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Abstract

The Efficient Method of Moments (EMM) estimator popularized by Gallant and

Tauchen (1996) is an indirect inference estimator based on the simulated auxiliary score

evaluated at the sample estimate of the auxiliary parameters. We study an alternative

estimator that uses the sample auxiliary score evaluated at the simulated binding func-

tion which maps the structural parameters of interest to the auxiliary parameters. We

show that the alternative estimator has the same asymptotic properties as the EMM

estimator but in finite samples behaves more like the distance-based indirect inference

estimator of Gouriéroux, Monfort and Renault (1993).
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1 Introduction

Indirect inference estimators take advantage of a simplified auxiliary model that is easier to

estimate than a proposed structural model. The estimation consists of two stages. First,

an auxiliary statistic is calculated from the observed data. Then an analytical or simulated

mapping of the structural parameters to the auxiliary statistic is used to calibrate an esti-

mate of the structural parameters. The simulation-based indirect inference estimators are

typically placed into one of two categories: score-based estimators made popular by Gallant

and Tauchen (1996), or distance-based estimators proposed by Smith (1993) and refined by

Gouriéroux, Monfort and Renault (1993). The simulated score-based estimators have the

computational advantage that the auxiliary parameters are estimated from the observed data

only once, whereas the distance-based estimators must re-estimate the auxiliary parameters

from simulated data as part of the optimization algorithm to estimate the structural param-

eters. However, many studies have shown (e.g., Michaelides and Ng, 2000; Ghysels, Khalaf

and Vodounou, 2003; Duffee and Stanton, 2008) that the computational advantage of the

simulated score-based estimators is often offset by poor finite sample properties relative to

the distance-based estimators. In this paper we study an alternative score-based estimator

that utilizes the sample auxiliary score evaluated with the auxiliary parameters estimated

from simulated data. We show that this alternative estimator is asymptotically equivalent

to the Gallant and Tauchen (1996) score-based estimator but has finite sample properties

that are very close to the distance-based estimators.

The paper is structured as follows. In Section 2, we give an overview of indirect inference

estimation. In Section 3, we introduce the alternative score-based estimators and derive

their asymptotic properties. In Section 4, we use the framework of Duffee and Stanton

(2008) to compare the finite sample properties of various indirect inference estimators for

the parameters of a highly persistent AR(1) process via Monte Carlo. Section 5 concludes.

Proofs of all results are given in the Appendix.
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2 Review of Indirect Inference

Indirect inference (II) techniques were introduced into the econometrics literature by Smith

(1993), Gouriéroux, Monfort, and Renault (1993), Bansal, Gallant, Hussey, and Tauchen

(1994, 1995) and Gallant and Tauchen (1996), and are surveyed in Gouriéroux and Monfort

(1996) and Jiang and Turnbull (2004). There are four components present in simulation-

based II: (1) a true structural model whose parameters θ are one’s ultimate interest but

are difficult to directly estimate; (2) simulated observations from the structural model for

a given θ; (3) an auxiliary approximation to the structural model whose parameters µ are

easy to estimate; and (4) the binding function, a mapping from µ to θ uniquely connecting

the parameters of these two models.

To be more specific, assume that a sample of n observations {yt}t=1,...,n are gener-

ated from a strictly stationary and ergodic probability model Fθ, θ ∈ Rp, with density

p(y−m, . . . , y−1, y0; θ) that is difficult or impossible to evaluate analytically.1 Typical exam-

ples are continuous time diffusion models and dynamic stochastic general equilibrium models.

Define an auxiliary model �Fµ in which the parameter µ ∈ Rr
, with r ≥ p, is easier to estimate

than θ. For ease of exposition, the auxiliary estimator of µ is defined as the quasi-maximum

likelihood estimator (QMLE) of the model �Fµ

µ̃n = argmax
µ

�Qn ({yt}t=1,...,n, µ) , (1)

�Qn ({yt}t=1,...,n, µ) =
1

n−m

n�

t=m+1

f̃(yt; xt−1, µ) , (2)

where f̃(yt; xt−1, µ) is the log density of yt for the model �Fµ conditioned on xt−1 = {yi}i=t−m,...,t−1,

m ∈ N. We define g̃(yt; xt−1, µ) =
∂f̃(yt;xt−1,µ)

∂µ as the r × 1 auxiliary score vector. For more

general �Qn, we refer the reader to Gouriéroux and Monfort (1996).

II estimators use the auxiliary model information to obtain estimates of the structural

1For simplicity, we do not consider structural models with additional exogenous variables zt.
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parameters θ. The link between the auxiliary model parameters and the structural param-

eters is given by the so-called binding function µ(θ), which is the functional solution of the

asymptotic optimization problem

µ(θ) = argmax
µ

EFθ
[f̃(yt; xt−1, µ)], (3)

where limn→∞ �Qn ({yt}t=1,...,n, µ) = EFθ
[f̃(yt; xt−1, µ)], and EFθ

[·] means that the expectation

is taken with respect to Fθ. In order for µ(θ) to define a unique mapping it is assumed that

µ(θ) is one-to-one and that ∂µ(θ)
∂θ� has full column rank.

II estimators differ in how they use (3) to define an estimating equation. The distance-

based II estimator finds θ to minimize the (weighted) distance between µ(θ) and µ̃n. The

score-based II estimator finds θ by solving EFθ
[g̃(yt; xt−1, µ̃n)] = 0, the first order condition

associated with (3).2 Typically, the analytic forms of µ(θ) and EFθ
[g̃(yt; xt−1, µ)] are not

known and simulation-based techniques are used to compute the two types of II estimators.

For simulation-based II, it is necessary to be able to easily generate simulated observations

from Fθ for a given θ. These simulated observations are typically drawn in two ways. First,

a long pseudo-data series of size S · n is simulated giving

{yt(θ)}t=1,...,Sn, S ≥ 1. (4)

Alternatively, S pseudo-data series of size n are simulated giving

{yst (θ)}t=1,...,n, s = 1, . . . , S, S ≥ 1. (5)

Using the simulated observations (4) or (5), the distance-based II estimators are minimum

2Gallant and Tauchen (1996a) call the score-based II estimator the efficient method of moments (EMM)
estimator. Efficiency in the context of EMM refers to the efficiency of the auxiliary model in approximating
the structural model, and Gallant and Tauchen (1996, 2004) advocated the use of a particular seminonpara-
metric auxiliary model to achieve such efficiency.
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distance estimators defined as

θ̂
Dj
S (�Ωn) = argmin

θ
JDj
S (θ, �Ωn) = argmin

θ

�
µ̃n − µ̃

j
S(θ)

�� �Ωn

�
µ̃n − µ̃

j
S(θ)

�
, j = A,L,M, (6)

where �Ωn is a positive definite and symmetric weight matrix which may depend on the data

through the auxiliary model, and the simulated binding functions are given by

µ̃
A
S (θ) = argmax

µ
S
−1

S�

s=1

�Qn ({yst (θ)}t=1,...,n, µ) , (7)

µ̃
L
S(θ) = argmax

µ
�QSn ({yt(θ)}t=1,...,Sn, µ) , (8)

µ̃
M
S (θ) = S

−1
S�

s=1

argmax
µ

�Qn ({yst (θ)}t=1,...,n, µ) . (9)

The superscripts A, L, and M indicate how the binding function is computed from the

simulated data: “A” denotes maximizing an aggregation of S objective functions using

(5); “L” denotes use of long simulations (4) in the objective function; “M” denotes use of

the mean of S estimated binding functions based on (5). The M-type estimator is more

computationally intensive than the A and L-type estimators, but exhibits superior finite

sample properties in certain circumstances, as shown by Gouriéroux, Renault, and Touzi

(2000).

Using (4) or (5), the score-based II estimators are one-step GMM estimators defined as

θ̂
Sj1
S (�Σn) = argmin

θ
J
Sj1
S (θ) = argmin

θ
g̃
j
S(θ, µ̃n)

��Σng̃
j
S(θ, µ̃n), j = A,L, (10)

where �Σn is a positive definite (pd) and symmetric weight matrix which may depend on the
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data through the auxiliary model, and the simulated scores are given by

g̃
A
S (θ, µ̃n) = S

−1
S�

s=1

1

n−m

n�

t=m+1

g̃(yst (θ); x
s
t−1(θ), µ̃n), (11)

g̃
L
S(θ, µ̃n) =

1

Sn−m

Sn�

t=m+1

g̃(yt(θ); xt−1(θ), µ̃n). (12)

Because (10) fixes the binding function at the sample estimate µ̃n no M-type estimator is

available.

Under regularity conditions described in Gouriéroux and Monfort (1996), the distance-

based estimators (6) and score-based estimators (10) are consistent for θ0 (true parameter

vector) and asymptotically normally distributed. The limiting weight matrices that min-

imize the asymptotic variances of these estimators are �Ω∗ = Mµ
�I−1

Mµ and �Σ∗ = �I−1,

where �I = limn→∞ varFθ
(
√
ng̃n(yn, µ(θ0))), Mµ = EFθ

[ �H(yt; xt−1, µ(θ0))], g̃n(yn, µ(θ)) =

1
n−m

�n
t=m+1 g̃(yt; xt−1, µ(θ)) and �H(yt; xt−1, µ) = ∂2f̃(yt;xt−1,µ)

∂µ∂µ� . Using consistent estimates

of these optimal weight matrices, the distance-based and score-based estimators are asymp-

totically equivalent with asymptotic variance matrix given by3

V
∗
S =

�
1 +

1

S

��
M

�
θ
�I−1

Mθ

�−1
=

�
1 +

1

S

��
∂µ(θ0)�

∂θ
M

�
µ
�I−1

Mµ
∂µ(θ0)

∂θ�

�−1

, (13)

where

Mθ =

�
∂

∂θ�
EFθ

[g̃(yt; xt−1, µ)]

�����
µ=µ(θ0)

.

3 Alternative Score-Based II Estimator

Gouriéroux and Monfort (1996, pg. 71) mentioned two alternative II estimators that they

claimed are less efficient than the optimal estimators described in the previous section, and

referred the reader to Smith (1993) for details. The first one is the simulated quasi-maximum

3The equality of the left hand side and right hand side of (13) follows from the result ∂µ(θ0)
∂θ� = M

−1
µ Mθ.
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likelihood (SQML) estimator defined as

θ̂
SQMLj
S = argmax

θ
�Qn

�
{yt}t=1,...,n, µ̃

j
S(θ)

�
, j = A,L,M. (14)

Smith (1993) showed that (14) is consistent and asymptotically normal with asymptotic

variance matrix given by

V
SQML
S =

�
1 +

1

S

��
∂µ(θ0)�

∂θ
Mµ

∂µ(θ0)

∂θ�

�−1
∂µ(θ0)�

∂θ

�I ∂µ(θ0)
∂θ�

�
∂µ(θ0)�

∂θ
Mµ

∂µ(θ0)

∂θ�

�−1

, (15)

which he showed is strictly greater than (in a matrix sense) the asymptotic variance (13)

of the efficient II estimators. As noted by Gouriéroux, Monfort, and Renault (1993), using

the result ∂µ(θ0)
∂θ� = M

−1
µ Mθ, the asymptotic variance of the SQML estimator is efficient only

when �I = −Mµ.

The second alternative II estimator mentioned by Gouriéroux and Monfort (1996, pg. 71),

which we call the S2 estimator, is an alternative score-based estimator of the form

θ̂
Sj2
S (�Σn) = argmin

θ
J
Sj2(θ, �Σn) = argmin

θ
g̃
j
n(θ)

��Σng̃
j
n(θ), (16)

where

g̃
j
n(θ) =

1

n−m

n�

t=m+1

g̃(yt; xt−1, µ̃
j
S(θ)), j = A,L,M. (17)

The S2 estimator was not explicitly considered in Smith (1993). In contrast to the simulated

scores (11) and (12), the score in (17) is evaluated with the observed data and the simulated

binding function. The following Proposition gives the asymptotic properties of (16).

Proposition 1 Under the regularity conditions in Gouriéroux and Monfort (1996), the

score-based II estimators θ̂
Sj2
S (�Σn) (j=A,L,M) defined in (16) are consistent and asymptoti-

7



cally normal, when S is fixed and n → ∞ :

√
n(θ̂Sj2S (�Σn)− θ0)

d→ N

�
0,

�
1 +

1

S

�
[M �

θΣMθ]
−1

�
M

�
θΣ�IΣMθ

�
[M �

θΣMθ]
−1

�
. (18)

The proof is given in Appendix A. We make the following remarks:

1. The asymptotic variance of θ̂Sj2S (�Σn) in (18) is equivalent to the asymptotic variance of

Gallant and Tauchen’s score-based estimator θ̂Sj1S (�Σn), and is equivalent to (13) when

�Σn is a consistent estimator of �I−1
. Contrary to the claim in Gouriéroux and Monfort

(1996), the alternative score-based II estimator is not less efficient than the optimal II

estimators.4

2. To see the relationship between the two score-based estimators, (10) and (16), note

that the first order conditions (FOCs) of the optimization problem (3) defining µ(θ)

are

0 = EFθ

�
∂f̃(yt; xt−1, µ)

∂µ

������
µ=µ(θ)

≡ g̃E(yt(θ), µ(θ)) ≡ g̃E(θ, µ(θ)) . (19)

This expression depends on θ through yt(θ) and µ(θ), and both score-based II estima-

tors make use of this population moment condition. The S1 and S2 estimators differ

in how sample information and simulations are used. For the S1 estimator, µ(θ) is es-

timated from the sample and simulated values of yt(θ) are used to approximate EFθ
[·].

For the S2 estimator, yt(θ) is obtained from the sample and simulated values of µ(θ)

are used for calibration to minimize the objective function. Because the S2 estimator

(16) evaluates the sample auxiliary score with a simulated binding function, it is more

like the distance-based II estimator (6).

3. To see why the S1 and S2 estimators are asymptotically equivalent and efficient, and

the SQML estimator is generally inefficient, consider the first order conditions (FOCs)

4“Efficiency” is used to mean the optimal use of the information provided by the binding function for
a given auxiliary model.
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defining these estimators. From (10), the FOCs for the optimal S1 estimator are

0 =
∂g̃S(θ̂S, µ̃n)�

∂θ

�I−1
n g̃n(yt; xt−1, µ̃n) , (20)

and, from (16), the FOCs for the optimal S2 estimator are

0 =
∂µ̃S(θ̂S)�

∂θ

∂g̃n(yt; xt−1, µ̃S(θ̂S))�

∂µ

�I−1
n g̃n(yt; xt−1, µ̃S(θ̂S)) , (21)

where �In is a consistent estimate of �I. When n and S are large enough, µ̃S(θ̂S) ≈ µ̃n ≈

µ(θ0),
∂g̃S(θ̂S ,µ̃n)

∂θ� ≈ Mθ,
∂g̃n(yt;xt−1,µ̃S(θ̂S))

∂µ� ≈ Mµ, and �In ≈ �I. It follows that (20) and

(21) can be re-expressed as

0 = M
�
θ
�I−1

g̃n(yt; xt−1, µ(θ0)) + op(1) , (22)

and

0 =
∂µ(θ0)�

∂θ
M

�
µ
�I−1

g̃n(yt; xt−1, µ(θ0)) + op(1) . (23)

Using the result Mθ = Mµ
∂µ(θ0)
∂θ� it follows that the FOCs for the S1 and S2 estimators

pick out the optimal linear combinations of the overidentified auxiliary score that

produces the efficient II estimator. In contrast, from (14) the FOCs for the SQML are

0 =
∂µS(θ0)�

∂θ
g̃n(yt; xt−1, µ(θ0)) + op(1) . (24)

Here, the muliplication of the auxiliary score (17) by ∂µS(θ0)�

∂θ does not pick out the

optimal linear combinations of the auxiliary score unless �I = −Mµ.
5

5We are thankful to an anonymous referee for pointing out this intuitive explanation for the inefficiency
of the SQML estimator.
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4 Finite Sample Comparison of II Estimators

In this section, we use Monte Carlo methods to compare the finite sample performance of

the alternative score-based estimator (16) to the traditional II estimators (6) and (10) using

a simple first order autoregressive, AR(1), process. Our Monte Carlo design is motivated by

Duffee and Stanton (2008) (hereafter, DS). They compared the finite sample properties of the

S1 and D estimators using highly persistent AR(1) models calibrated to interest rate data

and found that S1 is severely biased, has wide confidence intervals, and performs poorly

in coefficient and overidentification tests. The analytically tractable AR(1) process also

gives us the opportunity to compute non-simulation-based analogues of the simulation-based

estimators, and to directly compare the performance of the II estimators to the benchmark

conditional maximum likelihood estimator of the the structural parameter.6

4.1 Model Setup

Assume that the true data generating process is an AR(1) process of the form

Fθ : yt = θ1yt−1 + εt, εt ∼ iid N(0, 1), |θ1| < 1 , (25)

with θ1 values close to unity, which is motivated by the observed highly persistent behavior

of interest rate data. In accordance with DS, we calibrate our model to mimic interest

rate processes sampled at the weekly frequency with three different half-lives for shocks:

θ1 = 0.8522 (one month half-life), θ1 = 0.9868 (one year half-life), and 0.9978 (six year

half-life). We analyze samples of size T = 200, 1000, 2000 and 10000. As in DS, we use the

6A similar analysis based on a continuous-time Ornstein-Uhlenbeck process is given in Fuleky (2009).
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overidentified auxiliary model

�Fµ : yt = µ0 + µ1yt−1 + ξt , ξt ∼ iidN(0, µ2) , (26)

= β
�
xt−1 + ξt , where xt−1 = (1, yt−1)

� and β = (µ0, µ1)
�
. (27)

The auxiliary estimator, µ̃n, found by maximizing (2) is the least squares estimator. Given

(25) and (26), the binding function has the simple form

µ(θ1) = plim
n→∞

µ̃ = (0, θ1, 1)
�
. (28)

Because the binding function and the expected score vector EFθ1
[g̃(yt; xt−1, µ)] have closed

form expressions, non-simulation-based versions of the distance-based and score-based II

estimators are available.7 We denote these estimators DN, SN1 and SN2, respectively.

For the simulations (4) and (5), we set S = 20 so that the simulation-based estimators

have a 95% asymptotic efficiency relative to the non-simulation-based estimators (see (13)),

and use the same random number seed for all values of θ1 during the optimizations. When

simulating from (25), the stability constraint |θ1| < 1 is imposed and simulations are started

from y0 = 0, the long run mean of the process.

4.2 Objective Functions and Confidence Intervals

Figure 1 illustrates the LR-type statistics for testing H0 : θ1 = θ
0
1 as functions of θ01 for

the II estimators based on a single representative sample of size n = 1000 generated from

(25) with θ1 = {0.8522, 0.9868, 0.9978}. The 95% confidence intervals for θ1 are obtained by

inverting the LR statistics, which have asymptotic chi-square distributions with one degree

of freedom. Table 1 summarizes the point estimates and confidence intervals for each of the

estimators.
7Expressions for the conditional log-density, score, Hessian, etc., are summarized in Appendix B and DS.
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The distance-based (D) and the alternative score-based (S2) estimates and LR-type statis-

tics are very similar. The D and S2 estimates are slightly greater than the Gallant-Tauchen

score-based (S1) estimates, and the D and S2 LR-type statistics are more symmetric than

the corresponding S1 statistics. The M-type LR-type statistics are shifted toward unity re-

flecting the different finite sample properties of the M-type estimators in comparison to the

N, L and A-type ones. As noted by DS, the shape of LRS1 is highly asymmetric due to the

scaling of some sample moments by the population variance. In contrast, the shapes of the

LR functions for the S2 and D estimators are almost identical and are roughly symmetric

in θ1. This occurs because they are scaled by the variance of the observed sample which is

constant for any θ1.

4.3 Computational Issues

The S2 estimator can be considered a hybrid estimator consisting of two steps. In the

first step the simulation-based binding function µ̃S(θ1) is calculated. In distance-based II

this simulated binding function is directly compared to the auxiliary estimate µ̃. In the S2

estimator the mean score evaluated with µ̃S(θ1) is compared to the mean score evaluated with

µ̃, where the latter is equal to zero by construction. Because the score function is evaluated

with the observed data, a fixed input, all the variability of the S2 objective function can be

attributed to the simulated binding function µ̃S(θ1), just like in the case of the D estimators’

objective function. Therefore the objective functions of the simulation-based S2 and D

estimators will also look similar.8

Gallant and Tauchen (2002) criticize distance-based II for its computational inefficiency,

because it potentially involves two nested optimizations: the estimator of the simulated bind-

ing function is embedded within the D estimator. This, they argued, may lead to numerical

instability if the auxiliary estimator does not have a closed form analytical expression but in-

stead relies on an optimizer. The inner (binding function) optimization, which is computed

8The shape of the objective function is equivalent to the shape of the LR statistic except for a level shift.
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within a tolerance, will cause some jitter, and render the outer (structural) optimization

problem non-smooth. Because the S2 estimator also uses the simulated binding function,

similar issues have to be weighed when the auxiliary model for S2 is chosen. However, if a

simple auxiliary model is chosen such that the auxiliary estimator has a closed form analytical

solution, the speed and stability of the S2 and D estimator becomes much improved.

The current Monte Carlo study is a case in point: Table 2 indicates that the average com-

putation time associated with the S2 and D estimators that use a simulated binding function

(including the M-type!) is actually lower than that of the simulation based S1 estimators.9

The binding function in the S2 and D estimator does not involve a nested optimization,

only the analytical expression for the least squares estimator is evaluated. However, in each

iteration pseudo-series are simulated according to (4) or (5). The time required to generate

a simulated sequence dominates the time required to evaluate the sequence in an analytical

expression. Consequently, the computational efficiency of the estimators is heavily influ-

enced by the algorithm’s speed of convergence, and the number of times simulations have

to be generated. Because the S1 objective functions have irregular shapes, a higher number

of iterations is required for convergence of these estimators, and this explains their relative

computational inefficiency in the current setup.

4.4 Bias and RMSE

Table 3 summarizes the bias and dispersion of the Conditional MLE (CMLE) and II estima-

tors of θ1. The CMLE estimator is based on the least squares estimation of the structural

model (25) that does not include a constant. The results are based on 1000 Monte Carlo

simulations. Gouriéroux and Monfort (1996, pg. 66) note that the score-based and distance-

based II estimates should be very close in a just identified setting. However, Table 3 indicates

that the distributions of these estimators in an over-identified setting can be very different.

9Optimization was performed by the R function optimize, which uses a combination of golden section
search and successive parabolic interpolation.
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The S1 estimators are extremely biased in comparison to CMLE, a confirmation of DS’s

finding. In contrast, the bias and dispersion of the corresponding S2 and D-type estimators

(N, L and A-type) are comparable to those of CMLE.

In general, the CMLE and II estimators are affected by a finite sample bias (Hurwitz,

1950; Mariott and Pope, 1954; Kendall, 1954) due to the highly persistent nature of the

adopted parameterization of the AR(1) process in (25). The M-type estimator has been

shown to correct this finite sample bias in a just-identified setting (Gouriéroux, Renault,

and Touzi, 2000; Gouriéroux, Phillips, and Yu, 2008), but the results of Table 3 show that

this is not the case in an over-identified setting. While the N, A and L-type estimators show

a negative bias, the M-type estimator shows a positive finite sample bias.10

4.5 Test Statistics

Tables 4 and 5 show the empirical rejection rates of nominal 5% over-identification tests and

LR-type coefficient tests11 of θ1 = θ
0
1, respectively, based on 1000 Monte Carlo simulations.

Our results are similar to those of DS for the S1 and D estimators. In addition, the newly

considered S2 estimator shows an improved testing performance over the S1 estimator.

The LR and over-identification test statistics for Sj1 (j = N, L, A) show substantial size

distortion in smaller samples of the highly persistent AR(1) process. The high rejection rate

of these tests is caused by the finite sample bias of the S1 estimators combined with the

asymmetry of the S1 objective functions. For the Sj2 and Dj (j = N,L,A,M) estimators, the

rejection rates are approximately equal and closer to the nominal level. Here, the finite sam-

ple behavior of the test statistics depends on how the binding function is approximated: the

LR statistics are approximately correctly sized for the N, L and A-type estimators. Fuleky

(2009) shows that the higher rejection rates of the LR-type tests based on the M-type esti-

10Fuleky (2009) shows that in a just identified setting where a constant and the variance of εt in (25)
are assumed to be unknown, and are being estimated along with θ1, the SM2 and DM estimators exhibit a
90% reduction in mean bias compared to CMLE, and these results confirm the finite sample bias correcting
properties of the M-type estimators in just identified models.

11See Gouriéroux and Monfort (1996) for the expressions of these statistics.
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mators is caused by the over-identification restrictions in conjunction with the nonlinearity

of the binding function in small samples.12

5 Conclusion

In this paper we study the asymptotic and finite sample properties of an alternative score-

based II estimator that uses the sample auxiliary score evaluated at the simulated binding

function. We show that this estimator is asymptotically equivalent to Gallant and Tauchen’s

simulated score estimator, but in finite samples behaves much more like the distance-based II

estimators. For estimating the autoregressive parameter of a highly persistent AR(1) process,

we show that the alternative score-based estimator does not exhibit the poor finite sample

properties of the simulated score estimator, and that the former is more computationally

efficient than the latter. Our results counter some of the criticisms of the score-based II

estimators raised by Duffee and Stanton (2008).

12The M-type estimators have improved inference properties in just identified models. In a just identified
setting where the θ0 and θ2 parameters are assumed to be unknown, and are being estimated along with θ1,
the empirical size of the LR-type test for testing H0 : θ1 = θ

0
1 is close to the nominal size and approximately

equal for the SN2, SM2, DN and DM estimators.
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6 Appendix A: Proof of Proposition 1

The regularity conditions from Gouriéroux and Monfort (1996, Appendix 4A) are:

(A1) �Qn ({yt}t=1,...,n, µ) = f̃n (yn, µ) =
1

n−m

�n
t=m+1 f̃(yt; xt−1, µ)

p→ f̃E(θ, µ) = EFθ
[f̃(yt; xt−1, µ)]

uniformly in (θ, µ) as n → ∞.

(A2) f̃E(θ, µ) has a unique maximum with respect to µ : µ(θ) = argmaxµ f̃E(θ, µ).

(A3) f̃n (yn, µ) and f̃E(θ, µ) are differentiable with respect to µ, and g̃E(θ, µ) = ∂f̃E(θ,µ)
∂µ

= limn→∞
∂f̃n(yn,µ)

∂µ .

(A4) The only solution to the asymptotic first order conditions is µ(θ) : g̃E(θ, µ) = 0 ⇒ µ =

µ(θ).

(A5) The equation µ = µ(θ) admits a unique solution in θ.

(A6) p limn→∞
∂2f̃n(yn,µ(θ))

∂µ∂µ� = EFθ
[ �H(yt; xt−1, µ(θ0))] = Mµ

(A7)
√
ng̃n(yn, µ(θ0)) =

√
n

∂f̃n(yn,µ(θ0))
∂µ

d→ N(0, �I) as n → ∞.

For ease of exposition, we only give the proof for θ̂
SL2
S (�Σn) = θ̂

L
S which follows closely

the proof from Gouriéroux and Monfort (1996, Appendix 4A). The results for the other

estimators are similar. For consistency, first note that for fixed S and as n → ∞

g̃n(yn, µ(θ))
p→ g̃E(θ0, µ(θ)),

µ̃
L
S(θ) = argmax

µ

p

f̃Sn (ySn(θ), µ)
p→ argmax

µ
Sf̃E(θ, µ) = µ(θ).

Then θ̂
L
S

p→ argminθ g̃E(θ0, µ(θ))�Σg̃E(θ0, µ(θ)) which, by A4, is uniquely minimized at θ = θ0.

Hence, θ̂LS
p→ θ0.

For asymptotic normality, the first order condition of the optimization problem in (16)

is
∂g̃n(yn, µ̃L

S(θ̂
L
S))

�

∂θ

�Σng̃n(yn, µ̃
L
S(θ̂

L
S)) = 0. (29)
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Taking a mean value expansion (MVE) of g̃n(yn, µ̃L
S(θ̂

L
S)) around θ0 and plugging it into (29)

gives

∂g̃n(yn, µ̃L
S(θ̂

L
S))

�

∂θ

�Σn

�
g̃n(yn, µ̃

L
S(θ0)) +

∂g̃n(yn, µ̃L
S(θ̄))

∂µ�
∂µ̃

L
S(θ̄))

∂θ�
(θ̂LS − θ0)

�
= 0 , (30)

where θ̄ represents the vector of intermediate values. Using the results

∂g̃n(yn, µ̃L
S(θ̂

L
S))

�

∂θ
=

∂µ̃
L
S(θ̂

L
S))

�

∂θ

∂g̃n(yn, µ̃L
S(θ̂

L
S))

�

∂µ

p−→ ∂µ(θ0)�

∂θ

∂g̃E(θ0, µ(θ0))�

∂µ
= M

�
θ ,

∂g̃n(yn, µ̃L
S(θ̄))

∂µ�
∂µ̃

L
S(θ̄))

∂θ�
p−→ ∂g̃E(θ0, µ(θ0))

∂µ�
∂µ(θ0)

∂θ�
= Mθ,

and re-arranging (30) then gives

√
n(θ̂LS − θ0) = − [M �

θΣMθ]
−1

M
�
θΣ

√
ng̃n(yn, µ̃

L
S(θ0)) + op(1). (31)

Next, use a MVE of g̃n(yn, µ̃L
S(θ0)) around µ̃ to give

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
ng̃n(yn, µ̃) +

∂g̃n(yn, µ̄)

∂µ�

√
n(µ̃L

S(θ0)− µ̃) (32)

=
√
ng̃n(yn, µ̃) +Mµ

√
n(µ̃L

S(θ0)− µ̃) + op(1),

and another MVE of g̃n(yn, µ̃) = 0 around µ(θ0) to give

√
ng̃n(yn, µ̃) =

√
ng̃n(yn, µ(θ0)) +

∂g̃n(yn, ¯̄µ)

∂µ�

√
n(µ̃− µ(θ0)) = 0,

so that
√
n(µ̃− µ(θ0)) = −M

−1
µ

√
ng̃n(yn, µ(θ0)) + op(1). (33)
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In addition, use a MVE of the simulated score g̃Sn(ySn(θ0), µ̃L
S(θ0)) around µ(θ0)

√
ng̃Sn(ySn(θ0), µ̃

L
S(θ0)) =

√
ng̃Sn(ySn(θ0), µ(θ0)) +

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ�

√
n(µ̃L

S(θ0)− µ(θ0)) = 0,

so that

√
n(µ̃L

S(θ0)− µ(θ0)) = −
�
∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ�

�−1 √
ng̃Sn(ySn(θ0), µ(θ0)) (34)

= −S
−1
M

−1
µ

√
n

S�

s=1

g̃n(y
s
n(θ0), µ(θ0)) + op(1),

since g̃Sn(ySn(θ0), µ(θ0)) =
�S

s=1 g̃n(y
s
n(θ0), µ(θ0)) and so

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ� =
S�

s=1

∂g̃n(ysn(θ0), ¯̄µ)

∂µ�
p→ S ·Mµ.

By subtracting (33) from (34) we get

√
n(µ̃L

S(θ0)− µ̃) = M
−1
µ

√
n

�
g̃n(yn, µ(θ0))− S

−1
S�

s=1

g̃n(y
s
n(θ0), µ(θ0))

�
. (35)

Using (35) and g̃n(yn, µ̃) = 0, (32) can be rewritten as

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
n

�
g̃n(yn, µ(θ0))− S

−1
S�

s=1

g̃n(y
s
n(θ0), µ(θ0))

�
, (36)

Because yn and y
s
n(θ0) (s = 1, . . . , S) are independent it follows that

AsyVar[
√
ng̃n(yn, µ̃

L
S(θ0))] =

AsyVar[
√
ng̃n(yn, µ(θ0))] + S

−2
S�

s=1

AsyVar[
√
ng̃n(yn, µ(θ0))] =

�
1 +

1

S

�
I ,
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so that
√
ng̃n(yn, µ̃

L
S(θ0))

d→ N

�
0,

�
1 +

1

S

�
I
�
. (37)

Plugging (37) into (31) gives the desired result.
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Estimates of θ1 and 95% confidence intervals for θ1
SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM

θ
0
1 = 0.8522

θ̂ 0.8364 0.8380 0.8380 0.8365 0.8382 0.8383 0.8415 0.8365 0.8382 0.8383 0.8415
L 0.8015 0.8022 0.8023 0.7989 0.8004 0.8005 0.8038 0.8031 0.8045 0.8046 0.8078
U 0.8618 0.8637 0.8638 0.8740 0.8758 0.8759 0.8790 0.8699 0.8718 0.8719 0.8750
CI 0.0604 0.0615 0.0615 0.0751 0.0754 0.0753 0.0751 0.0668 0.0673 0.0673 0.0673

θ
0
1 = 0.9868

θ̂ 0.9798 0.9802 0.9804 0.9798 0.9809 0.9812 0.9850 0.9798 0.9809 0.9812 0.9850
L 0.9525 0.9509 0.9501 0.9659 0.9672 0.9674 0.9713 0.9666 0.9678 0.9681 0.9719
U 0.9874 0.9878 0.9882 0.9936 0.9941 0.9944 0.9977 0.9929 0.9935 0.9939 0.9974
CI 0.0349 0.0369 0.0381 0.0277 0.0269 0.0270 0.0264 0.0263 0.0257 0.0258 0.0255

θ
0
1 = 0.9978

θ̂ 0.9860 0.9856 0.9857 0.9864 0.9875 0.9877 0.9912 0.9864 0.9875 0.9877 0.9912
L 0.9555 0.9496 0.9484 0.9746 0.9759 0.9761 0.9799 0.9753 0.9765 0.9767 0.9804
U 0.9920 0.9918 0.9922 0.9981 0.9984 0.9988 0.9993 0.9975 0.9979 0.9982 0.9991
CI 0.0365 0.0422 0.0438 0.0235 0.0225 0.0227 0.0195 0.0222 0.0214 0.0215 0.0186

Table 1: Point estimate, and asymptotic 95% confidence interval for θ1 from a representative
simulation of the AR(1) process with sample size 1000.

Average estimation time

n SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM

θ
0
1 = 0.8522

200 0.00 0.06 0.14 0.00 0.03 0.09 0.12 0.00 0.03 0.08 0.10
1000 0.00 0.30 0.31 0.00 0.15 0.17 0.20 0.00 0.12 0.14 0.16
2000 0.01 0.59 0.73 0.00 0.29 0.37 0.45 0.00 0.23 0.30 0.36

10000 0.03 2.86 2.91 0.00 1.41 1.60 1.84 0.00 1.25 1.33 1.52

θ
0
1 = 0.9868

200 0.00 0.06 0.14 0.00 0.05 0.13 0.21 0.00 0.04 0.11 0.20
1000 0.00 0.38 0.39 0.00 0.22 0.26 0.31 0.00 0.17 0.20 0.26
2000 0.01 0.75 0.92 0.00 0.41 0.54 0.65 0.00 0.32 0.41 0.51

10000 0.04 3.58 3.70 0.00 2.08 2.30 2.66 0.00 1.65 1.74 2.03

θ
0
1 = 0.9978

200 0.00 0.05 0.13 0.00 0.06 0.15 0.23 0.00 0.05 0.13 0.21
1000 0.00 0.35 0.35 0.00 0.27 0.31 0.42 0.00 0.22 0.25 0.36
2000 0.01 0.71 0.88 0.00 0.50 0.66 0.88 0.00 0.40 0.52 0.75

10000 0.05 3.83 3.98 0.00 2.52 2.75 3.22 0.00 2.07 2.18 2.61

Table 2: Average estimation time in seconds based on 1000 Monte Carlo experiments. Esti-
mation was performed in R 2.10 (32 bit) on an iMac with 2.66 GHz Intel Core 2 Duo and 2
GB 800 MHz DDR2 SDRAM.
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Bias and dispersion of estimates

n CMLE SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM

θ
0
1 × 1000 = 8522

200 -87 -322 -323 -324 -89 -79 -79 99 -89 -79 -79 100
( 402) ( 643) ( 654) ( 655) ( 407) ( 413) ( 413) ( 426) ( 408) ( 413) ( 413) ( 426)

1000 -24 -64 -64 -64 -24 -22 -22 12 -24 -22 -22 12
( 172) ( 191) ( 195) ( 195) ( 173) ( 178) ( 178) ( 178) ( 173) ( 178) ( 178) ( 177)

2000 -15 -33 -33 -33 -15 -14 -14 3 -15 -14 -14 3
( 120) ( 128) ( 130) ( 130) ( 121) ( 123) ( 123) ( 122) ( 121) ( 123) ( 123) ( 122)

10000 -4 -8 -7 -7 -4 -3 -4 -0 -4 -4 -4 -0
( 53) ( 54) ( 55) ( 55) ( 53) ( 55) ( 55) ( 55) ( 53) ( 55) ( 55) ( 55)

θ
0
1 × 1000 = 9868

200 -108 -1223 -1207 -1224 -110 -103 -103 34 -110 -103 -103 36
( 227) ( 1786) ( 1800) ( 1814) ( 228) ( 228) ( 228) ( 164) ( 228) ( 228) ( 228) ( 164)

1000 -21 -176 -181 -181 -21 -20 -20 22 -21 -20 -20 22
( 63) ( 392) ( 403) ( 402) ( 63) ( 64) ( 64) ( 66) ( 63) ( 64) ( 64) ( 66)

2000 -11 -50 -56 -56 -11 -10 -10 10 -11 -10 -10 10
( 41) ( 130) ( 157) ( 158) ( 41) ( 42) ( 42) ( 42) ( 41) ( 42) ( 42) ( 42)

10000 -3 -7 -7 -7 -3 -3 -3 1 -3 -3 -3 1
( 17) ( 19) ( 20) ( 20) ( 17) ( 18) ( 18) ( 18) ( 17) ( 18) ( 18) ( 18)

θ
0
1 × 1000 = 9978

200 -100 -1491 -1449 -1480 -108 -105 -104 -25 -108 -105 -104 -24
( 197) ( 2000) ( 1991) ( 2016) ( 198) ( 196) ( 197) ( 112) ( 197) ( 196) ( 196) ( 111)

1000 -20 -510 -514 -519 -20 -19 -19 7 -20 -19 -19 7
( 42) ( 771) ( 782) ( 786) ( 42) ( 41) ( 42) ( 28) ( 42) ( 41) ( 42) ( 28)

2000 -10 -253 -255 -256 -10 -9 -9 8 -10 -9 -9 7
( 25) ( 435) ( 444) ( 446) ( 25) ( 25) ( 25) ( 21) ( 25) ( 25) ( 25) ( 21)

10000 -2 -29 -31 -30 -2 -2 -2 2 -2 -2 -2 2
( 8) ( 103) ( 107) ( 106) ( 8) ( 8) ( 8) ( 8) ( 8) ( 8) ( 8) ( 8)

Table 3: Mean empirical bias × 1000 and (RMSE × 1000) of estimates for 1000 Monte Carlo
simulations.
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Rejection frequencies of overidentification tests

n SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM

θ
0
1 = 0.8522

200 0.102 0.092 0.093 0.068 0.074 0.074 0.084 0.077 0.072 0.071 0.065
1000 0.067 0.054 0.054 0.057 0.058 0.058 0.062 0.064 0.050 0.051 0.053
2000 0.058 0.053 0.053 0.048 0.047 0.047 0.049 0.056 0.052 0.052 0.051
10000 0.053 0.059 0.059 0.053 0.052 0.052 0.052 0.053 0.059 0.059 0.055

θ
0
1 = 0.9868

200 0.349 0.336 0.336 0.120 0.130 0.126 0.302 0.153 0.148 0.146 0.301
1000 0.142 0.124 0.124 0.079 0.080 0.081 0.088 0.086 0.072 0.072 0.079
2000 0.089 0.087 0.088 0.066 0.062 0.062 0.065 0.066 0.063 0.063 0.067
10000 0.062 0.069 0.069 0.059 0.054 0.054 0.054 0.056 0.062 0.062 0.061

θ
0
1 = 0.9978

200 0.547 0.536 0.537 0.200 0.203 0.204 0.578 0.229 0.229 0.218 0.579
1000 0.350 0.345 0.343 0.147 0.150 0.145 0.356 0.140 0.132 0.127 0.351
2000 0.243 0.234 0.234 0.105 0.104 0.101 0.182 0.107 0.102 0.101 0.190
10000 0.130 0.128 0.127 0.067 0.067 0.067 0.069 0.072 0.071 0.071 0.076

Table 4: Empirical rejection frequencies of overidentification tests at 5% nominal level for
1000 Monte Carlo simulations. The test has an asymptotic χ

2(2) distribution.

Rejection frequencies of likelihood ratio type tests

n SN1 SL1 SA1 SN2 SL2 SA2 SM2 DN DL DA DM

θ
0
1 = 0.8522

200 0.215 0.203 0.201 0.062 0.063 0.064 0.096 0.061 0.064 0.065 0.091
1000 0.098 0.101 0.101 0.063 0.056 0.057 0.062 0.063 0.060 0.059 0.066
2000 0.084 0.077 0.078 0.059 0.060 0.060 0.067 0.055 0.060 0.061 0.064
10000 0.064 0.068 0.068 0.055 0.056 0.056 0.052 0.054 0.057 0.057 0.056

θ
0
1 = 0.9868

200 0.752 0.727 0.708 0.070 0.076 0.075 0.276 0.070 0.065 0.069 0.264
1000 0.383 0.371 0.360 0.054 0.054 0.053 0.120 0.051 0.053 0.053 0.117
2000 0.248 0.245 0.242 0.048 0.052 0.053 0.089 0.052 0.048 0.049 0.091
10000 0.108 0.113 0.111 0.057 0.060 0.060 0.072 0.054 0.061 0.061 0.072

θ
0
1 = 0.9978

200 0.929 0.913 0.858 0.070 0.068 0.069 0.198 0.073 0.073 0.067 0.172
1000 0.792 0.770 0.741 0.055 0.058 0.056 0.259 0.050 0.059 0.054 0.263
2000 0.629 0.615 0.604 0.052 0.051 0.052 0.236 0.054 0.058 0.057 0.235
10000 0.271 0.267 0.259 0.049 0.048 0.051 0.096 0.051 0.048 0.050 0.095

Table 5: Empirical rejection frequencies of likelihood ratio type tests at 5% nominal level
for 1000 Monte Carlo simulations. The test has an asymptotic χ

2(1) distribution.
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Figure 1: LR-type statistics for testing H0 : θ1 = θ
0
1 as functions of θ01 from a representative

sample of size n = 1000. The underlying model is described in Section 4.1. The horizontal
grey line and the vertical red line represent the 95% χ

2(1) critical value and the true value
of θ1 respectively.
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