=Á < 0; and iii):
an ERR is not activated at t and 1 ¡ °¯t¡1 ¡ dt¡1=Á > 0:

Notice that in cases ii) and iii) the ¯rst branch of (16) applies and we have
¯t¡1 < °¡1. Note also that since ¯t is a weighted average of past in°ations
and ¯U is an upper bound of in°ation ¯t < ¯U .

In case i), in°ation is equal to ¯: In case ii)

Pt
Pt¡1

=
1 ¡ °¯t¡1

1 ¡ °¯t¡1 ¡ °
®t

³
Pt¡1
Pt¡2

¡ ¯t¡1

´
¡ dt=Á

=
1

1 ¡
°
®t

(¯¡¯t¡1)+dt=Á
1¡°¯t¡1

(18)

27The assumption on ® can be interpreted as saying that convergence occurs if the
importance given to recent news is never too high. This assumption is needed in order
to obtain a lower bound of in°ation in the ¯rst part of the proof. A lower bound on
in°ation can also be obtained for unrestricted ® by changing the model in reasonable
ways. For example, assuming that the government has the objective of avoiding de°ation
and it achieves this by activating an ERR and insure that Pt

Pt¡1
¸ 1 at the same time

that reserves increase. A lower bound in º can be interpreted as saying that agents do
not easily switch to tracking; a lower bound is necessary because, if º is too small, even
if ¯t is very close to ¯1

RE , it will eventually happen that
¯̄
¯ Pt¡1
Pt¡2¯t¡1

¡ 1
¯̄
¯ > º; then ®t = ®,

perceived in°ation will have positive variance, and convergence will never occur.
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where the ¯rst equality follows from (16) and (12), and the second equality
follows from the fact that an ERR was established at t¡ 1 so that Pt¡1Pt¡2

= ¯.
Now, using ¯t¡1 < °¡1; ®t ¸ ®, dt ¸ K¡ and (17) we have

°
®t

(¯ ¡ ¯t¡1) + dt=Á >
°
®
(¯ ¡ °¡1) +K¡=Á > 0

which, together with (18), implies that Pt
Pt¡1
> 1 in case ii).

In case iii), the condition on ¯t¡1 and simple algebra imply

Pt
Pt¡1

>
dt¡1=Á

1 ¡ °¯t ¡ dt=Á
>

K¡=Á
1 ¡K¡=Á

Therefore we ¯nd the lower bound Pt
Pt¡1

¸ min(1; K
¡=Á

1¡K¡=Á ; ¯) ´ ¯L > 0. Since
¯t is an average of past in°ations we also have ¯t > ¯L.

For any º >
¯̄
¯¯U¯L ¡ 1

¯̄
¯ we clearly have

¯̄
¯̄
Pt¡1
Pt¡2

¡¯t¡1
¯t¡1

¯̄
¯̄ < º with probability one

for all t > ®, then ®t = ®t¡1 + 1 for all t > ® and the learning mechanism
stays in the OLS form in all periods.

Now, letting C ´ f! 2  : ¯t(!) 2 S i.o.g ; we want to argue that P (C) =
1. Consider a realization ! =2 C; since ¯t(!) 2 ERR implies ¯t+1(!) = ¯ 2
S, it is clear that for t large enough ¯t(!) =2 ERR. Also, if ¯t(!) 2 U for all
t large enough in°ation tends to grow and eventually goes into ERR; which
would also contradict ! =2 C. Therefore, ¯t 2 S i.o. with probability one.
Appendix 1 shows that, in this case, ¯t converges to ¯1RE almost surely.

The rest of the proof simply shows that, if the learning scheme converges
to ¯1RE ; then the sample mean square errors converge to the best forecasts
and AR obtains. For this purpose, notice ¯rst that ¯t ! ¯1RE a.s. and the
fact that H is a continuous function for ¯'s in the set S imply

¯̄
¯̄ Pt
Pt¡1

¡ P
RE
t

PREt¡1

¯̄
¯̄ =

¯̄
H(¯t¡1; ¯t¡2; dt) ¡H(¯1RE; ¯

1
RE; dt)

¯̄
! 0 a.s.

as t! 1, so that
¯̄
¯̄Et¡1

µ
Pt
Pt¡1

¶
¡ ¯1RE

¯̄
¯̄ =

¯̄
¯̄Et¡1

µ
Pt
Pt¡1

¶
¡Et¡1

µ
PREt
PREt¡1

¶¯̄
¯̄ ! 0 a.s.

by Lebesgue dominated convergence, boundedness of in°ation and that by
de¯nition ¯1RE = E

³
PREt
PREt¡1

´
. Therefore, both ¯t and Et¡1

³
Pt
Pt¡1

´
converge to

¯1RE ; we have
¯̄
¯̄
¯
1
T

TX·
Pt
Pt¡1

¡ ¯t¡1
¸2

¡ 1
T

TX ·
Pt
Pt¡1

¡ Et¡1
µ
Pt
Pt¡1

¶¸2¯̄¯̄
¯ ! 0 a.s. (19)
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as T ! 1, and

¼²;T ´ P
Ã

1
T

TX

t=1

·
Pt
Pt¡1

¡
µ
Pt
Pt¡1

¶e¸2
<

1
T

TX

t=1

·
Pt
Pt¡1

¡ Et¡1
µ
Pt
Pt¡1

¶¸2
+ ²

!
! 1 a.s.

as T ! 1 for any ² > 0:2
Notice that AR imposes very few restrictions on the learning scheme. In

particular, AR poses no restriction on the choice of the parameter ® despite
the fact that this is a key parameter determining the probability of experi-
encing a hyperin°ation. Also, even if AR is satis¯ed agents could be making
systematic mistakes; for example, if agents used pure OLS, they would be
making very large forecasting errors whenever a hyperin°ation happened,
since OLS does not weigh more heavily recent events.

5.4 Internal Consistency
In subsection 5.2 we explained intuitively why hyperin°ations are more likely
to occur with high 1=®. Also, a high value of 1=® is likely to generate better
forecasts during a hyperin°ation. Therefore, there is potential for IC to be
satis¯ed precisely for 1=®'s that generate hyperin°ations.

IC is the criterion we use to de¯ne equilibria in the paper. The variables
we have to determine are the sequences of in°ation, expected in°ation and
nominal balances, together with the parameter ®: Notice that, since ® is
determined as part of the equilibrium, the ® that satis¯es IC will vary as
the process for dt changes so that the learning mechanism is endogenous to
government policy.

De¯nition 4 A stochastic process
n
Pt
Pt¡1
; ¯t;Mt

o
together with ® is an IC

equilibrium for (²; T ) if:

1. Given ®;
n
Pt
Pt¡1
; ¯t;Mt

o
satisfy (15),(12),(14) with Mt ¸ 0 for all t:

2. Given
n
Pt
Pt¡1
; ¯t;Mt

o
; ® satis¯es

E

"
1
T

TX

t=1

µ
Pt+1

Pt
¡ ¯t(®)

¶2
#

· min
®0
E

"
1
T

TX

t=1

µ
Pt+1

Pt
¡ ēt(¹®; ¹®0)

¶2
#
+²

Where ē
t(¹®; ¹®0) has been de¯ned in the previous section28.

28The careful reader will note that we did not impose IC on the learning parameter º in
this de¯nition or in the simulations we describe below. This was done only for simplicity.
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Since the dynamics are highly non-linear, characterizing analytically the
equilibrium ®0s is impossible. We solve the model by simulation and search
numerically for ¹® that satisfy IC in a way to be described below. This will
show that IC does impose restrictions on the space of learning parameters,
and that the resulting equilibria match the stylized facts of the hyperin°a-
tionary experiences remarkably well.

5.5 Characterization of the solution by simulation.
To generate simulations we must assign values to the parameters of the money
demand equation (°,Á) and the distribution of dt. We choose values (° = 0:4
and Á = 0:37) in order to replicate some patterns of the Argentinean experi-
ence during the 80's, for details see the appendix 2. We assume that seignor-
age is normally distributed, truncated to have positive values of seignorage,
with mean that varies across experiments we perform and ¾d = 0:0129

The parameter º was set equal to 10%. We also assumed that the govern-
ment established ERR whenever expectations were such that in°ation rates
would be above 5000%, so that we set ¯U = 50. The ERR is enforced until
expected in°ation is inside the stable set S.

Since our purpose is to show that a small deviation from rational expec-
tations can generate dynamics di®erent from RE and more similar to the
data, we choose as initial beliefs ¯0 = ¯1RE so that our simulations are biased
in favor of looking like RE.30 For the speci¯ed parameters, the maximum
level of average seignorage in the deterministic model for which a REE exists
is E(dt) = 0:05 . In spirit of making it di±cult for the model to depart
from RE, we have chosen values of the average seignorage for which a REE
exists. In order to quantify the relevance of average seignorage (fact 4), we
performed our calculations for four di®erent values: E(dt) = 0:049; 0:047;
0:045 and 0:043:

First of all, we describe the typical behavior of the model. A particu-
lar realization is presented in Figure 4. That realization was obtained with
E(dt) = 0:049 and 1=® = 0:2: We will show below that this value of the
learning parameter satis¯es IC. This graph shows the potential of the model
to generate enormous in°ation rates. In the same graph, we also plotted two
horizontal lines, one at each of the stationary deterministic rational expec-
tation equilibria, to show how the model under learning can generate much
higher in°ation rates than the rational expectations version.

29The results for lower values of ¾2
d were similar. Of course, hyperin°ations were then

less frequent.
30For example, it would be trivial to generate at least one hyperin°ation by choosing

¯0 > ¯2
RE .
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This graph displays some of the stylized facts in the learning model31. In
the ¯rst periods, the in°ation rate is close to the low stationary equilibrium.
When a relatively large shock occurs, it drives perceived in°ation into the
unstable region U and a hyperin°ation episode starts. Eventually, ERR is
established and the economy is brought back into the stable region. If no large
shocks occurred for a long while, ¯t would be revised according to the OLS
rule ®t = ®t¡1+1; and the model would converge to the rational expectations
equilibrium; however, since average seignorage is high for this simulation, it
is likely that a new large shock will put the economy back into the unstable
region and a new burst in in°ation will occur. Clearly, we have recurrent
hyperin°ations, stopped by ERR (facts 1 and 2). Since seignorage is i.i.d.,
and since the graph shows some periods of sustained increases in in°ation,
it is clear that there is little correlation of in°ation and seignorage (fact 3).
In order to reduce (or eventually eliminate) the chances of having a new
burst, the government must reduce the amount of seignorage collected (i.e.,
an "orthodox" stabilization plan) in order to increase the size of the stable
set. This would separate the two horizontal lines and it would stabilize the
economy permanently around the low stationary equilibrium. Establishing
ERR just before a reduction in average seignorage would help stabilize the
expectations of agents more quickly, so there is room for a positive e®ect of
a 'heterodox' intervention as well.

To ¯nd the learning equilibrium we look for values of ® that satisfy the
lower bound criterion IC for (²; T ) = (0:01; 120). This value of T is chosen
to represent 10 years, roughly the length of the hyperin°ationary episodes
we are studying. The value of ² is just chosen to be 'small', it will be clear
below how the results may change if this parameter changes.

To ¯nd numerically those values of ¹® that satisfy IC we proceed as follows:
we de¯ne a grid of 1=® 2 [0; 1:2] separated by intervals of length 0:1. The
same grid is used both for 1=® and the alternative learning parameters 1=¹®0
considered. We compute the mean squared errors in the right side of (11) by
Monte-Carlo integration32, and we ¯nd the minimum over 1=¹®0 for each 1=®
on the grid. Figure 5 shows the result of these calculations: in the horizontal
axis we plot 1=®, while the vertical axes plots 1=¹®0: The interval of alternative
learning parameters that generate a mean square error within ² = :01 of the
minimum in each column is marked with a dark area. An IC equilibrium for

31The behavior of the REE in this economy is clear: for the stationary REE, in°ation
would be i.i.d, °uctuating around the horizontal line of ¯1

RE : For bubble equilibria, in°ation
would grow towards the horizontal line of ¯2

RE :
32More speci¯cally, we draw 1000 realizations of fd1; :::; d120g, ¯nd the equilibrium in-

°ation rates for each realization, we compute the sample mean square error for each
alternative 1=®0 in the grid, and we average over all realizations.
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(²; T ) = (0:01; 120) is found when the dark area cuts the 45 degree line.
Table 1 reports the probabilities of having n hyperin°ations in 10 years

for di®erent values of average seignorage and for those values of 1=® that
satisfy the IC criterion.

As Figure 5 shows, for a low value E(dt) = 0:043, only 1=® = 0 and
0:1 satisfy the IC requirement. It turns out that for those two values the
probability of a hyperin°ation in 120 periods is zero. Therefore, if IC is im-
posed, this value of the average seignorage rules out hyperin°ations. Since
hyperin°ations do not occur, giving too much importance to recent observa-
tions does not generate good forecasts, so a low 1=® is a good choice within
the model. If seignorage is increased to 0:045; the criterion is satis¯ed for
all values of alpha between 0:5 and zero. As indicated by Table 1, for this
average seignorage there are equilibria in which the probability of experienc-
ing recurrent hyperin°ations is high, so that higher alternative ®'s generate
good forecasts, and the hyperin°ationary behavior is reinforced. Table 1 and
Figure 5 show that as the mean of seignorage increases, quasi-rational learn-
ing is consistent with hyperin°ations. Furthermore, hyperin°ations are more
likely when seignorage is high. This documents how fact 4 is present in our
model.

This exercise formalizes the sense in which the equilibria with a given
learning mechanism reinforces the use of the mechanism. For instance, when
seignorage is 0:49 and 1=® = 0:2; an agent using an alternative alpha equal
to zero, which is the collective behavior that replicates the REE, will make
larger MSE than the agent using 1=® = 0:2: The reason is that in equilibrium
there are many hyperin°ations, and the agent that expects the REE will make
bad forecasts.

Whenever equilibria with hyperin°ations exist, there is multiplicity of
equilibria (several 1=®'s satisfy IC). The behavior of in°ation does not change
much for di®erent equilibrium 1=®'s.33

The numerical solutions show that the chances of a hyperin°ation during
the transition to the rational expectations equilibrium depend on the size
of the de¯cit. The lower the de¯cit, the lower the chances of experiencing
a hyperin°ation. Notice how the equilibrium learning parameters depend
on the size of average seignorage: higher seignorage correspond to higher
equilibrium ®'s, which are more likely to generate a hyperin°ation.34

33Since we chose ¯0 = ¯1
RE when we set 1=® = 0 we have the REE: When initial beliefs

are far appart from the REE, then 1=® = 0 will no longer satisfy IC.
34We have simulated the model under many other values for the parameters. The main

results of this subsection about the behavior of in°ation are observed for a wide range of
the parameters.
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5.6 Epsilon-Delta Rationality (EDR).
In this section we show that in the equilibria with hyperin°ations discussed
above, the criterion EDR is satis¯ed if the highest admissible in°ation ¯U
is large enough, for values of ± that are closely related to the probability of
experiencing a hyperin°ation. This is because, when a hyperin°ation occurs,
the conditional expectation can be arbitrarily high due to the existence of
an asymptote in the mapping from perceived to actual in°ation (see ¯gure
3) but, in fact, the actual value of in°ation is unlikely to be ever so high in
a given realization. Thus, for every realization when a hyperin°ation occurs,
the learning forecast can do better than the conditional expectation with
very high probability in ¯nite samples.

Proposition 2 Consider the model of section 3. If the regularity assump-
tions 1-2 of appendix 2 are satis¯ed, and dt has a density, then for given
parameter values of the model and any (²; T ); there is a ¯U large enough
such that

¼²;T ¸ P (ERR at some t · T )
where P (ERR at some t · T ) is the probability that the government imple-
ments ERR at some period t = 1; :::; T:

Proof
Fix ²; T: We ¯rst consider the case that ¯U = 1: Consider a realization

! where an ERR is established at some t = 0; :::; T: Letting t+1 be the ¯rst
period where this occurs, it has to be the case that 1¡°¯t+1(!)¡dt+1(!)=Á <
0 and 1 ¡ °¯t(!) > 0. Clearly, we can only have the ¯rst inequality if
d ´ Á(1 ¡ °¯t+1(!)) < K+. Therefore, since in°ation is given by equation
(15) and (¯t+1; ¯t) are known with information available at t, we have that

Et

µ
Pt+1

Pt

¶
(!) =

Z K+

K¡
H(¯t+1(!); ¯t(!); ed)dFdt+1

(ed) =

=
Z d

K¡

1 ¡ °¯t(!)
1 ¡ °¯t+1(!) ¡ ed=Á

dFdt+1
(ed) + P

£
dt+1 > d

¤
¯ (20)

The integral in (20) corresponds to the values of dt+1 for which there is a
positive price level that clears the market without ERR and the ¯rst branch
of (16) holds, while the second term accounts for those values of next period
shock for which an exchange rate rule needs to be enforced.

Now we show that the integral in (20) is unbounded. Using arguments
similar to the ones used in the appendix to show that S has an asymptote
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we have
Z d

K¡

1 ¡ °¯t(!)
1 ¡ °¯t+1(!) ¡ ed=Á

dFdt(ed) ¸ (1 ¡ °¯t(!))Q(!)
Z ´

0

1
x
dx = 1

for some ¯nite constant Q(!) and small ´:
This proves that Et (Pt+1=Pt) (!) = 1 ; therefore

1
T

TX

t=1

·
Pt+1(!)
Pt(!)

¡ P
e
t+1

Pt
(!)

¸2
<

1
T

TX

t=1

·
Pt+1(!)
Pt(!)

¡ Et
µ
Pt+1

Pt

¶
(!)

¸2
+ ²;

(21)
because the right hand side is, in fact, in¯nite. So, (21) holds for all realiza-
tions where there is one hyperin°ation and ¼²;T ¸ P [ERR at some t · T ]

The case of ¯U ¯nite but arbitrarily large follows from observing that,
with arbitrarily high probability, the sequences of the case ¯U = 1 are below
a certain bound ¯; also, for arbitrarily high ¯U the conditional expectation
is arbitrarily close to the one with ¯U in¯nite, so that all the inequalities are
maintained with arbitrarily high probability.2

Since hyperin°ations occur with high probability if average seignorage is
high, this proposition shows that EDR is satis¯ed with high ± when seignor-
age is high. For example, Table 1 shows that the probability of having at
least one hyperin°ation is .84, .91 and .97 for average seignorage .045, .047
and .049 respectively, so EDR is satis¯ed for ± >.84, .91 and .97.

6 Conclusion
There is some agreement by now that the hyperin°ations of the 80's were
caused by the high levels of seignorage in those countries, and that the cure
for those hyperin°ations was ¯scal discipline and abstinence from seignor-
age. The IMF is currently imposing tight ¯scal controls on the previously
hyperin°ationary countries that are consistent with this view. Nevertheless,
to our knowledge, no currently available model justi¯ed this view and was
consistent with some basic facts of hyperin°ations. In particular, the fact
that seignorage has gone down while in°ation continued to grow in some
hyperin°ations makes it di±cult for the IMF to argue in favor of ¯scal dis-
cipline. Furthermore, some Eastern European economies are now engaging
in hyperin°ationary episodes similar to those of the 80's, and it seems im-
portant to have a solid model that can help judging the reasonability of the
IMF recommendations.

Our model is consistent with the main stylized facts of recurrent hyper-
in°ations and with the policy recommendations mentioned above: an ex-
change rate rule (ERR) may temporarily stop a hyperin°ation, but average
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seignorage (and also its standard deviation) must be lowered to eliminate
hyperin°ations permanently.

The economic fundamentals of the model are completely standard except
for the use of a boundedly rational learning rule instead of rational expecta-
tions. We show that the learning rule is quasi-rational in a sense that it must
perform fairly well within the model at hand. Despite abandoning rational
expectations, we maintain falsi¯ability of the model, and the learning rule
driving expectation formation is endogenous to government policy. This de-
viation from rational expectations is attractive because it avoids the strong
requirements on rationality placed by rational expectations, and because the
¯t of the model improves dramatically even if the deviation is small.

On the practical side, this paper shows that hyperin°ations can be stopped
with a combination of heterodox and orthodox policies. The methodological
contribution of the paper is to show that, as long as we carry along adequate
equipment for orientation and survival, an expedition into the "wilderness of
irrationality" can be quite a safe and enjoyable experience.

Appendix 1

Households:
In this appendix we solve a deterministic small open economy version

of a standard overlapping generations model with equilibrium conditions as
in section 3 35. It is easy to generalize the model in various directions and
maintain the equivalence with the main text.

Each cohort has a continuum of agents living two periods. There is one
type of consumption good in the world. Preferences are given by (ln cyt +
¸ ln cot+1) where cyt is consumption of young agents at time t and cot+1 is
consumption of old agents at time t + 1: Agents are endowed with (!y; !o)
units of consumption when young and old respectively, where !y > !o > 0:

Asset Markets:
There are two assets in the economy: domestic and foreign currency. In

our hyperin°ationary equilibria, domestic currency will be return-dominated
by foreign currency. To ensure that money demand is positive we will im-
pose a cash-in-advance constraint for local currency on net purchases of
consumption36.

Mt ¸ Pt+1(cot+1 ¡ !o)
35This appendix extends the closed economy results of Sargent and Wallace (1987).

36Freeman and Kydland (2000) describe a model where a fraction of goods are always
bought using currency, even though it is return dominated, and foreign currency is also
used. Modelling all those details is well beyond the scope of this appendix and the paper.
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for t ¸ ¡1: This condition makes foreign currency value-less for households.
Therefore, we can write the constraints for the household as

Pt!y = Ptcyt +Mt
Mt = Pt+1(cot+1 ¡ !o)
Mt ¸ 0:

Households' optimization implies

cyt = Pt!y+Pt+1!o

(1+¸)Pt
, Mt
Pt

= !y¸
(1+¸) ¡ Pt+1

Pt
!o

(1+¸) if !y¸!o ¸ Pt+1
Pt

= !y ; = 0 otherwise
(22)

This gives a microfoundation to equation (1).
Foreign sector:
The world is inhabited by large wholesale ¯rms that can buy and sell

goods in any country without transaction costs and are not subject to cash in
advance constraints. If we let X jt (which can be negative) be the net number
of units of the consumption good bought domestically and sold abroad by
¯rm j, pro¯ts are given by

¼j = XjtP
f
t et ¡XjtPt

where et is the nominal exchange rate and P ft the price of the consumption
good abroad. Free entry into the business implies that pro¯ts must be zero,
therefore

P ft et = Pt : (23)

If we let TBt be the trade balance in units of consumption, market clearing
implies that

!y + !o = cyt + c
o
t + dt + TBt

where dt ¸ 0 is exogenously given government consumption at time t.
The government budget constraint:
We assume the government does not tax agents37, it only generates income

by seignorage and, occasionally, by changing its stock of foreign currency Rt.
37Taxes and government debt are easy to introduce by reinterpreting dt and the endow-

ments !: all equations are consistent with ! denoting endowments net of age-dependent,
constant, lump-sum taxes, and with dt being the primary de¯cit of the government. Debt
can be introduced, for example, if we assume that government debt is constant (perhaps
because the government is debt constrained) and dt represents interest payments on debt
plus primary de¯cit.
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The budget constraint of the government is therefore given by

Mt ¡Mt¡1

Pt
= dt + (Rt ¡Rt¡1)

et
Pt

(24)

Equilibrium in all markets implies (Rt ¡Rt¡1)et = TBtPt
Government policy:
Government policy must set money supply and reserves to satisfy (24).

Reserves can be set according to two regimes:

A Floating Regime
in this regime the government does not change its position on foreign

currency. Then, all the government expenditure is ¯nanced by means of
money creation, so that TBt = 0 and

Mt = dtPt +Mt¡1

which together with the money demand (22) solve for the equilibrium se-
quences of Mt and Pt: The nominal exchange rate is given by equation (23) :

A ¯xed ERR regime
In this regime the government buys or sells foreign currency at a given

exchange rate. Given P ft ; P
f
t¡1; et¡1 and a desired level of in°ation ¯, the

desired exchange rate is

et ´ ¯et¡1
P ft¡1

P ft
(25)

Equation (23) implies that with this policy the government achieves ¯ =
Pt
Pt¡1

. The money demand (22) determines the level of nominal money demand
consistent with the nominal exchange rate target. Given this level of money
supply and dt, foreign reserves and, consequently, the trade balance adjust so
as to satisfy (24). Of course, to the extent that there are constraints on the
evolution of the government foreign asset position, ERR may not be feasible.

We assume that the ¯rst regime is used if in°ation achieves an acceptable
level less than ¯U ; the ERR regime is followed otherwise.

The equilibrium is therefore given by equations (22), (23) and (24) which
are deterministic versions of equations (1) to (4) in the paper. The analogy
between this deterministic version and the stochastic one in the paper is only
exact up to a linear approximation, a usual simpli¯cation in macroeconomic
models under learning.

Appendix 2
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In this appendix we characterize the set of stationary REE of the model
with uncertainty; we discuss how the sets U and S are a®ected by the pro-
cess of dt; and we show that least squares learning converges to the lower
stationary rational expectations equilibrium.

Assume that expectations about in°ation are given by (9) with constant
perceived in°ation ¯t = ¯. Then, ¯RE is a stationary REE i®, when prices
are generated by ¯t = ¯RE ; then Et(Pt+1 j It) = ¯REPt: Let us make some
assumptions on the model38:

Assumption 1 the support of dt is the interval [K¡;K+], where K¡ > 0
and K+ < Á:

Assumption 2 dt has a continuous density fdt and fdt(K+) ´ ¦ > 0

If ¯t = ¯ equation (15) implies Pt+1 = h(¯; dt+1)Pt; where h is as de¯ned
in section 5.2. Letting

S(¯) ´ E (h(¯; dt+1)) ;

S is interpreted as the mapping from perceived to actual expectations on
in°ation.

In the next proposition we characterize the properties of S.

Proposition 3 There can not be a stationary rational expectations equilib-
rium with perceived in°ation ¯ > (1 ¡K+=Á)=°.

The set of stationary rational expectations equilibria coincides with the
¯xed points of the mapping S : [0; (1 ¡K+=Á)=°) ! R:
S has the following properties:

1. In the set [0,(1 ¡K+=Á)=°); the mapping S is increasing and convex.
If ¯U = 1, then S has an asymptote at ¯ = (1 ¡K+=Á)=°:

2. S has at most two ¯xed points denoted ¯1RE < ¯2RE. For a distribution
where dt is low enough, and for ¯U large enough two equilibria exist.
For a distribution where dt is large enough no equilibrium exists.

3. When two ¯xed points exist, S 0(¯1RE) < 1

4. The stability set S is smaller under uncertainty. More precisely, let
ē1
RE < ē2

RE be the rational expectations equilibria without uncertainty
(when ¾d = 0 and E(dt) = dt). Assume that two ¯xed points of S exist.

Then ē1
RE < ¯1RE < ¯2RE < ē2

RE.
38All the theorems would also work under the assumption that dt had ¯nitely many

possible realizations, all of them positive.
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Proof
Under the assumptions of the model, once an ERR is established, it is

maintained until expectations are back in the set S. If a stationary REE
existed then Et

³
Pt+1
Pt

´
= ¯RE for all t; if an ERR was possible, it could

occur that an ERR is established at period t; it is maintained at t + 1,
and Et

³
Pt+1
Pt

´
= ¯: Since, in general, ¯RE 6= ¯ this is impossible. So, for a

stationary REE it must be the case that ERR never occur. Now, if ¯RE > (1¡
K+=Á)=° the event 1¡°¯RE¡dt=Á > 0 would have positive probability, which
contradicts an ERR never taking place. Stationary REE are, by de¯nition,
¯xed points of S.

1. Using the de¯nition of S we have

S 0(¯) = E
µ
@ h(¯; dt)
@ ¯

¶
= E

µ
°dt=Á

(1 ¡ °¯ ¡ dt=Á)2
¶

and

S 00(¯) = E
µ
2

°2dt=Á
(1 ¡ °¯ ¡ dt=Á)3

¶
;

since the expressions inside the expectation are non-negative, this proves
that S0; S 00 > 0.

To prove the existence of an asymptote; note that

S((1¡K+=Á)=°) =
Z K+

K¡

K+

K+ ¡ ed
fdt(ed) d ed >

Z K+

K+¡´

K+

K+ ¡ ed
fdt(ed) d ed :

(26)
for small ´ > 0. According to assumption 2, we can choose ´ small
enough such that, if d > K+ ¡ ´, then fdt(d) ¸ ¦ > 0; this implies the
inequality in

S((1 ¡K+=Á)=°) ¸ ¦
Z K+

K+¡´

K+

K+ ¡ ed
d ed = ¦

Z ´

0

K+

x
d x = 1 ;

the ¯rst equality follows from a trivial change of variables, and the last
equality because the integral of a hyperbola at zero is in¯nite. This
shows that S((1 ¡ °K+)=°) = 1:

2. That we have at most two ¯xed points follows immediately from con-
vexity of S. Increasing the probability mass of dt near zero
means that values of dt close to zero determine the expectation that
gives S(¯). Since, for any given ¯; h(¯; d) ! 1 as d ! 0; and since
in°ation is bounded we have that S(¯) becomes arbitrarily close to 1
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and S0(¯) arbitrarily close to zero. This means that as fdt puts more
probability mass near zero S has to cross the 45o line from above. The
fact that S has an asymptote (part 1 of this proposition) implies that
there is a second ¯xed point if ¯U is large enough. The fact that S
is concave implies that there are at most two ¯xed points. Since S
is increasing in dt, fdt puts more probability mass ar large values no
equilibrium exists.

3. Clearly, S(0) > 0: Therefore, S cuts the 45o line from above, and
S 0(¯1RE) < 1.

4. Notice that ē1
RE and ē2

RE are the ¯xed points of h(¢; E(dt)). Since
h is a convex function of dt; Jensen's inequality implies that S(¯) >
h(¯;E(dt)).2

Now, we argue that the least squares learning mechanism converges to
the lower rational expectations equilibrium. This is a routine application of
the framework of Marcet and Sargent (1989a), so the details are omitted.
The associated di®erential equation in the set [0,(1¡K+=Á)=°)) is given by

_̄ = S(¯) ¡ ¯ (27)

and we know that, under least squares learning (the case that ®t = t), the
system converges if and only if the di®erential equation is globally stable in
a set D where the beliefs lie in¯nitely often. That stability of the di®erential
equation is necessary and su±cient follows from the results in Ljung (1977).

Now, S 0(¯1RE) < 1 implies that (27) is locally stable at ¯1RE ; the basin of
attraction of ¯1RE is the set [0,¯2RE): In the proof to proposition 1 we have
shown that ¯t visits the stable set in¯nitely often, therefore least squares
learning converges to the rational expectations equilibrium ¯1RE a.s.

Appendix 3

In this appendix we explain the choice of parameter values for the de-
mand for money used in the numerical solution of section 5. The money
demand equation (1) is linear with respect to expected in°ation. It is well
known, though, that the linear functional form does not perform very well
empirically. However, departing from linearity would make the analysis of
the model impossible to deal with. While we do maintain linearity, we want
to use parameter values that are not clearly at odds with the observations.
Since we are interested in the public ¯nance aspect of in°ation, we use ob-
servations from empirical La®er curves to calibrate the two parameters. In
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particular, as one empirical implication of our model is that "high" aver-
age de¯cits increase the probability of a hyperin°ation, we need to have a
benchmark to discuss what high means. Thus, a natural restriction to im-
pose to our numbers is that the implied maximum de¯cit is close to what
casual observation of the data suggest. We also restrict the in°ation rate that
maximizes seignorage in our model to be consistent with the observations.

We use quarterly data on in°ation rates and seignorage as a share of GNP
for Argentina 39 from 1980 to 1990 from Ahumada, Canavese, Sanguinetti y
Sosa (1993) to ¯t an empirical La®er curve. While there is a lot of dispersion,
the maximum feasible seignorage is around 5% of GNP, and the in°ation
rate that maximizes seignorage is close to 60%. These ¯gures are roughly
consistent with the ¯ndings in Kiguel and Neumeyer (1992) and other studies.
The parameters of the money demand ° and Á, are uniquely determined by
the two numbers above. Note that the money demand function (1) implies
a stationary La®er curve equal to

¼
1 + ¼

m =
¼

1 + ¼
Á (1 ¡ °(1 + ¼)) (28)

where m is the real quantity of money and ¼ is the in°ation rate. Thus, the
in°ation rate that maximizes seignorage is

¼¤ =
r

1
°

¡ 1

which, setting ¼¤ = 60%; implies ° = 0:4: Using this ¯gure in (28), and
making the maximum revenue equal to 0:05, we obtain Á = 0:37:
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Figure 2
Time Series of Inflation Rate and Seiniorage
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Figure 5: Efficient Values of αααα

Columns represent possible values for 1/α  actually used by agents.
Rows depict alternative values for 1/α ’.

Light gray cells indicate the 45 degree line
Dark gray cells indicate that the value for 1/α  is efficient.

Black cells indicate fixed points on 1/α .
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TABLE 1
Deficit = 4.5 %

Alpha Probability of
No

Hyperinflations

Probability of
one

Hyperinflation

Probability of
two

Hyperinflations

Probability of
three

Hyperinflations

Probability of
more than three
Hyperinflations

0.5 0.16 0.34 0.28 0.16 0.06
0.4 0.55 0.34 0.09 0.01 0
0.3 0.90 0.10 0 0 0
0.2 0.99 0.01 0 0 0
0.1 1 0 0 0 0
0 1 0 0 0 0

TABLE 2
Deficit = 4.7%

Alpha Probability of
No

Hyperinflations

Probability of
one

Hyperinflation

Probability of
Two

Hyperinflations

Probability of
three

Hyperinflations

Probability of
more than three
Hyperinflations

0.4 0.09 0.26 0.30 0.22 0.13
0.3 0.45 0.37 0.15 0.03 0
0.2 0.82 0.14 0.04 0 0
0.1 1 0 0 0 0
0 1 0 0 0 0

TABLE 3
Deficit = 4.9%

Alpha Probability of
No

Hyperinflations

Probability of
one

Hyperinflation

Probability of
Two

Hyperinflations

Probability of
three

Hyperinflations

Probability of more
than three

Hyperinflations
0.2 0.23 0.40 0.27 0.09 0.02
0.1 0.73 0.26 0.01 0 0
0 1 0 0 0 0


