
Measuring the stability of histogram appearance

when the anchor position is changed

JEFFREY S. SIMONOFF

Department of Statistics and Operations Research, New York University, New York, NY 10012, USA. e{mail:

jsimono�@stern.nyu.edu

FREDERIC UDINA

Departament d'Economia, Universitat Pompeu Fabra, 08008 Barcelona, Spain. e{mail: udina@upf.es

Abstract: Although the histogram is the most widely used density estimator, it is well{known that the

appearance of a constructed histogram for a given bin width can change markedly for di�erent choices of

anchor position. In this paper we construct a stability index G that assesses the potential changes in the

appearance of histograms for a given data set and bin width as the anchor position changes. If a particular bin

width choice leads to an unstable appearance, the arbitrary choice of any one anchor position is dangerous,

and a di�erent bin width should be considered. The index is based on the statistical roughness of the

histogram estimate. We show via Monte Carlo simulation that densities with more structure are more likely

to lead to histograms with unstable appearance. In addition, ignoring the precision to which the data values

are provided when choosing the bin width leads to instability. We provide several real data examples to

illustrate the properties of G. Applications to other binned density estimators are also discussed.
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1. Introduction

It is well{established statistical practice that data analysts should look at their data graphically when

analyzing it. For univariate data, such graphical display leads to density estimation. Although researchers

have proposed many di�erent density estimators through the years (see Scott, 1992, Wand and Jones, 1995,

and Simono�, 1996, for general discussion), the simplest estimator, the histogram, remains the most widely

used. This is due in large part, no doubt, to the fact that virtually all statistical packages provide histograms

as a standard method of data examination. The histogram also has the advantages of ease and simplicity

of construction, simplicity of interpretation (including for the statistically unsophisticated), and lack of

requirement of advanced graphics tools.

Let fx1; : : : ; xNg be a set of data values. A �xed bin width histogram is de�ned by dividing the region

of interest into a set of K equisized bins, each with bin width h, determined by the bin edges fb1; : : : ; bK+1g

(where bj+1� bj = h for all j). The histogram estimate of the underlying density f(x) within a given bin is

f̂ (x) =
nj

Nh
; x 2 (bj ; bj+1];

where nj is the number of observations falling in the jth bin (bj; bj+1]. When needed, we will de�ne n0 =

nK+1 � 0 as the counts of the adjacent empty bins.

The bin edges b of the histogram (or, more precisely, the bin width h and the anchor position b1)

completely determine its appearance (any value that �xes the position of the bin edges for a given h could be

de�ned as the anchor position, but b1 seems the most natural choice). The bin width h acts as a smoothing

parameter, as it controls the degree of smoothness of the estimate, with larger values of h resulting in

histograms with a smoother appearance. All density estimators include some form of smoothing parameter,
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and a good deal of research has focused on choosing it for di�erent estimators, often based on an assessment

of accuracy using the integrated squared error of the estimator,

ISE =

Z
1

�1

[f̂(x)� f(x)]2dx;

and its expected value, mean integrated squared error (MISE).

Unfortunately, such analysis does not address questions regarding the appearance of the histogram,

for two reasons. First, the ISE measure is not particularly e�ective at quantifying how well a density

estimate approximates the appearance of a true density, despite its natural role as a measure of accuracy;

see Kooperberg and Stone (1991), Marron (1996) and Marron and Tsybakov (1995), among others, for a

discussion of this point. Second, asymptotic analysis shows that anchor position of a histogram has a lower

order asymptotic e�ect on MISE compared with the bin width, and can therefore be ignored. Despite this,

from a practical point of view, shifting the bin edges by changing the anchor position can have an e�ect on

the appearance of the resultant histogram for �nite samples. Many authors have focused on this as one of

the biggest drawbacks of using the histogram (see, e.g., Fisher, 1989; H�ardle, 1991, Section 1.4; H�ardle and

Scott, 1992; Izenman, 1991; Samiuddin, Jones and El{Sayyad, 1993; Scott, 1992, Section 4.3; Silverman,

1986, Section 2.2; Wand and Jones, 1995, Section 1.2).

Figure 1 illustrates the problem. This �gure is based on values for the number of visas that were issued

by the U.S. Immigration and Naturalization Service in 1991 for the purpose of adoption by U.S. residents

for 39 countries or regions of origin (Chatterjee, Handcock and Simono�, 1995, p. 13). The data are very

long{tailed, and have been logged (base 10).

The three histograms in Figure 1 all have bin width h = :276, with anchor positions .48, .5 and .59,

respectively. While all three plots agree on the existence of a major mode around 1.8, they disagree on the

height of that mode, on the location and symmetry of a minor mode at low values, and on the existence

and location of possible modes at high values (Chatterjee et al., p. 16, present a histogram with h = :2 that

appears to be a combination of the third histogram at the low end and the �rst at the high end).

There has been little systematic examination of anchor position e�ects in the literature. Simono�

(1995) found that the average ISE (what can be termed quantitative accuracy) of the histogram estimate

is insensitive to anchor position, unless a discontinuity (or near discontinuity) of the density is crossed by

a bin (that is, if the discontinuity occurs inside a bin rather than at a bin edge; see also Scott, 1992, pp.

65{66). On the other hand, the appearance of histograms (as quanti�ed by the number of observed modes,

a measure of qualitative accuracy) can be very sensitive to anchor position. Scott (1992, p. 111), in the

context of the frequency polygon (the close cousin of the histogram where the estimated density values are

the linear interpolants of the heights at the bin centers), noted that the anchor position can be thought of

as a nuisance parameter, and suggested choosing it for a given bin width to make the resultant estimate as

smooth as possible.

We agree that the anchor position is a nuisance parameter. Rather than pick a particular (arbitrary)

value for that parameter, however, we propose to construct a measure to assess how sensitive the appearance

of the histogram is to any possible choice. That is, the measure is a function of the data and h, not any

particular anchor choice.

If the appearance of the histogram doesn't change very much for a given h as the anchor position

changes, the analyst is free to choose the anchor however he or she wishes, without worrying about the e�ect

of that choice. We will term such a bin width a stable bin width. However, if the appearance is sensitive

to anchor position, the impressions from a histogram using any particular choice cannot be trusted, since

a di�erent choice could lead to very di�erent impressions (we will term such a bin width an unstable bin

width).
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It is important to note that the stability measure is not a measure of the accuracy of the histogram as

an estimate of the true density f , but rather of the consistency of the representation of that density as anchor

position is changed. That is, a stable bin width is not necessarily one that gives an accurate impression of

the true density, but rather one where the impressions don't change very much with anchor position. Thus,

a data analyst would use the index as a secondary tool, after �rst choosing the bin width to provide an

accurate impression of the true density (based on ISE, or some other measure). If the chosen bin width is

stable, an anchor position is chosen, and the estimate is constructed.

If the bin width is unstable, however, any choice of anchor position is dangerous. Instead, a di�erent,

more stable, bin width should be chosen. If the new bin width is close to the original one, it is likely that

the histogram is as accurate as one based on the original choice, and little is lost; but if there are no stable

choices near the original choice, it is likely that no histogram will be satisfactory, and a di�erent density

estimator should be used.

Section 2 describes the construction of the stability index. It is based on a measure of the statistical

roughness of the estimate, since that is related to general impressions of its shape. The index itself is a

variant of the Gini index, based on the area under a constructed Lorenz curve. The properties of the index

are investigated using Monte Carlo simulations in Section 3, where it is shown that the shape of the true

density, and the precision to which the data are given, both have a strong e�ect on the stability of histograms.

Section 4 gives several real data examples that illustrate the use of the index. The paper concludes with a

discussion of extension to other binned density estimators.

2. Motivation and de�nition of the stability index

In this section we de�ne the stability index and discuss its properties. Given the data set and a �xed

bin width h, the goal is to de�ne a measure G of the similarity of the histograms that result from all possible

anchor choices. The problem can be considered in two parts:

(1) how to measure the (dis)similarity between histograms, and

(2) how to combine so many possible histograms into a single measure.

Two histograms are considered \similar" if they have roughly the same shape. When data analysts refer

to the shape of the density estimate, they are typically thinking of modes, bumps and dips in the estimate

| that is, f 0. Our measure of the similarity is a global quantity that is sensitive to changes in the shape

of the density, R(f 0) =
R
f 0(x)2dx (in this usual notation, the R stands for statistical roughness). R(f 0) is

related to shape, but also occupies a central position in the theory of histograms, as it determines the optimal

accuracy of a histogram estimate (in terms of asymptotic MISE [AMISE]) and the optimal bin width. If

f has squared{integrable and absolutely continuous derivative, the optimal bin width for histograms is given

by

h? =

�
6

R(f 0)

�1=3
N�1=3 (2:1)

(see Scott, 1992, Chapter 3, for the details). One drawback of using the global measure R(f 0) is that

di�erent{looking histograms can have similar values of R(f 0), but its use avoids the need for handling shifts

and translations of the estimates or of the bumps (see Marron and Tsybakov, 1995).

Given a histogram, the natural estimator of f 0 is the step function obtained by di�erencing the bin

counts; that is, df 0(x) = nj+1 � nj

Nh2
; x 2 (bj+1 � h=2; bj+1 + h=2):

This way, the estimate for R(f 0) is

S =
1

N2h3

KX
j=0

(nj+1 � nj)
2:
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Scott and Terrell (1987) used this estimate of R(f 0) when they developed the biased cross{validation

bin width choice, based on (2.1). Asymptotically, for N large and h! 0,

E(S) = R(f 0) +
2

Nh3
+ O(h)

(Scott, 1992, equation 3.48) and

V (S) =
12R(f)

N2h5
+ O(N�2h�4)

(Scott and Terrell, 1987, equation 3.20). These asymptotics are not useful in our setting, because we want

to deal with small and medium sample sizes, in which case the slow convergence rates of these asymptotic

formulae give poor performance of the approximations. Also note that we don't consider S as a random

variable, changing with the random sample, but rather are interested in changes in S due to shifting the

anchor position. Finally, the asymptotics are based on ignoring the anchor position as being a higher order

e�ect, when anchor position is the key issue here. So, we will use the quantity R(f 0) simply as a number

that reects changes in the shape of the histogram as the anchor is shifted.

De�ne the shifted histogram Ht to have bin edges fb1 � t; : : : ; bK+2 � tg; t 2 [0; h). St will denote the

corresponding R(f 0) estimate. St as a function of t is a step function and, given the discreteness of the

problem, a good way to compute the variability of St as t changes is to take T evenly spaced values of t and

consider the corresponding St values (T is the number of anchor positions examined, and would be large).

For simplicity we will denote here Si = Sih=T ; i = 1; : : : ; T . To decide if this set of T numbers is highly

variable (suggesting instability) we use a variant of the Gini index (see Marshall and Olkin, 1979). De�ne

q0 = 0 and, for i = 1; : : : ; T

qi =

iX
j=1

S(j)

. TX
j=1

Sj

where S(j) is the j
th order statistic. Take the pairs (i=T; qi); i = 0; : : : ; T to draw the so{called Lorenz curve

in the unit square and de�ne the stability index G as twice the area below this curve. Note that if the

numbers Si are very similar, this curve will be close to the diagonal of the unit square. Then

G =

TX
i=1

qi + qi�1

T
=

1

T

"
2

TX
i=1

qi � 1

#
=

1

T

"
2PT

i=1 Si

TX
i=1

(T � i + 1)S(i) � 1

#
:

Transforming the last expression by using S[i] to denote the inverse order statistic, so that S[1] � : : : � S[T ],

we can write

G =
1

T

�
2
P
iS[i]P
Si

� 1

�
;

which is simpler and useful for computation. The G index also can be written as

G = 1�
1

2T
P

Si

X
i

X
j

jSi � Sj j =
1

T
P

Si

X
i

X
j

min(Si; Sj):

The form of G immediately implies several properties of it:

(1) G 2 (0; 1], higher values showing more similarity among the shifted histograms. So, G has an

absolute scale that doesn't depend on N or h. Values greater than .85 are usually interpreted as

representing stable bin widths, as we will explain in sections 3 and 4.

(2) As we have de�ned it, G is determined only by the data set and the bin width. Dependency on T

can be shown to be negligible if T is large enough. We used T = 100 in our computations.
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(3) To compute G, computation of the bin counts of the T di�erent histograms can be done with a

single loop through the data, resulting in O(N ) computation time. See the appendix for more

technical details.

(4) For a given data set, G as a function of h is a step function. The examples and simulations in the

next sections show that the length of the steps and the jumps between steps are usually small. At

the typical graphing scale, G usually can be drawn as a continuous curve.

(5) Looking at the pattern of G as a function of h can give some guidance about how to choose the bin

width within a reasonable range. At least, it can be used to reject strongly some value of h that

gives very unstable histogram appearance.

3. Monte Carlo investigation of the properties of G

In this section we investigate the relationship between G and various properties of the data. In this way,

it is possible to see what kinds of properties (and data analytic choices) are associated with lower or higher

values of G, and hence less or more stability of histogram appearance.

Table 1 gives a description of the underlying distributions being examined here. All are Gaussian

mixtures (except for the discrete distribution), some of which were drawn from Marron and Wand (1992).

For each distribution, sample sizes N = 20, 100 and 500 were treated. Two hundred bin widths were

examined, equally spaced in the range [:1hOS; hOS], where hOS = 1:5 (for N = 20), 1 (for N = 100) and .6

(for N = 500), respectively, are the oversmoothed choices of bin width based on using roughly (2N )1=3 bins

(the value determined by Terrell and Scott, 1985, to be the minimumnumber of bins that should be used for a

given sample size). For each bin width, T = 100 anchor positions corresponding to x(1)�:01ih; i = 1; : : : ; 100,

were used to calculate G. This was repeated 400 times for each (distribution, sample size, bin width) triple.

Pseudo{random uniform deviates were generated using the algorithm of Wichmann and Hill (1982), which

were then transformed to be Gaussian using the Box{Muller transformation.

Figure 2 gives results for the Gaussian density. In this plot (and in Figures 3{8) the three curves

correspond to the average values of G for given bin widths, connected by lines, for N = 20 (solid line),

N = 100 (dotted line) and N = 500 (dashed line). In order to make the curves for di�erent sample sizes

comparable, the horizontal axis is scaled to be the bin width as a proportion of the oversmoothed choice

(since a data analyst shouldn't take a bin width larger than that value). The vertical line represents the

approximate position of the AMISE{optimal bin width, based on (2.1) (the position is approximate because

the values of hOS used do not correspond to exactly (2N )1=3 bins).

Since the Gaussian density is relatively featureless (being unimodal, symmetric and not kurtotic), Figure

2 gives a good sense of what G looks like for data that are likely to lead to histograms with stable appearance.

As was noted in Section 2, the jaggedness in the curves is partly due to a lack of continuity as a function of

h, but the appearance is still reasonably smooth, as the discontinuities cover small vertical distances. The

plot suggests general patterns for well{behaved data:

(a) Increasing sample size is associated with increasing stability. This makes sense, since as N ! 1, the

e�ect of the anchor position becomes progressively less important.

(b) The minimum average G is about .8; for N = 100 and 500, it is over .85. This reinforces the impression

that .8 { .85 are high values (suggesting stability).

(c) The bin width that is most unstable occurs at about .3 { .4 times the oversmoothed choice. This is

considerably smaller than the choice that minimizes AMISE, so for this distribution undersmoothing

leads to more instability.

Figure 3 refers to a density with more structure, being strongly kurtotic (with a narrow mode). In

this �gure curves for N = 1000 (dotted and dashed line) are also given. Figure 3(a) uses the proportion

5



of oversmoothed bin width as the horizontal axis, and is directly comparable to Figure 2. It is similar to

that �gure, except that the minimizing values of the index curves are at di�erent points on the horizontal

axis. These minimizing values correspond to the same bin width in an absolute sense, as Figure 3(b) shows,

corresponding to h � :4. In this half of the �gure, a line representing the AMISE{optimal bin width for

each sample size is given, since it becomes progressively smaller with increasing sample size. Recall that

the narrow mode in this density comes from a normal density with standard deviation .1; thus, h = :4 is

roughly the width of the mode. That is, the troublesome bin width roughly equals the range of the structure

of interest. More important, the problems corresponding to h � :4 don't disappear with increasing sample

size, as they reect a fundamental characteristic of the distribution itself (although h = :4 becomes too large

to be a candidate bin width for large enough sample size).

The minimizer of AMISE for this density is smaller than .4 for any reasonable sample size. That

is, oversmoothing, which has been suggested as a conservative approach to smoothing parameter selection

(Terrell, 1990), can be a bad idea, in terms of histograms and the stability of the histogram. This bin width

corresponds to using about 15 bins, a reasonable choice for a data analyst to make. The index is still not too

small in an absolute sense, however, suggesting that this density does not lead to overly unstable histogram

appearance.

Figure 4 refers to the \shoulders" density, one with one major mode and two bumps on either side of

the mode. This has more structure than the Gaussian, but the index curves are very similar to those in

Figure 2. The R(f 0) shape measure is not very sensitive to changes in shape corresponding to small bumps

(that is, it is not very sensitive to small bumps appearing and disappearing, being much more sensitive to

higher and narrower modes appearing and disappearing). If the consistency of appearance of small bumps

was of particular importance, the shape measure could be changed to account for this, by weighting:

Rw(f
0) =

Z
1

�1

[f 0(x)]2w(x)dx;

where w(�) is a weight function that could be a function of the underlying density, giving more weight in

lower density regions. We do not investigate this possibility further here.

Figure 5 refers to a trimodal density, which of course has more structure. This is reected in a di�erent

pattern of the index versus bin width. The index falls below .8 for bin width equal to about 1.05 for N = 20

(Figure 5(b)), and is even worse for N = 100 (this corresponds to about 6 bins). Thus, larger samples can

be more, rather than less, problematic when there is detailed structure in the data. The reason for this is

that such structure often will not be apparent for small samples, for any bin width or anchor position choice.

The �gure also shows that this bin width is consistent with oversmoothing for all sample sizes studied.

Figure 6 refers to the claw density, a density with a great deal of very �ne structure. For small samples,

this structure cannot be discerned, and the stability index curve is similar to that for the Gaussian density.

As the sample size increases, instability increases, focusing ultimately at h = :25 (Figure 6(b)), or about 24

bins. Since the AMISE{optimal bin width is h = :953N�1=3, h = :25 corresponds to the AMISE choice

for N � 55. Thus, a bin width chosen based on AMISE considerations can lead to greater instability in

histogram appearance for this density. A periodicity in the index related to bin width is also apparent in

this plot. Apparently �ne structure leads to this periodicity for larger bin widths, for reasons that are not

clear.

All the densities so far were symmetric, and smoothly approached zero at both the upper and lower

extremes. Figure 7 refers to a strongly skewed density, with a sharp drop at the low end. The index shows

that small bin widths lead to relatively stable histogram appearance, but as the bin width increases, the

instability increases. Further, for these larger bin widths, the e�ect does not diminish with increasing sample
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size. This is probably due to the sharp drop at the low end of the density (close to a discontinuity). A wider

bin is more likely to cross the (near) discontinuity, resulting in the combination of both a high probability

and near{zero probability region in the same bin (with resultant instability in the estimate). A similar

pattern occurs concerning estimation accuracy, in that the histogram becomes increasingly ine�cient with

respect to MISE with increasing sample size when a bin crosses a discontinuity in the density (Scott, 1992,

pp. 65{66; Simono�, 1995).

The �nal distribution examined is a discrete one. Naturally, no one should use a histogram for discrete

data, but this distribution allows examination of questions related to the precision of the data. By \precision"

we mean the accuracy to which the values are reported; for example, data that are rounded to the nearest

integer have precision at the level of integers. The discrete distribution used here has a precision of 2
3
(this

was done so that it would cover the same range as the continuous densities). Figure 8 shows that this sort

of discreteness can have a big e�ect on the stability of the histogram. The natural bin width to choose for

these data is h = 2
3
, since that is the gap between the distribution values; this turns the histogram into a

(probability) frequency distribution. For that choice, G = 1, as all histograms are identical. However, the

instability can increase dramatically (and quickly) as the bin width moves away from the natural value. The

stability index dips dramatically at h = :625 and h = :725, only 6% lower and 9% higher, respectively, than

the best choice. Thus, the presence of repeats in the data can have a large e�ect on histogram stability for

certain bin widths, and care must be taken with that choice. It is dangerous to choose a bin width that

is not consistent with the precision of the data (a noninteger for data rounded to the nearest integer, for

example).

4. Application to real data

In this section, we apply the stability index to several real data sets. The results of the previous section

show that values of G below .8 or so indicate potential instability, but it would be useful to be able to attach

an indicator of the strength of evidence for or against instability provided by an observed value of G for a

given data set. What is necessary is some way to evaluate whether an observed G is unusually small, given

the general distribution of the data.

We propose using Monte Carlo to construct such a measure of evidence for a given data set and bin

width choice, as follows:

(1) Construct a histogram using some anchor position, such as x(1)�h=2 (the algorithm is quite insensitive

to this choice). This yields observed bin counts nj. De�ne the frequency estimate of the probability of

falling in a given histogram bin to be pj = nj=N .

(2) Create a simulated histogram by generating counts n�j based on a Multinomial(N;p) distribution. Cal-

culate S. Repeat this T times, and calculate G (notation is as in Section 2).

(3) Repeat step (2) B times, getting a \null" distribution for G. An observed G can then be compared to

this distribution to see if it is surprisingly small (or large, for that matter).

Note that in this construction, the anchor is never actually moved. This means that any observed

variation in G comes from the inherent variability in the histogram, rather than from moving the anchor.

An unusually smallG therefore is due to the anchor problem, not the properties of histogram estimation itself.

Although the construction is similar to what would be done to determine a Monte Carlo tail probability,

we will term the analogous number the \evidence level," rather than signi�cance level, with small evidence

levels indicating unstable bin widths.

The �rst data set gives the durations of 222 eruptions of the \Old Faithful" geyser in Yellowstone

National Park in August 1978 and August 1979 (Weisberg, 1982). Many authors have examined these data

(or a subset of them), with a bimodal distribution of the eruption durations being found (Scott, 1992, p. 18,
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gives a histogram for a subset of these data with h = :5). Figure 9 gives a plot of G versus the bin width

for 200 values in (.16, .5) (h = :5 being the oversmoothed choice). The gray rectangles in this plot (and

those of Figures 10{12) de�ne values of h where the Monte Carlo evidence level of the index was less than

.01 (based on 400 Monte Carlo replications for each bin width). The most important message from the plot

is that G > :84, showing great stability in histogram appearance for all choices of h.

Given this, the index plot has many spikes in it, due to sharp changes in the index for close bin widths.

This is because the data are given only to the nearest tenth; as was seen in the last section, it is potentially

dangerous to choose the bin width to a greater precision than the data have. The sharp dips in the index

correspond to where the evidence level is small (i.e., histograms like this typically have G values higher

than the observed value), but since the values are still large in an absolute sense, even those bin widths are

probably reasonably stable.

The second data set gives the concentrations of PCBs in 37 U.S. bays and estuaries in 1985 (Chatterjee

et al., 1995, p. 164). The data are very long{tailed, with most bays having low concentrations (less than 50

parts per billion) and a few being much higher (to as much as 750 parts per billion). This kind of data set

is susceptible to unstable histogram appearance, as Figure 10 shows. Virtually all bin widths less than 70

have index value less than .8, and virtually all have Monte Carlo evidence level less than .01. Chatterjee et

al., p. 165, give a histogram with h = 50 (G = :80), but then note the long tails and suggest working in the

logged scale.

The third data set is the logged adoption visa data set discussed in Section 1. Figure 11 gives a stability

index plot for these data. Most bin width choices are stable (including, for example, h = :562, the choice

using (2.1) assuming a Gaussian distribution for f , and estimating the population standard deviation using

the scale estimate of Janssen et al., 1995), but the choice used in Section 1 (h = :276) has G = :66, and is

quite unstable.

The fourth data set gives the ages in years of the 105 players in the National Basketball Association

who played the guard position during the 1992{1993 season (Chatterjee et al., 1995, p. 201). These data are

discrete, having been rounded to the nearest year. The index plot given in Figure 12 shows that the natural

choice h = 1 has G = 1, but close values of h have much smaller values of G (the spikiness of the plot is a

direct consequence of the discrete nature of the data). Figure 13 gives three histograms for these data with

h = 1:38 (G = :68) with anchors 21, 21.5 and just below 22, respectively. The three plots give very di�erent

impressions of the number of modes in the data, and the relative heights of those modes. None look very

much like the natural histogram (h = 1) in Figure 14, which shows that the modal values of age are 24, 27

and 30, with the �rst two modes having slightly higher probability than the third.

The �nal data set examined is the well{known Bu�alo snowfall data (Parzen, 1979). Scott (1992, p.

110) used these data, with h = 13:5, to illustrate the sensitivity of histogram appearance to anchor position,

but the stability index does not support this (G = :85). The reason is that these data are similar to

the \shoulders" density summarized in Figure 4; when underlying structure comes from small secondary

modes compared with a large primary mode, the changes in appearance of the histogram in Scott's �gures

correspond to relatively small changes in R(f 0).

5. Extension to other binned density estimators

Any density estimator based on binning can present anchor dependency problems. Some binned esti-

mators, however, are devised speci�cally to suppress this problem. Scott (1985) introduced the averaged

shifted histogram (ASH) as a method to suppress the noise e�ect of anchor shifting. H�ardle and Scott (1992)

generalized this method to use with a general kernel function and named it WARPing (weighted averaging

of rounded points). These methods can be seen as approximations to the kernel density estimator, and
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are clearly better than any histogram{based estimator. In this section we examine other simple density

estimators that present bin edge problems.

The simplest improvement to the histogram is the frequency polygon. The linear interpolant of his-

togram heights at the bin centers, the frequency polygon has the form

f̂fp(x) = (Nh)�1

�
ni + ni+1

2
+

�
ni+1 � ni

h

�
(x� bi+1)

�
; x 2 [bi+1 � h=2; bi+1 + h=2];

i = 0; : : : ;K: (5:1)

The frequency polygon is superior to the histogram in terms of MISE, achieving the rate AMISE =

O(N�4=5) (taking h = O(N�1=5), rather than the optimalO(N�1=3) rate for histograms), and this improved

accuracy carries over to small samples (Simono� and Hurvich, 1993), but its appearance (in terms of modes,

bumps and dips) is identical to that of the histogram, and it therefore has the identical anchor stability

properties for a given h.

An alternative to the frequency polygon that is also piecewise linear, but can achieve 11.5% smaller

optimal AMISE, was introduced by Jones et al. (1995), and has the form

f̂L1(x) = (2Nh)�1

"
ni+1 + 2ni + ni�1

2
+

�
ni+1 � ni�1

h

�
(x� bi+1 + h=2)

#
;

x 2 [bi; bi+1]; i = 1; : : : ;K:

This estimate is the linear interpolant of the averages of two adjacent bin heights at right bin edges, and will

therefore be called the average frequency polygon here.

A more complicated estimator, the linearly binned frequency polygon, replaces the cell counts ni in

(5.1) with linear bin counts

`i =

nX
i=1

(1� h�1jxj � bi � h=2j)+

where + subscript denotes positive part (Jones and Lotwick, 1983; Jones, 1989). This can be seen as each

data point splitting its unit mass between the two nearest bin centers, in inverse proportion to the distances

to them. The estimator is a discretized kernel estimator with triangular kernel function (Jones, 1989), and

can achieve 5.8% lower optimal AMISE than f̂L1.

Figure 15 illustrates the sensitivity to anchor position of these three types of frequency polygon for two

of the data sets discussed in Section 4 (the geyser eruption and logged adoption visa data sets, respectively).

The plots give the stability index values for the three frequency polygons, estimating f 0 from each estimated

density in the natural way (the curve for the ordinary frequency polygon is identical to that for the histogram).

Both alternative frequency polygons are less susceptible to unstable bin widths, which supports the informal

impressions in Jones et al. (1995, Section 3). The average frequency polygon, which is no more di�cult to

calculate and interpret than the ordinary frequency polygon, leads to noticeably more stable bin widths, and

deserves further study and use. Monte Carlo examination of the frequency polygons con�rms this pattern.

In these comparisons we used the stability index as de�ned in section 2. It can be argued, however,

that for frequency polygons R(f 00) is a better measure of shape than R(f 0); in particular, the AMISE and

the optimal bandwidth depend on R(f 00) for such estimators, and for smooth enough curves R(f 00) is the

most natural measure of curvature. Although values of R(f 0) and R(f 00) are obviously di�erent, and the

resulting stability indices are also di�erent, both simulation evidence and application to real data sets shows

that bandwidths with high or low index values are roughly the same, whichever functional is used to reect

9



the shape changes. Thus, using R(f 0) in Figure 15 allows direct comparison with the earlier results, without

changing the results appreciably.

LISP{STAT code to calculate G, and dynamic graphics demonstrating the methods discussed here, are

available via anonymous ftp at the address ftp.upf.es, in the directory pub/stat/anchor-position. The

material can also be accessed using a World Wide Web (WWW) browser at the address

ftp : ==ftp:upf:es : =pub=stat=anchor� position:
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Appendix

Fast computation of the stability index

The index G can be computed with a minimum of looping through the data. A naive approach would

be to form T histograms to obtain the values St, which would raise the amount of computation to O(NT ).

Constructing a single binning on a �ner grid can give all the information needed, which reduces the order of

the computation time to the maximum of N and T (K+1), where K is the number of bins. In this appendix,

it is convenient to label the bins from 0 to K � 1, rather than from 1 to K.

Given data fxigi=1:::N , a number T of anchor positions, and bin width h, let K = 1 +
l
x(N)�x(1)

h

m
be

the minimum integer such that all data points are in [x(1); x(1)+ (K � 1)h] (all histograms will thus have K

bins). We will consider �rst the bin edges

d0 = x(1) � h; dj = d0 + jh=T j = 0; : : : ; (K + 1)T

and compute the bin counts

mj = #fxijxi 2 (dj; dj+1]g j = 0; : : : ; (K + 1)T � 1

(this is the only loop over the data). A further loop over these bin counts gives the quantities

Mj =

T�1X
k=0

mj+k; j = 0; : : : ;KT;

computed using the recursive relation M�1 = 0;Mj = Mj�1 � mj�1 + mj+T�1. In the same loop, the

quantities

Dj =Mj �Mj�T j = T; : : : ;KT;

can be computed and stored.

Now consider the histogram Ht with bin edges fdt; dt+T ; : : : ; dt+KTg (t = 0; : : : ; T � 1). For j =

0; : : : ;K � 1, the jth bin will have a count of

ntj =

T�1X
k=0

mt+jT+k =Mt+jT :

10



St is then computed as

St = [nt0]
2 +

K�2X
j=0

(ntj+1 � ntj)
2 + [ntK�1]

2

=M2
t +

K�2X
j=0

D2
t+(j+1)T +M2

t+(K�1)T :

All these sums can be computed in the same loop as when the Mj and Dj are computed, so only one

loop i = 1; : : : ; N and one loop j = 0; : : : ; T (K + 1) are needed.
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Table 1. Distributions used in the Monte Carlo simulations.

Distribution Form

Gaussian N (0; 1)

Kurtotic unimodal 2
3
N (0; 1) + 1

3
N (0;

�
1
10

�2
)

\Shoulders" 4
5
N (0; 1) + 1

10
N (�1:8;

�
2
5

�2
) + 1

10
N (1:8;

�
2
5

�2
)

Trimodal 1
3
N (0; 1) + 1

3
N (�2;

�
1
3

�2
) + 1

3
N (2;

�
1
3

�2
)

Claw 1
2
N (0; 1) +

P4
i=0

1
10
N (i=2� 1;

�
1
10

�2
)

Strongly skewed
P7

i=0
1
8
N (3f

�
2
3

�i
� 1g;

�
2
3

�2i
)

Discrete P (�3) = :033; P (�21
3
) = :067; P (�12

3
) = :1;

P (�1) = :133; P (�1
3
) = :167
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Figure 1. Histograms of logged adoption visa data. All histograms have the same bin width h = :276, with

di�erent anchor positions.
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Figure 2. Stability index plot for Gaussian density. N = 20 (solid line), N = 100 (dotted line), N = 500

(dashed line).
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Figure 3. Stability index plots for kurtotic unimodal density. N = 20 (solid line), N = 100 (dotted line),

N = 500 (dashed line), N = 1000 (dotted and dashed line).
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Figure 4. Stability index plot for \shoulders" density.
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Figure 5. Stability index plots for trimodal density.
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Figure 6. Stability index plots for claw density.
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Figure 7. Stability index plot for strongly skewed density.
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Figure 8. Stability index plots for discrete distribution.
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Figure 14. \Natural" histogram of NBA age data with h = 1.
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