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Abstract

This paper extends the theory of network competition between telecommunications operators
by allowing receivers to derive a surplus from receiving calls (call externality) and to affect
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equilibrium. Efficiency requires a termination discount.

When reception charges are market determined, it is optimal for each operator to set the
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nectivity breakdowns, even between equal networks.
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1 Introduction

1.1 Motivation

The deregulation of telecommunications, the most advanced among network industries,
leads to new forms of competition. Operators compete for retail customers through so-
phisticated and discriminatory pricing while, at the wholesale level, their interconnection
by and large remains regulated. The small literature on this new form of competitive
environment1 has neglected the facts that call receivers derive a utility from calls (call
externality) and furthermore can affect volume by hanging up (receiver sovereignty). The
purpose of this paper is to extend our understanding of network competition to environ-
ments with call externalities and receiver sovereignty in which firms can charge customers
for receiving calls.

The operators’ practice of charging their customers both for emission and for reception
is usually referred to as the “receiver pays principle” (RPP). Reception charges play an
increasingly important role in the case of mobile phones. The receiver pays principle is
for example applied to mobile phone reception in the United States, Canada, and Hong
Kong, as well as for international roaming on GSM mobile networks. Reception charges
similarly play a key role in the new Internet economy, as both sides of the markets (e.g.
dial-up customers and websites) are charged for the capacity and usage of their connection
with Internet Service Providers or backbones.

Enriching the existing analysis to account for the existence of receiver surplus and
sovereignty serves more than a descriptive purpose, though. On the positive side, recep-
tion charges alter the operators’ competitive strategies. On the normative side, the joint
determination of communications services by four parties (caller, receiver, and their oper-
ators) raises the question of whether proper incentives are in place for the maximization
of joint surplus.

1.2 Overview of the analysis

To provide a roadmap for our analysis, it is convenient to introduce some notation. Two
symmetrically differentiated networks compete in nonlinear prices for subscribers. A
network i subscriber with outgoing volume q and incoming volume q̃ is charged (without
loss of generality in our model)

Ti(q, q̃) = Fi + piq + riq̃,

where Fi is the monthly subscriber charge, pi is the per unit usage price and ri the per unit
reception charge. We let c0 denote a network’s marginal cost of terminating calls, a the
reciprocal access charge paid by the originating network to the terminating network, and
c > c0 the total (origination plus termination) marginal cost of communications. Last,
let α1 and α2 denote the two networks’ market shares (α1 + α2 = 1).

1See Armstrong (1998, 2000), Carter-Wright (1999,2000), Cherdron (2000), Dessein (1999 a, b), Gans-
King (1999), Hahn (2000) and Laffont-Rey-Tirole (1998 a, b).
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Consumers derive a surplus both from calling and from being called. These surpluses
in general differ and furthermore may be state contingent.

Part 1: regulated or contractually determined reception charges

Suppose that the reception charges (r1, r2) are regulated or else contractually agreed
upon by the two operators before they wage competition in monthly fees and calling
charges.

We first conduct the following thought experiment: Suppose the caller always deter-
mines the volume of communication. That is, either the receiver is not sovereign (i.e. is
not allowed to hang up) or the reception charge is sufficiently low (relative to the caller’s
charge) that the receiver does not find it advantageous to hang up.

The inelastic demand for call reception implies that a network’s reception charge has
no incentive effect. And so, from the operator-subscriber pair’s viewpoint, only the sum
{Fi + riq̃} matters, not its composition.

Our first insight is that, while a network’s reception charge does not impact its profit
given its rival’s competitive offer, reception charges do matter. Indeed, we show that
network i’s equilibrium usage (calling) charge is equal to its “strategic marginal cost”,
namely:

pi = [c + αj(a− c0)]− αirj,

where, recall, c is the (industry’s) marginal cost of a call, αi is network i’s market share,
(a − c0) the access charge markup (the difference between the access charge and the
termination cost) and rj is network j’s reception price. An average call originating on
network i costs [c + αj(a − c0)] when the access markup (or discount) on the fraction
αj of calls that terminate off-net is accounted for. To obtain network i’s perceived or
strategic marginal cost, one subtracts the increase rj in the monthly fee of the fraction αi

of consumers who subscribe to network i, that network i can afford implementing without
losing market share.

To see this, consider an increase in the volume of calls from network i to network
j. This increase has two opposite effects on the utility of network j’s consumers. Their
surplus increases because they receive more calls. However, they pay for receiving these
extra calls. We call the first effect a direct externality and the second a pecuniary exter-
nality. Only pecuniary externalities matter. When network i lowers its price, the volume
of calls received by consumers increases by the same amount regardless of their network
affiliation, and therefore direct externalities are the same for all consumers. Pecuniary
externalities result in a decrease in the perceived marginal cost c+αj(a−c0)−αirj. That
is, an increase in network j’s reception charge makes it more desirable for network i to
expand output.

Next, for a given symmetric reception charge r, we ask, does a symmetric equilibrium
exist? We show that, if the reception charge is in the vicinity of the access charge discount
(c0−a), an equilibrium indeed exists. In contrast, when the reception charge substantially
diverges from the access charge discount and networks are close substitutes, an equilibrium
fails to exist; that is, competition is unstable. These results generalize the analysis in
Laffont-Rey-Tirole (1998a), which ruled out reception charges (r = 0) and showed that,
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with close substitutes, network competition is stable only if the access charge is in the
vicinity of the termination cost.

Last, and on the normative side, we investigate the relationship between the compet-
itive equilibrium and the second-best (Ramsey) optimum. Letting β denote the ratio of
the marginal utilities of the caller and the receiver, second-best efficiency requires that
the sum of the utilities be equal to the marginal cost c of a communication, or under
caller-determined volume,

p =
c

1 + β
.

Given that, in a symmetric equilibrium,

p = c +
a− c0 − r

2

from the above formula, the efficient outcome obtains when r = c0− a (so an equilibrium
exists) and

c0 − a =
βc

1 + β
.

That is, termination is priced at a discount, and this discount is steeper, the higher the
receiver’s marginal utility from receiving calls.

Last the fiction of caller-determined volume (our thought experiment), while open
to the criticism that receivers are actually sovereign, turns out to be very useful, as we
provide conditions under which it is still valid when receivers are allowed to hang up.

Part 2: market determined reception charges

Next, we assume that reception charges, just like monthly fees and calling charges,
are set noncooperatively by the operators instead of being determined contractually or
chosen by a regulator. In the absence of uncertainty about marginal utilities, a potential
indeterminacy of equilibria arises: Over the range of parameters for which the volume
is determined by the caller, only {Fi + riq̃} matters, not its composition, as we have
seen. And so, there might be a range of (nonequivalent) equilibria. We make the model
more realistic and actually simplify it by letting the marginal utilities of communications
be random (the utility of an extra minute of communication is state or time-of-the-day
contingent). With wide enough supports for marginal utilities, both the calling and the
reception charges have an incentive effect and therefore are determinate.

First, we show that, in a symmetric equilibrium, the usage and reception charges are
set equal to the “off-net cost” of calls and call reception, respectively:

p = c + (a− c0)

and

r = (c0 − a).
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That is, even though the networks have equal market shares in a symmetric equilibrium,
each network sets prices for a subscriber’s outgoing and incoming traffics at the marginal
costs that it would incur if all other subscribers belonged to the rival network.

Second, when the randomness in the marginal utilities vanishes and provided that the
access charge markup is larger than −βc/(1 + β), an equilibrium exists. The Ramsey
optimum can then be approximated through the level of the access discount determined
above. This latter result relies on a fixed ratio of marginal utilities (and thus in partic-
ular on the noise vanishing); more generally, one instrument (the access charge) cannot
simultaneously adjust the incentives of both sides (caller, receiver) to internalize the other
side’s surplus.

Part 3: network-based price discrimination

Last, we allow networks to differentiate their emission and reception charges according
to whether the communication is on- or off-net. In the presence of network-based discrim-
ination, we need to separate the market for on-net calls and the market for off-net calls. In
the former market, regardless of the introduction of reception charges, each network fully
internalizes the externalities on callers and receivers. In contrast, in the latter market,
the off-net caller and receiver charges affect the welfare of consumers on the rival network
and are therefore subject to strategic manipulations.

Intuitively, a network has an incentive to charge a high off-net emission price if the
receivers on the other network benefit almost as much from communications as the callers.
Conversely, a network has an incentive to charge a high off-net receiver price if the receivers
derive little utility from being called, since communications then benefit mainly the callers
on the rival network. We provide sufficient conditions for these incentives to lead to a
de facto connectivity breakdown between the networks. The logic of the connectivity
breakdown here differs from the standard one emphasized in the network externalities
literature2 and stressing the incentive of a dominant player (characterized by a large
installed base or a cost superiority) to reinforce dominance by reducing connectivity.
Here, connectivity breakdowns occurs even with symmetric operators.

Finally, we show that, under an appropriate regulation of the reception charge, there
exist equilibria in which both on-net and off-net charges are optimal. Furthermore, there
exists an equilibrium that yields the monopoly profit and yet maximizes social welfare.

The paper is organized as follows. Section 2 describes the framework of analysis,
introduces the relevant concepts and notation and derives the social optimum benchmark.
Section 3 analyzes competition in nonlinear prices in the absence of network-based price
discrimination and for regulated reception charges, and then Section 4 studies market
determined reception charges. Section 5 performs similar analysis with network-based
price discrimination. Section 6 concludes.

2See, e.g., Katz-Shapiro (1985) and Crémer et al. (2000).
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1.3 Literature review

After investigating the British telephone industry, Oftel (1998) concluded that the price of
calls from fixed networks to mobile phones was too high and envisioned price regulation.
Indeed, with the caller pays principle (CPP), there might be little competitive pressure
on the termination charge that a mobile phone operator can demand for terminating calls
originated in the fixed network and the resulting high charges hurt the consumers of the
fixed network. Opposing Oftel’s proposed price regulation, Doyle and Smith (1998) offer
instead to apply the receiver pays principle (RPP), by which mobile operators charge
their own customers for receiving calls while callers pay a uniform per minute charge,
e.g. the local call charge, regardless of where the calls terminate. They study a model
with a monopoly fixed-link network and a duopoly of mobile operators. They first study
CPP, assuming that each mobile network sets its own termination charge to be paid by
the fixed network. This situation leads to a strong form of double marginalization on
fixed-to-mobile calls (all the more that receivers are assumed not to derive surplus from
being called). Turning to RPP, they show that mobile operators compete on reception
charges to attract customers, which leads to a lower total charge of a fixed-to-mobile call
as well as increased usage.

Kim and Lim (2000), as we do, address the question of how the RPP may help with
the internalization of the call externalities when subscribers derive utility from receiving
calls.3 They consider two models without regulation of the access charge and the reception
charge and with linear, unregulated pricing of calls. Their first model is a monopoly model.
The introduction of a linear receiver charge decreases the perceived marginal cost of a
call for the network and therefore leads to a lower price of a call. However, the effect
on the total price (call price plus reception charge) and on welfare depends on how the
price elasticity of demand varies with price. In the second model, they introduce call
externalities in the Laffont, Rey and Tirole (1998a) model and assume that the access
charge is set cooperatively by the networks before competing in linear prices. A network
operator charges reception to all consumers (both his own subscribers and the subscribers
of the other network) for calls initiated on his own network. In contrast, we assume that
each operator sets reception charges for his own customers. Again, they show that the
calling price decreases with the RPP but that the access charge is higher with the RPP,
with ambiguous results on welfare.

DeGraba (2000) looks at a model with call externalities and network-based price dis-
crimination and argues that the bill-and-keep policy (zero access charges) leads to efficient
pricing in a symmetric case where the origination and termination costs are equal and the
called party and the calling party benefit equally from a phone call.

3Littlechild (1977) suggests that these externalities can be internalized by cooperation between parties.
However, this can only be true for subscribers who have repeated relationships.
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2 Framework

2.1 The model

• Demand Side

We extend the analysis of network competition in Laffont, Rey and Tirole (LRT,
1998a, b) in two respects: Receivers obtain positive utility from receiving calls and firms
can charge receivers for reception.

There are two operators (suppliers, networks), i = 1, 2, located at the two extremes of
an Hotelling line of length one (x1 = 0, x2 = 1). Consumers are differentiated along the
Hotelling line. A consumer located at x and selecting network i incurs “transportation
cost” t|x− xi|.

The utility of a consumer with income y located at x and joining network i is given
by

y + v0 − t|x− xi|+ u(q) + ũ(q̃)

where u(q) is the utility from calls placed by the consumer and ũ(q̃) represents the util-
ity from received calls.4 We assume that these utility functions u(·) and ũ(·) are twice
continuously differentiable, with u′ > 0, u′′ < 0; ũ′ > 0, ũ′′ < 0, which implies that de-
mand functions are differentiable. u(q) and ũ(q) can be thought of as the caller’s and
receiver’s surpluses attached to a representative call (lasting q minutes). We assume that
the receiver’s marginal surplus from receiving a call is nonnegative.

We consider four different cases depending on whether network-based (on-net / off-
net) price discrimination is allowed, and on whether the volume of calls is determined
only by callers or jointly by callers and receivers.

a) Price discrimination: In the absence of network-based price discrimination (Sections
3 and 4), network i offers a three-part tariff {Fi, pi, ri}. Fi is the monthly subscriber
charge, pi is the (caller’s) usage price, and ri represents the per-unit price that
network i’s consumers pay for the calls received.

Under network-based discrimination (Section 5), network i offers a five-part tariff,
{Fi, pi, p̂i, ri, r̂i}. Here, r̂i represents the price that a network i’s consumer pays for
receiving calls originating on network j 6= i, while ri is the reception charge for
on-net calls. Similarly, pi and p̂i refer to per-unit charges for calls that terminate
on- and off-net, respectively.

b) Demand function: We first make the standard assumption that callers determine
the volume. Letting q(.) denote the caller’s demand function, given by u′(q(p)) = p,
the volume of calls placed by a customer of network i is given by q(pi) in the absence

4The constant v0 in the utility function for a consumer who has joined a network ensures that all
consumers will always choose to join one of the two networks if v0 is high enough.
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of discrimination, and by q(pi) and q(p̂i) in the case of discrimination. Let v(p) be
the indirect utility function, i.e.,

v(p) = max
q
{u(q)− pq)}

We then consider the case in which receivers are sovereign, i.e., callers and receivers
jointly determine the volume. Consider a representative caller-receiver pair. In
the absence of discrimination, the volume of calls from (the caller’s) network i to
(the receiver’s) network j(= 1, 2) is given by min{q(pi), q̃(rj)} where the receiver’s
demand function is given by ũ′(q̃(r)) = r. Under discrimination, the volume of calls,
if both belong to network i is given by min{q(pi), q̃(ri)} and the volume of calls,
if the caller belongs to network i and the receiver to network j 6= i, is given by
min{q(p̂i), q̃(r̂j)}.

• Supply side

The local loop cost is decomposed into a traffic sensitive marginal cost, c0 per unit of
volume, and a traffic insensitive component. The traffic insensitive part is composed of a
per-consumer connection component f , plus possibly some cost that is joint and common
to all consumers. For notational simplicity, we will ignore the latter (introducing a joint
and common cost would just require an overall upward adjustment of price levels keeping
the price structure as given, if firm viability is an issue). The long distance (trunk)
marginal cost is equal to c1. So, the total marginal cost of a minute of a call involving
two local loops and a long distance traffic is

c ≡ 2c0 + c1.

We let a denote the access charge or termination charge. The marginal cost of an
off-net call is therefore c + (a− c0) for the caller’s network and (c0 − a) for the receiver’s
network.

2.2 Ramsey benchmark

For future reference, we derive the social optimum. Consider an idealized situation in
which a benevolent regulator would choose the market shares and the volume of calls. In
our symmetric set-up, equal market division (α = 1

2
) minimizes the average consumer’s

disutility from not being able to consume his preferred service. The benevolent regulator
would choose the volume of calls so as to maximize

u(q) + ũ(q)− cq.

The optimal volume q∗ is determined by

u′(q∗) + ũ′(q∗) = c.

8



To implement the optimal outcome, the benevolent regulator can use symmetric tariffs
so as to implement equal market division (α = 1

2
). When the volume is determined by

callers, the optimal volume is obtained by choosing p1 = p2 = p∗, where

p∗ = c− ũ′(q∗).

The regulator selects the fixed fee F (or r) in order to satisfy the industry’s break-even
constraint.

When the volume is jointly determined by callers and receivers, the regulator can still
achieve the efficient outcome by choosing (p = p∗, r = 0). The regulator then uses F
to satisfy the industry break-even constraint. More generally, any {F, r} combination
yielding the same level of F + rq∗ and such that r ≤ ũ′(q∗) achieves the Ramsey outcome.

3 Regulated or contractually determined reception

charges

This section studies competition in two-part tariffs without discrimination (Fi, pi) (when
the reception charges are exogenously regulated at some levels {ri}i=1,2). It first assumes
that callers determine the volume of calls, and then finds sufficient conditions for this to
be the case.

Ignoring the “transportation cost”, the net surplus of a network i consumer is

wi = v(pi) + αiũ(q(pi)) + αjũ(q(pj))− ri[αiq(pi) + αjq(pj)]− Fi. (1)

Network i’s market share is given by

αi =
1

2
+ σ(wi − wj), (2)

where σ = 1/2t measures network substitutability, and thus the intensity of competition.
Equivalently,

αi =
1

2
+ σ[v(pi)− v(pj)− (Fi − Fj)− (ri − rj)(αiq(pi) + αjq(pj))]. (3)

Network i’s profit is given by

πi = αi{[pi − c− αj(a− c0) + αiri]q(pi) + (ri + a− c0)αjq(pj) + Fi − f}.

We will perform our analysis in two steps. First, we will maximize πi with respect to
pi given αi, yielding price p∗∗i (αi). This will allow us to define Πi(αi) ≡ πi(αi, p

∗∗
i (αi)).

Second, we will maximize Πi(αi) with respect to αi.
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3.1 Tariff structure: maximization keeping market share con-
stant

We study the program of maximizing πi given αi. Let

F̃i = Fi + ri(αiq(pi) + αjq(pj)).

Intuitively, Fi + ri(αiq(pi) + αjq(pj)) is a generalized fixed fee. Network i’s consumers
care only about this sum, not about its composition.

Market shares are determined by the net surplus differential :

wi − wj = v(pi)− v(pj)− F̃i + F̃j. (4)

We have

πi ≡ αi{(pi − c)q(pi)− (a− c0)(1− αi)(q(pi)− q(pj)) + F̃i − f}.

Using (2) and (4) we have :

F̃i = F̃j + v(pi)− v(pj) +
1

σ
(
1

2
− αi).

After substitution of F̃i into the profit function, we have

πi(pi, αi) ≡ αi{(pi − c)q(pi)− (a− c0)(1− αi)(q(pi)− q(pj))

+v(pi)− v(pj) + F̃j +
1

2σ
− αi

σ
− f}

where F̃j is a function of pi. Indeed,

∂F̃j

∂pi

= rjαi
dq

dpi

.

The first-order derivative of network i’s profit with respect to pi keeping αi constant
is given by

dπi

dpi

∣∣∣∣
αi=constant

= αi [pi − c− αj(a− c0) + αirj]
dq

dpi

, for pi > 0,

For a given αi, the profit maximizing price pi is therefore given by p∗∗i (αi):
5

p∗∗i (αi) = c + αj(a− c0)− αirj. (5)

5In fact, we have, for p∗∗i (αi) > 0:

dπi

dpi

∣∣∣
αi=constant

> 0, for all 0 < pi < p∗∗i (αi),

dπi

dpi

∣∣∣
αi=constant

= 0, for pi = p∗∗i (αi),

dπi

dpi

∣∣∣
αi=constant

< 0, for all pi > p∗∗i (αi).
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If rj = 0, the usage price is equal to the average marginal cost faced by network i as
in LRT (1998a). However, in the presence of rj, an increase in q(pi) imposes pecuniary
externalities on network j consumers by making them pay more money for the calls
received from network i. Hence, to maintain market share αi constant, network i can
charge more money to the consumers of its own network by increasing Fi. In other words,
network j’s charging for reception results in a decrease in the marginal cost perceived by
network i. For example, if the access charge is near or above termination cost, charging
receivers is socially desirable since this induces firms to lower emission charges.

If c > rj holds for a− c0 + rj ≥ 0 or if c + a− c0 > 0 holds for a− c0 + rj < 0, we have
p∗∗i (αi) > 0. Then, the profit maximizing price pi is uniquely given by p∗∗i (αi) and we can
define Πi(αi) by

Πi(αi) ≡ πi(p
∗∗
i (αi), αi)

= αi

{
(p∗∗i − c)q(p∗∗i )− (a− c0)(1− αi)(q(p

∗∗
i )− q(pj))

+v(p∗∗i )− v(pj) + F̃j(p
∗∗
i , αi) +

1

2σ
− αi

σ
− f

}
.

Proposition 1 (strategic marginal cost)

(a) When the volume is determined solely by the caller, only the sum of the monthly
subscriber charge and the subscriber’s total reception charge matters given the rival net-
work’s competitive offering.

(b) In the absence of network-based price discrimination, a network’s marginal cost
and emission charge decrease with the other network’s reception charge:

p∗∗i (αi) = c + αj(a− c0)− αirj.

As usual with competition in two-part tariffs, the marginal price is set at the perceived
marginal cost. It is composed of the true marginal cost, c plus a mark up due to the access
charge incurred in off-net calls (the number of which is proportional to the competitor’s
market share αj), hence αj(a− c0), minus the pecuniary-effect correction −αirj.

Socially, and as explained in Section 2, the marginal price should be

c− ũ′(q∗),

which could be obtained by pricing access at its marginal cost a = c0, and by subsidizing
calls at a rate

τ = ũ′(q∗)

in the absence of reception charges.

In the absence of subsidization, two instruments, the access charge and the reception
charge, can be used to induce the optimal marginal price. Because network i internalizes
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only the positive externality on his own consumers, the reception charge would have to
be (in a symmetric equilibrium) twice the marginal externality if the termination charge
were set equal to termination cost (a = c0). But this would induce receivers to hang
up. The fact that the reception charge cannot exceed the marginal externality calls for an
access charge below the termination cost.

Note that this simple first-order-condition approach is incomplete because proving the
existence of equilibrium requires some constraints on these instruments (see Section 3.3).

3.2 Tariff level: Maximization with respect to market share

We now maximize Πi(αi) with respect to αi. Since we will focus on symmetric equilibria,
we will assume rj = r and study the maximization of Πi(αi) when network j uses the
optimal pj = c + 1

2
(a− c0 − r).

To show the existence of a symmetric equilibrium, let us restrict the analysis to mean-
ingful values of the access charge and of the reception charge such that ∞ > a > c0 − c
and c > r > −∞. Then, we have:

Lemma 1 Πi(αi) ≡ πi(p
∗∗
i (αi), αi) is well defined and continuous. Furthermore, if σ is

small enough or |a− c0 + r| is small enough, it is concave.

Proof. See Appendix 1.

When Πi(αi) is concave, the unique solution is given by the first-order condition

(pi − c)qi − (a− c0)(qi − qj)(1− 2αi) + vi − vj − f +
1

2σ
− 2αi

σ

+Fj + r(2αiqi + (1− 2αi)qj) = 0. (6)

The case of a small substitutability σ is relevant only if the networks are specialized in
the sense of fitting geographic or technological niches.6 The condition that the reception
subsidy r not be too remote from the termination discount (c0−a) underlines the potential
instability that may exist in network competition when reception charges are regulated.

3.3 Symmetric equilibria

For a given reception charge r, equilibria (pi, Fi, αi) are characterized by (3), (5) and (6).
The next proposition characterizes symmetric equilibria: (p, F, α = 1

2
) for a given value

of r.

Proposition 2 (existence): (a) If Πi(αi) is concave, a symmetric equilibrium (p, F, α =
1
2
) exists.

6It may also be relevant to study the competition between one fixed and one mobile networks.
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(b) No cornered-market equilibrium exists.

(c) For any ε > 0, if |a− c0 + r| > ε, no equilibrium exists for σ large enough.

Proof. See Appendix 2.

So, if a isn’t close to c0 − r and substitutability is high, there exists no pure strategy
equilibrium. Indeed, the only candidate for equilibrium is subject to undercutting by one
network.7

Specializing to symmetric equilibria (5),

p +
r

2
= c +

1

2
(a− c0); (7)

and (6),

F = f +
1

2σ
− (p + r − c)q(p). (8)

After some computations, we obtain

π =
1

4σ
, when (F, p) satisfy (7) and (8).

Thus, the profit is always equal to the Hotelling profit with unit demand, as in LRT
(1998a). Provided that symmetric equilibria exist, the access charge and the reception
charge have no impact on profit.

Summarizing we have:

Proposition 3 (characterization): The symmetric equilibrium is characterized by:

(a) p + r
2

= c + 1
2
(a− c0), F = f + 1

2σ
− (p + r − c)q(p).

(b) Each firm’s profit is equal to 1
4σ

.

3.4 Social welfare maximizing equilibrium

What matters for social welfare is p only. From (7), p is equal to p∗, if and only if

r = a− c0 + 2(c− p∗). (9)

We have the following proposition.

Proposition 4 (efficiency): Suppose that ũ(q) = βu(q) holds with β ≥ 0. If the access
charge a satisfies −c < a − c0 < 1−β

1+β
c for σ small enough or a − c0 + r ≈ 0 for σ large

enough, the social welfare maximizing price p∗ can be implemented as an equilibrium of
network competition by choosing r = (a− c0) + 2β

1+β
c.

7The logic is here similar to that in LRT (1998a).
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Proof. When ũ(q) = βu(q), efficiency requires a−c0 = r− 2β
1+β

c. For σ small enough, this

condition, together with a−c0 +c > 0 and c > r, gives −c < a−c0 < 1−β
1+β

c. The existence

comes from Proposition 2. For σ large enough, if a− c0 + r ≈ 0, we have p∗∗i (αi) > 0 for
all αi.

3.5 Receiver sovereignty

The above analysis has not taken into account the fact that receivers may want to hang
up. However, the above existence and optimality results are readily extended to the
case of receiver sovereignty as long as the regulated reception charge does not exceed the
marginal utility of reception; r ≤ ũ′(q(p)).

Proposition 5 : A symmetric equilibrium (pe, F e, α = 1/2) in the absence of receiver
sovereignty (where pe and F e are given in Proposition 3) is still an equilibrium under
receiver sovereignty as long as

r ≤ ũ′(q(pe)).

Proof. Consider an equilibrium in the absence of receiver sovereignty. In particular, for
each network i, pe maximizes profit (given market share) over the domain P = {pi : r ≤
ũ′(q(pi))}. Because under receiver sovereignty network i’s profit becomes insensitive to pi

for pi such that r > ũ′(q(pi)) (since demand is then determined by r), pe still maximizes
profit in the extended domain P ′ = {pi : pi ≥ 0}.

Let us summarize the main result of the section.

For low network substitutability, existence is always guaranteed. For any termination
charge a, there exists a value of the reception charge (given by (9)) which induces the
optimal marginal calling charge p∗ = c− ũ′(q∗). Guaranteeing that receivers do not want
to hang up sets an upper bound on the termination charge which equals c0 − β

1+β
c when

ũ(q) = βu(q), such that the termination charge must be below the termination cost.

For the more interesting case of high network substitutability, again there is for each
termination charge a value of the reception charge that yields efficiency, but the existence
of equilibrium calls for a ≈ c0 − r. In the limit of perfect network substitutability, and
for ũ(q) = βu(q), these two equations impose r = βc

1+β
and a = c0 − βc

1+β
. For this value

of r, the caller and the receiver hang up together. A single value of the access charge is
compatible with efficiency; it is smaller than the termination cost.

Altogether, these results allow us to conclude that a proper regulation of the reception
charge enables the regulator to achieve the internalization of call externalities.

4 Market determined reception charges

As we discussed in the introduction, the absence of uncertainty about marginal utilities
make operators locally indifferent as to the level of their reception charge in the range
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of parameters in which the caller’s net marginal utility strictly exceeds the receiver’s net
marginal utility. This both is unrealistic and complicates the analysis. In reality, the
receiver’s utility, for example, may be subject to noise: for example, one is less eager
to stay long on the phone when a visitor is in one’s office or when watching over young
children. When reception charges are market determined, it turns out to be convenient to
allow for such state-contingent marginal utilities, since then both the calling and reception
charges have incentive effects.

Suppose that the marginal utility that a receiver derives from receiving a call is subject
to a noise ε.8 The receiver’s utility is:

ũ(q) + εq.

We assume that ε follows the distribution function F (·), with wide enough support [ε, ε],
zero mean and density f(·), which is strictly positive for all ε in [ε, ε]; and that the noise
ε is identically and independently distributed for each caller-receiver pair.

For simplicity, we further assume in this section that:

ũ(q) = βu(q) with β > 0.

We first study how the volume is determined given (pi, rj) and a realized value ε of the
random variable. Unless the caller interrupts the conversation first, the receiver with noise
ε will equate his marginal utility ũ′ + ε to the reception charge rj. Hence, the volume of

call is given by q(max(pi,
rj−ε

β
)). Therefore, the volume of calls from network i to network

j is given by:

αiαjD(pi, rj),

with D(pi, rj) ≡ [1− F (rj − βpi)] q(pi) +

∫ rj−βpi

ε

q(
rj − ε

β
)f(ε)dε.

Similarly, the utility that a network i consumer derives by making calls to network j
consumers is given by:

αjU(pi, rj),

with U(pi, rj) ≡ [1− F (rj − βpi)] u(q(pi)) +

∫ rj−βpi

ε

u(q(
rj − ε

β
))f(ε)dε.

The utility that a network j consumer derives from receiving calls from network i con-
sumers is given by:

αiŨ(pi, rj),

8The caller’s marginal utility could also be subject to a noise without any change in the results. The
important feature of the following analysis is that both the caller and the receiver have positive probability
of hanging up first.
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with Ũ(pi.rj) ≡
∫ ε

rj−βpi

[ũ(q(pi)) + εq(pi)] f(ε)dε +

∫ rj−βpi

ε

[
ũ(q(

rj − ε

β
)) + εq(

rj − ε

β
)

]
f(ε)dε.

Therefore, the net surplus of a network i consumer is given by:

wi = αiU(pi, ri) + αjU(pi, rj) + αiŨ(pi, ri) + αjŨ(pj, ri)

−pi [αiD(pi, ri) + αjD(pi, rj)]− ri [αiD(pi, ri) + αjD(pj, ri)]− Fi.

And the profit of network i is given by:

πi ≡ αi {αi(pi − c)D(pi, ri) + αj [pi − c− (a− c0)] D(pi, rj)

+αj(a− c0)D(pj, ri) + ri [αiD(pi, ri) + αjD(pj, ri)] + Fi − f} .

We now analyze the first-order conditions. Given market share αi, the first-order
derivative of πi with respect to pi is given by:

αi [1− F (ri − βpi)] αi [u
′ + ũ′ + E(ε | ε ≥ ri − βpi)− c] q′

+αi [1− F (rj − βpi)] [αj(u
′ − c− a + c0) + αi (rj − ũ′ − E(ε | ε ≥ rj − βpi))] q

′.

Consider a small decrease in pi. This increases the volume of on-net calls by
[1− F (ri − βpi)] q

′ and the volume of off-net calls by [1− F (rj − βpi)] q
′. In the market

for on-net calls, network i consumers’ utility increases by u′ + ũ′ + E(ε | ·), which the
network can extract by increasing the fixed tariff Fi. In the market for off-net calls,
network i consumers’ utility increases by u′ and network j consumers’ utility increases by
ũ′ + E(ε | ·)− rj. As before, ũ′ + E(ε | ·) represents the direct externalities, rj represents
the pecuniary externalities and an increase in network j consumers’ utility requires a
decrease in Fi in order to keep αi constant.9

When r = ri = rj, the first-order derivative simplifies to:

αi [1− F (r − βpi)] [pi − c− αj(a− c0) + αir] q
′,

which gives the following first-order condition:

pi = c + αj(a− c0)− αir.

We note that this condition is the one we found in Section 3 in the absence of noise.

The first-order derivative of πi with respect to ri is given by:

αiF (ri − βpi)αiE [(u′ + ũ′ + ε− c) q′ | ε ≤ ri − βpi]
1

β

9The reader will check that the strategic-marginal-cost pricing formula of Proposition 1 holds as the
noise vanishes and the caller determines volume with probability (close to) one.
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+αiF (ri − βpj)E [αj(ũ
′ + ε + a− c0)q

′ + αi(pj − u′)q′ | ε ≤ ri − βpj]
1

β
.

Consider a small decrease in ri. This will increase the volume of on-net calls by
F (ri − βpi) E(q′ | ·)/β and the volume of the off-net calls received from network j
by F (ri − βpj)E(q′ | ·)/ β. In the market for on-net calls, network i consumers’ utility
increases by E(u′ + ũ′ + ε | ·). In the market for off-net calls, network i consumers’ utility
increases by E(ũ′ + ε | ·) and network j consumers’ utility increases by E(u′ − pj | ·). u′

represents the direct externalities and pj represents the pecuniary externalities.

When p = pi = pj, the first-order derivative simplifies to:

αiF (ri − βp)E [(ri − αic + αj(a− c0) + αip)q′ | ε ≤ ri − βpj]
1

β
,

which gives the following first-order condition:

ri = αic− αj(a− c0)− αip

We note that this condition is the one we would find in the absence of noise if the volume
were determined by receivers.

Consider now a symmetric equilibrium with αi = 1
2
. From the two first-order condi-

tions, we have:

p = c +
a− c0 − r

2
,

r =
c− (a− c0)− p

2
.

These two conditions yield p = c + (a − c0) and r = c0 − a. Furthermore, we show
below that, as the noise vanishes (the distribution F converges to a spike at value 0 while
keeping a wide enough support to confer an incentive role upon the reception charges),
the equilibrium in which the volume is determined by callers exists if the access charge
markup is larger than − β

1+β
c. This analysis is summarized in:

Proposition 6 (off-net-cost pricing) Suppose that the reception charges are non-
cooperatively set by the networks and that the marginal utility of call reception is random.

(a) There exists a unique symmetric candidate equilibrium. For this candidate, the
reception charge is equal to the access charge discount:

r = c0 − a.

And the emission charge is

p = c + (a− c0).

That is, the networks price calls and call receptions at their off-net cost.
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(b) Furthermore, when a − c0 ≥ − β
1+β

c holds, as the noise converges to zero, the
candidate equilibrium is an equilibrium and in the equilibrium the volume is determined
by callers.

(c) As the noise converges to zero, the optimum can be approximated by choosing an
access charge a such that a− c0 = −r∗ ≡ −βc/(1 + β).

Proof: See Appendix 3.

Note the remarkable property that the privately optimal reception charge (equal to
the off-net reception cost) ensures the existence of equilibrium for any value of the access
charge. Furthermore, a proper choice of the access charge yields efficiency.

However, efficiency is of course impossible to achieve with a single instrument in
the presence of noise. For example, in the caller-determined-volume region (u′(q) = p
and ũ′(q) + ε > r), the sum of the marginal utilities always exceeds c: There is always
underprovision of communications.

5 Network-based discrimination

Network i’s tariff is characterized now by a five-uple {Fi, pi, p̂i, ri, r̂i}, where hats refer
to off-net communications. Again, we can distinguish the case in which the reception
charges (ri, r̂i) are regulated from the case in which they are not.

We show below that network-based discrimination is a mixed blessing. While network-
based discrimination induces network i to choose the on-net price pi to fully internalize the
externalities on its receivers, it also allows networks to implement selective connectivity
breakdown by charging very high or even infinite prices (p̂i or r̂i) for off-net calls, which
results in a global lack of connectivity.

For simplicity, we will assume again in this section that ũ(q) = βu(q) with β ≥ 0.

We identify two different reasons why network competition results in connectivity
breakdown:

• In the absence of reception charges, each network’s equilibrium off-net caller charge
tends to infinity as the receiver’s utility converges toward the caller’s (that is, β
converges to 1). The intuition for this result is that a receiver on the rival network
(who, recall, does not pay any reception charge) fully enjoys her surplus from the
call. In contrast, the caller-network pair perceives only the net surplus (caller surplus
minus calling cost). And so, off-net calls make the rival network relatively more
attractive for β large, which leads to a connectivity breakdown.

• The introduction of reception charges should a priori reduce this incentive for con-
nectivity breakdown. Reception charges, however, provide a second instrument for
implementing selective connectivity breakdown: Instead of inducing the caller to
hang up (or not to call off-net) as above, each network can induce the receiver to
hang up off-net calls. We provide sufficient conditions for the equilibrium off-net
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emission or reception charges to be infinite. This suggests looking at the regulation
of the reception charge for off-net calls r̂i. Hence, we study network competition un-
der the regulation of off-net reception charges and show that the efficient allocation
can be achieved with an appropriate regulation of r̂i.

5.1 Connectivity breakdown in the absence of reception charge

We show that, in the absence of reception charge, the equilibrium price for off-net calls
p̂ goes to infinity as β goes to one. Thus, we have a de facto connectivity breakdown.
Furthermore, for β ≥ 1, we show that network competition always results in connectivity
breakdown (p̂ = ∞).

In the absence of reception charge, the volume is automatically determined by callers.
The net surplus of a network i consumer is given by:

wi = αiv(pi) + αjv(p̂i) + αiũ(q(pi)) + αjũ(q(p̂j))− Fi. (10)

Network i’s market share is given by

αi =
1

2
+ σ(wi − wj).

Equivalently,

αi =
1

2
+ σ [αiv(pi) + αjv(p̂i)− αjv(pj)− αiv(p̂j)

+αiũ(q(pi)) + αjũ(q(p̂j))− αjũ(q(pj))− αiũ(q(p̂i))− Fi + Fj] .

Network i’s profit is given by

πi = αi {(pi − c)αiq(pi) + (p̂i − c− (a− c0))αjq(p̂i)

+(a− c0)αjq(p̂j) + Fi − f} .

As in the no-discrimination case, we will perform our analysis in two steps. First, we
maximize πi with respect to pi and p̂i keeping market share αi constant. Second, we
perform the maximization with respect to the market share.

For all αi (> 0), the profit maximizing price pi is equal to the social welfare maximizing
price p∗.

p∗∗i (αi) = p∗ = c− ũ′(q(p∗)). (11)

For on-net calls, network i fully internalizes the externalities on receivers. Since network
i is a monopoly in the market for on-net calls, under a two-part tariff, it maximizes the
pie. Hence, both networks choose the same price p∗ regardless of the market shares.
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The first-order derivative of profit with respect to p̂i is given by:

αi {αj [p̂i − c− (a− c0)]− αiũ
′(q(p̂i))} dq

dp̂i

, for p̂i > 0.

The first term represents the direct impact on the profit while the second term rep-
resents the indirect impact arising from the condition of keeping market share constant.
The latter represents the direct externalities on the consumers of network j. Consider an
incremental increase in the volume of calls from network i to network j, q(p̂i) ≡ q̂i. Then,
network j’s consumers’ utility from reception increases by ũ′(q(p̂i)). When the market
share αi is kept constant, an increase in the utility obtained by network j’s consumers
implies an increase in the marginal cost perceived by network i. Since ũ′(q(p̂i)) = βp̂i,
the optimal price p̂∗∗i depends upon the market share as follows:

p̂∗∗i (αi) =

{
(1−αi)(c+a−c0)

1−(1+β)αi
if αi < 1

1+β
,

∞, otherwise,

where we assume that c + a− c0 > 0.

Therefore, social and network i’s private incentives regarding the choice of p̂i are in
conflict. From the social welfare point of view, the positive externalities on the consumers
of network j should be internalized by a decrease in p̂i. In contrast, from network i’s
point of view, these externalities are costly in that it must increase the utility of its own
consumers in order to make the marginal consumer indifferent between two networks. This
results in an increase in its perceived marginal cost and, as a consequence, an increase in
p̂i. The conflict becomes larger as β increases or αi increases. This is because the utility
that consumers of network j derive from receiving calls originating in network i becomes
larger as β increases or αi increases. To illustrate the point, consider the case a = c0 with
αi < 1

1+β
. If β = 0, there is no conflict between social and private incentives and the price

is optimal: p̂∗∗i (αi) = p∗ = c. However, as β increases, p̂i increases. Furthermore, for any
β > 0, if αi > 1

1+β
, p̂∗∗i (αi) = ∞. We note that

dp̂∗∗i
dαi

=
β(c + a− c0)

[1− (1 + β)αi]
2 > 0, for αi <

1

1 + β
.

Remark: The fact that network i takes into account the direct externalities on network j
consumers when it chooses the price for off-net calls offers a new explanation of why the
price of calling mobile phones from fixed networks is high. Doyle and Smith (1998), who
do not consider the possibility that consumers can obtain utility from reception argue
that there exists no competitive force that can drive mobile companies to charge low
termination prices for off-net calls from fixed networks and that the resulting exorbitant
termination charges substantially inflate the price of calling mobile phones from fixed
networks.10 Our model offers an alternative explanation for this phenomenon based on
the incentive of fixed networks to choose high off-net call prices. Usually, the fixed-phone
service is offered by a dominant firm with large market share compared to those of mobile

10Doyle and Smith (1998)’s proposal of RPP does not really work in their model because receivers
would hang up.
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companies. Therefore, the direct externalities on the consumers of mobile networks are
large, which induces the fixed network to charge a high price for calling mobile phones.
Furthermore, contrary to Doyle and Smith’s argument, when consumers derive utility
from reception, there exist competitive pressures which may induce mobile companies to
choose moderate termination charges.

Proposition 7 : In the absence of reception charge, and if a symmetric equilibrium with
network-based price discrimination exists:

(a) The price for on-net calls is socially optimal: p = p∗.

(b) (connectivity breakdown) (i) For 0 ≤ β < 1, as β tends to one, network
competition results in a de facto connectivity breakdown in that the price for off-net calls
goes to infinity:

p̂ =
c + a− c0

1− β
.

(ii) For β ≥ 1, any symmetric equilibrium exhibits connectivity breakdown: p̂ = ∞.

Appendix 4 studies the existence of equilibrium for a constant-elasticity demand func-
tion. The second-order derivative for the program of maximizing the profit Πi with respect
to αi is negative if σ is small enough and a ' c0. These are sufficient conditions for a
symmetric equilibrium to exist.

5.2 Connectivity breakdown with reception charge

In this section, we examine how the introduction of reception charges affects connectivity.
In this case the volume is determined by both callers and receivers.

Let qij = min {q(p̂i), q̃(r̂j)} for i 6= j and qii = min {q(pi), q̃(ri)}.
We have

wi = αiu(qii) + αju(qij) + αiũ(qii)) + αjũ(qji)

−[piαiqii + p̂iαjqij]− [riαiqii + r̂iαjqji]− Fi.

Network i’s profit is given by

πi = αi [(pi − c + ri)αiqii + (p̂i − c− (a− c0))αjqij

+(r̂i + a− c0)αjqji + Fi − f ] .

As in the absence of reception charge, it is optimal for network i to maximize the pie
in the market for on-net calls. Therefore, we have:

(pi = p∗, ri ≤ r∗) or (pi ≤ p∗, ri = r∗).
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Once the volume is determined by p∗ (respectively, r∗), ri (respectively, pi) does not affect
the profit as long as ri ≤ r∗ (respectively, pi ≤ p∗).

Consider the off-net calls from network i to network j. The volume of calls qij is deter-

mined by max(p̂i,
r̂j

β
). For expositional convenience, we introduce the following notation:

πp̂
i (p̂i : αi, r̂j) ≡ αi {αj [u(qij)− (c + a− c0)qij] + αi [r̂jqij − ũ(qij)]} ,

πr̂
j (r̂j : αi, p̂i) ≡ αj {αi [ũ(qij) + (a− c0)qij] + αj [p̂iqij − u(qij)]} .

πp̂
i (p̂i) (respectively, πr̂

j (r̂j)) represents the share of πi (respectively, πj) that can be affected

by p̂i (respectively, r̂j) when αi is kept constant. We note that πp̂
i (∞) = πr̂

j (∞) =
0. Therefore, each network can have at least zero profit in the market for off-net calls
from network i to j by implementing selective connectivity breakdown. This defines an
“individual rationality constraint”. Since, in the absence of reception charge, πr̂

j < 0
is possible at equilibrium, the introduction of reception charges adds a new individual
rationality constraint: πr̂

i ≥ 0.

When βp̂i ≥ r̂j, the first-order derivative of πp̂
i with respect to p̂i is given by:

αi {αj [p̂i − c− (a− c0)] + αi [(r̂j − ũ′(q(p̂i)))]} dq

dp̂i

, for p̂i > 0.

As it was the case in the absence of reception charge, the first term represents the direct
impact on the profit while the second term represents the indirect impact which arises
from the condition of keeping the market share constant. The second term has two
components: pecuniary externalities and direct externalities on the consumers of network
j. The pecuniary externalities occur since the consumers of network j have to pay for
reception. The optimal price p̂i depends upon the market share in a complex way and can
be infinite for a certain range of market shares. When βp̂i < r̂j, the first-order derivative
with respect to p̂i is zero.

When r̂j ≥ βp̂i, the first-order derivative of πr̂
j with respect to r̂j is given by:

αj

{
αi [r̂j + a− c0] + αj

[
(p̂i − u′(q(

r̂j

β
)))

]}
dq

dr̂j

, for r̂j > 0.

The interpretation is similar to the one given for the first-order derivative with respect
to p̂i: the first term represents the direct impact on the profit while the second term
represents the indirect impact, which is composed of pecuniary externalities and direct
externalities. The direct externalities represent the utilities that consumers of network i
derive from making calls to consumers of network j.

The following proposition focuses on symmetric equilibria. We ignore equilibria based
on “weakly dominated strategies” (an equilibrium with total connectivity breakdown al-
ways exists since p̂i = ∞ is a best response to r̂j = ∞ and vice versa).

Proposition 8 (a) (connectivity breakdown): (i) For β small enough and a < c0,
any symmetric equilibrium exhibits connectivity breakdown: r̂ = ∞.
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(ii) For β large enough and c + a − c0 > 0, any symmetric equilibrium exhibits con-
nectivity breakdown: p̂ = ∞.

(b) (inefficiency): No efficient symmetric equilibrium exists for β 6= 1.

Proof See Appendix 5.

Reception charges are a mixed blessing in the context of network-based price discrim-
ination. On the one hand, a positive r̂j, through the pecuniary externalities, reduces
the marginal cost perceived by network i, which helps network i to internalize the ex-
ternalities on receivers. On the other hand, r̂j is set strategically by network j, whose
private incentive is in conflict with social welfare maximization: the gain that consumers
of network i derive from placing calls to consumers of network j increases the marginal
cost perceived by network j.

Connectivity breakdowns occur for β small enough if the access charge markup is
negative (a − c0 < 0). When β is small, callers on network i derive some utility from
interconnection of the two networks while receivers of network j derive almost no utility
from interconnection. This makes network j’s profit associated with r̂j (πr̂

j (r̂j)) negative
whenever the access revenue from interconnection is negative and, consequently, network
j is better off setting r̂j = ∞ when p̂i < ∞. Since, in the absence of reception charge,
connectivity breakdown is not an issue for β small, this result shows that reception charges
can make it even harder to internalize call externalities. By symmetry, when β is large
enough, receivers on network j derive a large utility from interconnection while callers on
network i derive a relatively small utility. Hence, network i is better off setting p̂i = ∞
when r̂j < ∞. Finally, there exists no efficient symmetric equilibrium. In Appendix 5, we
show that efficiency requires p̂ = p∗, r̂ = r∗, and a − c0 + r∗ = 0. However, in this case,
πr̂

j is strictly negative for β smaller than one and πp̂
i is strictly negative for β larger than

one. Therefore, one of the two networks has the incentive to break down connectivity.

5.3 Regulation of reception charges

We just saw that network-based price discrimination allows each network to implement
selective connectivity breakdown, that is breakdown of connectivity in one direction. This
selective connectivity breakdown results in a two-way lack of connectivity. This obser-
vation calls for some form of regulation (broadly defined), in the same way termination
charges cannot just be left to the discretion of the terminating networks. This “regulation”
can take the form of a cooperatively determined off-net reception charge. Alternatively,
the off-net reception charge may be set by a regulatory agency. In this section, we consider
a specific form of regulation. Namely, we will assume that the regulator sets r̂j such that

r̂j =

{
g(p), if p̂i < p,
g(p̂i), if p̂i ≥ p,

with g(p̂i) ≡ β
η

η − 1
p̂i − εp̂η

i and 0 < p < c + a− c0,
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where η is the elasticity of demand, which we will assume is constant, and ε is a positive
constant such that g(p) = βp and g(p̂i) ≤ βp̂i for all p̂i ≥ p. Hence, r̂j is chosen indirectly
by network i.

The regulation of r̂i has two main consequences. First, since network i cannot control
r̂i, the regulation eliminates its strategic behavior regarding the choice of r̂i. In particular,
network i’s opportunity profit related to off-net calls from network j to network i can be
negative (network i would prefer to set r̂i = ∞ if it could). Second, the regulation is
designed so as to ensure that a change in network i ’s off-net caller charge (p̂i) does not
impact the welfare of a receiver on network j. This is why we focus on this form of
regulation. It may look peculiar but it obeys some logic. A change in p̂i induces a change
dq/dp̂i in the volume of off-net calls of network i’s customers for all p̂i ≥ p. The total
externality on a network j receiver is

d

dp̂i

[ũ(q(p̂i))− r̂j(p̂i)q(p̂i)] = 0,

if r̂i is set as above. We note that when p̂i < p, both r̂j and qij are independent of p̂i.

We continue to assume joint volume determination. As earlier, we will perform our
analysis in two steps. First, we will maximize πi given αi. This will allow us to define
Πi(αi) ≡ πi(αi, p

∗
i (αi), p̂

∗
i (αi)). Second, we will maximize Πi(αi) with respect to αi.

5.3.1 Tariff structure: Maximization keeping market share constant

Since the regulation of r̂j has no impact on the choice of pi and ri, we have as before:

(pi = p∗, ri ≤ r∗) or (pi ≤ p∗, ri = r∗). (12)

The first-order derivative of profit with respect to p̂i is given by:

αi

{
αj [p̂i − c− (a− c0)]

dq

dp̂i

+ αi

[
(r̂j − ũ′(q(p̂i)))

dq

dp̂i

+ q(p̂i)
dr̂j

dp̂i

]}
, for p̂i > 0.

Under the rule chosen for the regulation of r̂j, the second terms disappears and the
profit maximizing price p̂i is uniquely given by:

p̂∗i (αi) = p̂∗ = c + (a− c0). (13)

The off-net price is equal to the off-net marginal cost as in LRT (1998b). Both networks
choose the same price p̂∗ regardless of market shares.

In what follows, we will focus on the equilibria in which pi = p∗, ri = r ≤ r∗. We can
define Πi(αi) by

Πi(αi) ≡ πi(p
∗, p̂∗; αi)

= αi

{
(p∗ − c)αiq(p

∗) + (p̂∗ − c)αjq(p̂
∗)− f + Fj +

1

2σ
(1− 2αi)

+rαjq(p
∗) + r̂(p̂∗)αiq(p̂

∗) + (αi − αj) [v(p∗)− v(p̂∗) + ũ(q(p∗))− ũ(q(p̂∗))]
}

.
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5.3.2 Tariff level: Maximization with respect to market share

We now study the program of maximizing Πi(αi) with respect to αi.

Lemma 2 Πi(αi) ≡ πi(p
∗
i , p̂

∗
i ; αi) is well defined and continuous. Suppose c+(a−c0) > 0.

Then, if σ is small enough or if |a− c0 + r| is small enough and r ≥ r̂(p̂∗i ), it is concave.

Proof See Appendix 6.

When Πi(αi) is concave, the unique solution is given by the first-order condition:{
(p∗ − c)αiq(p

∗) + (p̂∗ − c)αjq(p̂
∗)− f + Fj +

1

2σ
(1− 2αi)

+rαjq(p
∗) + r̂(p̂∗)αiq(p̂

∗) + (αi − αj) [v(p∗)− v(p̂∗) + ũ(q(p∗))− ũ(q(p̂∗))]
}

+αi

{
(p∗ − c)q(p∗)− (p̂∗ − c)q(p̂∗)− 1

σ

+2 [v(p∗)− v(p̂∗) + ũ(p∗)− ũ(p̂∗)]− rq(p∗) + r̂(p̂∗)q(p̂∗)
}

= 0. (14)

5.3.3 Symmetric equilibria

We already know that both networks choose the same pair of prices pi, p̂i regardless of
market shares. Equilibria (p∗, p̂∗, ri, Fi, αi) are characterized by (2), (12), (13) and (14).
Since ri does not affect πi as long as ri ≤ r∗, there are multiple equilibria.

Here, we are interested in symmetric equilibria: p∗, p̂∗, r, F, α = 1
2
. When Πi(αi) is

concave, there exist symmetric equilibria:

Proposition 9 (existence): Suppose that c + (a − c0) > 0 holds and that Πi(αi) is
concave. Then multiple symmetric equilibria (p∗, p̂∗, r, F ) exist.

Proof Under the condition, (2), (12), (13) and (14) are satisfied for αi = 1
2
.

We note that ri is indeterminate since it has no strategic impact on pj or p̂j.

In a symmetric equilibrium, we have from (14),

F = f +
1

2σ
− (p∗ − c)q(p∗)− r̂(p̂∗)q(p̂∗)− [v(p∗)− v(p̂∗) + ũ (q(p∗))− ũ(q(p̂∗))] . (15)

In the case of no-discrimination, the fixed tariff is given by F = f + 1
2σ
−(p−c+r)q(p).
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After some computations, we have

π =
1

4σ
+

1

2

[
−(p∗ − c− r)

q(p∗)
2

+ (p̂∗ − c− r̂(p̂∗))
q(p̂∗)

2
− (v − v̂ + ũ− ̂̃u)

]
.

Thus, the profit can differ from 1
4σ

. In particular, the profit is increasing in r as long as
customers remain connected.

What matters for social welfare is p, p̂, α. Since p = p∗, α = 1
2
, we need to have

p̂ = p∗ to maximize social welfare. This can be achieved provided the access price satisfies
a − c0 = p∗ − c = −r∗. We noted that in the no-discrimination case as well the access
price had to be equal to c0 − r∗ in the efficient equilibrium.

Suppose now that the firms negotiate the access price a. Then, we can show that there
exists an equilibrium where the firms maximize social welfare and make the monopoly
profit under the constraint of serving all consumers.

Suppose that c + a− c0 = p∗. This implies that p = p̂ = p∗, r̂ = g(p∗) and q = q̂ = q∗.
Then, we have

π =
1

4σ
+

1

4
[r − r̂] q∗.

Hence, the profit is increasing in the difference between r and r̂.

Consider r given by

r = r̂ +
2

q∗

[
v0 − f − 3

4σ
+ u(q∗) + ũ(q∗)

]
− 2c.

Then, the sum of the profits is given by,∑
i=1,2

πi = v0 + u(q∗) + ũ(q∗)− cq∗ − f − 1

4σ
,

which is the monopoly profit.

The idea is quite simple. The firms maximize the pie by choosing the social welfare
maximizing price and use r to satisfy the individual rationality constraint of the consumer
located at the middle point.11

We have the following proposition:

Proposition 10 (characterization): (a). The symmetric equilibria are characterized
by:

(i) p = p∗, p̂ = c + (a− c0).

(ii) Each firm’s profit is increasing in r.

(b) If the access price is given by a−c0 +r∗ = 0, the symmetric equilibrium maximizes
the social welfare.

(c) There exists an equilibrium in which the firms maximize social welfare and obtain
the monopoly profit.

11So, we assume implicitely that the firms serve the whole market.
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Proof. See Appendix 7.

The above proposition shows that the access charge plays a crucial role in determining
social welfare. Regardless of whether there is network-based discrimination or not, and
regardless of whether there exists regulation of reception charges or not, the optimal
outcome requires a− c0 + r∗ = 0.

We give below the intuition for the result that the profit is increasing in the difference
between r and r̂ in the efficient equilibrium. Consider network i’s deviation in terms
of αi (equivalently, in terms of F ) from a symmetric equilibrium with p = p̂ = p∗ and
βp∗ ≥ r > r̂. Precisely, suppose that αi increases by ∆αi > 0 after the deviation.
Although this deviation does not change the total volume of calls placed or received by
a consumer, it affects the composition of the volume between on-net and off-net calls.
In particular, after the deviation, a network i consumer receives more on-net calls than
off-net calls while a network j consumer receives more off-net calls than on net-calls. This
implies that, when r > r̂ holds, after the deviation, a network i consumer will pay more
reception charge while a network j consumer will pay less. Since stealing a fraction of
consumers from the other network makes the consumers of its own network unhappier
and the remaining consumers of the other network happier in terms of reception charge,
competition becomes less intense when r − r̂ is larger, which results in a higher fixed fee
F and a higher equilibrium profit.

6 Conclusion

We provided a comprehensive overview of the main insights in the introduction, and so
there is no need to reproduce it fully here. Suffices it to reiterate the key lines of the
analysis:

• From a normative viewpoint, when receivers value receiving calls, calling charges
must lie below the communications’ marginal cost. This “calling subsidy” in prin-
ciple could be obtained by setting the termination charge below the marginal cost
of termination.

• By lowering each network’s “strategic marginal cost”, reception charges also con-
tribute to an internalization of the externality on receivers. The termination charge
and the reception charge can be regulated in such a way that a symmetric equilib-
rium exists and is efficient.

• When both emission and reception demands are elastic and reception charges are
market determined, it is optimal for each operator to equate the prices for emis-
sion and reception with their off-net costs. Consequently, the equilibrium reception
charges decrease with the termination charge, which reinforces the encouragement
provided by termination discounts to set low caller charges. For an appropriately
chosen termination charge, the symmetric equilibrium is again efficient.

• Last, network-based price discrimination creates strong incentives for connectivity
breakdowns, even among equal networks.
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Because the issues studied here are central to the development of network industries
exhibiting externalities between the various sides of the market, we hope that this paper
will stimulate further research extending the analysis in several important directions,
including competition among an arbitrary number of networks, asymmetric networks
(installed bases, cost structures,...), and alternative descriptions of call externalities.
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Appendix 1

That Πi(αi) is continuous is obvious. Let us show that it is concave. The first-order
derivative with regard to αi is given by

dΠi

dαi

=
∂πi

∂αi

+
∂πi

∂p∗∗i

dp∗∗i
dαi

=
∂πi

∂αi

= (pi − c) qi − (a− c0)(qi − qj)(1− 2αi) + vi − vj − f +
1

2σ
− 2αi

σ

+Fj + r(2αiqi + (1− 2αi)qj).

The second-order derivative with respect to αi is given by:

f(αi, p
∗∗
i (αi)) ≡ − 2

σ
+ (a− c0 + r) {2 [qi(p

∗∗
i (αi))− qj]− αi [a− c0 + r] q′i(p

∗∗
i (αi))} .

The existence is trivial if a− c0 + r = 0.

We study below the case a− c0 + r 6= 0, given a < ∞, r > −∞.

If a− c0 + r > 0, let us write

p∗∗i (αi) = c− r + αj(a− c0 + r) ≥ c− r.

Therefore, p∗∗i (αi) is bounded below uniformly in αi by a positive number.

If a− c0 + r < 0, let us write

p∗∗i (αi) = c + a− c0 − αi(a− c0 + r) ≥ c + a− c0.

Therefore, p∗∗i (αi) is bounded below uniformly in αi by a positive number.

Since p∗∗i (αi) is also bounded above uniformly in αi, the continuous functions qi(pi)
and q′i(pi) are also bounded uniformly.

Therefore, f(αi, p
∗∗
i (αi)) is negative uniformly in αi if either σ is small enough or

|a− c0 + r| is small enough.

Appendix 2

(a) The candidate symmetric equilibria satisfy (3), (5) and (6) with αi = 1
2
. Substitut-

ing the first-order condition in αi and pi in the objective function of the firm, the profit
is independent of r.
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(b) Suppose that network 1, say, corners the market. We have π1 = F1 − f + (p1 +
r − c)q(p1) ≥ 0 and π2 = 0. But network 2 can charge p2 = p1, and F2 = F1 + ε and
attract a share 1

2
− εσ of the market which is strictly positive for ε small enough. Its

profit π̃2 = (1
2
− εσ)(π1 + ε) is then strictly positive for ε small enough.

(c) We study the conditions for non-existence of equilibrium. We have

d2Π1

dα2
1

+
d2Π2

dα2
2

= − 4

σ
− (a− c0 + r)2 [α1q

′
1 + α2q

′
2]

≥ − 4

σ
+ (a− c0 + r)2 min [−q′1,−q′2] .

Since |a− c0 + r| > ε and prices are bounded above and below, (a−c0+r)2 min [−q′1,−q′2]
is bounded below by a strictly positive number. Therefore, for σ large enough, at least one
of the second-order derivatives, d2Π1

dα2
1

and d2Π2

dα2
2

, is strictly positive. Hence, no equilibrium

exists.

Appendix 3

We show that a symmetric equilibrium exists in the absence of noise. By continuity,
the candidate symmetric equilibrium is an equilibrium for a small enough noise.

Let (p∗∗, r∗∗) denote a symmetric equilibrium under joint determination in the absence

of noise. We first show that max
(
p∗∗, r∗∗

β

)
≥ p∗.

Lemma 3 max
(
p∗∗, r∗∗

β

)
≥ p∗.

Proof. Consider the case in which the volume is determined by callers: βp∗∗ ≥ r∗∗. We
study one-dimensional deviations. Since the first-order derivative of πi with respect to pi

for pi ≥ p∗∗ (keeping market share αi equal to 1
2
) must not be strictly positive at pi = p∗∗,

we have

p∗∗ − c− a− c0

2
+

r∗∗

2
≥ 0. (16)

Since the first-order derivative of πi with respect to ri for ri ≥ βp∗∗ (keeping market share
αi equal to 1

2
) must not be strictly positive at ri = βp∗∗12, we have

βp∗∗ +
1

2
(p∗∗ − c) +

a− c0

2
≥ 0. (17)

12We note that the first-order derivative of πi with respect to ri is zero for ri < βp∗∗.
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After summing (16) and (17), we have

0 ≤ βp∗∗ +
r∗∗

2
+

3

2
(p∗∗ − c) ≤ 3

2
((1 + β)p∗∗ − c)

Hence, we have

p∗∗ ≥ c

1 + β
= p∗.

When the volume is determined by receivers (βp∗∗ < r∗∗), after applying a similar logic,
we obtain that r∗∗

β
≥ p∗ holds.

We now show the existence of the following equilibrium focusing on the caller-determined
volume case: p∗∗ = c + 1

2
(a− c0− r∗∗), r∗∗ = c0− a. In the equilibrium candidate, the call

volume is determined by the caller as long as the following inequality holds

p∗∗ ≥ r∗∗

β
⇔ a− c0 ≥ − βc

1 + β
.

Lemma 4 If a−c0 ≥ − βc
1+β

holds, there exists a symmetric equilibrium (p∗∗, r∗∗) satisfying

p∗∗ = c + 1
2
(a− c0 − r∗∗) ≥ r∗∗

β
and r∗∗ = c0 − a.

Proof. Since the equilibrium candidate satisfies p∗∗ + r∗∗ = c, p∗∗ ≥ r∗∗
β

implies p∗∗ ≥ p∗,
r∗∗ ≤ r∗. We first examine one-dimensional deviations and then joint deviations.

One-dimensional deviations

Consider network i’s deviation in terms of pi for βpi ≥ r∗∗ (keeping αi and ri = r∗∗

constant). The first-order derivative is given by

αi [pi − c− (1− αi)(a− c0) + αir
∗∗]

dq

dpi

.

Thus, it is optimal to have

p∗∗i (αi) = p∗∗ = c− r∗∗ for all αi ∈ [0, 1] .

Consider now network i’s deviation in terms of ri for ri ≥ βp∗∗ (keeping αi and pi = p∗∗

constant). The first-order derivative is given by

αi [ri + (1− αi)(a− c0) + αi(p
∗∗ − c)]

dq

dpi

, (18)

which is negative since we have

ri + (1− αi)(a− c0) + αi(p
∗∗ − c) = ri + (1− αi)(a− c0)− αir

∗∗

= ri − r∗∗ ≥ 0.
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Hence, the above deviation is not profitable for all αi.

Joint deviations

We now study joint deviations. We will perform our analysis in three steps. First,
given pi, we study the best choice of ri keeping market share αi constant. Second, we
study the joint deviation in terms of (pi, ri) keeping market share constant. Last, we
study the deviation in terms of market share.

Step 1. Choice of ri given (pi, αi)

Case 1: pi ≤ r∗∗
β

If ri ≤ βpi, ri does not affect πi.

If βpi ≤ ri ≤ βp∗∗, ri affects only the volume of on-net calls. Then, ri = r∗ is optimal.

If βp∗∗ ≤ ri, ri affects both the volume of on-net calls and that of off-net calls from
network j. We know, from the first-order condition (18), that ri = βp∗∗ is optimal.

Therefore, when pi ≤ r∗∗
β

, ri = r∗ is optimal.

Case 2: r∗∗
β

< pi ≤ p∗∗

If ri ≤ βpi, ri does not affect πi.

If βpi ≤ ri ≤ βp∗∗, ri affects only the volume of on-net calls. Then, ri = max [βpi, r
∗]

is optimal.

If βp∗∗ ≤ ri, ri affects both the volume of on-net calls and that of off-net calls from
network j. We know, from the first-order condition (18), that ri = βp∗∗ is optimal.

Therefore, when r∗∗
β
≤ pi ≤ p∗∗, ri = r∗ is optimal for r∗∗

β
< pi < p∗ and ri ≤ βpi is

optimal for p∗ ≤ pi ≤ p∗∗.

Case 3: pi > p∗∗

If ri ≤ βp∗∗, ri does not affect πi.

If βpi ≤ ri, ri affects both the volume of on-net calls and that of off-net calls from
network j. We know, from the first-order condition (18), that ri = βpi is optimal.

In the case in which βp∗∗ ≤ ri ≤ βpi holds, the analysis is a little bit long. In what
follows, we briefly sketch the proof. In this case, ri affects only the volume of off-net calls
from network j. Then, the first-order derivative of πi with respect to ri is given by:

f(ri; αi) ≡ αi

[
αj(a− c0 + ũ′(q(

ri

β
)))− αi(u

′(q(
ri

β
))− p∗∗)

]
q′(

ri

β
)
1

β
.

Let A(ri; αi) ≡ αj(a− c0) + αip
∗∗ + [(1− αi)β − αi]

ri

β
.

We first note that when ri = βp∗∗, f(βp∗∗i ; αi) ≤ 0 since A(βp∗∗; αi) = αj(a − c0 +
βp∗∗) ≥ 0. Let α0 ≡ β

1+β
. If αi ≤ α0, A(·) is increasing in ri. Hence, ri = βp∗∗ is optimal.

If αi > α0, A(·) is strictly decreasing in ri. Hence, either ri = βp∗∗ or ri = βpi is optimal.
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Consider now the joint deviation with ri = βpi for pi ≥ p∗∗. Then, the first-order
derivative of πi with respect to pi (keeping αi constant) is given by:

αi [αj(pi + βpi − c) + αi(p
∗∗ + r∗∗ − c)]

dq

dp
,

which is negative since we have p∗∗ + r∗∗ − c = 0. Hence, the profit with (p∗∗, βp∗∗) is
larger than the profit with (pi, ri = βpi) for pi > p∗∗. Therefore, without loss of generality,
we can say that ri = βp∗∗ is optimal for βp∗∗ ≤ ri ≤ βpi.

Hence, we can conclude that when pi > p∗∗, ri ≤ βp∗∗ is optimal.

Step 2. Choice of (pi, ri) given αi

Case 1: pi ≤ p∗

Without loss of generality, we can assume ri = r∗.

If pi ≤ r∗∗
β

, pi does not affect πi.

If r∗∗
β
≤ pi ≤ p∗, pi affects only the volume of off-net calls toward network j. The

first-order derivative with respect to pi is given by:

αi [(1− αi)(pi − c− a− c0) + αi(r
∗∗ − βpi)]

dq

dpi

,

which is positive since we have

pi − c− a− c0 ≤ p∗ − c + r∗∗ ≤ p∗ − c + r∗ = 0.

Hence, pi = p∗ is optimal.

Case 2: p∗ ≤ pi

From the previous study of the choice of ri given pi, we have:

ri =

〈 ≤ βpi for p∗ ≤ pi ≤ p∗∗,
≤ βp∗∗ for pi > p∗∗.

Hence, without loss of generality, we can still assume ri = r∗.

Then, pi affects the volume of on-net and off-net calls. From the first-order condition,
pi = p∗∗i (αi) = p∗∗ is optimal.

Finally, when we consider both case 1 and case 2, given r∗, choosing p∗∗ is better than
choosing p∗ for every αi. Furthermore, given that p∗∗i (αi) = p∗∗, choosing ri = r∗∗ instead
of r∗ does not affect πi since p∗∗ ≥ p∗. Therefore, for all αi, network i’s optimal choice of
prices is given by: pi = p∗∗, ri = r∗∗.

Step 3. Choice of αi

Since the optimal choice of prices is given by pi = p∗∗, ri = r∗∗, we are back to the
previous case in which the volume is determined by callers. From lemma 1, we know that
the symmetric equilibrium with αi = 1

2
exists if a− c0 + r∗∗ is small enough.
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Appendix 4

In the program of maximizing network i’s profit with respect to its prices given mar-
ket share αi, we can easily see by checking the sign of the first-order derivatives that
{p∗∗i (αi), p̂

∗∗
i (αi)} is the unique global maximizer if c + a− c0 > 0 holds.

Define Πi(αi) by

Πi(αi) ≡ πi(p
∗∗
i (αi), p̂

∗∗
i (αi), αi).

We now study the concavity of the program of maximizing network i’s profit Πi with
respect to market share αi when network j charges pj = p∗, p̂j = p̂∗∗j (1

2
) = c+a−c0

1−β
. We

have

d2Πi

dα2
i

=
∂2Πi

∂α2
i

+
∂2Πi

∂αi∂p̂i

dp̂i

dαi

,

∂2Πi

∂α2
i

= 2(p∗ − c)q∗ − 2(p̂i − c)q̂(p̂i)− 2(a− c0)(q̂(p̂j)− q̂(p̂i))

−2

δ
+ 4 [v(p∗) + ũ(q∗)]− 2 [v(p̂i) + ũ(q(p̂i)) + v(p̂j) + ũ(q(p̂j))] ;

∂2Πi

∂αi∂p̂i

dp̂i

dαi

= [(2αi − 1)c + (1− (1 + β)2αi)p̂i]
dq̂

dp̂i

dp̂i

dαi

for αi <
1

1 + β
,

∂2Πi

∂αi∂p̂i

dp̂i

dαi

= 0, for αi ≥ 1

1 + β
.

If a ' c0 holds, we have

∂2Πi

∂α2
i

≤ 2(p∗ − c)q∗ − 2

δ
+ 4 [v(p∗) + ũ(q∗)] ;

∂2Πi

∂αi∂p̂i

dp̂i

dαi

' β2η

c

αi

(1− αi)2
p̂
−(η−1)
i ≤ η(1 + β)c−η, for αi <

1

1 + β
.

Hence, the program is concave if the following inequality holds,

−2βp∗q∗ + 4 [v(p∗) + ũ(q∗)] + η(1 + β)c−η <
2

δ
.

This inequality holds for σ low enough. Therefore, the symmetric equilibrium with pi =
p∗, p̂i = c+a−c0

1−β
for i = 1, 2 exists if σ is low enough and if a ' c0 holds.
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Appendix 5

We first analyze the connectivity breakdown with p̂ = r̂ = ∞. In the program of
maximizing profit given market share αi, for any value of αi, p̂i = ∞ is a best response
of network i to r̂j = ∞ and vice versa. We also know that prices are efficiently chosen
in the market for on-net calls regardless of the value of αi. Therefore, for any value of
αi, {pi = p∗, ri ≤ r∗, p̂i = r̂i = ∞} is a best response of network i when network j charges
p̂j = r̂j = ∞.

We now examine the program of maximizing profit with respect to market share when
both networks charge p = p∗, r ≤ r∗, p̂ = r̂ = ∞. This program is concave if the following
inequality holds:

2 [v(p∗) + ũ(q∗)]− (r∗ + r)q∗ ≤ 1

σ
.

This inequality holds for σ small enough. Therefore, for σ small enough, a symmetric
equilibrium with connectivity breakdown exists.

(a) (i) Suppose that a symmetric equilibrium (p, r, p̂, r̂, α = 1
2
) exists. We first show

that for 1 > β > 0, if βp̂ < r̂ holds, then r̂ = ∞.

In the case in which βp̂ < r̂ holds, r̂ determines the volume of off-net calls. The
first-order derivative of πr̂

j with respect to r̂j keeping αj = 1
2

is given by:

f(r̂j) ≡ 1

4

{
[r̂j + a− c0] +

[
(p̂− u′(q(

r̂j

β
)))

]}
dq

dr̂j

1

β
.

f(r̂j) is strictly increasing in r̂j. If f(βp̂) ≥ 0 holds, we have f(r̂j) > f(βp̂) ≥ 0 for
all r̂j > βp̂. Hence, r̂j = ∞ is optimal. If f(βp̂) < 0 holds, define r̂0

j by f(r̂0
j ) ≡ 0. Then,

πr̂
j (βp̂) ≥ πr̂

j (r̂j) for all r̂j ∈
[
βp̂, r̂0

j

]
and πr̂

j (∞) ≥ πr̂
j (r̂j) for all r̂j ∈

[
r̂0
j ,∞

]
. Hence, it

is optimal to have either r̂j = ∞ or r̂j = βp̂. However, the optimal r̂j has to be strictly
larger than βp̂. Thus, r̂j = ∞ is optimal. Therefore, r̂ should be equal to ∞ regardless
of the value of f(βp̂).

Consider now the case in which ∞ > βp̂ ≥ r̂ holds. Suppose that β is close to zero and
a < c0. In a symmetric equilibrium in which the quantity qij is determined by p̂i = p̂ < ∞,
we have

πr̂
j (r̂j) ≡ 1

4
{[ũ(q(p̂)) + (a− c0)q(p̂)] + [p̂q(p̂)− u(q(p̂))]} for r̂j ≤ βp̂.

Since p̂ = u′(q(p̂)), we have for β small enough

πr̂
j (r̂j) =

1

4
{[βu(q(p̂)) + (a− c0)q(p̂)] + [u′(q(p̂))q(p̂)− u(q(p̂))]} for r̂j ≤ βp̂.

≈ 1

4
{(a− c0)q(p̂) + [u′(q(p̂))q(p̂)− u(q(p̂))]} < 0 for r̂j ≤ βp̂.
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Hence, network j has the incentive to choose r̂j = ∞ to have πr̂
j (r̂j) = 0, which is a

contradiction. Therefore, we have to have r̂ = ∞ when β is close to zero and a < c0

holds.

(ii) Suppose β > 1. What happens in this case is symmetric to the previous case in

which 0 < β < 1 holds. Suppose first βp̂ > r̂. The first-order derivative of πp̂
i with respect

to p̂i keeping αi = 1
2

is given by:

g(p̂i) ≡ 1

4
{[p̂i − c− (a− c0)] + [(r̂ − ũ′(q(p̂i)))]} dq

dp̂i

.

g(p̂i) is strictly increasing in p̂i. πp̂
i is maximized when p̂i = ∞ or p̂i = r̂. Since p̂i = r̂ is

contradictory, p̂i = ∞ must hold.

Consider now the case in which βp̂ ≤ r̂ < ∞ holds. Suppose that β is large enough.
We have:

πp̂
i (p̂i) ≡ 1

4

{[
u(q(

r̂

β
))− (c + a− c0)q(

r̂

β
)

]
+

[
r̂q(

r̂

β
)− ũ(q(

r̂

β
))

]}
for r̂ ≥ βp̂i

=
1

4
β

{
1

β

[
u(q(

r̂

β
))− (c + a− c0)q(

r̂

β
)

]
+

[
u′(q(

r̂

β
))q(

r̂

β
)− u(q(

r̂

β
))

]}

≈ 1

4
β

{
−c + a− c0

β
q(

r̂

β
) +

[
u′(q(

r̂

β
))q(

r̂

β
)− u(q(

r̂

β
))

]}
< 0.

Hence, network i has the incentive to choose p̂i = ∞ to have πp̂
i (p̂i) = 0. Therefore, we

have to have p̂ = ∞ when β is large enough.

(b) Suppose that a symmetric equilibrium (p, r, p̂, r̂, α = 1
2
) exists. We have

πp̂
i (p̂i = p̂ :

1

2
, r̂) + πr̂

j (r̂j = r̂ :
1

2
, p̂) =

1

4
(p̂ + r̂ − c)qij.

From the network i’s individual rationality constraint with respect to p̂i and the network
j’s individual rationality constraint with respect to r̂j, each term of the left hand side
of the above equality should be non-negative. Therefore, at any symmetric equilibrium,
p̂+ r̂ ≥ c should hold. This implies that the only possible efficient symmetric equilibrium
candidate is p̂ = p∗ and r̂ = r∗ = βp∗. We show below that this candidate violates one of
the two networks’ individual rationality constraint.

In order to make network i’s deviation to p̂i > p∗ not profitable, the first-order deriva-
tive of πp̂

i (·) with respect to p̂i keeping αi = 1
2

must not be strictly positive at the point
p̂i = p∗ and r̂j = r∗, which implies

[(p∗ − (c + a− c0)) + r∗ − ũ′(q(p∗))] ≥ 0. (19)

In order to make network j’s deviation to r̂j > r∗ not profitable, the first-order derivative
of πr̂

j (·) with respect to r̂j keeping αj = 1
2

must not be strictly positive at the point p̂i =
p∗ and r̂j = r∗, which implies[

(r∗ + a− c0) + p∗ − u′(q(
r∗

β
))

]
≥ 0. (20)
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After summing (19) and (20), we have

p∗ + r∗ − c ≥ 0.

However, we know that p∗ + r∗ − c = 0. Therefore, both (19) and (20) must hold with
equality, implying a− c0 + r∗ = 0. Then, we have:

πr̂
j (r

∗ :
1

2
, p∗) =

1

4
[(p∗ + a− c0)q

∗ − (1− β)u(q∗)] =
1

4
(1− β)(p∗q∗ − u(q∗)),

πp̂
i (p

∗ :
1

2
, r∗) =

1

4
[(r∗ − c− a + c0)q

∗ + (1− β)u(q∗)] =
1

4
(β − 1)(p∗q∗ − u(q∗)).

Hence, for β smaller than one, πr̂
j is negative and network j has the incentive to choose

r̂j = ∞. For β larger than one, πp̂
i is negative and network i has the incentive to choose

p̂i = ∞.

Appendix 6

Since it is obvious that Πi(αi) is continuous, we show below that it is concave.

The first-order derivative with respect to αi is given by:

dΠi

dαi

=
{

(p∗ − c)αiq(p
∗) + (p̂∗ − c)αjq(p̂

∗)− f + Fj +
1

2σ
(1− 2αi)

+rαjq(p
∗) + r̂(p̂∗)αiq(p̂

∗) + (αi − αj) [v(p∗)− v(p̂∗) + ũ(q(p∗))− ũ(q(p̂∗))]
}

+αi

{
(p∗ − c)q(p∗)− (p̂∗ − c)q(p̂∗)− 1

σ

+2 [v(p∗)− v(p̂∗) + ũ(p∗)− ũ(p̂∗)]− rq(p∗) + r̂(p̂∗)q(p̂∗)
}

.

The second-order derivative with respect to αi is given by

d2Πi

dα2
i

= 2
{

(p∗ − c− r)q(p∗)− (p̂∗ − c− r̂(p̂∗))q(p̂∗)− 1

σ
.

+2 [v(p∗)− v(p̂∗) + ũ(p∗)− ũ(p̂∗)]
}

.

Thus, if σ is small enough, Πi is concave.

When a− c0 + r∗ ' 0, we have

d2Πi

dα2
i

' −2(r − r̂(p̂∗))q∗ − 2

σ
.

Hence, for σ large, Πi is concave if a− c0 + r∗ ' 0 and r ≥ r̂(p̂∗).
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Appendix 7

We only need to prove (c). For this, we will show that there exists ε(> 0) such that in
the equilibrium associated with this ε, social welfare is maximized and the firms obtain
the monopoly profit.

First, from the defined rules for the regulation of reception charge, ε must satisfy the
following three conditions.

1) g(p) = βp.

This condition is satisfied if the following equality holds;

p =

[
β

(η − 1)ε

] 1
η−1

.

2) g(p̂i) ≤ βp̂i for all p̂i ≥ p.

Since g′′(·) < 0 for p̂ > 0 and g′(p) ≤ β, we have g(p̂i) ≤ βp̂i for all p̂i ≥ p.

3) p ≤ p̂∗(= c + a− c0)

This condition is satisfied if the following inequality holds.

β

η − 1
p̂∗−(η−1) ≤ ε.

Second, to obtain the monopoly profit, each network should choose r satisfying the
following equality:

r = r̂ +
2

q∗

[
v0 − f − 3

4σ
+ u(q∗) + ũ(q∗)− cq∗

]
.

r ≤ βp∗ holds if the following inequality holds:

β

η − 1
p∗−(η−1) +

2

q∗

[
v0 − f − 3

4σ
+ u(q∗) + ũ(q∗)− cq∗

]
p∗−η ≤ ε.

Third, the existence of the equilibrium is obtained when a − c0 + r∗ = 0 and r ≥ r̂.
Efficiency requires a− c0 + r∗ = 0 and r ≥ r̂ is a necessary condition for each firm’s profit
to be larger than the Hotelling profit under unit demand 1

4σ
. Since there exists ε that

satisfies all the above conditions, we can conclude that if a−c0 +r∗ = 0 holds, there exists
an equilibrium in which social welfare is maximized and the firms obtain the monopoly
profit.
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